
An extended abstract of this paper is published in the proceedings of the 10th Theory of Cryptography Conference
— TCC 2013. This is the full version.

Universally Composable
Synchronous Computation

Jonathan Katz1, Ueli Maurer2, Björn Tackmann2, and Vassilis Zikas3?

1 Dept. of Computer Science, University of Maryland
jkatz@cs.umd.edu

2 Dept. of Computer Science, ETH Zürich, Switzerland
{maurer,bjoernt}@inf.ethz.ch

3 Dept. of Computer Science, UCLA
vzikas@cs.ucla.edu

Abstract. In synchronous networks, protocols can achieve security guarantees that are not possible
in an asynchronous world: they can simultaneously achieve input completeness (all honest parties’
inputs are included in the computation) and guaranteed termination (honest parties do not “hang”
indefinitely). In practice truly synchronous networks rarely exist, but synchrony can be emulated if
channels have (known) bounded latency and parties have loosely synchronized clocks.
The widely-used framework of universal composability (UC) is inherently asynchronous, but several
approaches for adding synchrony to the framework have been proposed. However, we show that the
existing proposals do not provide the expected guarantees. Given this, we propose a novel approach
to defining synchrony in the UC framework by introducing functionalities exactly meant to model,
respectively, bounded-delay networks and loosely synchronized clocks. We show that the expected
guarantees of synchronous computation can be achieved given these functionalities, and that previous
similar models can all be expressed within our new framework.

1 Introduction

In synchronous networks, protocols can achieve both input completeness (all honest parties’ inputs are
included in the computation) and guaranteed termination (honest parties do not “hang” indefinitely). In
contrast, these properties cannot simultaneously be ensured in an asynchronous world [7,17].

The traditional model for synchronous computation assumes that protocols proceed in rounds: the current
round is known to all parties, and messages sent in some round are delivered by the beginning of the next
round. While this is a strong model that rarely corresponds to real-world networks, the model is still useful
since it can be emulated under the relatively mild assumptions of a known bound on the network latency
and loose synchronization of the (honest) parties’ clocks. In fact, it is fair to say that these two assumptions
are exactly what is meant when speaking of “synchrony” in real-world networks.

The framework of universal composability (UC) [12] assumes, by default, completely asynchronous com-
munication, where even eventual message delivery is not guaranteed. Protocol designers working in the UC
setting are thus faced with two choices: either work in an asynchronous network and give up on input
completeness [7] or guaranteed termination [28,15], or else modify the UC framework so as to incorporate
synchronous communication somehow.

Several ideas for adding synchrony to the UC framework have been proposed. Canetti [10] introduced
an ideal functionality Fsyn that was intended exactly to model synchronous communication in a general-
purpose fashion. We prove in Section 5.1, however, that Fsyn does not provide the guarantees expected of
a synchronous network. Nielsen [33] and Hofheinz and Müller-Quade [25] also propose ways of modeling
synchrony with composition guarantees, but their approaches modify the foundations of the UC framework
and are not sufficiently general to model, e.g., synchrony in an incomplete network, or the case when syn-
chrony holds only in part of a network (say, because certain links do not have bounded delay while others
do). It is fair to say that the proposed modifications to the UC framework are complex, and it is unclear

? Work done while the author was at the University of Maryland.

whether they adequately capture the intuitive real-world notion of synchrony. The timing model considered
in [20,23,26] extends the notion of interactive Turing machines by adding a “clock tape.” It comes closer to
capturing intuition, but (as we show in Section 5.2) this model also does not provide the guarantees expected
from a synchronous network. A similar approach is taken in [4], which modifies the reactive-simulatability
framework of [6] by adding an explicit “time port” to each automaton. Despite the different underlying
framework, this work is most similar to the approach we follow here in that it also captures both guaranteed
termination and incomplete networks. Their approach, however, inherently requires changing the underlying
model and is based on restricting the class of adversaries (both of which we avoid). Such modifications result
in (at least) a reformulation of the composition theorem and proof.

