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Abstract

The onion routing network Tor is undoubtedly the most widely employed technology for anony-
mous web access. Although the underlying onion routing (OR) protocol appears satisfactory, a
comprehensive analysis of its security guarantees is still lacking. This has also resulted in a sig-
nificant gap between research work on OR protocols and existing OR anonymity analyses. In this
work, we address both issues with onion routing by defining a provably secure OR protocol, which
is practical for deployment in the next generation Tor network.

We start off by presenting a security definition (an ideal functionality) for the OR methodology
in the universal composability (UC) framework. We then determine the exact security properties
required for OR cryptographic primitives (onion construction and processing algorithms, and a key
exchange protocol) to achieve a provably secure OR protocol. We show that the currently deployed
onion algorithms with slightly strengthened integrity properties can be used in a provably secure OR
construction. In the process, we identify the concept of predictably malleable symmetric encryptions,
which might be of independent interest. On the other hand, we find the currently deployed key
exchange protocol to be inefficient and difficult to analyze and instead show that a recent, significantly
more efficient, key exchange protocol can be used in a provably secure OR construction.

In addition, our definition greatly simplifies the process of analyzing OR anonymity metrics. We
define and prove forward secrecy for the OR protocol, and realize our (white-box) OR definition from
an OR black-box model assumed in a recent anonymity analysis. This realization not only makes the
analysis formally applicable to the OR protocol but also identifies the exact adversary and network
assumptions made by the black box model.
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1 Introduction

Over the last few years the onion routing (OR) network Tor [32] has emerged as a successful technology
for anonymous web browsing. It currently employs more than two thousand dedicated relays, and serves
hundreds of thousands of users across the world. Its impact is also evident from the media coverage
it has received over the last few years [17]. Despite its success, the existing Tor network still lacks a
rigorous security analysis, as its circuit construction as well as network transmission delays are found to
be large [26,28], the current infrastructure is not scalable enough for the future users [24,25,27], and from
the cryptographic point of view its security properties have neither been formalized cryptographically nor
proven. (See [3, 10, 23] for previous attempts and their shortcomings.) In this paper, we define security
for the third-generation OR protocol Tor, and construct a provably secure and practical OR protocol.

An OR network consists of a set of routers or OR nodes that relay traffic, a large set of users, and
directory servers that provide routing information for the OR nodes to the users. A user (say Alice)
constructs a circuit by choosing a small sequence of (usually three) OR nodes, where the chosen nodes
route Alice’s traffic over the path formed. The crucial property of an OR protocol is that a node
in a circuit can determine no circuit nodes other than its predecessor and its successor. Alice sends
data over the constructed circuit by sending the first OR node a message wrapped in multiple layers of
symmetric encryption (one layer per node), called an onion, using symmetric keys agreed upon during an
initial circuit construction phase. Consequently, given a public-key infrastructure (PKI), cryptographic
challenges in onion routing are to securely agree upon such symmetric keys, and then to use the symmetric
keys to achieve confidentiality and integrity.

In the first generation onion routing [29], circuits are constructed in a single pass. However, the
scalability issues while pursuing forward secrecy [6] in the single-pass construction prompted Dingledine,
Mathewson and Syverson [8] to use a telescoping approach for the next-generation OR protocol Tor.
In this telescoping approach, they employed a forward secret, multi-pass key agreement protocol called
the Tor authentication protocol (TAP) to negotiate a symmetric session key between user Alice and
a node. Here, the node’s public key is only used to initiate the construction, and the compromise
of this public key does not invalidate the secrecy of the session keys once the randomness used in the
protocol is erased.Goldberg [12] presented a security proof for individual instances of TAP. The security of
TAP, however, does not automatically imply the security of the Tor protocol. (For a possible concurrent
execution attack, see [33]). The Tor protocol constitutes a sequential execution of multiple TAP instances
as well as onion construction and processing algorithms, and thus its security has to be analyzed in a
composability setting.

In this direction, Camenisch and Lysyanskaya [3] defined an anonymous message transmission protocol
in the universal composability (UC) framework, and presented a protocol construction that satisfies their
definition. They motivated their choice of the UC framework for a security definition by its versatility
as well as its appropriateness for capturing protocol compositions. However, Feigenbaum, Johnson and
Syverson [10, 11] observe that the protocol definition presented by Camenisch and Lysyanskaya [3] does
not correspond to the OR methodology, and a rigorous security analysis of an OR protocol still remains
an unsolved problem.

Studies on OR anonymity such as [10, 23, 30] assume simplified OR black-box models to perform
an analysis of the anonymity guarantees of these models. Due to the complexity of an OR network’s
interaction with the network and the adversary, such black-box models are not trivially realized by
deployed OR networks, such as Tor. As a result, there is a gap between deployed OR protocols and
anonymity analysis research that has to be filled.

1.1 Our Contributions

Our contribution is threefold. First, we present a security definition for the OR methodology as an
ideal functionality For in the UC framework. This ideal functionality in particular gives appropriate
considerations to the goals of various system entities. After that, we identify and characterize which
cryptographic primitives constitute central building blocks of onion routing, and we give corresponding
security definitions: a one-way authenticated key exchange (1W-AKE) primitive, and onion construction
and processing algorithms. We then describe an OR protocol Πor that follows the current Tor speci-
fication and that relies on these building blocks as black boxes. We finally show that Πor is secure in
the UC framework with respect to For, provided that these building blocks are instantiated with secure
realizations (according to their respective security definitions).

Second, we present a practical OR protocol by instantiating Πor with the following OR modules:
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a 1W-AKE protocol ntor [13], employed onion construction and processing algorithms in Tor with a
slightly enhanced integrity mechanism. We show that these instantiations fulfill the security definitions
of the individual building blocks that we identified before. This yields the first practical and provably
secure OR protocol that follows the Tor specification. As part of these proofs, we identify a novel
security definition of symmetric encryption notion we show to be sufficient for showing Πor secure.
This notion strictly lies between CPA-security and CCA-security and characterizes stateful deterministic
countermode encryptions. We call this notion predictably malleable encryptions, which might be of an
independent interest.

Third, we illustrate the applicability of the abstraction For by introducing the first cryptographic
definition of forward circuit secrecy for onion routing, which might be of independent interest. We
utilize the abstraction For and the UC composability theorem for proving that Πor satisfies forward
circuit secrecy by means of a simple proof. As a second application, we close the gap between the OR
black-box model, prevalently used in anonymity analyses [10,11,23,30], and a cryptographic model (Πor)
of onion routing. Again, we utilize our abstraction For and the UC composability theorem for proving
that against local, static attackers the recent analysis of the OR black-box model [11] also applies to our
OR protocol Πor instantiated with secure core building blocks.

Compared to previous work [3], we construct an OR circuit interactively in multiple passes, whereas
previous work did not consider circuit construction at all, and hence does not model the widely used
Tor protocol. The previous approach, and even single-pass circuit construction in general, restricts the
protocol to eventual forward secrecy, while a multi-pass circuit construction ensures forward secrecy
immediately after the circuit is closed. Second, we show that their hop-to-hop integrity verification is
not mandatory, and that an end-to-end integrity verification suffices for onion routing. Finally, they do
not consider backward messages (from web-servers to Alice), and their onion wrapping and unwrapping
algorithms also do not work in the backward direction.

Another important approach for analyzing onion routing has been conducted by Feigenbaum, John-
son, and Syverson [9]. In contrast to our work, the authors analyze an I/O automaton that use idealized
encryption, pre-shared keys, and assume that every party only constructs one circuit to one destination.
Moreover, the result in that work only holds in the stand-alone model against a local attackers whereas
our result holds in the UC model against global and partially global attackers. In particular, by the
UC composability theorem our result even holds with arbitrary protocols surrounding and against an
attacker that controls parts of the network.

Outline of the Paper. Section 2 provides background information relevant to onion routing, 1W-
AKE, and the UC framework. In Section 3, we present our security definition for onion routing. In
Section 4, we present cryptographic definitions for the 1W-AKE primitive and onion construction and
processing algorithms. In Section 5, we prove that given a set of secure OR modules we can construct a
secure OR protocol. In Section 7, we use our ideal functionality to analyze some security and anonymity
properties of onion routing. Finally, we conclude and discuss some further interesting directions in
Section 8.

2 Background

In this paper, we often omit the security parameter κ when calling an algorithm A; i.e., we abbreviate
A(1κ, x) by A(x). We write y ← A(x) for the assignment of the result of A(x) to a variable y, and

we write y $← S for the assignment of a uniformly chosen element from S to y. For a given security
parameter κ, we assume a message space M(κ) that is disjoint from the set of onions. We assume a
distinguished error message ⊥; in particular, ⊥ is not in the message space. For some algorithms, we
write Alg(a, b, c, [d]) and mean that the argument d is optional. Finally, for stateful algorithms, we write
y ← A(x) but we actually mean (y, s′)← A(x, s), where s′ is used in the next invocation of A as a state,
and s is the stored state from the previous invocation.We assume that for all algorithms s ∈ {0, 1κ}. We
abbreviate probabilistic polynomial-time as PPT.

2.1 Onion Routing Circuit Construction

In the original Onion Routing project [15,16,29,31], circuits were constructed in a single pass. However,
such a single-pass circuit construction does not provide forward secrecy: if an adversary corrupts a node
and obtains the private key, the adversary can decrypt all of the node’s past communication. Although
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changing the public/private key pairs for all OR nodes after a predefined interval is a possible solution
(eventual forward secrecy), this solution does not scale to realistic OR networks such as Tor, since at
the start of each interval every user has to download a new set of public keys for all the nodes.

A user (Alice) chooses a path of OR nodes to a receiver, and creates a forward onion with several
layers. Each onion layer is targeted at one node in the path and is encrypted with that node’s public
key. A layer contains that node’s symmetric session key for the circuit, the next node in the path, and
the next layer. Each node decrypts a layer using its secret key, stores the symmetric key, and forwards
the next layer of the onion along to the next node. Once the last node in the path, i.e., the receiver, gets
its symmetric session key, it responds with a confirmation message encrypted with its session key. Every
node in the path wraps (encrypts) the backward onion using its session key in the reverse order, and the
message finally reaches Alice. A circuit that is constructed in this way, i.e., the sequence of established
session keys, is thereafter used for constructing and sending onions via this circuit.

There are attempts to solve this scalability issue. Kate, Zaverucha and Goldberg [21] suggested the
use of an identity-based cryptography (IBC) setting and defined a pairing-based onion routing (PB-OR)
protocol. Catalano, Fiore and Gennaro [5] suggested a certificateless cryptography (CLC) setting [1]
instead, and defined two certificateless onion routing protocols (CL-OR and 2-CL-OR). However, both
approaches do not yield satisfactory solutions: CL-OR and 2-CL-OR suffer from the same scalability
issues as the original OR protocol [20]; PB-OR requires a distributed private-key generator [19] that may
lead to inefficiency in practice.

Another problem with the single-pass approach is its intrinsic restriction to eventual forward se-
crecy [22].; i.e., if the current private key is leaked, then past sessions remain secret only if their public
and private keys have expired. A desirable property is that all past sessions that are closed remain secret
even if the private key is leaked; such a property is called immediate forward secrecy.

In the current Tor protocol, circuits are constructed using a multi-pass approach that is based on
TAP. The idea is to use the private key only for establishing a temporary session key in a key-exchange
protocol. Together with the private key, additional temporary (random) values are used for establishing
the key such that knowing the private key does not suffice for reconstructing the session key. These
temporary values are erased immediately after the session key has been computed. This technique
achieves immediate forward secrecy in multi-pass constructions, which however was never formally defined
or proven before.

The multi-pass approach incurs additional communication overhead. However, in practice, almost
all Tor circuits are constructed for a circuit length of ` = 3, which merely causes an overhead of six
additional messages.1 With this small overhead, the multi-pass circuit construction is the preferred
choice in practice, due to its improved forward secrecy guarantees. Consequently, for our OR security
definition we consider a multi-pass circuit construction as in Tor.

2.2 One-Way Authenticated Key Exchange—1W-AKE

In a multi-pass circuit construction, a session key is established via a Diffie–Hellman key exchange.
However, the precise properties required of this protocol were not formalized until recently. Goldberg,
Stebila and Ustaoglu [13] formalized the concept of 1W-AKE, presented an efficient instantiation, and
described its utility towards onion routing. We review their work here and we refer the readers to [13]
for a detailed description.

An authenticated key exchange (AKE) protocol establishes an authenticated and confidential com-
munication channel between two parties. Although AKE protocols in general aim for key secrecy and
mutual authentication, there are many practical scenarios such as onion routing where mutual authen-
tication is undesirable. In such scenarios, two parties establish a private shared session key, but only
one party authenticates to the other. In fact, as in Tor, the unauthenticated party may even want to
preserve its anonymity. Their 1W-AKE protocol constitutes this precise primitive.

The 1W-AKE protocol consists of three procedures: Initiate, Respond , and ComputeKey . With
procedure Initiate, Alice (or her onion proxy) generates and sends an authentication challenge to the
server (an OR node). The OR node responds to the challenge by running the Respond procedure, and
returning the authentication response. The onion proxy (OP) then runs the ComputeKey procedure over
the received response to authenticate the OR node and compute the session key. A 1W-AKE protocol
also satisfies 1W-AKE security and one way anonymity properties, which we leave to Section 4.3.

In terms of instantiation, Goldberg et al. show that an AKE protocol suggested for Tor—the fourth
protocol in [26]—can be attacked, leading to an adversary determining all of the user’s session keys.

1The overhead reduces to four additional messages if we consider the “CREATE FAST” option available in Tor.
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They then fix the protocol (see Figure 14) and proved that the fixed protocol (ntor) satisfies the formal
properties of 1W-AKE. In our OR analysis, we use their formal definition and their fixed protocol.

