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Abstract. Homomorphic encryption schemes are powerful cryptographic primi-
tives that allow for a variety of applications. Consequently, a variety of proposals
have been made in the recent decades but none of them was based on coding
theory. The existence of such schemes would be interesting for several reasons.
First, it is well known that having multiple schemes based on different hardness
assumptions is advantageous. In case that one hardness assumption turns out be
wrong, one can switch over to one of the alternatives. Second, fo some codes
decoding (which would represent decryption in this case) is a linear mapping
only (if the error is known), i.e., a comparatively simple operation. This would
make such schemes interesting candidates for constructing of fully-homomorphic
schemes based on bootstrapping (see Gentry, STOC’09).
We show that such schemes are indeed possible by presenting a natural construc-
tion principle. Moreover, these possess several non-standard positive features.
First, they are not restricted to linear homomorphism but allow for evaluating
multivariate polynomials up to a fixed (but arbitrary) degree µ on encrypted field
elements. Second, they can be instantiated with various error correcting codes,
even for codes with poor correcting capabilities. Third, depending on the de-
ployed code, one can achieve very efficient schemes. As a concrete example, we
present an instantiation based on Reed-Muller codes where for µ = 2 and µ = 3
and security levels between 80 and 128 bits, all operations take less than a second
(after some pre-computation).
However, our analysis reveals also limitations on this approach. For structural
reasons, such schemes cannot be public-key, allow for a limited number of fresh
encryptions only, and cannot be combined with the bootstrapping technique. We
argue why such schemes are nonetheless useful in certain application scenarios
and discuss possible directions on how to overcome these issues.

Keywords: Homomorphic Encryption, Coding Theory, Efficiency, Provable Se-
curity

1 Introduction

Motivation. Homomorphic encryption schemes are very useful cryptographic
tools that enable secure computation. Informally, an encryption scheme Ek



is homomorphic with respect to a set of functions F if for any f ∈ F one
can compute Ek(f(x1, . . . , xn)) from Ek(x1), . . . , Ek(xn) without knowing
x1, . . . , xn. Even if F contains only functions based on one operation, e.g.,
linear operations, such schemes have been used in various applications, such as
electronic voting [14, 5, 18, 19], private information retrieval (PIR) [33], oblivi-
ous polynomial evaluation (OPE) [37], or multiparty computation [17].

A variety of different approaches (and according hardness assumptions and
proofs of security) have been investigated in the last decades. The set of con-
sidered underlying problems include the Quadratic Residuosity Problem (e.g.
Goldwasser and Micali [28]), the Higher Residuosity Problem (e.g., Benaloh
[5]), the Decisional Diffie-Hellman Problem (e.g., ElGamal [22], Gentry et al.
[27], Prabhakarany and Rosuleky [40]), and the Decisional Composite Residu-
osity Class Problem (e.g. Paillier [39], Damgård and Jurik [20]). With respect
to homomorphic schemes that support more than one operation, a variety of
different assumptions have been considered as well: the Ideal Coset Problem
(e.g. Gentry [25]), the Approximate-GCD problem (e.g. van Dijk et al. [46]),
the Polynomial Coset Problem (Smart and Vercauteren [42]), the Approximate
Unique Shortest Vector Problem, the Subgroup Decision Problem, the Differ-
ential Knapsack Vector Problem (all of them have been considered in Aguilar
Melchor et al. [36]) To the best of our knowledge, no scheme exists so far whose
the security is based on the hardness of a problem from coding theory. Such
schemes would be interesting for at least the following two reasons.

1) Alternative Security Assumption. As the overview above indicates, most schemes
are based on assumptions from number theory. For the case that these turn out
to be wrong, e.g., due to quantum computers, it would be important to have
schemes at hand that are based on alternative assumptions. As summed up in
[2], in general promising candidates as alternatives to number theoretic prob-
lems include: the problem of solving multivariate equations over a finite field,
the problem of finding a short vector in a lattice, and the problem of decoding
a linear code. While homomorphic encryption schemes have been built on the
first two problems. e.g., cf. [21, 36], none are known for the third.

2) Efficient Decryption Operation. In his seminal work [25], Gentry introduced
a new approach (and an instantiation based on ideal lattices) for constructing
fully-homomorphic encryption schemes, i.e., schemes that allow for evaluating
any function on encrypted data. One core idea is to bootstrap a scheme. The
key observation is that for getting a fully-homomorphic encryption scheme, it
is actually sufficient to design a scheme such that F contains the decryption
operation plus some additional operation. Gentry’s seminal paper [25] inspired
a series of new constructions [42, 46, 10, 9] that can be bootstrapped in principle.



However, all them are up to now rather proofs of concepts although some efforts
have been made to improve the efficiency of the schemes [43, 26].

Smart and Vercauteren [42] estimated that to evaluate a circuit of depth 2−3
the size of the public key ranges from 262, 144 bits (with a security level of 280)
to 741, 455 bits (with a security level of 2100). This is actually not sufficient to
achieve full-homomorphism. According to [42], this would require to evaluate
deeper circuits of level 7 or 8 and to consider lattices of dimension 227.

Van Dijk et al. [46] proposed a scheme that impresses with its conceptual
simplicity. To the best of our knowledge, no concrete instantiation has been
discussed so far. The authors give for the basic scheme an estimation of the
asymptotic size of the involved parameters: for example the ciphertext size is in
Õ(s5) and the complexity of the scheme in Õ(s10) where s denotes the security
parameter. As this variant is not bootstrapple, the authors explain a variation of
the scheme that allows for bootstrapping, but at the price of a larger ciphertext.

Recently, Gentry and Halevi [26] have been able to implement all aspects of
the scheme [25], including the bootstrapping functionality. They also improved
[42] in the sense that the scheme only needs to consider lattices of dimension
215 to achieve full-homorphism. Interestingly enough, they proposed several
challenges 5 with different level of security. It is worth to mention that the cor-
responding public-key size ranges from 70 MBytes for the smaller setting to 2.3
GBytes for the larger setting and the time effort for one bootstrapping operation
from 30s (small setting) to 30mins (large setting).

Currently, all known schemes share the same problem: due to the inherent
complexity of the corresponding decryption operation, large parameters need to
be chosen to enable the bootstrapping technique, leading to impractical schemes.
Therefore, one is highly interested into schemes with a decryption operation as
simple as possible. This makes code-based schemes particularly interesting as
for some codes decryption is simply a linear operation over the underlying field.
Indeed, Gentry states by himself, that he views ”a code-based construction as
an interesting possibility” [24, p. 11].

Contribution. In this paper, we make the following contribution:

Generic construction. We present a generic homomorphic encryption scheme
that supports the evaluation of polynomials up to a fixed but arbitrary degre µ
on encrypted field elements. The construction is based on coding theory, more
precisely on evaluation codes. This comprises a large set of known codes such
as Reed-Solomon codes, Reed-Muller codes, or Algebraic Geometric codes [29,

5 https://researcher.ibm.com/researcher/view_project.php?id=
1548.



34]. Although we have to lay some additional conditions on these codes, we
expect that many different instantiations are possible. Furthermore, we do not
require the existence of efficient decoding algorithms (for the case that the error
locations are unknown). Hence, evaluation codes that are not useful for practical
error correction might be applicable for our construction.

Impossibility Results. The construction is based on the following (from our point
of view) natural design decisions:

1. Ciphertexts are erroneous codewords where the secret key allows to deter-
mine the error.

2. As the set of codewords forms an additive group, we preserve this property
for directly achieving linear homomorphism.

We show that for structural reasons, these imply a set of limitations: (i) the
scheme can never be public-key, (ii) the number of encryptions needs to be
restricted, and (iii) the application of Gentry’s bootstrapping technique is not
possible, thus negatively answering the raised question. In Sec. 4.4, we argue
that such schemes can still be useful and discuss in Sec. 7 several strategies on
how to overcome these limitations.

Security analysis. We show that under the assumption that the attacker knows
the deployed code, the semantic security can be reduced to the known Deci-
sional Synchronized Codeword Problem (DSCP). The security reduction makes
use of the fact that the scheme is similar to a (generalized version) of a scheme
developed by Kiayias and Yung [31]. Considering DSCP allows for determin-
ing parameter choices for concrete instantiations. Moreover, it turns out that
all efficient attacks known so far on DSCP require the knowledge of the code.
Thus, by keeping the code secret (which is possible without losing the homo-
morphic properties) a security margin is present in our scheme that might allow
for even more efficient realizations. Indeed, the problem of recovering an un-
known code from erroneous codewords only, called Noisy Code Recognition
Problem (NCRP), has been investigated before and seems to be hard.

Efficiency and Concrete instantiation. As opposed to other constructions, our
scheme works over finite fields. More precisely, ciphertexts are vectors of length
n over some finite field and additive resp. multiplicative homomorphic opera-
tions are the component-wise sum resp. multiplication of vectors. The only con-
dition on the underlying field is that the field size is above some lower bound.
Hence, by choosing binary fields GF(2`), the basic operations (addition and mul-
tiplication of field elements) can be efficiently realized. In general, the effort for
encryption is in O(n2) and the efforts for decryption, addition, and multiplica-
tion are all in O(n).