Our approach and results. We aim for an intuitively appealing model that faithfully embeds the actual
real-world synchrony assumptions into the standard UC framework. The approach we take is to introduce
functionalities specifically intended to (independently) model the two assumptions of bounded network delay
and loose clock synchronization. An additional benefit of separating the assumptions in this way is that we
can also study the case when only one of the assumptions holds.

We begin by formally defining a functionality corresponding to (authenticated) communication chan-
nels with bounded delay. Unfortunately, this alone is not sufficient for achieving guaranteed termination.
(Throughout, we will always want input completeness to hold.) Intuitively, this is because bounded-delay
channels alone—without any global clock—only provide the same “eventual message delivery” guarantee of
classical asynchronous networks [7,9]. It thus becomes clear that what is missing when only bounded-delay
channels are available is some notion of time. To rectify this, we further introduce a functionality Fclock

that directly corresponds to the presence of loosely synchronized clocks among the parties. We then show
that Fclock together with eventual-delivery channels is also not sufficient, but that standard protocols can
indeed be used to securely realize any functionality with guaranteed termination in a hybrid world where
both Fclock and bounded-delay (instead of just eventual delivery) channels are available.

Overall, our results show that the two functionalities we propose—meant to model, independently,
bounded-delay channels and loosely synchronized clocks—enable us to capture exactly the security guar-
antees provided by traditional synchronous networks. Moreover, this approach allows us to make use of the
original UC framework and composition theorem.

Guaranteed termination. We pursue an approach inspired by constructive cryptography [30,31] to model
guaranteed termination. We describe the termination guarantee as a property of functionalities; this bridges
the gap between the theoretical model and the realistic scenario where the synchronized clocks of the parties
ensure that the adversary cannot stall the computation even if he tries to (time will advance). Intuitively,
such a functionality does not wait for the adversary indefinitely; rather, the environment—which represents
(amongst others) the parties as well as higher level protocols—can provide the functionality with sufficiently
many activations to make it proceed and eventually produce outputs, irrespective of the adversary’s strat-
egy. This design principle is applied to both the functionality that shall be realized and to the underlying
functionalities formalizing the (bounded-delay) channels and the (loosely synchronized) clocks.

We then require from a protocol to realize a functionality with this guaranteed termination property, given
as hybrids functionalities that have the same type of property. In more detail, following the real-world/ideal-
world paradigm of the security definition, for any real-world adversary, there must be an ideal-world adversary
(or simulator) such that whatever the adversary achieves in the real world can be mimicked by the simulator
in the ideal world. As the functionality guarantees to terminate and produce output for any simulator, no
(real-world) adversary can stall the execution of a secure protocol indefinitely.

The environment in the UC framework can, at any point in time, provide output and halt the entire
protocol execution. Intuitively, however, this corresponds to the environment (which is the distinguisher)
ignoring the remainder of the random experiment, not the adversary stalling the protocol execution. Any
environment Z can be transformed into an environment Z ′ that completes the execution and achieves (at
least) the same advantage as Z.

A “polling”-based notion of time. The formalization of time we use in this work is different from previous
approaches [20,23,26,32]; the necessity for the different approach stems from the inherently asynchronous
scheduling scheme of the original UC model. In fact, the order in which protocols are activated in this model

2

is determined by the communication; a party will only be activated during the execution whenever this party
receives either an input or a message.

Given this model, we formalize a clock as an ideal functionality that is available to the parties running a
protocol and provides a means of synchronization: the clock “waits”until all honest parties signal that they
are finished with their tasks. This structure is justified by the following observation: the guarantees that are
given to parties in synchronous models are that each party will be activated in every time interval, and will
be able to perform its local actions fast enough to finish before the deadline (and then it might “sleep” until
the next time interval begins). A party’s confirmation that it is ready captures exactly this guarantee. As
this model differentiates between honest and dishonest parties, we have to carefully design functionalities
and protocols such that they do not allow excessive capabilities of detecting dishonest behavior. Still, the
synchrony guarantee inherently does provide some form of such detections (e.g., usually by a time-out while
waiting for messages, the synchrony of the clocks and the bounded delay of the channels guarantee that
messages among honest parties always arrive on time).