2.3 The OR Protocol

We describe an OR protocol Πor that follows the Tor specification [7]. We do not present the crypto-
graphic algorithms, e.g., wrapping and unwrapping onions, in this section but only present the skeleton
of the protocol. A thorough characterization of these cryptographic algorithms follows in Section 4.

We describe our protocols using pseudocode and assume that a node maintains a state for every
execution and responds (changes the state and/or sends a message) upon receiving a message as per its
current state.

There are two types of messages that the protocol generates and processes: The first type contains
input actions, which carry inputs to the protocol from the user (Alice), and output actions, which carry
output of the protocol to Alice. The second message type is a point-to-point network message (a cell in
the OR literature), which is to be delivered by one protocol node to another. To enter a wait state, a
thread may execute a command of the form wait for a network message.

With this methodology, we are able to effortlessly extract an OR protocol (Πor) from the Tor spec-
ification by categorizing actions based on the OR cell types (see Figure 1). For ease of exposition, we
only consider Tor cells that are cryptographically important and relevant from the security definitional
perspective. In particular, we consider create, created and destroy cells among control cells, and data,
extend and extended cells among relay cells. We also include two input messages createcircuit and send,
where Alice uses createcircuit to create OR circuits and uses send to send messages m over already-created
circuits. We do not consider streams and the SOCKS interface in Tor as they are extraneous to the basic
OR methodology. We unify instructions for an OP node and an OR node for the simplicity of discussion.
Moreover, for the sake of brevity, we restrict ourselves to messages m ∈M(κ) that fit exactly in one cell.
It is straight-forward to extend our result to a protocol that accepts larger messages. The only difference
is that the onion proxy and the exit node divide message into smaller pieces and recombine them in an
appropriate way.

Function calls Initiate, Respond and ComputeKey correspond to 1W-AKE function calls described
in Section 2.2. Function calls WrOn and UnwrOn correspond to the principal onion algorithms. WrOn
creates a layered encryption of a payload (plaintext or onion) for given an ordered list of ` session keys
for ` ≥ 1. UnwrOn removes ` layers of encryptions from an onion to output a plaintext or an onion
given an input onion and a ordered list of ` session keys for ` ≥ 1. Moreover, onion algorithms also
ensure end-to-end integrity. The cryptographic requirements for these onion algorithms are presented in
Section 4.2.

Tor uses a centralized approach to determine valid OR nodes and distribute their public keys. Every
OR node has to be registered in so-called directory servers, where each registration is checked by an
administrator. These directory servers then distribute the list of valid OR nodes and the respective
public keys. We abstract these directory servers as an ideal service, formalized by a bulletin board
functionality Freg (see Canetti [4]). Tor does not guarantee any anonymity once these directory servers
are compromised. Therefore, we concentrate on the case in which these directory servers cannot be
compromised.2 As in Tor, we assume that the list of valid OR nodes is given to the directory servers
from outside, in our case from the environment. However, for the sake of simplicity we assume that the
OR list is only synchronized initially. In detail, we slightly extend the functionality as follows. Freg

initially receives a list of OR nodes from the environment, waits for each of these parties for a public key,
and distributes the list of OR nodes and their public keys as (registered, 〈Pj , pk j〉nj=1). Each OR node,
on the other hand, initially computes its long-term keys (sk , pk) and registers the public part at Freg.
Then, the node waits to receive the message (registered, 〈Pj , pk j〉nj=1) from Freg before declaring that it
is ready for use.3

OPs develop circuits incrementally, one hop at a time, using the ExtendCircuit function defined in
Figure 2. To create a new circuit, an OP sends a create cell to the first node, after calling the Initiate
function of 1W-AKE; the first node responds with a created cell after running the Respond function.
The OP then runs the ComputeKey function. To extend a circuit past the first node, the OP sends an
extend relay cell after calling the Initiate function, which instructs the last node in the circuit to send a
create cell to extend the circuit.

2Formally, this ideal functionality Freg does not accept compromise-requests from the attacker.
3The functionality Freg additionally answers upon a request retrieve with the full list of participants 〈Pj , pkj〉nj=1.
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upon an input (setup):

Generate an asymmetric key pair (sk , pk)← G.
send a cell (register, P, pk) to the Freg functionality
wait for a cell (registered, 〈Pj , pk j〉nj=1) from Freg

output (ready,N = 〈Pj〉nj=1)

upon an input (createcircuit,P = 〈P, 〈Pj〉`j=1〉〉):
store P and C ← 〈P 〉; call ExtendCircuit(P, C)

upon an input (send, C = 〈P cid1⇐⇒ P1 ⇐⇒ · · ·P`〉,m):

if Used(cid1) < ttlC then
look up the keys (〈kj〉`j=1 for cid1

O ←WrOn(m, (kj)
`
j=1); Used(cid1)++

send a cell (cid1, relay, O) to P1 over Fscs

else
call DestroyCircuit(C, cid1); output (destroyed, C,m)

upon receiving a cell (cid , create, X) from Pi over Fscs:

〈Y, knew〉 ← Respond(pkP , skP , X)

store C ← 〈Pi
cid,knew⇐⇒ P 〉

send a cell (cid , created, Y, t) to Pi over Fscs

upon receiving a cell (cid , created, Y, t) from Pi over Fscs:

if prev(cid) = (P ′, cid ′, k′) then
O ←WrOn(〈extended, Y, t〉, k′)
send a cell (cid ′, relay, O) to P ′ over Fscs

else if prev(cid) = ⊥ then
knew ← ComputeKey(pk i, Y, t)
update C with knew; call ExtendCircuit(P, C)

upon receiving a cell (cid , relay, O) from Pi over Fscs:

if prev(cid) = ⊥ then

if getkey(cid) = (kj)
`′
j=1 then

(type,m) or O ← UnwrOn(O, (kj)
`′
j=1)

(P ′, cid ′) or ⊥ ← next(cid)
else if prev(cid) = (P ′, cid ′, k′) then
O ←WrOn(O, k′) /* a backward onion */

switch (type)
case extend:

get 〈Pnext , X〉 from m; cidnext
$← {0, 1}κ

update C ← 〈Pi
cid,k⇐⇒ P

cidnext⇐⇒ Pnext〉
send a cell (cidnext , create, X) to Pnext over Fscs

case extended:
get 〈Y, t〉 from m; get Pex from (C,P)
kex ← ComputeKey(pk ex, Y, t)
update C with (kex); call ExtendCircuit(P, C)

case data:
if (P = OP) then output (received, C,m)
else if m = (S, sid ,m′) send (P, S, sid ,m′) to Fnetq

case corrupted : /*corrupted onion*/
call DestroyCircuit(C, cid)

case default: /*encrypted forward/backward onion*/
send a cell (cid ′, relay, O) to P ′ over Fscs

upon receiving a msg (sid ,m) from Fnetq :

get C ← 〈P ′ cid,k⇐⇒ P 〉 for sid ; O ←WrOn(m, k)
send a cell (cid , relay, O) to P ′ over Fscs

upon receiving a cell (cid ,destroy) from Pi over Fscs:

call DestroyCircuit(C, cid)

Figure 1: Πor: The OR Protocol for Party P

Circuits are identified by circuit IDs (cid ∈ {0, 1}κ) that associate two consecutive circuit nodes.

We denote circuit at a node Pi using the terminology C = Pi−1
cidi,ki⇐⇒ Pi

cidi+1⇐⇒ Pi+1, which says that
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ExtendCircuit(P = 〈Pj〉`j=1, C = 〈P cid1,k1⇐⇒ P1
k2⇐⇒ · · ·P`′〉):

determine the next node P`′+1 from P and C
if P`′+1 = ⊥ then

output (created, 〈P cid1⇐⇒ P1 ⇐⇒ · · ·P`′〉)
else
X ← Initiate(pkP`′+1

, P`′+1)

if P`′+1 = P1 then

cid1
$← {0, 1}κ

send a cell (cid1, create, X) to P1 over Fscs

else
O ←WrOn({extend, P`′+1, X}, (kj)`

′
j=1)

send a cell (cid1, relay, O) to P1 over Fscs

DestroyCircuit(C, cid):

if next(cid) = (Pnext , cidnext) then
send a cell (cidnext , destroy) to Pnext over Fscs

else if prev(cid) = (Pprev , cidprev ) then
send a cell (cidprev , destroy) to Pprev over Fscs

discard C and all streams

Figure 2: Subroutines of Πor for Party P

Pi−1 and Pi+1 are respectively the predecessor and successor of Pi in a circuit C. ki is a session key
between Pi and the OP, while the absence of ki+1 indicates that a session key between Pi+1 and the
OP is not known to Pi; analogously the absence of a circuit id cid in that notation means that only the
first circuit id is known, as for OP, for example. Functions prev and next on cid correspondingly return
information about the predecessor or successor of the current node with respect to cid ; e.g., next(cid i)
returns (Pi+1, cid i+1) and next(cid i+1) returns ⊥. The OP passes on to Alice 〈P cid1⇐⇒ P1 ⇐⇒ · · ·P`〉.

Within a circuit, the OP and the exit node use relay cells created using WrOn to tunnel end-to-end
commands and connections. The exit nodes use some additional mechanisms (streams used in Tor) to
synchronize communication between the network and a circuit C. We represent that using sid . With
this auxiliary synchronization, end-to-end communication between OP and the exit node happens with
a WrOn call with multiple session keys and a series of UnwrOn calls with individual session keys in
the forward direction, and a series of WrOn calls with individual session keys, and finally a UnwrOn
call with multiple session keys in the backward direction. Communication in the forward direction
is initiated by a send message by Alice to the OP, while communication in the backward direction is
initiated by a network message to the exit node. Cells are exchanged between OR nodes over a secure
and authenticated channels, e.g., a TLS connection. As proposed by Canetti, we abstract such a channel
in the UC framework by a functionality Fscs [4].4

To tear down a circuit completely, an OR or OP sends a destroy cell to the adjacent nodes on that
circuit with appropriate cid using the DestroyCircuit function defined in Figure 2. Upon receiving an
outgoing destroy cell, a node frees resources associated with the corresponding circuit. If it is not the
end of the circuit, it sends a destroy cell to the next node in the circuit. Once a destroy cell has been
processed, the node ignores all cells for the corresponding circuit. Note that if an integrity check fails
during UnwrOn, the destroy cells are sent in the forward and backward directions in a similar way.

In the Tor the OP has a time limit (of ten minutes) for each established circuit; thereafter, the OP
constructs a new circuit. However, the UC framework does not provide a notion of time. We model such
a time limit in the UC framework by only allowing a circuit to transport at most a constant number
(say ttlC ) of messages measured using the used function call. Afterwards, the OP discards the circuit
and establishes a fresh circuit.

2.4 The UC Framework: An Overview

The UC framework is designed to enable a modular analysis of security protocols. In this framework,
the security of a protocol is defined by comparing it with a setting in which all parties have a direct and
private connection to a trusted machine that computes the desired functionality. As an example consider
an authenticated channel between Alice and Bob with a passive attacker. In the real world Alice would

4As leakage function l for Fscs, we choose l(m) := |m|.
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upon receiving a msg (compromise,NA) from A:

set compromised(P )← true for every P ∈ NA
set b← |NA|

|Nor|

upon an input (send, S, [m]) from the environment for party U :

with probability b2,

choose P`
$← NA

send (sent, U, S, [m]) to A
with probability (1− b)b,

choose P`
$← NA

send (sent,−, S, [m]) to A
with probability b(1− b),

choose P`
$← Nor \ NA

send (sent, U,−) to A
with probability (1− b)2,

choose P`
$← Nor \ NA

send (sent,−,−) to A
output message (P`, S, [m])

Figure 3: Black-box OR Functionality Bor [11]

call a protocol that signs the message m to be communicated and sends the signed message over the
network such that Bob would verify the signature. In the setting with a trusted machine T , however,
Alice sends the message m directly to T 5; T notifies the attacker about m, and T directly sends m to
Bob. This trusted machine is called the ideal functionality.

Security in the UC framework is defined as follows: A protocol π UC-realizes an ideal functionality F
if for all probabilistic poly-time (PPT) attackers A there is a PPT simulator S such that no PPT machine
can distinguish an interaction with π and A from an interaction with F and S. The distinguisher is
connected to the protocol and the attacker (or the simulator).

2.5 An OR Black Box Model

Anonymity in a low-latency OR network does not only depend upon the security of the onions but also
upon the magnitudes and distributions of users and their destination servers. In the OR literature,
considerable efforts have been put towards measuring the anonymity of onion routing [9–11,23,30].

Feigenbaum, Johnson, and Syverson used for an analysis of the anonymity properties of onion routing
an ideal functionality Bor [11]. This functionality emulates an I/O-automata model for onion routing
from [9,10]. Figure 3 presents this functionality Bor.

Let Nor be the set of onion routers, and let NA of those be eavesdropped, where b = |NA|/|Nor| defines
the fraction of compromised nodes. It takes as input from each user U the identity of a destination S. For
every such connection between a user and a destination, the functionality may reveal to the adversary the
identity of the user (sent, U,−) (i.e., the first OR router is compromised), the identity of the destination
(sent,−, S, [m]) (i.e., the exit node is compromised), both (sent, U, S, [m]) (i.e., the first OR router and
the exit node are compromised) or only a notification that something has been sent (sent,−,−) (i.e.,
neither the first OR router not the exit node is compromised).