As an example, we describe an instantiation based on Reed-Muller codes
and determine both concrete values and formulas for the asymptotic complexity
under the assumption that the attacker knows the code, that is recovered part of
the secret key already. The asymptotic ciphertext length n is in O(µ3s) where
s is the security parameter and µ the degree of the polynomials that can be
evaluated. We present a concrete implementation where the size of the key and
ciphertexts range from 591 Byte and 9.81 KByte, resp., for µ = 2 and a security
level of 280 to 3.21 KByte and 60.95 KByte, resp., for µ = 3 and a security
level of 2128. In all test cases, all operations take less than a second (after some
pre-computation). Due to the additional security margin (gained by keeping the
code secret), more efficient parameter choices are expected to be possible (as
soon as the hardness of the NCRP is better understood).

Outline. We start with a high level description of our construction in Sec. 2. Af-
terwards, we provide the necessary notation and preliminaries in Sec. 3. Then,
we present our generic encryption scheme in Sec. 4 and discuss some properties.
In Sec. 5 we explain the underlying decoding problem and reduce the semantic
security of our scheme to its hardness. In Sec. 6, we discuss a concrete instan-
tiation based on Reed-Muller codes and analyze its efficiency. Finally, Sec. 7
concludes the paper. App. A contains omitted proofs and App. B an exact de-
scription of how the parameters are derived.

2 The Idea of Our Scheme

In this section, we give a high level description of our scheme and explain the
basic design principles. First, the security of our scheme can be reduced to the
presumed hardness of decoding certain error correcting codes. Recall that the
purpose of an error correcting code is to safely transmit messages over noisy
channels. For this purpose, a code C is associated with two algorithms, Encode
and Decode. The first, Encode, maps a message m ∈ Fk into a codeword
w ∈ Fn. Here, F is a finite field and k < n. After transmitting w, some po-
sitions might get altered, yielding an erroneous codeword w′ ∈ Fn. However,
if the number of altered positions (called bad positions in this paper) does not
exceed a given bound, applying Decode to w′ permits to recover m uniquely.
The positions of the unaltered elements are consequently called good positions.

Several research works, e. g., [35, 38, 16, 3], have studied how to construct
encryption schemes based on coding theory. The usual approach is that first the
plaintext m ∈ Fk is encoded into a codeword w ∈ C (using the Encode al-
gorithm) and then to introduce artificial errors into w, getting a ciphertext c.
Roughly, the idea is that the secret key permits to identify the erroneous po-
sitions, making decoding an easy task. However, decrypting for an attacker is



related to decoding an erroneous codeword with unknown bad positions which
is assumed to be as hard as decoding in a random code.

Our scheme follows in principle this idea and can be seen as an extension
of a scheme proposed by Kiayias and Yung [30–32]. Encryption consists of two
steps: (i) encode a plaintext m ∈ F into an error-free codeword w and (ii) insert
some random errors at fixed positions given by the secret key to get an erro-
neous codeword c. At this end, we make use of the fact that for linear codes,
the sum (being the vector sum) of two codewords yields a codeword again.
Moreover, if the the encoding procedure is defined appropriately, the resulting
codeword is an encoding of the sum of the two messages connect to the two pre-
vious codewords. Finally, as the bad positions are the same for each encryption,
component-wise combination of the ciphertexts preserves the good positions.
This ensures that an arbitrary sum of codewords still remains uniquely decod-
able. We call these codewords synchronized. This altogeter allows for exploiting
the additive structure of linear codes in a natural way to get an additively homo-
morphic encryption scheme.

Encryption︷ ︸︸ ︷ Decryption︷ ︸︸ ︷
Plaintext Codeword Ciphertext Plaintext

m
Encode−→ w

Add errors−→ c = w + e
Decode−→ m

◦ ◦
m′

Encode−→ w′
Add errors−→ c′ = w′ + e′

Decode−→ m′

= =

(w ◦w′) + ẽ
Decode−→ m ◦m′

Table 1. Diagram of our encryption scheme.

For a better understanding, take a look at the diagram in Table 1 and let us
consider a simpler case. The first two rows of the diagram (starting with m and
m′, respectively) express exactly the relation between encoding/decoding on the
one hand and encryption/decryption on the other hand. Now, let assume that the
deployed code is a linear code. This means that the (component-wise) sum of
two codewords is a codeword again. Furthermore let ◦ =′′ +′′ and assume that
Encode is a linear operation. Then, c + c′ = w + w′ + (e + e′) where the bad
positions given by ẽ := (e+e′) are a subset of the fixed bad positions indicated
by the secret key. This means in particular that with the knowledge of the secret
key, c + c′ can be decoded to m + m′ as Encode was assumed to be linear.



Summing up, using a linear code and a certain condition on Encode would give
an additively homomorphic encryption scheme.

The above approach does not necessarily give multiplicatively homomor-
phic encryption. For a general linear code, it is not clear how two synchronized
codewords could be combined to get an encoding of the product of plaintexts.
Therefore, to get multiplicative homomorphic encryption as well, we consider
in this paper a special subclass of linear codes, called “evaluation codes”. These
codes are defined by evaluating certain functions and comprise a large set of
known codes, e.g., Reed-Solomon codes, Reed-Muller codes, or Algebraic Ge-
ometric codes [29, 34]. In this work we show that under certain conditions, such
codes can be used to get additive and multiplicative homomorphic encryption
with the same principle as above. We prove that the security of such schemes can
be reduced to a decoding problem, called Decisional Synchronized Codewords
Problem (DSCP). Observe that this problem has been investigated before for
certain codes, e. g., for Reed-Solomon codes [7, 15] and Algebraic Geometric
Codes [12].

3 Preliminaries

Notation. For an integer n ≥ 1, we denote by [n] the set of integers 1, . . . , n.
In the following, s will be a security parameter and F some arbitrary finite field.
Vectors v will be expressed in bold letters. We denote by F[x1, . . . , xt] the ring
of multivariate polynomials in the indeterminates x1, . . . , xt with coefficients
over F. For a polynomial p ∈ F[x1, . . . , xt] and a sequence of vectors V =

(v1, . . . ,v`) ∈
(
Ft
)`, we define p(V) := (p(v1), . . . , p(v`)) ∈ F`.

|v| denotes the Hamming weight of a vector v, that is the number of non-
zero entries, and supp(v) the indices of the non-zero entries. For two vectors
v and w, the expression v · w stands for the component wise product: if v =
(v1, . . . , vn) and w = (w1, . . . , wn), then v ·w = (v1 · w1, . . . , vn · wn).

A function f : N → R is called negligible if for any polynomial p(x) over
the real numbers there exists an integer n′ ∈ N such that |f(n)| < |1/p(n)| for
all n ≥ n′. We sometimes write f = negl(n). For two sets S and S′ equipped
of a binary operator ◦, we define S ◦ S′ := {s ◦ s′|s ∈ S, s′ ∈ S′}.

Linear Codes and Evaluation Codes. In this paper, we aim for constructing
homomorphic encryption schemes based on evaluation codes. Note that such
codes are a special sub-class of linear codes. First, we recall their definition:

Definition 1 (Linear Codes). A [n, k, d] linear code (with k < n) is a k-
dimensional linear subspace C of Fn with minimum Hamming distance d. That



is, it holds for all w,w′ ∈ C that w+w′ ∈ C and |w+w′| ≥ d. We call vectors
w ∈ C as error-free codewords and vectors w ∈ Fn\C as erroneous codewords.
Erroneous codewords can be written as w + e where e ∈ Fn \ 0 is called the
error vector. The bad locations, that is where an error occurred, are supp(e)
and the good locations, that is the error-free locations, are [n] \ supp(e). For a
subset I ⊆ [n], we define

C(I) := {w + e|w ∈ C, e ∈ Fn, supp(e) ⊆ [n] \ I}. (1)

In other words, C(I) is the set of all erroneous codewords where the positions
specified in I are good locations. In particular, we have C([n]) = C.

In addition, there exist two efficient (that is polynomial in the input length)
algorithms Encode : F→ C (encoding) and Decode : Fn × {I|I ⊆ [n]} → F

(decoding) such that Decode(Encode(m) + e, supp(e)) = m for all m ∈ F
and e ∈ Fn with |e| < d. This means that erroneous codewords can be decoded
efficiently possible if the bad locations are known.6

By choosing an encryption scheme where the ciphertexts are codewords from a
linear code and where the errors are at fixed, but secret locations I , yields di-
rectly a linear homomorphic encryption scheme. However, to get multiplicative
homomorphism as well, we need codes such that the product of two codewords
is a codeword again. For this reason, we focus on a special class of linear codes,
called evaluation codes.