Our notion of time allows modeling both composition of protocols that run mutually asynchronously, by
assuming that each protocol has its own independent clock, as well as mutually synchronous, e.g. lock-step,
composition by assuming that all protocols use the same clock.

Organization of the paper. In Section 2, we include a brief description of the UC model [12] and introduce the
necessary notation and terminology. In Section 3, we review the model of completely asynchronous networks,
describe its limitations, and introduce a functionality modeling bounded-delay channels. In Section 4, we
introduce a functionality Fclock meant to model loose clock synchronization and explore the guarantees it
provides. Further, we define computation with guaranteed termination within the UC framework, and show
how to achieve it using Fclock and bounded-delay channels. In Section 5, we revisit previous models for
synchronous computation.

2 Preliminaries

Simulation-based security. Most general security frameworks are based on the real-world/ideal-world pa-
radigm: In the real world, the parties execute the protocol using channels as defined by the model. In
the ideal world, the parties securely access an ideal functionality F that obtains inputs from the parties,
runs the program that specifies the task to be achieved by the protocol, and returns the resulting outputs
to the parties. Intuitively, a protocol securely realizes the functionality F if, for any real-world adversary A
attacking the protocol execution, there is an ideal-world adversary S, also called the simulator, that emulates
A’s attack. The simulation is good if no distinguisher Z—often called the environment—which interacts, in a
well defined manner, with the parties and the adversary/simulator, can distinguish between the two worlds.

The advantage of such security definitions is that they satisfy strong composability properties. Let π1
be a protocol that securely realizes a functionality F1. If a protocol π2, using the functionality F1 as a

subroutine, securely realizes a functionality F2, then the protocol π
π1/F1

2 , where the calls to F1 are replaced
by invocations of π1, securely realizes F2 (without calls to F1). Therefore, it suffices to analyze the security of
the simpler protocol π2 in the F1-hybrid model, where the parties run π2 with access to the ideal functionality
F1. A detailed treatment of protocol composition appears in, e.g., [6,11,12,18,31].

Model of computation. All security models discussed in this work are based on or inspired by the UC
framework [12]. The definitions are based on the simulation paradigm, and the entities taking part in the
execution (protocol machines, functionalities, adversary, and environment) are described as interactive Turing
machines (ITMs). The execution is an interaction of ITM instances (ITIs) and is initiated by the environment
that provides input to and obtains output from the protocol machines, and also communicates with the
adversary. The adversary has access to the ideal functionalities in the hybrid models, in some models it also
serves as a network among the protocol machines. During the execution, the ITIs are activated one-by-one,
where the exact order of the activations depends on the considered model.

Notation, conventions, and specifics of UC ’05. We consider protocols that are executed among a certain set
of players P, often referred to as the player set, where every pi ∈ P formally denotes a unique party ID. A
protocol execution involves the following types of ITMs: the environment Z, the adversary A, the protocol

3

machine π, and (possibly) ideal functionalities F1, . . . ,Fm. The contents of the environment’s output tape
after the execution is denoted by the random variable execπ,{F1,...,Fm},A,Z(k, z), where k ∈ N is the security
parameter and z ∈ {0, 1}∗ is the input to the environment Z.1 We use the convention that if no protocol π
is specified in the above notation, then we take as π the “dummy” protocol which forwards all its inputs to
and its outputs from the ideal functionality (see [10]). We say that a protocol π securely realizes F in the
F ′-hybrid model if

∀A ∃S ∀Z : execπ,F ′,A,Z ≈ execF,S,Z ,

where “≈” denotes indistinguishability of the respective distribution ensembles.

As in [10], the statement “the functionality sends a (private) delayed output y to party pi” describes
the following process: the functionality requests the adversary’s permission to output y to party pi (without
leaking the value y); as soon as the adversary agrees, the output y is delivered. The statement “the func-
tionality sends a public delayed output y to party pi” corresponds to the same process, where the permission
request also includes the full message y.

We often prefer to have flexible functionalities that we parametrize by certain functions or values. If
such a parameter of a functionality is considered as being fixed in the code of the functionality, we denote
it in superscript to the name of the (parametrized) functionality. If such a parameter is supposed to be
determined by the session ID of the functionality (such as the IDs of the parties that participate in the
protocol), we write it in parentheses behind the name of the functionality. We usually omit the session ID
from the description of our functionalities; different instances behave independently.