We stress that this functionality only abstracts an OR network against local attackers.As the distri-
bution of the four cases only depends on the first and the last router being compromised but not on the
probability that the attacker controls sensitive links between honest parties, Bor only models OR against
local adversaries. As an example consider, the case in which the attacker only wiretaps the connection
between the exit node and the server. In this case, the attacker is able to determine which message has
been sent to whom, i.e., the abstraction needs to leak (sent,−, S, [m]); however, the probability of this
event is c, where c is the fraction of observed links between honest onion routers and users and servers.
Therefore, Bor cannot be used as an abstraction for onion routing against partially global attackers. In
Section 7.1.1, we present an extension of Bor that models onion routing against partially global attackers
and prove that it constitutes a sound abstraction.

We actually present Bor in two variants. In the first variant Bor does not send an actual message
but only a notification. This variant has been analyzed by Feigenbaum, Johnson, and Syverson. We

5Recall that T and Alice are directly connected, as well as T and Bob.
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additionally consider the variant in which Bor sends a proper message m. We denote these two variants
by marking the message m as optional, i.e., as [m].

In order to justify these OR anonymity analyses that consider an OR network as a black box, it
important to ascertain that these black boxes indeed model onion routing. In particular, it is important
under which adversary and network assumptions these black boxes model real-world OR networks. In
this work, we show that the black box Bor can be UC-realized by a simplified version of the Tor network.

3 Security Definition of OR

In this section, we first describe our system and adversary model for all protocol that we analyze (Sec-
tion 3.1). Thereafter, we present a composable security definition of OR by introducing an ideal func-
tionality (abstraction) For in the UC framework (Section 3.2).

Tor was designed to guarantee anonymity even against partially global attacker, i.e., attacker that do
not only control compromised OR nodes but also a portion of the network. Previous work, however, only
analyzed local, static attackers [9–11], such as the abstraction Bor presented in Figure 3). In contrast,
we analyze onion routing against partially global attackers. As our resulting abstraction For has to
faithfully reflect that an active attacker can hold back all onions that it observes, For is naturally more
complex than Bor.

3.1 System and Adversary Model

We consider a fully connected network of n parties N = {P1, . . . , Pn}. For simplicity of presentation, we
consider all parties to be OR nodes that also can function as OPs to create circuits and send messages.
It is also possible to use our formulation to model separate user OPs that only send and receive messages
but do not relay onions.

Tor has not been designed to resist against global attackers. Such an attacker is too strong for
many practical purposes as it can simply break the anonymity of an OR protocol by holding back
all but one onion and tracing that one onion though the network. However, in contrast to previous
work, we do not only consider local attackers, which do not control more than the compromised OR
routers, but also partially global attackers that control a certain portion of the network. Analogous to
the network functionality Fsyn proposed by Canetti [4], we model the network as an ideal functionality
Fnetq , which bounds the number of attacker-controlled links to q ∈ [0,

(
n
2

)
]. For attacker-controlled links

the messages are forwarded to the attacker; otherwise, they are directly delivered. In Section 7 we show
that previous black-box analyses of onion routing against local attackers applies to our setting as well by
choosing q := 0. Let S represent all possible destination servers {S1, . . . , S∆} which reside in the network
abstracted by a network functionality Fnetq .

We stress that the UC framework does not provide a notion of time; hence, the analysis of timing
attacks, such as traffic analysis, is not in the scope of this work.

Adaptive Corruptions. Forward secrecy [6] is an important property for onion routing. In order
to analyze this property, we allow adaptive corruptions of nodes by the attacker A. Such an adaptive
corruption is formalized by a message compromise, which is sent to the respective party. Upon such a
compromise message the internal state of that party is deleted and a long-term secret key sk for the node
is revealed to the attacker. A can then impersonate the node in the future; however, A cannot obtain the
information about its ongoing sessions. We note that this restriction arises due to the currently available
security proof techniques and the well-known selective opening problem with symmetric encryptions [18],
and the restriction is not specific to our constructions [2,14]. We could also restrict ourselves to a static
adversary as in previous work [3]; however, that would make an analysis of forward secrecy impossible.

3.2 Ideal Functionality

The presentation of the ideal functionality For is along the lines of the description OR protocol Πor from
Section 2.3. We continue to use the message-based state transitions from Πor, and consider sub-machines
for all n nodes in the ideal functionality. To communicate with each other through messages and data
structures, these sub-machines share a memory space in the functionality. The sub-machine pseudocode
for the ideal functionality appears in Figure 4 and three subroutines are defined in Figure 5. As the
similarity between pseudocodes for the OR protocol and the ideal functionality is obvious, rather than
explaining the OR message flows again, we concentrate on the differences.
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upon an input (setup):

SendMessage(dir, register, P )
wait for a msg (dir, registered, 〈Pj〈nj=1〉) via a handle
output (ready,N = (Pj)

n
j=1)

upon an input (createcircuit,P = 〈P, P1, . . . , P`〉):
store P and C ← 〈P 〉; ExtendCircuit(P, C)

upon an input (send, C = 〈P cid1⇐⇒ P1 ⇐⇒ · · ·P`〉,m):

if Used(cid1) < ttlC then
Used(cid1)++; SendMessage(P1, cid1, relay, 〈data,m〉)

else
DestroyCircuit(C, cid1); output (destroyed, C,m)

upon receiving a handle 〈P, Pnext , h〉 from Fnetq :

send (msg)← lookup(h) to a receiving submachine Pnext

upon receiving a msg (Pi, cid , create) through a handle:

store C ← 〈Pi
cid⇐⇒ P 〉

SendMessage(Pi, cid , created)

upon receiving a msg (Pi, cid , created) through a handle:

if prev(cid) = (P ′, cid ′) then
SendMessage(P ′, cid ′, relay, extended)

else if prev(cid) = ⊥ then
ExtendCircuit(P, C)

upon receiving a msg (Pi, cid , relay, O) through a handle:

if prev(cid) = ⊥ then
if next(cid) = ⊥ then

get (type,m) from O
else {P ′, cid ′} ← next(cid)

else
(P ′, cid ′)← prev(cid)

switch (type)
case extend:

get Pnext from m; cidnext
$← {0, 1}κ

update C ← 〈Pi
cid⇐⇒ P

cidnext⇐⇒ Pnext〉
SendMessage(Pnext , cidnext , create)

case extended:
update C with Pex; ExtendCircuit(P, C)

case hidden services:
output m /*Further processing at a higher level*/

case data:
if (P = OP) then output (received, C,m)
else if m = (S, sid ,m′) send (P, S, sid ,m′) to Fnetq

case corrupted : /*corrupted onion*/
DestroyCircuit(C, cid)

case default: /*encrypted forward/backward onion*/
SendMessage(P ′, cid ′, relay, O)

upon receiving a msg (sid ,m) from Fnetq :

obtain C = 〈P ′ cid⇐⇒ P 〉 for sid
SendMessage(P ′, cid , relay, 〈data,m〉)

upon receiving a msg (Pi, cid , destroy) through a handle:

DestroyCircuit(C, cid)

upon receiving a msg(Pi, P, h, [corrupt, T (·)])from A:

(msg)← lookup(h)
if corrupt = true then
msg ← T (msg); set corrupted(msg)← true

process msg as the receiving submachine is P

upon receiving a msg (compromise, P ) from A:

set compromised(P )← true
delete all local information at P

Figure 4: The ideal functionality For for Party P
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ExtendCircuit(P = (Pj)
`
j=1, C = 〈P cid1⇐⇒ P1 ⇐⇒ · · ·P`′〉):

determine the next node P`′+1 from P and C
if P`′+1 = ⊥ then

output (created, C)
else

if P`′+1 = P1 then

cid1
$← {0, 1}κ; SendMessage(P1, cid1, create)

else
SendMessage(P1, cid1, relay, {extend, P`′+1})

DestroyCircuit(C, cid):

if next(cid) = (Pnext , cidnext) then
SendMessage(Pnext , cidnext , destroy)

else if prev(cid) = (Pprev , cidprev ) then
SendMessage(Pprev , cidprev , destroy)

discard C and all streams

SendMessage(Pnext , cidnext , cmd, [relay-type], [data]):

create a msg for Pnext from the input
draw a fresh handle h and set lookup(h)← msg
if compromised(Pnext) = true then
Plast is the last node in the complete continuous compromised path starting Pnext

if (Plast = OP ) or Plast is the exit node then
send the entire msg to A

else
send 〈P, Pnext , . . . , Plast , cidnext , cmd, h〉 to A

else
send 〈P, Pnext , h〉 to the network

Figure 5: Subroutines of For for Party P

The only major difference between Πor and For is that cryptographic primitives such as message
wrapping, unwrapping, and key exchange are absent in the ideal world; we do not have any keys in
For, and the OR messages WrOn and UnwrOn as well as the 1W-AKE messages Initiate, Respond , and
ComputeKey are absent.

The ideal functionality also abstracts the directory server and expects on the input/output interface
of Freg (from the setting with Πor) an initial message with the list 〈Pi〉ni=1 of valid nodes. This initial
message corresponds to the list of onion routers that have been approved by an administrator. We call
the part of For that abstracts the directory servers dir. For the sake of brevity, we do not present
the pseudocode of dir. Upon an initial message with a list 〈Pi〉ni=1 of valid nodes, dir waits for all
nodes Pi (i ∈ {1, . . . , n}) for a message (register, Pi). Once all nodes registered, dir sends a message
(registered, 〈Pi〉ni=1) with a list of valid and registered nodes to every party that registered, and to every
party that sends a retrieve message to dir.

Messages from A and Fnetq . In Figure 4 and Figure 6, we present the pseudocode for the attacker
messages and the network functionality, respectively. For our basic analysis, we model an adversary that
can control all communication links and servers in Fnetq , but cannot view or modify messages between
parties due to the presence of the secure and authenticated channel. Therefore, sub-machines in the
functionality store their messages in the shared memory, and create and send handles 〈P, Pnext , h〉 for
these messages Fnetq . The message length does not need to be leaked as we assume a fixed message size
(for all M(κ)). Here, P is the sender, Pnext is the receiver and h is a handle or a pointer to the message
in the shared memory of the ideal functionality. In our analysis, all Fnetq messages flow to A, which may
choose to return these handles back to For through Fnetq at its own discretion. However, Fnetq also
maintains a mechanism through observedLink flags for the non-global adversary A. The adversary may
also corrupt or replay the corresponding messages; however, these active attacks are always detected by
the receiver due to the presence of a secure and authenticated channel between any two communicating
parties and we need not model these corruptions.

The adversary can compromise a party P or server S by sending a compromise message to respectively
For and Fnetq . For party P or server S, the respective functionality then sets compromised tag to true.
Furthermore, all input or network messages that are supposed to be visible to the compromised entity
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upon receiving a msg (obverse, P, Pnext) from A:

set observedLink(P, Pnext)← true

upon receiving a msg (compromise, S) from A:

set compromised(S)← true; send A all existing sid

upon receiving a msg (P, Pnext/S,m) from For:

if Pnext/S is a For node then
if observedLink(P, Pnext) = true then

forward the msg (P, Pnext ,m) to A
else

reflect the msg (P, Pnext ,m) to For

else if Pnext/S is a Fnetq server then
if compromised(S) = true then

forward the msg (P, S,m) to A
else

output (P, S,m)

upon receiving a msg (P/S, Pnext ,m) from A:

forward the msg (P/S, Pnext ,m) to For

Figure 6: The Network Functionality Fnetq

are forwarded to the adversary. In principle, the adversary runs that entity for the rest of the protocol
and can send messages from that entity. In that case, it can also propagate corrupted messages which
in Πor can only be detected during UnwrOn calls at OP or the exit node. We model these corruptions
using corrupted(msg) = {true, false} status flags, where corrupted(msg) status of messages is maintained
across nodes until they reach end nodes. Furthermore, for every corrupted message, the adversary also
provides a modification function T (·) as the end nodes run by the adversary may continue execution
even after observing a corrupted flag. In that case, T (·) captures the exact modificaiton made by the
adversary.

We stress that For does not need to reflect reroutings and circuit establishments initiated by the
attacker, because the attacker learns, loosely speaking, no new information by rerouting onions.6 Sim-
ilar to the previous work [3], a message is directly given to the adversary if all remaining nodes in a
communication path are under adversary control.

4 Secure OR modules

We identify the core cryptographic primitives for a secure OR protocol. In this section, we present a
cryptographic characterization of these core cryptographic primitives, which we call secure OR modules.
We believe that proving the security of OR modules is significantly less effort than proving the UC
security of an entire protocol. Secure OR modules consist of two parts: first, secure onion algorithm,
and second, a one-way authenticated key-exchange primitive (1W-AKE), a notion recently introduced
by Goldberg, Stebila, and Ustaoglu [13].

Onion algorithms typically use several layers of encryptions and possibly integrity mechanisms, such
as message authentication codes. Previous attempts [3] for proving the security OR protocols use mech-
anisms to ensure hop-to-hop integrity, such as non-malleable encryption schemes. The widely-used Tor
network, however, does not use hop-to-hop integrity but only end-to-end integrity. In the analysis of OR
protocols with only end-to-end integrity guarantees, we also have to consider the cases in which the end
node is compromised, thus no integrity check is performed at all. In order to cope with these cases, we
identify a new notion of predictably malleable encryption schemes. Predictable malleability allows the
attacker to change the ciphertexts but requires the resulting changes to the plaintext to be efficiently
predictable given only the changes of the ciphertext.In Section 4.1 we rigorously define the notion of
predictably malleable encryption schemes.

Inspired by Section 4.1, we introduce in Section 4.2 the notion of secure onion algorithms. In Sec-
tion 4.3, we review the notion of one-way authenticated key-exchange (1W-AKE), which requires that the
key-exchange protocol is one-way authenticated, i.e., the receiver cannot be impersonated, and anony-
mous, i.e., the sender cannot be identified.