Definition 2 (Evaluation Codes). Let X be a geometric object7 together with
a tuple x := (x1, . . . , xn) of n distinct points in X . Let FX denote the set of
all mappings from X to F. We assume that we have a vector space (L,+) over
F, with L ⊆ FX , of dimension k. An evaluation code C is obtained by using
Encode = ex ◦ ev where

Expression: ex : F → L,m 7→ p is a mapping that expresses a message
m ∈ Fk′ (with k′ ≤ k) as a function p ∈ L and

Evaluation: evx : L → Fn, p 7→ p(x) =
(
p(x1), . . . , p(xn)

)
is the evaluation

mapping that maps a function p ∈ L to its evaluation on x.

We call L(C) := L the function space of the code C and the vector x the code-
word support. For a codeword w = p(x), we call pw := p the solution function
of w.

6 This is a natural prerequisite for any practical error correction codes. Moreover, as we do not
assume efficient decoding if the bad locations are unknown, some codes may be suitable for
our scheme although they are not interesting for error correction.

7 Typically,X will be the affine lineF (leading to Reed-Solomon codes), or a Cartesian product
of F (leading to Reed-Muller codes).



Evaluation codes are useful for our goal as (under certain conditions) the product
of two codewords is a codeword again. Let the product of two functions p, p′ ∈
FX be defined by (p · p′)(x) := p(x) · p′(x) ∈ F for all x ∈ X . Now assume
two codes C and Ĉ such that p1 · p2 ∈ L(Ĉ) for all p1, p2 ∈ L(C). Then, it holds
for any two codewords w1,w2 ∈ C:

w1︸︷︷︸
∈C

· w2︸︷︷︸
∈C

= pw1︸︷︷︸
∈L(C)

(x) · pw2︸︷︷︸
∈L(C)

(x) = (pw1 · pw2)︸ ︷︷ ︸
∈L(Ĉ)

(x) ∈ Ĉ. (2)

We generalize this concept in the following definition:

Definition 3 (µ-multiplicative Codes). An evaluation code C is called µ-multiplicative
if there exists a code Ĉ with the same codeword support such that L(C)` ⊆ L(Ĉ)
for all ` ∈ [µ]. We use the notation Cµ ⊆ Ĉ in this case.

We will later show that such codes exist in practice. Using µ-multiplicative
codes, we get a situation where the sum and the product of codewords yield a
codeword again. However, this does not automatically imply that decoding the
product of two codewords yields the product of the underlying messages. This
actually depends on how the expression mapping ”ex” in Def. 2 is realized. One
approach is to incorporate the evaluation of functions here as well. More pre-
cisely, we will use in the paper the following instantiation of evaluation codes
that we will call special evaluation codes:

Definition 4 (Special Evaluation Codes). A special evaluation code is an eval-
uation code as defined in Def. 2 where the expression mapping “ex” is realized
as follows. We fix an element y ∈ X , called the message support, whose role
is to encode a message into a codeword. We require that y is distinct from the
entries of the codeword support x. For any given message m ∈ F, we define a
subset of L as follows: Ly 7→m := {p ∈ L|p(y) = m}. We assume that there
exists for any m a function p ∈ L such that p(y) = m. That is, Ly 7→m is
non-empty. Given this, we consider an expression function ex that on input m
outputs a random p ∈ Ly 7→m.

From now on, we will consider special evaluation codes only. Observe that we
consider here only encoding of one field element although up to k elements
would be possible. The main reason is that it simplifies some security arguments
and ensures that there exist many different encodings for the samem ∈ Fwhich
provides probabilistic encoding (= encryption). This is a necessary prerequisite
for secure algebraic homomorphic encryption (see Boneh and Lipton [8]). We
leave the extension to larger plaintext spaces to future work.

The next theorem shows that µ-multiplicative codes allow for additive and
multiplicative homomorphism regarding the encoding operation. The proof can
be found in App. A.



Theorem 1 (Additive and Multiplicative Homomorphism). Let Cµ ⊆ Ĉ for
some special evaluation codes C and Ĉ. We consider a selection of at most µ
encodings wj ∈ C(Ij) of messages mj ∈ F where Ij ⊆ [n] and set I :=

⋂
j Ij .

It holds

Closed under addition and multiplication:
∑`

j=1 wj ∈ Ĉ(I), and
∏`
j=1 wj ∈

Ĉ(I).
Additive homomorphism: Decode(

∑`
j=1 wj , I) =

∑`
j=1mj , if |I| good

locations are sufficient for unique decoding.
Multiplicative homomorphism: Decode(

∏`
j=1 wj , I) =

∏`
j=1mj , if |I| good

locations are sufficient for unique decoding.

4 The Encryption Scheme

4.1 Description

In this section, we formally describe the construction of our encryption scheme.
The scheme is symmetric and encrypts plaintexts m ∈ F to erroneous code-
words c ∈ C(I) where the key consists of I , the set of good locations, and the
used supports (which in fact determines the used code instantiations). Regard-
ing its homomorphic properties, it permits unlimited number of additions and a
fixed but arbitrary number of multiplications. The scheme is composed of five
algorithms: Setup, Encrypt, Decrypt, Add, Mult.

– (C, Ĉ, I)← Setup(s, µ,L) : The input are three positive integers s, L, and
µ where s denotes the security parameter, L the expected total number of
encryptions8, and µ the maximum degree of the supported polynomials. The
Setup algorithm chooses a codeword support x, a message support y, and
two special evaluation codes C and Ĉ such that Cµ ⊆ Ĉ and the length of the
codewords is at least L. How to choose appropriate codes and parameters
highly depends on the considered coding scheme. We will describe in Sec. 6
a concrete instantiation where this is possible. Setup also generates a set
I ⊂ [n] of size T where T depends on the parameter from above and the
deployed code. I denotes the good locations for the generated encryptions
and represents the secret key of the scheme. The output is the secret key
k = (x,y, I).

– (c,1)← Encrypt(m,k) : The inputs are a plaintext message m ∈ F and a
secret key k = (x,y, I). Encrypt first chooses a random encoding w ∈ C
of m, using the Encode algorithm and the knowledge of the supports x

8 This means an upper bound on the value on how many messages are going to be ”freshly”
encrypted. It does not include the number of possible combinations of existing ciphertexts.



and y. Then, it samples a uniformly random error vector e ∈ Fn such that
supp(e) ⊆ [n] \ I and computes c := w + e. Finally, the ciphertext is
defined as the pair (c, 1) where the first entry is an erroneous codeword in
C(I) that encodes the plaintext m while the second entry, the integer, is a
counter to keep track of the number of multiplications.

– m← Decrypt
(
(c, γ),k

)
: Decrypt gets as input the secret key k = (x,y, I)

and a pair (c, γ) with c ∈ C(I) and γ ≤ µ. It returns m := Decode(c, I)
where Decode is used with respect to x and y.

– (c′′, γ′′)← Add
(
(c, γ), (c′, γ′)

)
: Add gets as input get as input two cipher-

texts (c, γ) and (c′, γ′) and generates an encryption of the sum of the plain-
texts

(
c + c′,max(γ, γ′)

)
.

– (c′′, γ′′)← Mult((c, γ), (c′, γ′)) : This procedure get as input two cipher-
texts (c, γ) and (c′, γ′) with γ + γ′ ≤ µ and generates an encryption of
the product of the plaintexts (c · c′, γ + γ′) where “·” is the componentwise
vector product as explained in Section 3.

Correctness. The correctness for the case that neither Add nor Mult have been
used can be checked straightforwardly. Let (c, γ) and (c′, γ′) be two encryptions
ofm andm′, respectively, with c, c′ ∈ C(I). Then, by Theorem 1 it follows that
c + c′ ∈ C(I) and that Decode(c + c′, I) = m + m′. Analogously, we have
c · c′ ∈ C(I) and Decode(c · c′, I) = m ·m′ by Theorem 1 if c · c′ does not
result from more than µmultiplications. Observe that it is not necessary to know
the deployed codes, more precisely the supports x and y, for executing Add or
Mult. Only the knowledge of the underlying field is mandatory.

4.2 Alternative Description in Terms of Linear Algebra

Observe that the scheme actually represents a group homomorphic encryption
scheme between the additive groups F and Fn. This allows an alternative, pos-
sibly simpler description in terms of linear algebra (cf. Armknecht et al. [1] for
a comprehensive treatment of this subject). Let V0 ⊂ Fn denote the subspace
that contains all encryptions of 0, let c∗ ∈ Fn denote an arbitrary encryption of
1 ∈ F, and let Verr ⊂ Fn denote the vector space of the error vectors. Then,
encryption can be equivalently expressed by: given a plaintext m ∈ F, sample
v0 ∈ V0 and ve ∈ Verr and output c := v0 +m · c∗ + ve.

Furthermore, there exists a vector vkey ∈ Fn such that decryption can be
performed as follows: given a ciphertext c, compute m = ct × vkey where ×
denotes the usual matrix-vector product.