In the UC framework [12], the potential dishonesty of parties is modeled by the fact that the adversary
A may corrupt protocol machines (adaptively) during the execution by sending them a special (corrupt)
message. We only consider Byzantine party-corruption, which means that the party sends its entire current
local state to A and, in all future activations, follows A’s instructions. We generally assume that parties do
not delete state, and hence the entire execution history can be derived from the party’s current state. For
more details on party corruption, see [10, Section 4.1].

All our functionalities F use standard (adaptive) corruption as defined in [10]: At any point in time, F
will accept messages of the type (corrupt, pi) for pi ∈ P from the adversary A, in which case F marks the
party pi as corrupted and replies with (ok) and all previous inputs and outputs of pi. Whenever a corrupted
party pi inputs a message x, the functionality F sends a message (input, pi, x) to A and accepts as a reply
(replace, x̃), before continuing the execution with input x̃. Whenever F would send an output message y
to a corrupted party pi, it sends a message (output, pi, y) to A and accepts as a reply (replace, ỹ). F then
outputs ỹ to pi. We use the symbol H to denote (at the current point of the execution) the subset of P for
which no message (corrupt, pi) has been sent.2 At any point in the execution, we denote by H the set of
“honest” parties that have not (yet) been corrupted. Finally, all of our functionalities use a player set P that
is fixed when the functionality is instantiated, and each functionality has a session ID which is of the form
sid = (P, sid′) with sid′ ∈ {0, 1}∗.

The functionalities in our model and their interpretation are specific to the model of [10] in that they
exploit some of the mechanics introduced there, which we recall here. First, the order of activations is
strictly defined by the model: whenever an ITI sends a message to some other ITI, the receiving ITI will
immediately be activated and the sending ITI will halt. If some ITI halts without sending a message,
the “master scheduler,” the environment Z, will become active. This scheme allows to model guaranteed
termination since the adversary cannot prevent the invocation of protocol machines. Second, efficiency is
defined as a “reactive” type of polynomial time: the number of steps that an ITI performs is bounded by
a polynomial in the security parameter and (essentially) the length of the inputs obtained by this ITI.
Consequently, the environment can continuously provide “run-time” to protocol machines to make them
poll, e.g., at a bounded-delay or eventual-delivery channel. Our modeling of eventual delivery fundamentally
relies on this fact.

1 For the details of the execution, we follow the description in [10]. The slight change of notation has been made to
better represent the assumed hybrids with a view towards the reductions.

2 Corruption in [10] starts by Z issuing such a message to A. From this point in time, A is allowed by the con-
trol function to send corruption requests (corrupt, pi) to the ideal functionalities or (corrupt) to the protocol
machine πi.

4

3 Synchronous Protocols in an Asynchronous Network

Protocols in asynchronous networks cannot achieve input completeness and guaranteed termination simul-
taneously [7,17]. Intuitively, the reason is that honest parties cannot distinguish whether a message has been
delayed—and to satisfy input completeness they should wait for this message—or whether the sender is
corrupted and did not send the message—and for guaranteed termination they should proceed. In fact, there
are two main network models for asynchronous protocols: on the one hand, there are fully asynchronous
channels that do not at all guarantee delivery [10,15]; on the other hand, there are channels where delivery
is guaranteed and the delay might be bounded by a publicly known constant or unknown [7]. In the follow-
ing, we formalize the channels assumed in each of the two settings as functionalities in the UC framework
and discuss how they can be used by round-based, i.e., synchronous, protocols. The results presented here
formally confirm—in the UC framework—facts about synchrony assumptions that are known or folklore in
the distributed computing literature.