6More formally, the simulator can compute all responses for rerouting or such circuit establishments without requesting
information from For (as shown in the proof of Theorem 1).
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upon (initialize)

k ← G(1η)
sd ← ε
se ← ε

upon (encrypt,m)

if b = 0 then
(c, s)← E(0|m|, se, k)
if q(se) 6= ⊥ then

(d, u)← q(se)
c← d

else if b = 1 then
(c, s)← E(m, se, k)

q(se)← (c,m)
se ← s
respond c

upon (decrypt, c)

(d, u)← q(sd)
T ← D(c, d)
if b = 0 then

if q(sd) = ⊥ then
(m, s)← D(c, sd, k)
q(sd)← (c,m)

else if q(sd) 6= ⊥ then
m← T (u)

else if b = 1 then
(m, s)← D(c, sd, k)

sd ← s
respond (m,T )

Figure 7: The IND-PM Challenger PM-ChEb

In the following definitions, we assume the PPT machines to actually be oracle machines. We write
AB to denote that A has oracle access to B.

4.1 Predictably Malleable Encryption

Simulation-based proofs often face their limits when dealing with malleable encryption. The underlying
problem is that malleability induces an essentially arbitratrily large number of possibilities to modify
ciphertexts, and the simulator has no possibility to predict the changes that are in fact going to happen.

We characterize the property of predicting the changes to the plaintext merely given the modifica-
tions on the ciphertext. Along the lines of the IND-CCA definition for stateful encryption schemes, we
define the notion of predictably malleable (IND-PM) encryption schemes.7 The attacker has access to
an encryption and a decryption oracle, and either all encryption and decryption queries are honestly
answered (the honest game) or all are faked (the faking game), i.e., 0|m| is encrypted instead of a mes-
sage m. In the faking game, the real messages are stored in some shared datastructure q , and upon a
decryption query only look-ups in q are performed. The IND-PM challenger maintains a separate state,
e.g., a counter, for encryption and decryption. These respective states are updated with each encryption
decryption query.

In contrast to the IND-CCA challenger, the IND-PM challenger (see Figure 7) additionally stores the
produced ciphertext together with the corresponding plaintext for each encryption query. Moreover, for
each decryption call the challenger looks up the stored ciphertexts and messages. The honest decryp-
tion ignores the stored values and performs an honest decryption, but the faking decryption compares
the stored ciphertext with the ciphertext from the query and tries to predict the modifications to the
plaintext. Therefore, we require the existence of an efficiently computable algorithm D that outputs the
description of an efficient transformation procedure T for the plaintext given the original ciphertext as
well as the modified ciphertext.

Definition 1 (Predictable malleability). An encryption scheme E := (G,E,D) is IND-PM if there is
a negligible function µ such that there is a deterministic polynomial-time algorithm D such that for all
PPT attackers A

Pr[b′ $← {0, 1} , b← A(1κ)PM-ChEb : b = b′] ≤ 1/2 + µ(κ)

Moreover, we require that for all m, c, s, k, k′ ∈ {0, 1}∗

Pr[(c′, s′)← E(m, k, s),
(m′, s′′)← D(c, k′, s) : s′ = s′′] = 1

PM-ChE0 and PM-ChE1 are defined in Figure 7.

7The name predictable malleability is justified since it can be shown that every IND-CCA secure scheme is also IND-PM,
and every IND-PM scheme in turn is IND-CPA secure. In the appendix, we show that detCTR is IND-PM.
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We stress that the definition implies a super-polynomial length for state-cycles; otherwise there is
in the faking game at least one repeated state s for which the two encrypt queries output the same
ciphertext for any two plaintexts.

In Appendix 6.1, we show that deterministic counter-mode is IND-PM.

4.2 Secure Onion Algorithms

We identify the onion wrapping (WrOn) and unwrapping (UnwrOn) algorithms as central building blocks
in onion routing. We identify four core properties of onion algorithms. The first property is correctness,
i.e., if all parties behave honestly, the result is correct. The second property is the security of statefulness,
coined synchronicity. It roughly states that whenever a wrapping and an unwrapping algorithms are
applied to a message with unsynchronous states, the output is completely random. The third property
is end-to-end integrity. The fourth property states that for all modifications to an onion the resulting
changes in the ciphertext are predictable. We this property predictable malleability.

Onion Correctness. The first property of secure onion algorithms is onion correctness. It states
that honest wrapping and unwrapping results in the same message. Moreover, the correctness states
that whenever the unwrapping algorithm has a fake flag, it does not care about integrity, because for
m ∈ M(κ) the integrity measure is always added, as required by the end-to-end integrity. But for
m 6∈ M(κ) but of the right length, the wrapping is performed without an integrity measure. The fake
flag then causes the unwrapping to ignore the missing integrity measure. Then, we also require that the
state transition is independent from the message or the key.

Definition 2 (Onion correctness). Recall that M(κ) is the message space for the secu-
rity parameter κ. Let 〈ki〉`i=1 be a sequence of randomly chosen bitstrings of length κ.
Forward: Ωf (m)

O1 ←WrOn(m, 〈ki〉`i=1)
for i = 1 to ` do
Oi+1 ← UnwrOn(Oi, ki)

x← O`+1

Backward: Ωb(m)

O` ←WrOn(m, k`)
for i = `− 1 to 1 do
Oi ←WrOn(Oi+1, ki)

x← UnwrOn(O1, 〈ki〉`i=1)

Let Ω′f be the defined as Ωf except that UnwrOn additionally uses the fake flag. Analogously, Ω′b is
defined. We say that a pair of onion algorithms (WrOn,UnwrOn) is correct if the following three
conditions hold:

(i) Pr[x← Ωd(m) : x = m] = 1 for d ∈ {f, b} and m ∈M(κ).
(ii) Pr[x← Ωd(m) : x = m] = 1 for d ∈ {f, b} and all m ∈M ′(κ) := {m′|∃m′′ ∈M(κ).|m′| = |m′′|}.

(iii) For all m ∈ M ′(κ), k, k′ ∈ {0, 1}κ and c, s ∈ {0, 1}∗ such that c is a valid onion and s is a valid
state

Pr[(c′, s′)←WrOn(m, k, s),
(m′, s′′)← UnwrOn(c, k′, s) : s′ = s′′] = 1

(iv) WrOn and UnwrOn are polynomial-time computable and randomized algorithms.

Synchronicity. The second property is synchronicity. In order to achieve replay resistance, we have
to require that once the wrapping and unwrapping do not have synchronized states anymore, the output
of the wrapping and unwrapping algorithms is indistinguishable from randomness.

Definition 3 (Synchronicity). For a machine A, let Ωl,A and Ωr,A be defined as follows:
Left: Ωl,A(κ)

(m1,m2, st)← A(1κ)

k, s, s′
$← {0, 1}κ

O ←WrOn(m1, k, s)
O′ ← UnwrOn(O, k, s′)
b← A(O′, st)

Right: Ωr,A(κ)

(m1,m2, st)← A(1κ)

k, s, s′
$← {0, 1}κ

O ←WrOn(m2, k, s)
O′ ← UnwrOn(O, k, s′)
b← A(O′, st)

For all PPT machines A the following is negligible in κ:

|Pr[b← Ωl,A(κ) : b = 1]− Pr[b← Ωr,A(κ) : b = 1]|
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(setup, `′)

if initiated = false then
for i = 1 to `′ do
ki

$← {0, 1}κ; cid i
$← {0, 1}κ

initiated ← true; store `′

send cid

(compromise, i)

initiated ← false; erase the circuit
compromised(i)← true; run setup;
for j with compromised(j) = true do

send (cid j , kj) for all

(send,m)

O ←WrOn(m, 〈ki〉`
′
i=1)

send O

(unwrap, O, cid)

look up the key k for cid
O′ ← UnwrOn(O, k)
send O′

(respond,m)

O ←WrOn(m, k`′)
send O

(wrap, O, cid)

look up the key k for cid
O′ ←WrOn(O, k)
send O′

(destruct, O)

m← UnwrOn(O, 〈ki〉`
′
i=1)

send m

Figure 8: The Honest Onion Secrecy Challenger OS-Ch0: OS-Ch0 only answers for honest parties

End-to-end integrity. The third property that we require is end-to-end integrity ; i.e., the attacker
is not able to produce an onion that successfully unwraps unless it compromises the exit node.For the
following definition, we modify OS-Ch0 such that, along with the output of the attacker, also the state of
the challenger is output. In turn, the resulting challenger OS-Ch0′ can optionally get a state s as input.
In particular, (a, s) ← AB denotes in the following definition denotes the pair of the outputs of A and
B.

For the following definition we use the modified challenger OS-Ch0′, which results from modifying
OS-Ch0 such that along with the output of the attacker also the state of the challenger is output. The
resulting challenger OS-Ch0′ can, moreover, optionally get a state s as input.

Definition 4 (End-to-end integrity). Let S(O, cid) be the machine that sends a (destruct, O) query to
the challenger and outputs the response. Let Q′(s) be the set of answers to construct queries from the
challenger to the attacker. Let the last onion O`′ of an onion O1 be defined as follows:

Last(O1):
for i = 1 to `′ − 1 do
Oi+1 ← UnwrOn(Oi)

Let Q(s) := {Last(O1) | O1 ∈ Q′(s)} be the set of last onions answers to the challenger. We say a
set of onion algorithms has end-to-end integrity if for all PPT attackers A the following is negligible in
κ

Pr[(O, s)← A(1κ)OS-Ch0′
, (m, s′)← S(O, cid)OS-Ch0′(s)

: m ∈M(κ) ∧ P`′ is honest ∧O 6∈ Q(s′)].

Predictably Malleable Onion Secrecy. The fourth property that we require is predictably malleable
onion secrecy, i.e., for every modification to a ciphertext the challenger is able to compute the resulting
changes for the plaintext. This even has to hold for faked plaintexts.

In detail, we define a challenger OS-Ch0 that provides, a wrapping, a unwrapping and a send and a
destruct oracle. In other words, the challenger provides the same oracles as in the onion routing protocol
except that the challenger only provides one single session. We additionally define a faking challenger
OS-Ch1 that provides the same oracles but fakes all onions for which the attacker does not control the
final node.

For OS-Ch1, we define the maximal paths that the attacker knows from the circuit. A visible subpath
of a circuit (Pi, ki, cid i)`i=1 from an honest onion proxy is a minimal subsequence of corrupted parties
(Pi)si=u of (Pi)`i=1 such that Pi−1 is honest and either s = ` or Ps+1 is honest as well. The parties Pi−1

and, if existent, Ps+1 are called the guards of the visible subpath (Pi)si=u. We store visible subpaths by
the first cid = cidu.
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(setup, `′)

do the same as OS-Ch0

additionally kS ← {0, 1}κ

(compromise, i)

do the same as OS-Ch0

(send,m)

q(st1f )← m

look up the first visible subpath (cid1, 〈ki〉ji=1)
if j = `′ then m′ ← q(st1f )

else kj+1 ← kS ; j ← j + 1; m′ ← 0|q(st1
f

)|

((Oi)
j
i=0, s

′)←WrOnj(m, 〈ki〉ji=1, st
1
f )

update st1f ← s′

store onions(cidj)← O1; send Oj

(unwrap, O, cid i)

look up the forward v.s. 〈ki〉ji=u for cid i
O′ ← onions(cid i)
T ← D(O,O′); q(stif )← T (q(stif ))
if j = `′ then m← q(stif )

else kj+1 ← kS ; j ← j + 1; m← 0|q(sti
f

)|

((Oi)
j
i=u−1, s

′)←WrOnj−u+1(m, 〈ki〉ji=u, st
i
f )

update stif ← s′

store onions(cidj)← Ou; send Oj

(respond,m)

q(st`
′
b )← m

look up the last visible subpath 〈ki〉`
′
i=u

if u = 1 then m← q(st`
′
b )

else ku−1 ← kS ; u← u− 1; m← 0|q(st`
′

b
)|

((Oi)
j
i=u−1, s

′)←WrOnj−u+1(m, 〈ki〉ji=u, st
`′
b )

update st`
′
b ← s′

store onions(cidu)← Ou; send Oj

(wrap, O, cid i)

look up the backward v.s. 〈ki〉ji=u for cid i
O′ ← onions(cid i); T ← D(O,O′)
q(stib)← T (q(stib))
get 〈ki〉ji=u for cid
if u = 1 then m← q(stib)

else ku−1 ← kS ; u← u− 1; m← 0|q(sti
b
)|

((Oi)
j
i=u−1, s

′)←WrOnj−u+1(m, 〈ki〉ji=u, st
i
b)

update stib ← s′

store onions(cidu)← Ou; send Oj

(destruct, O, cid)

m← UnwrOn(, k1, st
1
b)

O′ ← onions(cid1); T ← D(O,O′)
q(st1b)← T (q(st1b))
if m 6= ⊥ then

send q(st1b)

Figure 9: The Faking Onion Secrecy Challenger OS-Ch1: OS-Ch1 only answers for honest par-
ties. stif , st

i
b is the current forward, respectively backward, state of party i. ((Oi)

j
i=u−1, s

′) ←
WrOnj−u+1(m, 〈ki〉ji=u, st) is defined as Ou−1 ← m; for i = u to j do (Oi, s′)←WrOn(Oi−1, kj+u−i, st)

In Figure 8 and 9 , we OS-Ch0, and OS-Ch1 respectively.8

Definition 5 (Predictably malleable onion secrecy). Let onionAlg be a pair of algorithms WrOn and
UnwrOn. We say that the algorithms onionAlg satisfy predictably malleable onion secrecy if there is a
negligible function µ such that there is a efficiently computable function D such that for all PPT machines
A and sufficiently large κ

Pr[b $← {0, 1} , b′ ← A(1κ)OS-Chb

: b = b′] ≤ 1/2 + µ(κ)

Definition 6 (Secure onion algorithms). A pair of onion algorithms (WrOn,UnwrOn) is secure if is
satisfies onion correctness, synchronicity, predictably malleable onion secrecy, and end-to-end integrity.