4.3 Effort and Limitations.



Effort. One benefit of the proposed scheme is that encryption and decryption
processes are simple operations. Assume in the following that bases for V0 and
Verr are known and likewise the vector vkey. In some cases, these can be directly
written down. Alternatively, they can be computed by solving systems of linear
equation based on outputs from the scheme, giving an effort in O(n3) in the
worst case. Using this and the description from Sec. 4.2, one can easily validate
that the efforts for encryption and decryption are in O(n2) and O(n), respec-
tively. Furthermore, Add and Mult are simply the componentwise addition and
multiplication, respectively, of two vectors of length n. Thus, both operations
are in O(n) as well. Furthermore, the schemes work over any (finite) field as
long as the field size is not too small. In particular, this allows to use computer-
friendly fields GF(2`) for a further speed-up.

Structural Limitations. The fact that the ciphertexts are in Fn yields several
limitations as we will elaborate now. For example an attacker who has n pairs of
plaintext/ciphertext at her disposal can compute the vector vkey from Sec. 4.2 on
her own by solving a system of linear equations. This imposes a natural upper
bound on the number of encryptions: not more than n − 1 known plaintexts
should be encrypted under the same key as otherwise security is lost.9 This also
shows that Gentry’s bootstrapping technique cannot be applied. As the key vkey

is composed of n field elements and as each ciphertext represents the encryption
of one field element, one would require at least n ciphertexts, thus exceeding the
bound explained above.

For similar reasons, no public-key variant can exist. Assume the opposite
and let V ′0 denote the set of all possible encryptions of 0 ∈ F (including linear
combinations). One checks easily that V ′0 forms a sub-vectorspace of Fn. Fur-
thermore, one can show (e.g., cf. [1]) that the scheme is IND-CPA secure if and
only if it is hard to decide for a given vector v ∈ Fn whether v ∈ V ′0 (also
called the subspace membership problem (SMP)). However, the latter is easy in
this case. Given sufficiently many samples from V ′0 , one can compute a basis
and then solve the SMP using basic linear algebra techniques.

Observe that all limitations are consequences of the fact that the underlying
algebraic structure is Fn. Thus, by switching over to another structure, e.g., a
ring, it might be possible to neutralize these.

9 Here, we have to emphasize that this bound holds for “fresh” encryptions only. As the combi-
nation of existing ciphertexts does not provide any new information, there are no limits there
(except on the number of multiplications of course).



4.4 Possible Applications

Before we analyze the security of the schemes, we argue why such schemes
are interesting for certain applications despite their limitations. Let us consider
some examples. In the Private Information Retrieval scenario a user wants to re-
trieve data from an untrusted (honest but curious) server without the server being
able to learn the data. If the stored data would be encrypted with an appropriate
homomorphic encryption scheme, applying polynomials on the encrypted data
could be used to filter out relevant data without revealing any useful information
about the plaintext to the server.

Another example applies to Oblivious Polynomial Evaluation where one
party A holds a secret input x and another party B a secret polynomial P . The
goal is to allowA to obtain P (x) such that no party learns anything about the se-
cret of the other party (beyond what can already be deduced from x and P (x)).
Although solutions based on additively homomorphic encryption schemes has
been discussed for the case of univariate polynomials, these become highly in-
efficient for the multivariate case. The deployment of schemes that support both
operations would help to enormously reduce the effort.

Observe that both examples mentioned above have in common that it would
be sufficient if the deployed scheme is symmetric and supports only a limited
number of multiplications and a limited number of encryptions. Of course a
variety of other two party applications can be envisaged where deploying such
schemes is sufficient as long as there is a gain in efficiency. In other words, the
crucial factor here is not flexibility but efficiency.

5 Security Reduction to Coding Theory

In this section, we discuss the security of the proposed scheme. Recall that ac-
cording to the limitations due to the usage of Fn, it is necessary to use the
scheme as a symmetric-key encryption scheme and that the number of encryp-
tions is limited to some value below n. In this section, we show that under these
conditions, a security reduction to a known decoding problem is possible.

Decisional Synchronized Codewords Problem (DSCP). Recall that a cipher-
text is actually a codeword where the location of the good positions and the
deployed code instantiation (more precisely the used supports) form the secret
key. Especially the second property is rather unusual, making it difficult to es-
timate the security without long-term research. To assess this question to some
extent, we follow the usual approach by investigating a weaker variant of the



scheme.10 More precisely, we consider a variant where the used code is known
to the attacker, i.e., the attacker is given (eventually) a basis for the vector space
V0 while Verr remains secret. This allows for the following insights:

1. The security of the weaker scheme can be reduced to a known decoding
problem, called Decisional Synchronized Codewords Problem (DSCP).

2. We give an overview of the most efficient algorithms for solving DSCP so
far. It will turn out that all of them need to know the used code instantiation.

Furthermore, as we will argue later, the problem of figuring out the code seems
to be hard according to the current state of knowledge. This indicates that keep-
ing the code secret provides an additional security margin. Whether this margin
is sufficient is subject to future research.

Similar to the the Kiayias-Yung-scheme [31], recovering the plaintext from
one ciphertext of the weaker scheme without knowing the secret key is equiva-
lent to decoding an erroneous codeword. But in contrast to [31], where the error
locations alter from encryption to encryption, in our scheme the positions of the
error free entries remain the same for all encryptions. This is a necessary prereq-
uisite for the homomorphic property. Therefore, recovering the plaintexts from
several ciphertexts (under the assumption that the code is known) is equiva-
lent to decoding several codewords where the errors are always at the same
locations. This is a special decoding problem which is known as the decod-
ing synchronized codes problem (DSCP). For a formal definition, note that the
problem of decoding codes is equivalent to identifying the good (resp. bad) lo-
cations: once a codeword is decoded, the good and bad locations can be easily
identified, and vice versa. We use this fact for defining the following problem
(see also [31]).

Definition 5. [Decisional Synchronized Codewords Problem (DSCP)] Let Č
denote a [n, k, d] code. We consider a sampler S that on input (Č;T, L) proceeds
as follows:

1. Choose uniformly random a subset I ⊂ [n] of size T
2. Sample L pairwise distinct codewords w̌1, . . . , w̌L ∈ Č.
3. Sample L pairwise distinct vectors e` ∈ Fn such that supp(e`) = [n] \ I .
4. Compute c` := w̌` + e` ∈ Fn.
5. Output Č := (c1, . . . , cL) ∈ (Fn)L.

In addition, we consider two modifications of S, Sbad and Sgood. Sbad operates
analogously to S but chooses in addition i at random from the set [n] \ I , and

10 This is in line with other approaches where, for example, attacks on reduced-round versions
of a block cipher are presented and then to argue that adding more rounds give a hopefully
sufficient security margin.



outputs (i; Č). Sgood is defined similarly but i is selected at random from the set
I instead. We call an output (i; Č) as DSCP instance.

The Decisional Synchronized Codewords Problem DSCP is to distinguish
between the two sampler Sbad and Sgood. For any probabilistic polynomial-time
(PPT) algorithm A we define

AdvDSCP,A
Č;T,L :=

∣∣∣Pr[A(Sgood(Č;T, L)) = 1]− Pr[A(Sbad(Č;T, L)) = 1]
∣∣∣
(3)

where the probability is taken over the random coins from A and the samplers.
The DSCP[Č;T, L] assumption holds with respect to a security parameter s if
AdvDSCP

Č;T,L (s) := maxAAdv
DSCP,A
Č;T,L is negligible in s.

Security Reduction. Next, we prove that the semantic security of the weaker
scheme can be reduced to the hardness of DSCP with appropriate parameters.
In a nutshell, semantic security requires that it should be infeasible for an adver-
sary to gain, for a given ciphertext, any partial information about the underlying
plaintext, even if the set of possible plaintexts is reduced to two different mes-
sages which have been chosen by the attacker before. This is formally captured
by a game where the adversary can request encryptions of adaptively chosen
plaintexts. Her task is to tell apart encryptions of two plaintexts that where cho-
sen by her. For a formal definition, we refer to [31].

For the proof of security, we make use of the following theorem on the
pseudorandomness of sampled instances:

Theorem 2. For any distinguisherA between the distributionsDČ;T,L (induced

by the sampler S from Definition 5) and the uniform distribution ULn on (Fn)L,
it holds that

|Pr[A(Č) = 1|Č← DČ;T,L]− Pr[A(Č) = 1|Č← ULn ]|

≤ T · L · (n− T + 3)

|F|
+ T ·AdvDSCP

Č−;T,L
+ 8T ·AdvDSCP

Č;T,L . (4)

where Č− denotes the code obtained from Č by removing one point from the
support x.

This theorem is an adaptation of Theorem 3.4 given in [31]. Despite of some
subtle differences due to the fact that we are dealing with a DSCP instance
here, the proof is very similar. For this reason and because of space limitation,
we omit the proof and refer to the full version of this paper and/or [31].

For the reduction, we need that an attacker is able to randomize codewords
in a controlled way. This can be done if the considered code allows for a special
encoding of 0 ∈ F as specified now:



Definition 6 (Special Encoding of 0). A special evaluation code Č allows for
a special encoding of 0 if there exists a codeword w̌ = (w̌1, . . . , w̌n) ∈ Č such
that w̌i 6= 0 for all i ∈ [n] and Decode(w̌) = 0.