3.1 Fully Asynchronous Network

The communication in a fully asynchronous network where messages are not guaranteed to be delivered is
modeled by the functionality Fsmt from [10], which involves a sender, a receiver, and the adversary. Messages
input by the sender ps are immediately given to the adversary, and delivered to the receiver pr only after the
adversary’s approval. Different privacy guarantees are formulated by a so-called leakage function `(·) that
determines the information leaked during the transmission if both ps and pr are honest. In particular, the
authenticated channel Fauth is modeled by Fsmt parametrized by the identity function `(m) = m, and the
secure channel Fsec is modeled by Fsmt with the constant function `(m) = ⊥.3 An important property of
Fsmt is adaptive message replacement: the adversary can, depending on the leaked information, corrupt the
sender and replace the sent message. A formal description of the functionality (restated in our conventions)
is given below.

Functionality F`smt(ps, pr) as in [10]

The functionality F`smt is parametrized by a leakage function ` : {0, 1}∗ → {0, 1}∗.
– Upon receiving (send,m) from ps, send (sent, `(m)) to the adversary and provide private delayed

output (sent,m) to pr.
– Upon receiving (replace,m′) from the adversary, if ps is corrupted and no output has been given to
pr, then output (sent,m′) to pr.

Canetti et al. [15] showed that, in this model and assuming a common reference string, any (well-formed)
functionality can be realized, without guaranteed termination. Moreover, a combination of the results of
Kushilevitz, Lindell, and Rabin [28] and Asharov and Lindell [1] show that appropriate modifications of
the protocols from the seminal works of Ben-Or, Goldwasser, and Wigderson [8] and Chaum, Crépeau,
and Damg̊ard [16] (for unconditional security) or the work by Goldreich, Micali, and Wigderson [22] (for
computational security)—all of which are designed for the synchronous setting—are sufficient to achieve
general secure computation without termination in this asynchronous setting, under the same conditions on
corruption thresholds as stated in [8,16,22].

The following lemma formalizes the intuition that a fully asynchronous network is insufficient for ter-
minating computation, i.e., computation which cannot be stalled by the adversary. For a functionality F,
denote by [F]NT the non-terminating relaxation of F defined as follows: [F]NT behaves as F, but whenever F
outputs a value to some honest party, [F]NT provides this output in a delayed manner (see Section 2). More
formally, we show that there are functionalities F that are not realizable in the Fsmt-hybrid model, but their
delayed relaxations [F]NT are. This statement holds even for stand-alone security, i.e., for environments that
do not interact with the adversary during the protocol execution. Additionally, the impossibility applies to
all non-trivial, i.e., not locally computable, functionalities (see [27]) with guaranteed termination as defined
in Section 4. While the lemma is implied by the more general Lemma 5, we describe the proof idea for this
simpler case below.

3 This correspond to ideally secure channels as defined in [8,16]. Yet, as such a channel cannot be realized without
further assumptions, one typically resorts to the length function `(m) = |m|, see [14].

5

Lemma 1. There is a functionality F` such that [F`]NT can be realized in the F`smt-hybrid model, but F`
cannot be realized.

Proof (sketch). We describe a functionality F` that satisfies the conditions of the lemma: F` is a two party
functionality that corresponds to a channel between a sender ps and a receiver pr. F` behaves as F`smt, but
does not necessarily wait for the adversary’s approval for delivering a message. Instead, upon receiving a
special (fetch)-message from the receiver pr, F` outputs (sent, y) to pr, where y = m if the sender has
input the message m, and y = ⊥ (i.e., a default value), otherwise. The functionality F` is described in detail
in the following:

Functionality F`(ps, pr)
The functionality F` is parametrized by a leakage function ` : {0, 1}∗ → {0, 1}∗.
– Upon receiving (send,m) from ps, send (sent, `(m)) to the adversary and provide a private delayed

output (sent,m) to pr.
– Upon receiving (fetch) from pr: if m was received from ps and was not yet delivered to pr, then send

(sent,m) to pr, otherwise send ⊥ to pr.
– Upon receiving (replace,m′) from the adversary, if ps is corrupted and no output has been given to
pr, then output (sent,m′) to pr.