In Section 6.2, we show that the Tor algorithms are secure onion algorithms.

4.3 One-Way Authenticated Key-Exchange

We introduce the 1W-AKE primitive in Section 2.2, and later use the 1W-AKE algorithms Initiate,
Respond , and ComputeKey in the OR protocol Πor in Section 2.3. In this section, we give an informal
description of the security requirements for 1W-AKE. The rigorous definitions can be found in [13].

The 1W-AKE establishes a symmetric key between two parties (an initiator and a responder) such
that the identity of the initiator cannot be derived from the protocol messages. Moreover, given a
public-key infrastructure, the 1W-AKE guarantees that the responder cannot be impersonated. Initiate
takes as input the public key of the responder and generates a challenge. Respond takes as input
the responder’s secret key and the received challenge, and outputs a session key and a response. The
algorithm ComputeKey runs on the response and the responder’s public key, and outputs the session key
or an error message of authentication failure.

8We stress that in Figure 9 the onion Ou denotes the onion from party Pj to party Pj+1.
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We assume a public-key infrastructure; i.e., every party knows a secret key whose corresponding
public key has been distributed in a verifiable manner. Let pkP be the public key of party P and skP
be its secret key.

The first property that a 1W-AKE has to satisfy is correctness: if all parties behave honestly, then
the protocol establishes a shared key.

Definition 7 (Correctness of 1W-AKE). Let a public-key infrastructure be given; i.e., for every party
P every party knows a (certified) public key pkP and P itself also knows the corresponding secret key
skP . Let AKE := (Initiate,Respond ,ComputeKey) be a tuple of polynomial-time bounded randomized
algorithms. We say that AKE is a correct one-way authenticated key-agreement if the following holds
for all parties A,B:

Pr[(ake, B,m1,ΨA)← Initiate(pkB , B,m),

((ake, B,m2), (k2, ?,
→
v ))← Respond(pkB , skB ,m1),

(k1, B,
→
v
′
)← ComputeKey(pkB ,m2, )

: k1 = k2 and
→
v=
→
v
′
] = 1.

The 1W-AKE Challenger for Security. Goldberg, Stebila, and Ustaoglu [13] formalize the security
of a 1W-AKE by defining a challenger that represents all honest parties. The attacker is then allowed
to query this challenger. If the attacker is not able to distinguish a fresh session key from a randomly
chosen session key, we say that the 1W-AKE is secure. This challenger is constructed in a way that
security of the 1W-AKE implies one-way authentication of the responding party.

The challenger answers the following queries of the attacker. Internally, the challenger runs the
algorithms of AKE . All queries are directed to some party P ; we denote this party in a superscript.
If the party is clear from the context, we omit the superscript, e.g., we then write send(m) instead of
sendP (m).

• sendP (params, P ′): Compute (m, st)← Initiate (pkP , P ′, params). Send m to the attacker.

• sendP (Ψ,msg , P ′): If P ′ = P and akestate(Ψ) = ⊥, compute (m, result) ← Respond(skP , P,
msg ,Ψ). Otherwise, if msg = (msg ′, Q) compute (m, result) ← ComputeKey
(pkQ,msg ′, akestate(Ψ),Ψ). Then, send m to the attacker.

• compromiseP : The challenger returns the long-term key of P to the attacker.

If any verification fails, i.e. one of the algorithms outputs ⊥, then the challenger erases all session-
specific information for that party and aborts the session.

Additionally, the attacker has access to the following oracle in the 1W-AKE security experiment:

test(P,Ψ) : Abort if party P has no key stored for session Ψ or the partner for session Ψ is anonymous(i.e.,
P is not the initiator of session Ψ). Otherwise, choose b← {0, 1}. If b = 1, then return the session
key k; otherwise, if b = 0, return a randomly chosen element from the key space. Only one call to
test is allowed.

We say that a session Ψ at a party i is fresh if no party involved in that session is compromised.

Definition 8 (One-way-AKE-security). Let κ be a security parameter and let n ≥ 1. A protocol π is
said to be one-way-AKE-secure if, for all PPT adversaries M , the advantage that M distinguishes a
session key of a one-way-AKE-fresh session from a randomly chosen session key is negligible (in κ).

The 1W-AKE Challenger for One-Way Anonymity. For the definition of one-way anonymity we
introduce a proxy, called the anonymity challenger, that relays all messages from and to the 1W-AKE
challenger except for a challenge party C. The attacker can choose two challenge parties, out of which
the anonymity challenger randomly picks one, say i∗. Then, the anonymity challenger relays all messages
that are sent to C to Pi∗ (via the 1W-AKE challenger).

In the one-way anonymity experiment, the adversary can issue the following queries to the challenger
C. All other queries are simply relayed to the 1W-AKE challenger. The session Ψ∗ denotes the challenge
session. The two queries are for activation and communication during the test session.
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Figure 10: Overview of the set-up

startC(i, j, params, P ) : Abort if i = j. Otherwise, set i $← {i, j} and (Ψ∗,msg) ← sendPi∗ (params, P );
return msg ′. Only one message startC is processed.

sendC(msg) : Relay sendPi∗ (msg) to the 1W-AKE challenger. Upon receiving an answer msg ′, forward
msg ′ to the attacker.

Definition 9 (One-way anonymity). Let κ be a security parameter and let n ≥ 1. A protocol π is
said to be one-way anonymous if, for all PPT adversaries M , the advantage that M wins the following
experiment Expt1w−anonπ,κ,n (M) is negligible (in κ).

1. Initialize parties P1, . . . , Pn.
2. The attacker M interacts with the anonymity challenger, finishing with a message (guess, î).
3. Suppose that M made a StartC(i, j, params, P ) query which chose i∗. If î = i∗, and M ’s query

satisfy the following constraints, then M wins; otherwise M loses.
• No compromiseP query for Pi and Pj.
• No Send(Ψ∗, ·) query to Pi or Pj.

A set of algorithms AKE is said to be a one-way authenticated key-exchange primitive (short 1W-
AKE) if it satisfies Definitions 7, 8, and 9.

In Section 6.3 we show that ntor is a 1W-AKE.

5 Πor UC-Realizes For

In this section, we show that Πor can be securely abstracted as the ideal functionality For.
We say that a protocol π securely realizes F in the F ′-hybrid model, if each party in the protocol

π has a direct connection to F ′. Recall that Freg is the key registration, Fscs is the secure channel
functionality, and Fnetq is the network functionality, where q is the upper bound on the corruptable
parties. We prove our result in the Freg, Fscs, Fnetq -hybrid model; i.e., our result holds for any key
registration and secure channel protocol securely realizing Freg, and Fscs, respectively. The network
functionality Fnetq is an abstraction of a network that is only partially controlled by an attacker.

Theorem 1. If Πor uses secure OR modules M, then the resulting protocol Πor in the Freg,Fscs,Fnetq -
hybrid model securely realizes the ideal functionality For in the Fnetq -hybrid model for any q.

Proof. We have to show that for every PPT attacker A there is a PPT simulator S such that no
PPT environment E can distinguish the interaction with A and Πor from the interaction with S and
For. Given a PPT attacker A, we construct a simulator S that internally runs A and simulates the
public key infrastructure; i.e, the functionality Freg. The crucial part in this proof is that the ideal
functionality For provides the simulator with all necessary information for the simulation. We prove this
indistinguishability by examining a sequence of six games and proving their pairwise indistinguishability
for the environment E.

Game 1: Game1 is the original setting in which the environment E interacts with the protocol Π1 = Πor

and the attacker A. Moreover, Πor and A have access to a certification authority Freg and a secure
channel functionality Fscs, and the network messages of all honest parties are sent via Fnetq .
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Game 2: In Game2 the simulator S2 internally runs the attacker A and the functionalities Fscs and
Freg. All messages from these entities are forwarded on the corresponding channels and all messages to
these entities are forwarded to the corresponding channels. Since S2 honestly computes the attacker A,
Fscs, and Freg, Game1 and Game2 are perfectly indistinguishable for the environment E.

Game 3: In the protocol Π3, we modify the session keys that have been established between two un-
compromised parties. All parties are one machine and share some state. Instead of using the established
key, Π2 stores a randomly chosen value in the shared state for each established key k. This random value
is used as a session key instead of k.

Assume that there is a PPT machine that can compute a session key between two uncorrupted
parties with non-negligible probability (in the security parameter κ), given the key-exchange’s transcript
of messages. Then, using a hybrid argument, it can be shown that there is an attacker that breaks the
security of the 1W-AKE, which in turn contradicts the assumption that the OR modules are secure.
Hence, Game2 and Game3 are computationally indistinguishable.

Game 4: In Game4, the onions do not contain the real messages anymore but only the constant zero
bitstring. Π4 maintains a shared datastructure q in which the real messages are stored.

Recall that a visible subpath of a circuit (Pi, ki, cid i)`i=1 from an honest onion proxy is a minimal
subsequence of corrupted parties (Pi)si=u of (Pi)`i=1 such that Pi−1 is honest and either s = ` or Ps+1

is honest as well. The parties Pi−1 and, if existent, Ps+1 are called the guards of the visible subpath
(Pi)si=u. In particular, the onion proxy is also a guard. Every circuit can be split into a sequence of visible
subpaths and guards. Π4 stores for every circuit (Pi, ki, cid i)`i=1 such a splitting into visible subpaths
and guards. These splittings are updated upon each compromise command.

Upon receiving a send input or a response from a network, Π4 stores an input message m in a shared
datastructure q as follows. For a the guards P , let be cidP the circuit id for which P knows the key.
Let s the state of the wrapping algorithms of the sender before computing the onion. Then, we store
q(cidP , s)← m for each P .

The attacker might be able to corrupt onions such that the contained plaintext is changed. Π4,
however, does not rely on the content of the onions anymore but rather looks up the message in the
shared memory. Therefore, Π4 needs a way to derive the changes to the plaintext due to possible
modifications of the ciphertexts. At this point our predictable malleability applies, and we use the
algorithm D from the onion secrecy definition for computing the changes in the plaintext. However,
for computing the changes in the plaintext, we need to store the onions that the receiving guard has to
expect. Hence, Π4 maintains a shared datastructure onions indexed by the cid of the receiving guard
that stores the expected onions.

Π4 initially draws some distinguished random key kS , which is later used for a distinguished last
wrapping-layer of the constant zero bitstring. Whenever in Π3 a guard P that is neither the exit node
nor the onion proxy would unwrap an onionO with key k and circuit id cid , P looks upO′ = pending(cid).
Then, it runs T ← S(O,O′) and replaces the real message m ← q(cid , st) in the shared memory with
T (m), where st is the state of the onion algorithms in the forward direction. Then, P unwraps O with
the fake flag, i.e., (O′′, st′)← UnwrOn(O, kS , fake, st) instead of UnwrOn(O, k, st). We set the fake flag,
because the unwrapping has to skip the integrity check; otherwise a corrupted onion would already in
the middle of the circuit be stopped in Π4. However, instead of forwarding O′′, P constructs a new onion
either for the attacker or for the next guard as follows. P looks up the adjacent visible subpath (Pi)si=u
in forward direction. If s = `, then P constructs the onion for the attacker. P reads the real message
m← q(cid , st) from the shared memory and sends a forward onion Oj for the subcircuit (Pi, ki, cid i)`i=u
that contains the message m and is constructed as follows:
Ou−1 ← m
for i = u to j do (Oi, st′)←WrOn(Oi−1, kj+u−i, st)

Only then, P updates the forward state st ← st′. Thereafter, P stores q(cidPj+1 , st
′) ← Ou, where

cidPj+1 is the circuit id of the guard Pj+1.
If s < `, P sends a forward onion for the subcircuit (Pi, ki, cid i)s+1

i=u that contains 0|m| instead of m,
where we replace for the last layer ks+1 by the distinguished key kS . Again only then, P updates the
forward state st ← st′. Analogously, guards that are onion proxies, i.e., construct an onion in forward
direction, also only construct an onion for the attacker or the next guard.

Similar to the forward direction, guards that receive an onion O in backward direction do not wrap
it further as in Π3 but first unwrap O with the fake flag and the distinguished key kS , i.e., O′ ←
UnwrOn(O, kS , fake). Instead of wrapping O as in Π3, the guard constructs an onion for the adjacent
subpath in backward direction as follows. Since P is a guard for the circuit, also the onion proxy
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is honest, thus u > 1. P looks up the adjacent visible subpath (Pi)si=u in backward direction. Let
m ← q(cid , st) be the real message stored in the shared memory, cid be the circuit id for which P
knows the key and s be the state of the onion algorithms in the backward direction. Then, P sends an
onion (O, st′)← UnwrOn(0|m|, 〈ki〉si=u−1, st), where ku−1 := kS . Thereafter, update the backward state
st← st′.

It might happen that the attacker compromised a node in the middle of the circuit and the exit node.
Then the attacker sends a random message to an honest node P . In this case, P would honestly unwrap
the message. Since the attacker controls the exit node the broken integrity is not realized. But from
that point on the guard P is out of sync, i.e., P has a different unwrapping state than the predecessor
guards. Consequently, by the synchronicity of the onion algorithms all future messages that are sent
from the onion proxy will be garbage. For guards that are out of sync, we only send randomly chosen
messages of appropriate length.

Then, by a hybrid argument it follows that any attacker distinguishing Game3 from Game4 can be used
for breaking onion secrecy or synchronicity, where the hybrids are indexed by the circuits of honest onion
proxies in the order in which the circuits are initiated. Hence, Game3 and Game4 are indistinguishable.