We will show later a concrete instantiation, namely Reed-Muller codes, that
allows a special encoding of 0. Furthermore, it is easy to show that a special
encoding of 0 exists for Reed-Solomon codes. Given a special encoding of 0,
one can construct a transformation on vectors that will play a crucial role in the
reduction.

Proposition 1 (Transformation). Let Č2 ⊆ C be such that Č permits a special
encoding of 0, i.e., there exists a codeword w̌ = (w̌1, . . . , w̌n) ∈ Č such that
w̌i 6= 0 for all i ∈ [n] and Decode(w̌) = 0. Then, there exists a probabilistic
mapping τ : Fn × Fk → Fn such that it holds for all m ∈ Fk:

1. For a uniformly random vector v ∈ Fn, the output τ(v,m) is uniformly
random in Fn as well.

2. For a codeword w̌ ∈ Č(I), the output w := τ(w̌,m) is a codeword in
C(I), that is the error-free locations of w̌ and w are the same. It holds that
pw(y) = m, that is w decodes to the second input m, and w is uniformly
distributed in the set of encodings of m.

In other words, τ(.,m) transforms (erroneous) encodings under Č of arbitrary
(possibly unknown) messages to (erroneous) encodings ofm under C and trans-
forms otherwise random vectors to random vectors.

The proof of this result is given in App. A.

Theorem 3. The encryption scheme from Section 4 is semantically secure for
parameters (C, Ĉ;T, L) if the DSCP[Č;T, L] and the DSCP[Č−;T, L] assump-
tions hold for some code Č with Č2 ⊆ C that has a special encoding of 0 and if
T ·L·(n−T+3)

|F| = negl(s).

Proof. Let ASS be a PPT algorithm that breaks the semantic security for pa-
rameters (C, Ĉ;T, L) with at most L queries (including the challenge). We show
how to turn ASS directly into a distinguisher Adst which distinguishes between
the two distributions specified in Th. 2. If both assumptions DSCP[Č;T, L] and
DSCP[Č−;T, L] hold and if T ·L·(n−T+3)

|F| = negl(s), then it follows from equa-
tion (4) in Theorem 2 that the advantage of Adst is negligible. Consequently,
this must be true for ASS as well which proves the semantic security.

Let Č = (w̌1, . . . , w̌L) ∈ (Fn)L be given toAdst which is either distributed
according to DČ;T,L or according to ULn . Adst now simulates the encryption
oracle OSS for ASS as follows. As Č has a special encoding of 0, we can use



the transformation τ defined in Prop. 1. For each encryption query m` from
ASS , Adst responds with c` := τ(w̌`,m`). When ASS makes its challenge
(m̃0, m̃1) ∈ F2, Adst uniformly random picks b ∈ {0, 1} and responds with
c̃ := τ(w̌`, m̃b) for some unused codeword w̌`.

If Č is distributed according toULn , then each w̌` is uniformly random from
Fn and hence each response c` is some random vector in Fn as well by Propo-
sition 1. In particular, the response c̃ from Adst to the challenge of ASS is
independent of the challenge (m̃0, m̃1). Thus ASS gains no information on the
value of b which shows that its advantage is zero in this case.

Now assume that Č is distributed according to DČ;T,L. That is w̌` ∈ Č(I)
for a common set I of good locations. By Proposition 1, each response c` is an
encoding ofm` in C(I). Furthermore, this procedure yields a uniformly random
encryption of a given plaintext (by Prop. 1). Therefore, ASS’s view is that it
received valid encryptions and any encryption for a chosen plaintext is possible.
Hence, it observes no difference to communicating with an encryption oracle
OSS. In particular, ASS has by assumption a non-negligible advantage to guess
b correctly.

The remainder of the proof follows the usual arguments.Adst runsASS suf-
ficiently often to estimate ASS’s advantage with sufficient precision. If the ad-
vantage is negligible,Adst assumes that C was uniformly sampled from (Fn)L.
Otherwise, it assumes that C was sampled by DČ;T,L. ut

On the Gap between the Known Code and Secret Code Cases. Obviously,
additionally knowing the code ease the attacks explained in Sec. 4.3. For ex-
ample, as the attacker can use her additional knowledge to compute a basis of
V0 and a choice for c∗, getting about dim(Verr) ciphertexts would be sufficient
for deriving a basis of Verr. Even worse, the specific algebraic structure of the
deployed code can allow more refined attacks (see our analysis in App. B as an
example).

Interestingly, even in this weaker scenario, comparatively efficient schemes
can be possible as we will demonstrate in the next section. Furthermore, it seems
to be hard problem to figure out the used codes from the observed erroneous
codewords, that is to transform the secret code case into the known code case.
This problem is known as the noisy code recognition problem: the attacker sees
noisy codewords of an unknown code, and tries first to find the code, and also
to decode. The noisy code recognition problem has been studied in [44, 45, 13],
and the associated decision problem recognized to be NP-complete. The general
principle for dealing with such a problem is to gather noisy codewords and try
finding codewords in the dual code using linear algebra. Of course, due to errors,
these words will rather tend to be wrong. However, the lower the weight of



words in the dual, the more probably it is for them to be correct words of the
dual code of the code.

Due to the limited allowed number of encryptions in the presented scheme,
an attacker would not able to collect many codewords, which in particular pre-
vents the low weight dual codewords attack. Furthermore, we discuss in App. B
concrete instantiation how parameters can be chosen such that the expected
number of low weight codewords in the dual codeword is negligible.

6 A Concrete Instantiation based on Reed-Muller Codes

In this part, we present a concrete instantiation of our scheme based on punc-
tured Reed-Muller (RM) codes. RM codes are based on evaluating multivariate
polynomials on certain points. Adopting the notation from Def. 2, the geometric
object X is a vector space Ft over a finite field F of size q. The vector space
Lt,ρ of functions is obtained by taking multivariate polynomials in F[v1, . . . , vt]
of total degree strictly less than ρ with coefficients over F: Lt,ρ := {f ∈
F[v1, . . . , vt] | deg(f) < ρ}. The code support x = (x1, . . . , xn) is a vec-
tor of n distinct elements of Ft. The q-ary RM code of order ρ < q, denoted by
RMq(t, ρ), is defined by RMq(t, ρ) :=

{(
f(x1), . . . , f(xn)

)
∈ Fn | f ∈ Lt,ρ}

where q denotes the size of the deployed field. The usual full RM code is ob-
tained when the code support x = (x1, . . . , xqt) contains all elements of Ft.
For the sake of efficiency and security, we consider punctured RM codes where
n < qt (i.e. some positions are removed). In the sequel, punctured codes are
denoted by RMq(t, ρ)?.

In what follows, we consider only RM codes that are special evaluation
codes, that is where the encoding is realized as specified in Def. 4. Furthermore,
we have

Corollary 1. Let 1 ≤ µ ≤ q be arbitrary. Then there exist RM codes Č, C, Ĉ
such that (i) Cµ ⊆ Ĉ and (ii) Č2 ⊆ C and Č allows for a special encoding of 0.

Thus, RM codes can be used to instantiate our scheme. The proof is given in
App. A.

In App. B, we present a possible approach for instantiating RM codes such
that the scheme works correctly and the DSCP seems to be hard. Shortly summed
up, the length n is in O(µ3 · s) and the field size (in bits) log2 q is in O(s2/3).
This yields a ciphertext length in bits in O(µ3 · s5/3). Furthermore, it holds
that T ·L·(n−T+3)

|F| ≤ s3/2s
2/3

= negl(s). Thus, the upper bound given in Th. 2
is negligible in s which in turn guarantees the semantic security according to
Th. 3.



Security Parameter s = 80 s = 128 s = 256 s = 80 s = 128 s = 256

µ µ = 2 µ = 3

nmin 4,725 8,411 19,186 14,236 26,280 61,044
log2(qmin) 17 18 23 18 19 24

Ciphertext length 9.81 KByte 18.48 KByte 53.87 KByte 31.34 KByte 60.95 KByte 178.84 KByte
Key size (= nmin bits) 591 Byte 1.02 KByte 2.34 KByte 1.74 KByte 3.21KByte 7.45 KByte

µ µ = 5 µ = 10

nmin 60,176 114,189 269,327 448,017 862,336 2,076,969
log2(qmin) 20 20 25 22 24 27

Ciphertext length 146.91 KByte 278.78 KByte 821.92 KByte 1.17 MByte 2.47 MByte 6.68 MByte
Key size (= nmin bits) 7.35 KByte 13.94 KByte 32.88 KByte 54.69KByte 105.27 KByte 253.54 KByte

µ µ = 100

nmin 419,217,826 817,560,769 2,008,578,063
log2(qmin) 29 31 33

Ciphertext length 1.42 GByte 2.95 GByte 7.72 GByte
Key size (= nmin bits) 49.97MByte 97.46 MByte 239.44 MByte

Table 2. Computation of the minimum length nmin of the ciphertexts and the minimum field size
log2 qmin in respect to the security parameter s and the number of multiplications..