We show that F` cannot be realized from F`smt. Indeed, consider the following environment Z with the
dummy adversary (which acts as a forwarder between the environment and the functionality): both ps and
pr are honest, and Z gives a uniformly chosen input-message m ∈R {0, 1} to ps; as soon as Z receives
from the adversary the leaked value `(m) from the channel, it activates pr for fetching a message from the
channel (formally, Z provides input (fetch) to pr). The (honest) party pr is expected to answer with a
message (sent,m′) as received from the channel.4 Note that any action other than reporting a message, i.e.,
producing no output or sending a message to ps (through the F`smt-channel in the other direction) is detected
by Z, as in both cases Z is activated before receiving output from pr, and can be used for distinguishing.
Using the information whether or not m′ equals m, the environment can decide whether it witnessed an
ideal-world or a real-world execution. In the ideal-world case (where the parties interact via F`) pr’s output
will always be m′ = m. In the real world, as the adversary has not instructed the channel Fsmt to deliver the
message, the (honest) pr has no information on m. Because m is chosen uniformly from {0, 1}, the probability
that m′ = m is 1/2, which provides a noticeable distinguishing advantage to Z.

For the reduction of [F`]NT to F`smt, we observe that [F`]NT can be realized from F`smt using the dummy
protocol ϕ. The simulator S uses the adversary A attacking the execution of ϕ in a black-box manner and
behaves as follows: Throughout the simulation, S forwards all messages sent between A and Z; whenever A
requests to corrupt a party, S requests to corrupt this party in the ideal world (simulating the internal state
is easy); furthermore, the simulator forwards to A all the messages that are sent from [F`]NT, except for the
notification about the (fetch)-message sent (to [F`]NT) by pr. (S is informed about each (fetch)-message,
because [F`]NT issues a delayed output as a response to each such message. As such a message will make
F`smt halt and return the control to Z, S will react in the same way.) It is straightforward to verify that the
above S is a good simulator for the adversary A. ut

3.2 Eventual-Delivery Channels

A stronger variant of asynchronous communication provides the guarantee that messages will be delivered
eventually, independent of the adversary’s strategy [7]. The functionality Fed-smt captures this guarantee,
following the principle described in Section 1: The receiver can enforce delivery of the message using “fetch”
requests to the channel. The potential delay of the channel is modeled by ignoring a certain number D
of such requests before delivering the actual message to pr; to model the fact that the delay might be
arbitrary, we allow the adversary to repeatedly increase the value of D during the computation. Yet, the
delay that A can impose is bounded by A’s running time.5 The fact that this models eventual delivery

4 Recall that in UC a party cannot become corrupted without the environments permission, hence the simulator
cannot stop pr from reporting the messages it receives in the ideal world.

5 This is enforced by specifying the delay in unary notation.

6

utilizes the “reactive” definition of efficiency in [10]: after the adversary determined the delay D for a certain
message, the environment can still provide the protocol machines of the honest parties with sufficiently
many activations to retrieve the message from the channel. The eventual delivery channel Fed-smt is, like
Fsmt, parametrized by a leakage function `(·). We use Fed-auth and Fed-sec to denote the corresponding
authenticated and secure eventual-delivery channel, respectively.

Functionality F`ed-smt(ps, pr)

Initialize M := ⊥ and D := 0.

– Upon receiving a message m from ps, set D := 1 and M := m and send (sent, `(M)) to the adversary.
– Upon receiving a message (fetch) from pr:

1. Set D := D − 1.
2. If D = 0 then send (sent,M) to pr (otherwise no message is senta).

– Upon receiving a message (delay, T) from the adversary, if T encodes a natural number in unary
notation, then set D := D+T and return (delay-set) to the adversary; otherwise ignore the message.

– Upon receiving (replace,m′, T ′) from the adversary, if ps is corrupted, D > 0, and the delay T ′ is
valid, then set D := T ′ and set M := m′.

a Following [10], this means that Z is activated

Channels with eventual delivery are strictly stronger than fully asynchronous communication in the sense
of Section 3.1. Indeed, the proof of Lemma 1 extends to the case where F` is the eventual-delivery channel
F`ed-smt: the simulator can delay the delivery of the message only by a polynomial number of steps, and the
environment can issue sufficiently many queries at the receiver’s interface.