Game 5: In this setting the simulator remains unchanged, i.e., S5 = S4, but the protocol Π5 in addition
internally runs the ideal functionality For. We construct Π5 such that it does not touch information in
the send message, i.e., the message to be sent and the circuit, more than forwarding the send message to
For. Instead, Π5 only uses the messages that it receives from For.
For outputs for every message from a guard to a visible subpath the entire visible subpath, both

in forward an backward direction. If the visible subpath contains the exit node, For even sends the
message. Hence, Π5 can just compute all onions to the next guard or the attacker in the same way as
Π4.

We also have to cope with the case in which Π4 modifies the real message in the shared state with
the transformation T that D computed from the differences in the expected and the received onion. In
this case, Π5 sends a message (corrupt, T, h) to For.

Moreover, upon the message (register, P ) the simulator computes a pk for party P and sends a message
(register, P, pk) to the internally emulated functionality Freg. Upon a response (registered, 〈Pj , pk j〉vj=1)
from Freg, we send (registered, 〈Pj〉vj=1)

Π5 behaves like Π4 except for the key agreement messages, which is computed by the simulator
instead of the real party. But by the anonymity of the 1W-AKE primitive, the attacker cannot identify
the sender with more than negligible probability. Consequently, Game4 and Game5 are indistinguishable.

Game 6: In this setting, we replace the protocol with the ideal functionality; i.e., Π6 = For. The
simulator S := S6 in Game6 additionally computes all network messages exactly as Π5. As Π5 did not
touch the messages from the environment to the ideal functionality, S can compute Π5 as well.

The ideal functionality behaves towards the environment exactly as Πor; consequently, it suffices to
show that the network messages are indistinguishable. However, as the simulator S just internally runs
Π5, Game5 and Game6 are indistinguishable.

As our primitives are proven secure in the random oracle model (ROM), the main theorem uses the
ROM.

Theorem 2. If pseudorandom permutations exist, there are secure OR modules (ntor, onionAlgs) such
that the protocol Πor in the Freg, Fscs, Fnetq -hybrid model using (ntor, onionAlgs) securely realizes in the
ROM the ideal functionality For in the Fnetq -hybrid model for any q.

Proof. If pseudorandom permutations exist Lemma 2 implies that secure onion algorithms exist.
Lemma 3 shows that in the ROM 1W-AKE exist. Then, Theorem 1 implies the statement.

Note that we could not prove 1W-AKE security for the TAP protocol currently used in Tor as it uses
a CCA-insecure version of the RSA encryption scheme.

6 Instantiating Secure OR Modules

We present a concrete instantiation of OR modules and show that this instantiation constitutes a set of
secure OR modules. As onion algorithms we use the algorithms that are used in Tor with a strengthened
integrity mechanism, and as 1W-AKE we use the recently proposed ntor protocol [13].
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Gc(1η)

output k $← G(1η)

Ec((x1, . . . , xt), (k, ctr)) = Dc((x1, . . . , xt), (k, ctr))
if ctr = ε then ctr = 0
output (PRP(s, k)⊕ x1, . . . ,PRP(s+ t− 1, k)⊕ xt, (k, ctr + t))

Figure 11: The stateful deterministic counter-mode (detCTR) Ec = (Gc,Ec,Dc)

We prove that the onion algorithms of Tor constitute secure onion algorithms, as defined in Defini-
tion 6. The crucial part in that proof is to show that these onion algorithms are predictably malleable, i.e.,
for every modification of the ciphertext the changes in the resulting plaintext are predictable by merely
comparing the modified ciphertext with the original ciphertext. We first show that the underlying en-
cryption scheme, the deterministic counter-mode, is predictably malleable (Section 6.1). Thereafter, we
show the security of Tor’s onion algorithms (Section 6.2).

In Section 6.3, we briefly present the ntor protocol and cite the result from Goldberg, Stebila, and
Ustaoglu that ntor constitutes a 1W-AKE.

6.1 Deterministic Counter Mode and Predictable Malleability

We show that the deterministic counter-mode (detCTR) scheme is predictably malleable, as defined in
Definition 1.

Lemma 1. If pseudorandom permutations exist, the deterministic counter mode (detCTR) with Ec =
(Gc,Ec,Dc) as defined in Figure 11 predictably malleable.

Proof. We show the result with t = 1. This can, however, be extended to larger t in a straight-forward
way.

Game1 is the original game of A against PM-Ch1.
Game2 is the game in which PM-Ch1 is replaced by the machine B1 and the PRP Challenger PRP-Ch1

such that B1 communicates with A and PRP-Ch1, which generates a key applies the PRP candidate
algorithms. A cannot distinguish Game1 from Game2, as A’s view is the same in both scenarios.

Game3 is the game in which PRP-Ch1 is replaced by PRP-Ch0, which uses a randomly chosen
permutation instead of the PRP candidate. As PRP is a pseudorandom permutation, the attacker
cannot distinguish Game2 from Game3.

Game4 is the game in which B1 is replaced by B0. Upon a query (decrypt, c), the B1 outputs x ⊕ c
whereas B0 outputs c⊕ d⊕ u = c⊕ 0|u| ⊕ x⊕ u = c⊕ x⊕ u. c can be represented as c = d⊕ c′ for some
bitstring c′. Then, B1 outputs x⊕ x⊕ u⊕ c′ = u⊕ c′, and B0 outputs x⊕ c′ ⊕ x⊕ u = u⊕ c′. Hence,
the responses of (decrypt, c) queries are the same for B1 and B0.

Upon a query (encrypt,m), the B1 responds r ⊕ m whereas B0 outputs r ⊕ 0|m| = r. Since, r is
randomly chosen and ⊕ is a group operation the attacker cannot distinguish r⊕m from r.9 Game3 and
Game4 only differ in Bb; hence, these two games are indistinguishable

Game5 is the game in which PRP-Ch0 is replaced by PRP-Ch1, which uses the PRP candidate
instead of a randomly chosen permutation. As PRP is a pseudorandom permutation, the attacker
cannot distinguish Game4 from Game5.

Game6 is again the original game of A against PM-Ch0. The attacker cannot distinguish Game5 and
Game6, because the view of A is the same.

We conclude that Game1 and Game6, and therefore PM-Ch1 and PM-Ch0, are indistinguishable.

6.2 Security of Tor’s Onion Algorithms

Let E := (Gene ,Enc,Dec) be a stateful deterministic encryption scheme, and let M := (Genm ,Mac,V )
be a deterministic MAC. Let PRG be a pseudo random generator such that for all x ∈ {0, 1}∗ |PRG(x)| =

9Since we use a random permutation, A can try the following: before starting the challenge phase, he sends as many
encryption queries as he is allowed to and computes the corresponding Enc(ctre). For the challenge response cb he computes
cb⊕m and checks whether the result equals one of the Enc(ctre) he has observed before. If so, either the encryption function
is not a permutation or b = 0. This, however, only happens with a negligible probability.
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upon (initialize)
ctrd ← 0
ctre ← 0

Bb: upon (encrypt,m)
send ctre to PRP-Ch
wait for input x from PRP-Ch
if b = 0 then
c← x⊕ 0|m|

if q(ctre) 6= ⊥ then
(d, u)← q(ctre)
c← d

else if b = 1 then
c← x⊕ 0|m|

q(ctre)← (c,m)
increment ctre
respond c

Bb: upon (decrypt, c)
send ctrd to PRP-Ch
wait for input x from PRP-Ch
(d, u)← q(ctrd)
T ← (λy.y ⊕ c⊕ d)
if b = 0 then

if q(ctrd) = ⊥ then
m← x⊕ c
q(ctrd)← (c,m)

else if q(ctrd) 6= ⊥ then
m← T (u)

else if b = 1 then
(m, s)← x⊕ c

ctrd ← s
respond (m,T )

Bb: upon (guess, b∗)
if b = b∗ then

output 0
else if b 6= b∗ then

output 1

Figure 12: The machine Bb

2 · |x|. We write PRG(x)1 for the first half of PRG(x) and PRG(x)2 the second half. Moreover, for a
randomized algorithm A, we write A(x; r) for a call of A(x) with the randomness r.

As a PRP candidate we use AES, as in Tor, and as a MAC use H-MAC with SHA-256. We use that
in detCTR encrypting two blocks separately results in the same ciphertext as encrypting the pair of the
blocks at once. Moreover, we assume that the output of H-MAC is exactly one block.

The correctness follows by construction. The synchronicity follows, because a PRP is used for the
state. The end-to-end integrity directly follows from the SUF of the Mac. And the predictable malleabil-
ity follows from the predictable malleability of the deterministic counter-mode.

Lemma 2. Let onionAlg = {UnwrOnI ,WrOnI}. If pseudorandom permutations exist, onionAlg are
secure onion algorithms.

Proof. The correctness follows directly from the construction. The synchronicity can be reduced to the
pseudorandomness of PRP of the detCTR scheme. In detail, we can construct a machine that breaks
the pseudorandomness of PRP if there is an attacker that breaks the synchronicity.

For showing the end-to-end integrity, assume that there is a ppt attacker that is able to produce
an onion O such that ⊥ 6= m ← UnwrOn(O, k) and O is not an answer of a query. Then, we can
construct a machine that breaks the SUF of the MAC by internally running the attacker against the
end-to-end integrity and computing all detCTR call on our own and forwarding all Mac calls to the SUF
challenger. Finally, after unwrapping the onion, we send the tag t to the SUF challenger as a guess. If
the attacker against the end-to-end integrity wins with non-negligible probability, then we also win with
non-negligible probability.

For showing the predictable malleability, we present a sequence of games and show that they are
indistinguishable for any ppt attacker. In Game0 the challenger is exactly defined as OS-Ch0. In Game1

additionally the message m is stored in a shared memory q(st)← m (st being the corresponding state),
and the challenger maintains a separation into visible subpaths. Obviously, Game1 is indistinguishable
from Game0 for any ppt attacker.

In Game2, the challenger initially draws a distinguished key kS . Then, the challenger looks up
for every query (unwrap, O, cid i the adjunct visible subpath 〈Pi, ki〉ji=u in forward direction. Then,
the challenger completely unwraps the onion and checks whether the stored message q(st) equals the
unwrapped message. If this check fails, the challenger proceeds with the onion as in Game1. If the
this check succeeds, however, and Pj is not the exit node the challenger computes ((Oi)

j+1
i=u, s

′) ←
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WrOnI(O, k), for m 6∈M(κ)

O′ ← Encctr (O, k); return O′

WrOnI(m, k), for m ∈M(κ)

(r, r′)← PRG(k); km ← Genm(r)
ke ← Gene(r′)
Mac(m, km)
O′ ← Encctr (O, ke); return O′

WrOnI(m, 〈ki〉`i=1), for m ∈M(κ)

O2 ←WrOnI(m, k1)
for i = 2 to ` do
Oi+1 ←WrOnI(Oi, ki)

return O`

UnwrOnI(O, k)

(r, r′)← PRG(k); km ← Genm(r)
ke ← Gene(r′)
O′ ← Decctr (O, ke)
if O′ = m||t and m ∈ M(κ) and V (m, t, km) = 1
then

return O′′

else
O′ ← Decctr (O, k); return O′

UnwrOnI(O, k, fake)

O′ ← Decctr (O, k); return O′

UnwrOnI(O, 〈ki〉`i=1)

for i = 1 to ` do
Oi+1 ←WrOnI(Oi, ki)

return O`

Figure 13: The Onion Algorithms onionAlg

WrOnj−u+2
I (m, 〈ki〉j+1

i=u, st
i
f ), where WrOnj−u+2

I is defined as in Definition 5, kj+1 := kS , and stif denotes
the forward state of party i. Thereafter, the challenger updates the forward state stif ← s′ of party i. If
Pj is the exit node, then, we only use 〈ki〉ji=u, and perform one WrOn operation less. (send,m) queries
are processed in the same way except that additionally the message m is stored as q(st1f )← m.

For the backward direction, i.e., queries (respond,m) and (wrap, O, cid i), the challenger proceeds
analogously except that it is not checked whether P`′ is compromised but whether P1 is compromised.
Accordingly, ku−1 := kS is used in the backward direction. Game2 is indistinguishable from Game1

because malicious onions are not touched and the length of a circuit is not leaked by an onion.
In Game3 the challenger, loosely spoken, fakes all onions for which the message is not visible to the

attacker. For all queries, the challenger additionally also stores the onion that the next guard has to
expect. For example, consider an onion in forward direction with an adjunct visible subpath 〈Pi, ki〉ji=u for
which Pj is not the exit node. Then, the challenger always stores onions(cid i)← Ou the onion that the
guard Pj+1 expects. In the backward direction the challenger analogously stores the expected onion for
the next guard. Upon a (unwrap, O, cid i) query, the challenger runs the predictor T ← D(O, onions(cid i))
of detCTR. The resulting transformations T is applied to the stored message q(stif ). The challenger
proceeds analogously for the query (wrap, O, cid i) in backward direction. Moreover, the challenger fakes
all queries in forward direction for which the last node Pj in the visible subpath 〈Pi, ki〉ji=u is not the
exit node, i.e., instead of the actual message q(stif ) the constant zero bitstring 0|q(stif )| is used.

We can construct a machine M that breaks the predictable malleability of detCTR given an attacker
that distinguishes Game3 from Game2. M internally runs the attacker computes the challenger Game3

except for detCTR encryption and decryption calls, which are forwarded to the IND-PM challenger
PM-Chi. Then, M breaks the predictable malleability of detCTR if the attacker distinguishes Game3

from Game2.
The challenger in Game3 is exactly defined as OS-Ch1. Since Game0 and Game3 are indistinguishable,

also OS-Ch0 and OS-Ch1 are indistinguishable. Hence, onionAlg satisfy predictably malleable onion
secrecy.