Of course, for practical instantiations concrete values are more meaningful.
In Table 2, we list the values nmin and log2 qmin (referring to the smallest possi-
ble choices of n and q) for different selections of s and µ. With these parameters,
both the identified attacks on DSCP (see App. B.2) and the approaches for re-
covering the code become infeasible. Observe that the choice of these values
concerned only the DSCP but not the (non-tight) upper bound in eq. (4). If one
wants to choose parameters such that T ·L · (n−T +3)/|F| ≤ 2−s, then bigger
fields need to be chosen. This yields an increase of the ciphertext length by a
factor between 6 and 10 (depending on s). We implemented our scheme in the
algebra system Magma V2.11-1 and did let it repeatedly run for several param-
eters (on a W500 Thinkpad laptop with 4GB RAM). The results can be found
in Table 3. There, ”setup” includes the precomputations mentioned in Sec. 4.3.
As the estimated effort for the precomputation is inO(n3) = O(µ9 ·s3) it is not
surprising that it takes by far the most time. However, our tests indicated that
the bottleneck is actually the memory consumption. Observe that the major step
of the precomputation is to find the linear mapping

λI : F|I| → F, (p(xi))i∈I 7→ p(y) (5)

which can be done by computing the kernel of a given matrix (where the rows
are evaluations of linearly independent polynomials pi on the good points). As
this matrix possesses a special structure, there might be still room for improve-
ment. Independent of this, the precomputation can be parallelized to some extent



(compute the kernels of different submatrices in parallel and intersect them at
the end).

Parameters Effort Setup Effort Encryption Effort Decryption Effort Addition Effort Multiplication
µ = 2 Min: 1m 57.781 s Min: 0.031s Min: < 10−28s Min: < 10−28s Min: < 10−28s
s = 80 Max: 1m 58.998s Max: 0.11s Max: 0.032s Max: 0.016s Max: 0.032s

Av: 1m 58.33s Av: 0.072s Av: 0.001 Av: 0.000573s Av: 0.005238s
µ = 2 Min: 1h 18m 22.089 s Min: 0.686s Min: < 10−28s Min: < 10−28s Min: < 10−28s
s = 128 Max: 1h 20m 21.024s Max: 1.014s Max: 0.016s Max: 0.031s Max: 0.032s

Av: 1h 19m 12.149s Av: 0.817s Av: 0.004s Av: 0.0017s Av: 0.01044s
µ = 3 Min: 46m 3.089 s Min: 0.171s Min: < 10−28s Min: < 10−28s Min: < 10−28s
s = 80 Max: 47m 4.024s Max: 0.312s Max: 0.016s Max: 0.016s Max: 0.047s

Av: 46m 40.149s Av: 0.234s Av: 0.002s Av: 0.0015s Av: 0.014s

Table 3. Run time of the proposed encryption scheme for different parameters. The entries rep-
resent the minimum (Min) time, the maximum (Max) time, and the average (Av) time in the
experiments.

Furthermore, some kind of ”global” precomputation is possible. More pre-
cisely, given the mappings λIj for sufficient many linearly independent vectors
Ij ∈ FT , one can compute any other mapping λI from them. In other words,
the results from precomputations done for one key can be used to accelerate the
precomputations for another key.

On the good side, it turns out that once the precomputation is accomplished,
all other operations (e.g., encryption, decryption, etc.) are comparatively effi-
cient (1 second or less for the considered test cases). Given the novelty of this
approach and the fact that the implementation is by no means optimized, we
consider these results as quite promising. Especially in comparison with other
schemes that provide additive and multiplicative homomorphism (e.g., see the
overview in Sec. 1), our scheme is highly efficient.11

7 Discussion and Conclusions

We gave the first encryption scheme based on coding theory that is homomor-
phic wrt. two operations: addition and multiplication. For structural reasons, the
scheme has to be secret-key and the number of encryptions needs to be limited.
Nonetheless, applications exist where such schemes can be useful. This is in par-

11 Of course, other schemes may provide a higher flexibility, e.g., being public-key. We focus
here only on the case that a symmetric scheme with bounded multiplicative homomorphism
and a bounded number of encryptions are sufficient, e.g., the applications discussed in Sec. 4.4.



ticular true as we could describe concrete instantiations that are comparatively
highly efficient.

The most important question is probably whether other code-based con-
structions exist without the identified limitations. One approach could be to look
for more involved constructions where linear codes are not directly represented.
However, caution must be paid to not loose the advantages with respect to ef-
ficiency, e.g., the linear decryption algorithm. Another approach could be to
replace the field F by a weaker algebraic structure, e.g., a ring. This certainly
avoids the straightforward application of methods from linear algebra. How-
ever, one has to pay attention that the decoding procedure, e.g., interpolation of
polynomials, is still possible.

Another question is the investigation of the secret code case. Keeping the
code secret should add a further security margin, but how much and what is the
impact on the parameter sizes? But even for the known code scenario, interest-
ing problems remain. Although we picked Reed-Muller codes for our concrete
instantiations, other codes might yield even better results. As also codes with a
low correction capacity might be used, the code might be chosen from a wide
set of possible codes. Another possible extension is to remove the condition of
fixed error locations. This may allow a reduction to a hard decoding problem.
Of course, this likewise means that the noise can grow but similar holds for all
presented bootstrappable schemes as well.

Another research direction is whether the schemes can be made KDM (key
dependent message) secure. Informally, KDM security means that a scheme re-
mains secure even if an encryption of the deployed key is given, that is Ek(k),
and is crucial for Gentry’s bootstrapping technique. However, the KDM secu-
rity of the proposed bootstrappable schemes is an open question and needs fur-
ther investigation. Interestingly, the proposed scheme (in its ”linear-algebra”-
description from Sec. 4.2) has some striking similarities with a scheme by Boneh
et al. [11]. The latter has been one of the first schemes for which KDM security
could be proven using standard assumptions. Indeed, similar arguments may be
used here but the underlying problem, the rank problem, is easy in Fn. This
immediately raises the question whether variants of the scheme may exist for
which KDM security can be shown.
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A Proofs

A.1 Proof of Theorem 1

Proof (Theorem 1). We show the multiplicative property only. The additive
property can be showed analogously. Let wj = (wj,1, . . . , wj,n) ∈ C(Ij) be
as described. Set w := (w1, . . . , wn) :=

∏
j wj = (

∏
j wj,1, . . . ,

∏
j wj,n) and

pw :=
∏
j pwj . Choose i ∈ I :=

⋂`
j=1 Ij be arbitrary. As any wj ∈ C(Ij)

by assumption with I ⊆ Ij , it holds that wj,i = pwj (xi). In particular, wi =∏
j wj,i =

∏
j pwj (xi) = pw(xi). This shows that the i-th position of w is a

good position. As i ∈ I arbitrary, this shows that w ∈ Ĉ(I).

By assumption,
(∏

j pwj

)
∈ L(Ĉ). Hence, if I provides sufficient many

good locations for unique decoding, then Decode(w, I) = pw(y). By defini-
tion, it holds that pwj (y) = Decode(wj , I). This implies

Decode(
∏
j

wj , I) = Decode(w, I) = pw(y) =

∏
j

pwj

 (y) =
∏
j

pwj (y) =
∏
j

Decode(wj , I).

ut

A.2 Proof of Proposition 1

Proof (Proposition 1). Let (v,m) denote the input. The transformation τ works
as follows. First, a uniformly random encoding w′ ∈ C of m is chosen. Then,
the output is computed by w := v · w̌ + w.′

If v is some uniformly random vector, then the product v · w̌ is uniformly
random as well (as the entries of w̌ are all non-zero by assumption). Hence, w
is simply a shift of a uniformly random vector, being uniformly random again.



Next, consider the case that v ∈ Č(I), that is a possibly noisy encoding
under Č of some maybe unknown message m̃. As Č2 ⊆ C, Theorem 1 tells that
v · w̌ ∈ C(I). Hence, thanks to the additive property of Theorem 1, it follows
that w ∈ Ĉ(I). Regarding its decoding, Theorem 1 implies that

Decode (v · w̌) = Decode(v) ·Decode(w̌) = m̃ · 0 = 0. (6)

Again with Theorem 1 we have that

Decode(w) = Decode(v·w̌+w′) = Decode(v·w̌)+Decode(w′) = 0+m = m.
(7)

The fact that ŵ is merely a constant shift of a uniformly random encoding of m
concludes the proof. ut

A.3 Proof of Corollary 1

Proof (Corollary 1). Recall that Cµ ⊆ Ĉ means that L(C)` ⊆ L(Ĉ) for any
` ∈ [µ]. It is easy to see that L`t,ρ ⊆ Lt,`·ρ for all t, ρ, and ` such that ` · ρ ≤ q.
Thus, any choice of Č := RMq(t, ρ)∗, C := RMq(t, 2 ·ρ)∗ and Ĉ := RMq(t, ρ

′)∗

with 2 · µ · ρ ≤ ρ′ ≤ q meet the first property.
Next, we show that the parameters can be adjusted such that a special en-

coding on 0 is possible. Recall that this means that there exists a multivariate
polynomial p of degree < ρ such that:

– None of the entries of p(x) is equal to zero.
– p(y) = 0.