6.3 ntor: A 1W-AKE

Øverlier and Syverson [26] proposed a 1W-AKE for use in the next generation of the Tor protocol with
improved efficiency. Goldberg, Stebila, and Ustaoglu found an authentication flaw in this proposed
protocol, fixed it, and proved the security of the fixed protocol [13]. We use this fixed protocol, called
ntor, as a 1W-AKE.

The protocol ntor [13] is a 1W-AKE protocol between two parties P (client) and Q (server), where
client P authenticates server Q. Let (pkQ, skQ) be the static key pair for Q. We assume that P holds
Q’s certificate (Q, pkQ). P initiates an ntor session by calling the Initiate function and sending the
output message mP to Q. Upon receiving a message m′P , server Q calls the Respond function and sends
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Initiate(pkQ, Q):

1. Generate an ephemeral key pair (x,X ← gx).
2. Set session id ΨP ← Hst(X).
3. Update st(ΨP )← (ntor, Q, x,X).
4. Set mP ← (ntor, Q,X).
5. Output mP .

Respond(pkQ, skQ, X):

1. Verify that X ∈ G∗.
2. Generate an ephemeral key pair (y, Y ← gy).
3. Set session id ΨQ ← Hst(Y ).
4. Compute (k′, k)← H(Xy, XskQ , Q,X, Y, ntor).
5. Compute tQ ← Hmac(k

′, Q, Y,X, ntor, server).
6. Set mQ ← (ntor, Y, tQ).
7. Set out ← (k, ?,X, Y, pkQ), where ? is the anonymous party symbol.
8. Delete y and output mQ.

ComputeKey(pkQ,ΨP , tQ, Y ):

1. Retrieve Q, x, X from st(ΨP ) if it exists.
2. Verify that Y ∈ G∗.
3. Compute (k′, k)← H(Y x, pkxQ, Q,X, Y, ntor).
4. Verify tQ = Hmac(k

′, Q, Y,X, ntor, server).
5. Delete st(ΨP ) and output k.

If any verification fails, the party erases all session-specific information and aborts the session.

Figure 14: The ntor protocol

the output message mQ to P . Party P then calls the ComputeKey function with parameters from the
received message m′Q, and completes the ntor protocol. We assume a unique mapping between the session
ids ΨP of the cid in Πor.

Lemma 3 (ntor is anonymous and secure [13]). The ntor protocol is a one-way anonymous and secure
1W-AKE protocol in the random oracle model (ROM).

7 Forward Secrecy and Anonymity Analyses

In this section, we show that our abstraction For allows for applying previous work on the anonymity
analysis of onion routing to Πor. Moreover, we illustrate that For allows a rigorous analysis of forward
secrecy of Πor.

In Section 7.1, we show that the analysis of Feigenbaum, Johnson, and Syverson [11] of Tor’s
anonymity properties in a black-box model can be applied to our protocol Πor. Feigenbaum, John-
son, and Syverson show their anonymity analysis an ideal functionality Bor (see Figure 3). By proving
that the analysis of Bor applies to For, the UC composition theorem and Theorem 1 implies that the
analysis applies to Πor as well.

In Section 7.2, we prove immediate forward secrecy for Πor by analyzing For.

7.1 OR Anonymity Analysis

Feigenbaum, Johnson and Syverson [11] analyzed the anonymity properties of OR networks. In their
analysis, the authors abstracted an OR network against attackers that are local, static as a black-box
functionality Bor. We reviewed their abstraction Bor in Section 2.5. In this section, we show that the
analysis of Bor is applicable to Πor against local, static attackers.

There is a slight mismatch in the user-interface of Bor and Πor. The main difference is that Πor

expects separate commands for creating a circuit and sending a message whereas Bor only expects a
command for sending a message. We construct for every party P a wrapper U for Πor that adjusts Πor’s
user-interface. Recall that we consider two versions of Bor and U simultaneously: one version in which
no message is sent and one version in which a message is sent (denoted as [m]).
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upon the first input m

send Nor to Freg in Π
send setup to Π
wait for (ready, 〈Pi〉ni=1)
further process m

upon an input (send, S, [m])

draw P1, . . . , P` at random from Nor

store (S,mdummy) [or (S,m)] in the queue for 〈P, P1, . . . , P`〉
send (createcircuit, 〈P, P1, . . . , P`〉) to Π

upon (created, 〈P cid1⇐⇒ P1 ⇐⇒ . . . P`〉) from Π

look up (S,m) from the queue for 〈P, P1, . . . , P`〉
send (send, 〈P cid1⇐⇒ P1 ⇐⇒ . . . P`〉, (S,m)) to Π

upon (received, C,m) from Π

do nothing /*Bor does not allow responses to messages*/

upon a message m from Fnet0 to the environment

forward m to the environment

Figure 15: User-interface U(Π) for party P

Instead of Πor, U only expects one command: (send, S, [m]). We fix the length ` of the circuit.10 Upon

(send, S, [m]), U(Π) draws the path P1, . . . , P`
$← Nor at random, sends a (createcircuit, 〈P, P1, . . . , P`〉)

to Π, waits for the cid from Π, and sends a (send, cid ,m) command, where m is a dummy message if no
message is specified. Moreover, in contrast to Bor the protocol Πor allows a response for a message m
and therefore additionally sends a session id sid to a server.11

In addition to the differences in the user-interface, Bor assumes the weaker threat model of a local,
static attacker whereas Πor assumes a partially global attacker. We formalize a local attacker by consid-
ering Πor in the Fnet0-hybrid model, and connect the input/output interface of Fnet0 to the wrapper U
as well. For considering a static attacker, we make the standard UC-assumption that every party only
accepts compromise requests at the beginning of the protocol.

Finally, we also need to assume that Bor is defined for a fixed set of onion routers.
Finally, our work culminates in the connection of previous work on black-box anonymity analyses of

onion routing with our cryptographic model of onion routing.

Lemma 4 (U(Πor) UC realizes Bor). Let U(Πor) be defined as in Figure 15. If Πor uses secure OR
modules, then U(Πor) in the Fnet0-hybrid model UC realizes Bor against static attackers.

Proof. Applying the UC composition theorem, it suffices to prove that U(For) in the Fnet0-hybrid model
UC realizes Bor against static attackers. We construct a simulator SA as in Figure 16 that internally
runs Fnet0 and U ′(For) and an attacker A. Then, we show that Bor against SA is indistinguishable from
U(For) against A for any ppt environment E.

We show that the following sequence of games is indistinguishable for the environment E. The first
game Game1 is the original setting with U(For) and A in the Fnet0-hybrid model. In the second game
Game2, the simulator S2 honestly simulates Fnet0 and the attacker A. As S1 honestly simulates Fnet0

the two games Game1 and Game2 are indistinguishable.
In the third game Game3, the simulator S3 honestly runs U(For) as well. As S3 honestly simulates

U(For) the two games Game2 and Game3 are indistinguishable.
In the fourth game Game4, the simulator S4 maintains a set of compromised parties NA. S4 runs

U ′ instead of U , where U ′ gets the path as input instead of drawing the path at random. Then, the
simulator S4 upon an input (send, S, [m]) to U draws the first onion router P1 (not the onion proxy) and
the exit node P` as follows with b := |NA|/|Nor|.

10We fix the length for the sake of brevity. This choice is rather arbitrary. The analysis can be adjusted to the case in
which the length is chosen from some efficiently computable distribution or specified by the environment for every message.

11It is also possible to modify Πor such that Πor does not accept responses and does not draw a session id sid . However,
for the sake of brevity we slightly modify Bor.
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upon the first input m

set NA := ∅
send Nor to Freg in For

send setup to For

wait for (ready, 〈Pi〉ni=1)
further process m

upon (compromise, P ) from A
if all previous messages only were compromise messages then

set NA := NA ∪ {P}
forward (compromise, P ) to party P in U(For)

upon the first message m that is not compromise from A
send (compromise,NA) to Bor

further process m

upon any other message m from A to Fnet0

forward m to Fnet0

upon any other message m from A to U ′(For)

forward m to U ′(For)

upon a message m from U ′(For) to the environment

do nothing /* Bor already outputs the message */

upon (sent, U, S, [m]) from Bor

choose P1
$← NA and P`

$← NA

choose P2, . . . , P`−1
$← Nor

send (send, 〈Pi〉`i=1, [m]) to U ′(For)

upon (sent,−, S, [m]) from Bor

choose P1
$← Nor \ NA and P`

$← NA

choose P2, . . . , P`−1
$← Nor

send (send, 〈Pi〉`i=1, [m]) to U ′(For)

upon (sent, U,−) from Bor

choose P1
$← NA and P`

$← Nor \ NA

choose P2, . . . , P`−1
$← Nor

send (send, 〈Pi〉`i=1, [mdummy]) to U ′(For)

upon (sent,−,−) from Bor

choose P1
$← Nor \ NA and P`

$← Nor \ NA

choose P2, . . . , P`−1
$← Nor

send (send, 〈Pi〉`i=1, [mdummy]) to U ′(For)

Figure 16: The simulator SA: U ′ gets the path as input instead of drawing it at random

(i) with probability b2, S4 draws P1, P`
$← NA

(ii) with probability b(1− b), S4 draws P1
$← NA and P`

$← Nor \NA

(iii) with probability (1− b)b, S4 draws P1
$← Nor \NA and P`

$← NA

(iv) with probability (1− b)2 S4 draws P1, P`
$← Nor \NA

The nodes P2, . . . , P`−1
$← Nor are drawn uniformly at random. Then, S4 sends (send, 〈Pi〉`i=1, [m]) to

U ′.
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Game4 is indistinguishable from Game3 as the distribution of compromised parties remains the same,
and in Game4 the modified wrapper U ′ together with the simulator S4 have the same input/output
behavior as U .

The game Game5 is the scenario in which SA communicates with Bor. The simulator does not directly
communicate with the environment over the protocol interface anymore but Bor communicates with the
environment instead. The simulator S5 behaves as SA in Figure 16.

The difference between the input/output behavior of Bor and the part of S4 that communicates
with U ′ is minimal. Only for the cases in which the last onion router is not compromised the message
m is not sent to U ′. In these cases SA chooses mdummy as a message. But as the ideal functionality
does not reveal any information about m if the last node is not compromised, Game5 and Game4 are
indistinguishable.

7.1.1 Generalizing Bor to partially global attackers

The result from the previous section can be generalized to an onion routing network against partially
global attackers. In order to cope with the partially compromised network, the black-box needs to
maintain the amount of compromised links, in addition to the number of compromised parties. In this
section, we prove that even for q > 0 the onion routing protocol U(Πor) realizes this modified black-box
Bor′ , which is defined in Figure 17.

The realization proof goes along the lines of the proof of Lemma 4. However, in order to bound
the probability that a link between a user and the first onion router or an exit node and a server is
compromised, we need to restrict the number of users and servers. Let m be the amount of users and o
be the amount of servers.

Lemma 5 (U(Πor) UC realizes Bor′). Let U(Πor) be defined as in Figure 15. If Πor uses secure
OR modules, then U(Πor) in the Fnetq -hybrid model UC realizes Bor against static attackers for any
q ∈ {0, . . . , n}, where n is the number of onion routers.

Proof. Applying the UC composition theorem, it suffices to prove that U(For) in the Fnetq -hybrid model
UC realizes Bor′ against static attackers. We construct a simulator S′A as in Figure 18 that internally
runs Fnet0 and U ′(For) and an attacker A. Then, we show that Bor′ against S′A is indistinguishable
from U(For) against A for any ppt environment E.

We show that the following sequence of games is indistinguishable for the environment E. The first
game Game1 is the original setting with U(For) and A in the Fnetq -hybrid model. In the second game
Game2, the simulator S2 honestly simulates Fnetq and the attacker A. As S1 honestly simulates Fnetq

the two games Game1 and Game2 are indistinguishable.
In the third game Game3, the simulator S3 honestly runs U(For) as well. As S3 honestly simulates

U(For) the two games Game2 and Game3 are indistinguishable.
In the fourth game Game4, the simulator S4 maintains a set of compromised parties NA. S4 runs

U ′ instead of U , where U ′ gets the path as input instead of drawing the path at random. Then, the
simulator S4 upon an input (send, S, [m]) to U draws the first onion router P1 (not the onion proxy) and
the exit node P` as follows with n := |Nor|, b← |NA|

n , L′A := LA ∩ (Nor \NA)2, and c← |L′A|
n(n−1)/2 :

(i) with probability (b+ c)2, S4 draws

(P1, P`)
$← (NA ∪ {P | ∃Q.(P,Q) ∈ LA})× (NA ∪ {P | ∃Q.(P,Q) ∈ LA})

(ii) with probability (b+ c)(1− (b+ c)), S4 draws

(P1, P`)
$← ((Nor \ NA) ∩ {P | (U,P ) 6∈ LA})× (NA ∪ {P | (P, S) ∈ LA})

(iii) with probability (1− (b+ c))(b+ c), S4 draws

(P1, P`)
$← (NA ∪ {P | (U,P ) ∈ LA})× (Nor \ NA ∩ {P | (P, S) 6∈ LA})

(iv) with probability (1− (b+ c))2, S4 draws

(P1, P`)
$← (Nor \ NA ∩ {P | (U,P ) 6∈ LA})× (Nor \ NA ∩ {P | (P, S) 6∈ LA})
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upon receiving a msg (compromise,NA, LA) from A:

set compromised(P )← true for every P ∈ NA
set n← |Nor|; set b← |NA|

n

set L′A ← LA ∩ ({(P, P ′) | (P is a user ∧ P ′ ∈ (Nor \NA)) ∨ (P ∈ (Nor \NA) ∧ P ′ is a server}))
set c← |L′A|

nm+no

upon an input (send, S, [m]) from the environment for party U :

with probability (b+ c)2,

choose P`
$← NA

send (sent, U, S, [m]) to A
with probability (1− (b+ c))(b+ c),

choose P`
$← NA

send (sent,−, S, [m]) to A
with probability (b+ c)(1− (b+ c)),

choose P`
$← Nor \ NA

send (sent, U,−) to A
with probability (1− (b+ c))2,

choose P`
$← Nor \ NA

send (sent,−,−) to A
output message (P`, S, [m])

Figure 17: Black-box OR Functionality Bor′ for partially global attackers: Nor is the set of all parties

The nodes P2, . . . , P`−1
$← Nor are drawn uniformly at random. Then, S4 sends (send, 〈Pi〉`i=1, [m]) to

U ′.
Game4 is indistinguishable from Game3 as the distribution of compromised parties remains the same,

and in Game4 the modified wrapper U ′ together with the simulator S4 have the same input/output
behavior as U .