Let ρ ≥ 2 (the case of ρ ≤ 1 is cryptographically weak anyway). We denote the
components of the code support x and the message support y as follows:

– x =
((
x

(1)
1 , . . . , x

(1)
t

)
, . . . ,

(
x

(n)
1 , . . . , x

(n)
t

))
∈ (Ft)n,

– y = (y1, . . . , yt) ∈ Ft.

Since n < |F |, we can choose x arbitrary and y almost completely arbitrary.
The only condition on y is that the first entry, y1, does not coincide with any of
the first indices in x. More formally, it must holds that y1 6∈ {x(1)

1 , . . . , x
(n)
1 }.

Actually, the following arguments would hold as well if we consider other in-
dices. Now, we can consider the following multivariate polynomial in t variables
v1, . . . , vt:

p(v1, . . . , vt) := v1 − y1.

It holds that p(y) = p(y1, . . . , yt) = y1− y1 = 0. Furthermore, as y1 6= x
(i)
1 for

all i ∈ {1, . . . , n}, it follows that none of the n entries of p(x) is equal to zero.
Thus, w̌ := p(x) satisfies is a special encoding of 0. This shows the second
claim. ut



B Concrete Parameters for the Instantiation based on
Reed-Muller Codes

In the following, we explain the derivation of the parameters given in Sec. 6.
We will first give the conditions that the parameters need to meet and analyze
afterwards how appropriate parameters can be chosen.

B.1 Obvious Conditions.

Assume that the following parameters are given: the number of supported en-
cryptions L, the number of supported multiplications µ, and a security parame-
ter s. The task is to find three RM codes Č, C, Ĉ and an integer T = |I| such that
the scheme is secure and that the length n of the codes and the size of the field
are minimized (for efficiency). First, we list up all conditions that are necessary
for correctness and security. We explain afterward how to choose concrete val-
ues such that the length n of the ciphertexts and the field size are minimized. We
argued already in Cor. 1 how to choose the supports x and y so that a special
encoding of 0 exists. As this has no impact on the other parameters, e.g., length
or dimension, and no impact on the hardness of the DSCP (as far as we know),
we ignore this part in the following (but recall that this choice needs to be kept
secret).

Due to the correctness condition, we must have Cµ ⊆ Ĉ and Č2 ⊆ C. Thus,
we set Č := RMq(t, ρ)?, C := RMq(t, 2ρ)?, and Ĉ := RMq(t, 2µρ)? for ρ ≥ 2

with dimensions ǩ =
(
t+ρ
t

)
, k =

(
t+2ρ
t

)
and k̂ =

(
t+2µρ
t

)
, respectively. To allow

unique decoding, the number of good locations must be at least the dimension
of Ĉ, that is:

|I| ≥ k̂ =

(
t+ 2µρ

2µρ

)
. (8)

Furthermore, the number of good locations can be at most the number of entries
and the elements of the supports must be pairwise distinct. Therefore, we need
to have:

|I| ≤ n ≤ qt − 1. (9)

Regarding the security, one bound follows directly from the limitation explained
in Sec. 4 and 5, namely that the length of the ciphertext has to exceed the number
of encryptions and that the number of encryptions needs to be less than the
number of bad locations, i.e.,

n ≥ L+ 1 and n− T ≥ L+ 1. (10)

As the second property directly implies the first, it is sufficient to concentrate
on the second only.



B.2 On the Hardness of the DSCP for RM Codes.

Regarding the hardness of the DSCP for RM codes, we identified two methods
(apart of the generic attacks described in Sec. 4 and 5) which seem to be the
most powerful ones. The first is the so-called Information Set Decoding (ISD)
algorithm which is widely considered as the most efficient for random codes.
Here, an attacker picks k position at random (with k being the dimension of the
code), and hopes that there are no errors in these positions, i.e. they belong to I
(using the notation of our scheme). In case of success, she can reconstruct the
whole codeword. We refer to [4] for a detailed review of this method.

We can estimate the probability of success pISD of this algorithm as follows:

pISD =

(|I|
k

)(
n
k

) ≤ ( |I|
n

)k
. (11)

If |I| is close to n, an attacker might try to guess the bad positions instead
of guessing k good positions. As this represents in a certain sense the opposite
approach of ISD, we denote it by ISD. The success probability of this approach
is

pISD =
1(
n
|I|
) . (12)

The second attack, which we call Low Weight Dual Codewords (LWC) at-
tack, relies on a specific property of RM, i.e., the fact that low dimensional RM
codes admit small weight codewords in their duals. Recall that the dual of a
code C, denoted by C⊥, is defined as the set of vectors which are orthogonal to
the error-free codewords in C. That is

C⊥ = {w⊥ ∈ Fn | w⊥ ×w = 0, ∀w ∈ C}

where ”×” is the usual scalar product. The dual code of a (full-length) RM code
RMq(t, ρ), denoted by RMq(t, ρ)⊥, is again a RM code. More precisely it holds
that

RMq(t, ρ)⊥ = RMq(t, ρ
⊥),

with ρ⊥ = t(q − 1) − 1 − ρ. One can show that the minimum distance of the
dual code is d⊥ = (q − v⊥)qt−u

⊥−1 = ρ + 2. Thus the dual code contains
codewords of extremely low weight. For example, if ρ = 2 (polynomials of
degree 2), there exist codewords of weight 4 in the dual which can make the
following attack dangerous.

Consider first the full length RM code, and let w⊥ be a codeword of weight
d⊥ belonging to its dual. We distinguish between two cases: (i) supp(w⊥) ⊆ I
and (ii) supp(w⊥) 6⊆ I . Let c be an observed ciphertext. In the first case, it



must hold that w⊥ × c = 0 as only the error-free locations of c are involved
in the computation. In the second case, the computation of w⊥ × c depends on
some random values (at the bad locations). Thus, w⊥ × c = 0 holds only with
a probability of 1/q. Thus, if the scalar product w⊥ × c is equal zero, then the
attacker can assume that supp(w⊥) ⊆ I with a probability of 1 − 1/q. Even
more, if L is the number of observed ciphertexts, this probability increases to
1− 1/qL. The attack now is to sample low weight codewords w⊥ and check if
w⊥×c = 0 for all ciphertexts c. In the positive case, assume that supp(w⊥) ⊆
I .

Now observe that a codeword w⊥ in the truncated dual RM code is useful
for the attack if its support is contained in the good locations determined by I
(see condition (i) above). The probability that this holds for a random codeword
of weight ω⊥ is

pLWC(ω⊥) =

( |I|
ω⊥

)(
n
ω⊥

) . (13)

If E?
ω⊥

denotes the expected number of codewords in the truncated dual code,
then we can expect

Eω⊥ = pLWC(ω⊥) · E?ω⊥ (14)

codewords on average that can be used for this attack.

Remark 1. It is clear that the ISD attack needs to know the deployed code. Fur-
thermore, the success probability for ISD given in (11) implicitly assumes that
any set of k good positions allows unique decoding which is not true in general.

Likewise, for the LWC attack one needs to know the code as well for deter-
mining the dual code. Moreover, the attack requires a very strong attacker who
can efficiently find codewords w⊥ in the punctured dual code (RMq(t, ρ)⊥)?

of weight ω⊥ with only a negligible effort. To the best our knowledge, no such
algorithm is known so far.

B.3 Parameters

Possible parameter choices have to meet on the one hand the conditions summed
up in App. B.1 and on the other hand ensure that the attack identified in App. B.2
are infeasible. More precisely, we will choose the parameter such that the effort
for each attack is at least 2s. We derive from (11) the following (sufficient)
condition to thwart the ISD attack:(

|I|
n

)ǩ
≤ 2−s. (15)



Concerning the ISD attack, we put the following condition:

|I| ≤ n/2. (16)

Thanks to this condition, the success probability of the ISD attack is smaller
that the one for the ISD attack as we will show now. First of all, we have

|I|
(8)
≥ k̂ =

(
t+ 2µρ

t

)
≥
(
t+ ρ

t

)
= ǩ. (17)

Together with (16), this implies that
(
n
ǩ

)
≤
(
n
|I|
)

as the value
(
n
i

)
is maximal for

i = n/2. As a consequence, it holds that

pISD =
1(
n
|I|
) ≤ 1(

n
ǩ

) ≤ (|I|ǩ )(n
ǩ

) = pISD. (18)

Thus, we can ignore the ISD attack and concentrate on the ISD attack if we
require that |I| ≤ n/2.