The game Game5 is the scenario in which S′A communicates with Bor′ . The simulator does not
directly communicate with the environment over the protocol interface anymore but Bor′ communicates
with the environment instead. The simulator S5 behaves as S′A in Figure 18.

The difference between the input/output behavior of Bor′ and the part of S4 that communicates with
U ′ is minimal. Only for the cases in which the last onion router is not compromised and the last link
is not observed the message m is not sent to U ′. In these cases S′A chooses mdummy as a message. But
as the ideal functionality does not reveal any information about m if the last node is not compromised,
Game5 and Game4 are indistinguishable.

Extending Bor′ to reusing circuits. Reusing a circuit, in particular accepting answers, raises the
problem that the attacker might learn something by observing activities at the same places. This problem
suggests that the resulting abstraction cannot be much simpler than abstraction For.

7.2 Forward Secrecy

Forward secrecy [6] in cryptographic constructions ensures that a session key derived from a set of
long-term public and private keys will not be compromised once the session is over, even when one of
the (long-term) private keys is compromised in the future. Forward secrecy in onion routing typically
refers to the privacy of a user’s circuit against an attacker that marches down the circuit compromising
the nodes until he reaches the end and breaks the user’s anonymity.

It is commonly believed that for achieving forward secrecy in OR protocols it is sufficient to securely
erase the local circuit information once a circuit is closed, and to use a key-exchange that provides forward
secrecy. Πor uses such a mechanism for ensuring forward secrecy. Forward secrecy for OR, however, has
never been proven, not even rigorously defined.

In this section, we present a game-based definition for OR forward secrecy (Definition 13) and show
that Πor satisfies our forward secrecy definition (Lemma 8). We require that a local attacker does even
learn anything about a closed circuit if he compromises all system nodes. The absence of knowledge
about a circuit is formalized in the notion of OR circuit secrecy (Definition 13), a notion that might be
of independent interest.
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upon the first input m

set NA := ∅
set LA := ∅
send Nor to Freg in For

send setup to For

wait for (ready, 〈Pi〉ni=1)
further process m

upon (compromise, P ) from A
if all previous messages were only compromise or obverse messages then

set NA := NA ∪ {P}
forward (compromise, P ) to party P in U(For)

upon (obverse, P1, P2) from A to Fnetq

if all previous messages were only compromise or obverse messages then
set LA := LA ∪ {(P1, P2)}
forward (obverse, P1, P2) to Fnetq

upon the first message m that is not compromise from A
send (compromise,NA, LA) to Bor′

further process m

upon any other message m from A to Fnetq

forward m to Fnetq

upon any other message m from A to U ′(For)

forward m to U ′(For)

upon a message m from U ′(For) to the environment

do nothing /* Bor′ already outputs the message */

upon (sent, U, S, [m]) from Bor′

choose (P1, P`)
$← (NA ∪ {P | ∃Q.(P,Q) ∈ LA})× (NA ∪ {P | ∃Q.(P,Q) ∈ LA})

choose P2, . . . , P`−1
$← Nor

send (send, 〈Pi〉`i=1, [m]) to U ′(For)

upon (sent,−, S, [m]) from Bor′

choose (P1, P`)
$← ((Nor \ NA) ∩ {P | (U,P ) 6∈ LA})× (NA ∪ {P | (P, S) ∈ LA})

choose P2, . . . , P`−1
$← Nor

send (send, 〈Pi〉`i=1, [m]) to U ′(For)

upon (sent, U,−) from Bor′

choose (P1, P`)
$← (NA ∪ {P | (U,P ) ∈ LA})× (Nor \ NA ∩ {P | (P, S) 6∈ LA})

choose P2, . . . , P`−1
$← Nor

send (send, 〈Pi〉`i=1, [mdummy]) to U ′(For)

upon (sent,−,−) from Bor′

choose (P1, P`)
$← (Nor \ NA ∩ {P | (U,P ) 6∈ LA})× (Nor \ NA ∩ {P | (P, S) 6∈ LA})

choose P2, . . . , P`−1
$← Nor

send (send, 〈Pi〉`i=1, [mdummy]) to U ′(For)

Figure 18: The simulator S′A: U ′ gets the path as input instead of drawing it at random

Recall that we formalize a local attacker by considering Πor in the Fnet0 -hybrid model, i.e., the
attacker cannot observe the link between any pair of nodes without compromising any of the two nodes.

Definition 10 (Local attackers). We say that we consider a protocol Π against local attackers if we
consider Π in the Fnet0-hybrid model.
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CS-ChΠ
b : upon (setup) from A

if initial = ⊥ then
send (setup) to Π
challenge ← false
initial ← true

CS-ChΠ
b : upon (compromise, P ) from A

if challenge = false then
store that P is compromised
forward (compromise, P ) to Π

CS-ChΠ
b : upon (close initial) from A

challenge ← true

CS-ChΠ
b : upon (createcircuit,P0,P1, P ) from A

if challenge = true then
if P0 and P1 visibly coincide then

forward (createcircuit,Pb, P ) to Π

CS-ChΠ
b : for every other message m from A

forward m to Π

CS-ChΠ
b : for every message m from Π

if challenge = true and

m = (created, 〈P cid⇐⇒ P1 ⇐⇒ · · ·P`′〉, P )
then

store P for cid
forward m to A

OR Circuit Secrecy Challenger: CS-ChΠ
b

FS-ChΠ
b behaves exactly like CS-ChΠ

b except for the following message:

FS-ChΠ
b : upon (close challenge) from A

if challenge = true then
challenge ← false
for every circuit cid created in the challenge phase do

look up onion proxy P for cid
send (cid , destroy, P ) to Π

Figure 19: OR Forward Secrecy Challenger: FS-ChΠ
b

The definition of circuit secrecy compares a pair of circuits and requires that the attacker cannot tell
which one has been used. Of course, we can only compare two circuits the are not trivially distinguishable.
The following notion of visibly coinciding circuits excludes trivially distinguishable pairs of circuits.
Recall that a visible subpath of a circuit is a maximal contiguous subsequence of compromised nodes.

Definition 11 (Visibly coinciding circuits). A subsequence 〈Pj〉sj=u of a circuit 〈Pi〉`i=1 is an extended
visible subpath if 〈Pj〉s−1

j=u+1 is a visible subpath or s = ` and 〈Pj〉sj=u+1 is a visible subpath.
We say that two circuits P0 = 〈P 0

i 〉`
0

i=0, P1 = 〈P 1
i 〉`

1

i=0 are trivially distinguishable if the following
three conditions hold:

(i) the onion proxies P 0
0 , P

1
0 are not compromised,

(ii) the sequences of extended visible subpaths of P0 and P1 are the same, and

(iii) the exit nodes of P0 and P1 are the same, i.e., P 0
`0 = P 1

`1 .

For the definition of circuit secrecy of a protocol Π, we define a challenger that communicates with
the protocol Π and the attacker. The challenger Cb is parametric in a b ∈ {0, 1}. Cb forwards all requests
from the attacker to the protocol except for the createcircuit commands. Upon a createcircuit command
Cb expects a pair P0, P1 of node sequences, checks whether P0 and P1 are visibly coinciding circuits,
chooses Pb, and forwards (createcircuit,Pb) to the protocol Π. We require that the attacker does not
learn anything about visibly coinciding circuits.

A protocol can be represented without loss of generality as an interactive Turing machine that in-
ternally runs every single protocol party as a submachine, forwards each messages for a party P to that
submachine, and sends every message from that submachine to the respective communication partner.
We assume that upon a message (setup), a protocol responds with a list of self-generated party iden-
tifiers. The protocol expects for every message from the communication partner a party identifier and
reroutes the message to the corresponding submachine. In the following definition, we use this notion of
a protocol.

Definition 12. Let Π be a protocol and CS-Ch be defined as in Figure 19. An OR protocol has cir-
cuit secrecy if there is a negligible function µ such that the following holds for all ppt attackers A and
sufficiently large κ

Pr[b $← {0, 1} , b′ ← A(κ)CS-ChΠ
b (κ) : b = b′] ≤ 1/2 + µ(κ)
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Forward secrecy requires that even if all nodes are compromised after closing all challenge circuits
the attacker cannot learn anything about the challenge circuits.

Definition 13. Let Π be a protocol and FS-Ch be defined as in Figure 19. An OR protocol has cir-
cuit secrecy if there is a negligible function µ such that the following holds for all ppt attackers A and
sufficiently large κ

Pr[b $← {0, 1} , b′ ← A(κ)FS-ChΠ
b (κ) : b = b′] ≤ 1/2 + µ(κ)

Lemma 6. For against local attackers satisfies OR circuit secrecy (see Definition 12).

Proof. As we consider a local attacker the attacker can only observe the communication with compro-
mised nodes, i.e., a guard sends a message to the first compromised node in a visible subpath. For such
messages we distinguish two kinds of scenarios: either the visible subpath contains the exit node or not.
If the visible subpath contains the exit node, For sends to the attacker the visible subpath together
with the actual message to be transmitted. As any pair of challenge circuits visibly coincides, the visible
subpaths are the same; hence, also the messages of For are the same for b = 0 or b = 1.

In the case that the visible subpath does not contain the exit node, the circuit contains an adjacent
guard on both sides of the visible subpath. In these cases, For sends the visible subpath, the command
relay, and the cid to the attacker. As any pair of challenge circuits visibly coincides, the visible subpaths
are the same. As the cid is randomly chosen, the distributions of the cid is the same in the scenario
with b = 0 and b = 1. Consequently, the distribution of network messages is the same in the scenario
with b = 0 and b = 1.

The protocol as presented in Section 2.3 presents Πor as one (sub-)machine for every protocol party.
Equivalently, Πor can be represented as one interactive Turing machine that runs all parties as subma-
chines, upon a message (setup) from the communication partner, sends (setup) to every party, and sends
an answer with a list of party identifiers to the communication partner. In the following definition, Πor

is represented as one interactive Turing machine that internally runs all protocol parties.

Lemma 7. Πor instantiated with secure OR modules against local attackers satisfies OR circuit secrecy
(see Definition 12).

Proof. By Theorem 1, we know that there is a simulator S such that the communication with CS-ChΠor

b

and CS-ChFor+S
b is indistinguishable for any ppt attacker.12 An attacker ACS-ChFor+S

b communicating
with CS-ChFor+S

b can be represented as S′(A)CS-ChFor
b for a wrapping machine S′ that upon every net-

work message runs the simulator S and reroutes the network messages of S to the environment to A.
By Lemma 6, S′(A) cannot guess b with significantly more than a probability of 1/2, hence also not
ACS-ChFor+S

b . As CS-ChΠor

b and CS-ChFor+S
b are indistinguishable, we conclude that there is no attacker

that can guess b with significantly more than a probability of 1/2.

It is easy to see that in For, once a circuit is closed, all information related to the circuit at the
uncompromised nodes is deleted. Therefore, forward secrecy for For is obvious from the circuit secrecy
in Lemma 7. Hence, the following lemma immediately follows.

Lemma 8. Πor instantiated with secure OR modules against local attackers satisfies OR forward secrecy
(see Definition 13).

8 Conclusions and Future Work

We have proven that the core cryptographic parts in a OR protocol are a one-way anonymous authenti-
cated key exchange primitive (1W-AKE), and secure onion algorithms. We have presented an improved
version of the existing Tor protocol using the efficient ntor protocol as a secure 1W-AKE [13] and by
proposing provably secure fixes for the Tor onion algorithms with a minimal overhead. We have shown
that this improved protocol provides precise security guarantees in a composable setting (UC [4]).

We have further presented an elegant proof technique for the analysis of OR protocols, which leverages
an OR abstraction For that is induced by our UC security result. We show that the analysis of OR

12Actually, we do not only consider Πor but Πor together with the dummy attacker that only reroutes all messages from
the environment to the protocol.
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protocol boils down to the analysis of the abstraction For. As an example we have introduced a definition
for forward secrecy of onion routing circuits and shown that For satisfies this definition. Furthermore,
we have proven that our abstraction For satisfies the black-box criteria of Feigenbaum, Johnson and
Syverson [11], which in turn implies that their anonymity analysis also applies to the OR protocol
presented in this paper.

For future work an interesting direction could be to incorporate hidden services into the UC security
analysis. We already designed the abstraction in a way that allows for a modular extension of the UC
proof to a hidden service functionality. Moreover, our work offers a framework for the analysis of other
desirable OR properties, such as circuit position secrecy.

It is well known that the UC framework lacks a notion of time; consequently any UC security analysis
neglects timing attacks, in particular traffic analysis. A composable security analysis that also covers,
e.g., traffic analysis, is an interesting task for future work. Although our work proposes a provably
secure and practical next generation Tor network, users’ anonymity may still be adversely affected if
different users run different versions. Hence it is an important direction for future work to develop a
anonymity-preserving methodology for updating OR clients.
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