The last attack is the LWC attack. Here, we will use the following approach.
Let X be the random variable giving the number of truncated dual codewords
of weight ω⊥ that are useful for the attack. Using Markov’s inequality, it holds
that p(X ≥ 1) ≤ Eω⊥ . Thus, we aim for parameters such that

Eω⊥ ≤ 2−s. (19)

For reasons that will become clear later, we additionally require

t := 3 and n ≤ q. (20)

Parameter Selection. Given the conditions above, we present now a possible
strategy to select the parameters. Due to (16), we write |I|/n = 2−r, with r ≥ 1.
Then, (15) translates to the following condition

2−r·ǩ ≤ 2−s ⇔ r · ǩ ≥ s⇔ s(
3+ρ
ρ

) ≤ r (21)

As the value in (15), the upper bound for pISD, increases with the key length |I|.
It is then reasonable to minimize this value and set |I| := k̂ (see condition (8)).
Since n = 2r · k̂, we have

n = 2r ·
(

3 + 2µρ

3

)
≥ 2

s

(3+ρρ )
(

3 + 2µρ

3

)
(22)



We define

nmin := min
ρ

{
2

s

(3+ρρ )
(

3 + 2µρ

3

)}
(23)

and set ρmin to be the value for ρ such that the above expression is minimized.
To derive an asymptotic estimation of nmin, we use that r ≥ 1 and (21). We get(

3 + ρ

3

)
≥ s⇔ (ρ+ 1)(ρ+ 2)(ρ+ 3) ≥ 6s⇒ ρmin ≤ 3

√
6s. (24)

It follows

nmin ≤ 2

s

(3+
3√6s
3 ) ·

(
3 + 2µ 3

√
6s

3

)
≤ 2

6s

( 3√6s)3 ·(3+2µ
3
√

6s)3 ∈ O(µ3 ·s). (25)

Thus, the length n grows asymptotically as µ3 · s and linearly with L.
So far, we ignored the LWC attack and condition (19). First of all, we need

to derive a formula forE?
ω⊥

, that is the expected number of codewords of weight
ω⊥ in the truncated dual code. Let w⊥ denote an arbitrary codeword of weight
ω⊥ in the full dual code. w⊥ is a codeword in the truncated code if and only
if supp(w⊥) is contained in the code support x. To compute the probability
ptrunc that this happens, we can assume that the code support x is uniformly
random chosen (see Corollary 1). Then, there exist

(qt−ω⊥
n−ω⊥

)
different choices

for x that contain supp(w⊥) (ω⊥ positions of x are fixed and the remaining
n− ω⊥ positions can be freely distributed on qt − ω⊥ positions). In total, there
are
(
qt

n

)
possible choices for x. Thus, we have

ptrunc(ω
⊥) =

(qt−ω⊥
n−ω⊥

)(
qt

n

) . (26)

This leads to

E?ω⊥ =

(qt−ω⊥
n−ω⊥

)(
qt

n

) ·Nω⊥ , (27)

where Nω⊥ , the number of codewords in the full dual code of weight ω⊥. For
ω⊥ = d⊥ (the minimal possible weight), the number Nd⊥ has been figured out
by Berger and Charpin [6]:

Nd⊥ = qu
⊥
t−u⊥−1∏
i=0

qt−i − 1

qt−u⊥−i − 1
Nv⊥ , where Nv⊥ =

(
q

v⊥

)
qt−u

⊥ − 1

q − 1
. (28)



Recall that u⊥ = t− 1 and v⊥ = q − ρ− 2 (see above) which yields

Nd⊥ = qt−1
0∏
i=0

qt−i − 1

q1−i − 1

(
q

q − d⊥

)
q1 − 1

q − 1
= qt−1 q

t − 1

q − 1

(
q

d⊥

)
. (29)

For higher weights, Geil and Matsumoto [23] showed that codewords of weight
d⊥ + 1, . . . , v⊥ exist in the dual as well. According to [6], the number of code-
words Nd⊥+i can be derived by replacing the expression

( q
d⊥

)
in (29) by the

number Wd⊥+i of codewords of weight d⊥ + i in a Reed-Solomon code of
length q and minimum distance d⊥. Observe that for an attack, only the weights
d⊥ + i ≤ |I| < n ≤ q are relevant. Thus, w.l.o.g. we can assume d⊥ + i < q in
the following. For this case a formula for Wd⊥+i is known [34]:

Wd⊥+i =

(
q

d⊥ + i

) i∑
j=0

(
d⊥ + i− 1

j

)
(−1)j qi−j (30)

An upper bound is

Wd⊥+i =

(
q

d⊥ + i

) i∑
j=0

(
d⊥ + i− 1

j

)
(−1)j qi−j ≤

(
q

d⊥ + i

)
qi

i∑
j=0

(d⊥ + i− 1)j (−1)j q−j

=

(
q

d⊥ + i

)
qi

i∑
j=0

(
−d
⊥ + i− 1

q

)j
=

(
q

d⊥ + i

)
qi

1− (−(d⊥ + i− 1)/q)i

1 + (d⊥ + i− 1)/q
≤ 2

(
q

d⊥ + i

)
qi.

Next, we will show that under certain conditions it holds that Ed⊥+i ≤ Ed⊥ for
all i with d⊥+ i < q. As a consequence, it is sufficient to analyze the resistance
against the LWC attack for the case ω⊥ = d⊥ and we can reduce condition (19)
to

Ed⊥ ≤ 2−s. (31)

According to Eqs. (14) and (27) it holds that

Ed⊥+1

Ed⊥
=
pLWC(d⊥ + i)

pLWC(d⊥)
· ptrunc.(d

⊥ + i)

ptrunc.(d⊥)
·
Nd⊥+1

Nd⊥
. (32)

We aim to show that this value is ≤ 1. With (13) and (26), one can derive that

pLWC(d⊥ + i)

pLWC(d⊥)
· ptrunc.(d

⊥ + i)

ptrunc.(d⊥)
=

i−1∏
j=0

(
T − d⊥ − j
qt − d⊥ − j

)
. (33)



It remains to investigate the ratio
N
d⊥+i

N
d⊥

. With Eq. (29) and the derived upper
bound for (30), we get

Nd⊥+i

Nd⊥
≤

2qt−1 qt−1
q−1

( q
d⊥+i

)
qi

qt−1 q
t−1
q−1

( q
d⊥

) = 2qi
i−1∏
j=0

(
q − d⊥ − j
d⊥ + j

)
. (34)

With (33) and (34) it follows that

Ed⊥+i

Ed⊥
≤ 2qi

i−1∏
j=0

(
q − d⊥ − j
d⊥ + j

)(
T − d⊥ − j
qt − d⊥ − j

)
≤ 2qi·qi·

(
n

2qt

)i
= 2

(
n

2qt−2

)i
.

(35)
This is exactly the point why we need condition (20): if t = 3 and n ≤ q, then
the right-hand side of (35) is strictly less than 1 which shows the claim.

Now we derive another bound on q from (31). Observe that

Ed⊥ =

(
T
d⊥

)(
n
d⊥

) · (q3−d⊥n−d⊥
)(

q3

n

) · q
2 · (q3 − 1)

q − 1
·
(
q

d⊥

)
=

d⊥−1∏
j=0

T − j
q3 − j

 · q2 · (q2 + q + 1) ·
(
q

d⊥

)
(36)

=

ρmin+1∏
j=0

(
3+2µρmin

3

)
− j

q3 − j

 · q2 · (q2 + q + 1) ·
(

q

ρmin + 2

)
(37)

and also that, assuming T < q/2 (which will be the case for concrete parame-
ters):

Ed⊥ =

d⊥−1∏
j=0

T − j
q3 − j

 · q2 · (q2 + q + 1) ·
(
q

d⊥

)
≤

d⊥−1∏
j=0

T

q3

 · q2 · (q2 + q + 1) ·
(
q

d⊥

)
(38)

≤ 2−d
⊥ ·

d⊥−1∏
j=0

q

q3

 · q2 · (q2 + q + 1) ·
(
q

d⊥

)
≤ 2−d

⊥
q4−d⊥ (39)

Now, for d⊥ > 4 (i.e. ρmin > 2), the above quantity is decreasing with q, when
q is not too small. This gives a lower bound on the field size q. Hence, we set

qmin := min

q
ρmin+1∏

j=0

(
3+2µρmin

3

)
− j

q3 − j

 · q2 · (q2 + q + 1) ·
(

q

ρmin + 2

)
≤ 2−s

 .

(40)
Then, choosing the field size at least qmin is a sufficient condition to fulfill (31),
that is to avoid the LWC attack. For an asymptotic estimation of qmin, an upper



bound on qmin is any q for which it holds

2−d
⊥ ·q4−d⊥ ≤ 2−s ⇔ log2 q ≥

s− d⊥

d⊥ − 4
≥ s

ρmin
−1

(24)
≥ s

3
√

6s
−1 =

3

√
1

6
·s2/3−1.

(41)
This implies that the total ciphertext length (in bits) is roughly upper bounded
by

log2 q · t · n ≈
3

√
1

6
· s2/3 · µ3 · s ≈ µ3 · s5/3. (42)

Altogether, the length n is inO(µ3 · s), the field size inO(s2/3), and the bit
length of the ciphertext in O(µ3 · s5/3).