As with fully asynchronous channels, one can use channels with eventual delivery to achieve secure
computation without termination. Additionally, however, eventual-delivery channels allow for protocols which
are guaranteed to (eventually) terminate, at the cost of violating input completeness. For instance, the
protocol of Ben-Or, Canetti, and Goldreich [7] securely realizes any functionality where the inputs of up
to n

4 parties might be ignored. Yet, the eventual-delivery channels, by themselves, do not allow to compute
functionalities with strong termination guarantees, and the result of Lemma 1 holds even if we replace F`smt
by F`ed-smt. This is stated in the following lemma, which again translates to both stand-alone security and
to arbitrary functionalities that are not locally computable, and is again implied by Lemma 5.

Lemma 2. There are functionalities F` such that [F`]NT can be realized in the F`ed-smt-hybrid model, but F`
cannot be realized.

Proof (sketch). For the functionality F` introduced in the proof of Lemma 1 (see page 6), we show that
F` cannot be realized from F`ed-smt, but [F`]NT can. Indeed, the dummy protocol ϕ realizes [F`]NT based on
F`ed-smt: The simulator S uses the hybrid model adversary A in a black-box manner and behaves as follows.
Throughout the simulation, S forwards all the messages sent between A and Z; furthermore, whenever A
requests to corrupt a party, S requests to corrupt this party in the ideal world (the internal state of the
protocol machines can be simulated easily). From the messages A sends to F`ed-smt, S can learn the actual
delay T that A wishes to put on the message transmission. In order to apply the same delay on the [F`]NT-
hybrid world, S stalls the output of any message sent through [F`]NT (recall that [F`]NT allows the simulator
to deliver output-messages if and when he wishes, as they are issued in a delayed manner) until T (fetch)-
messages have been sent from pr to [F`]NT (S is informed about each (fetch)-message, because [F`]NT issues
a delayed output as a response to each such message). The above S is a good simulator for the adversary A.

We next turn to proving the impossibly of realizing F` from F`ed-smt. The idea is similar to the impossibility
proof of Lemma 1. In particular, consider the dummy adversary A and the environment Z that corrupts
no party and has the following distinguishing strategy: Z provides as input to ps a uniformly random bit
m. As soon as it receives the value (sent, `(m)) from the functionality (forwarded by A), Z instructs A to
give delay T = 2 to F`ed-smt. Subsequently, Z activates pr with input (fetch); as a result, if Z is witnessing
the ideal-world execution, he will receive the message (sent,m) from pr (note that F` does not allow the
simulator to stall this reply); hence, in the real world, the protocol of pr has to also output (sent,m′) for

7

some m′ to Z. Indeed, the other choices of pr are to not produce any output, or to send (fetch) to F`ed-smt, or
to invoke the F`ed-smt in the other direction (i.e., as a sender); in all three cases the environment is activated
before receiving output which allows it to detect that it is witnessing the real-world execution. However,
as pr has no information on m, the probability that m′ = m is 1/2, which allows Z to distinguish with
noticeable advantage. ut

3.3 Bounded-Delay Channels with a Known Upper Bound

Bounded-delay channels are described by a functionality Fbd-smt that is similar to Fed-smt but parametrized by
a positive constant δ bounding the delay that the adversary can impose (δ = 1 means immediate delivery).
In more detail, the functionality Fbd-smt works as Fed-smt, but queries of the adversary that lead to an
accumulated delay of T > δ are ignored.6 A formal specification of Fbd-smt is given in the following:

Functionality Fδ,`bd-smt(ps, pr)

Initialize M := ⊥ and D := 1, and D̂ := 1.

– Upon receiving a message m from ps, set D := 1 and M := m and send (sent, `(M)) to the adversary.
– Upon receiving a message (fetch) from pr:

1. Set D := D − 1.
2. If D = 0, then send (sent,M) to pr.

– Upon receiving (delay, T) from the adversary, if D̂ + T ≤ δ, then set D := D + T , D̂ := D̂ + T , and
return (delay-set) to the adversary; otherwise ignore the message.

– Upon receiving (replace,m′, T ′) from the adversary, if ps is corrupted, D > 0, and the delay T ′ is
valid, then set D := T ′ and set M := m′.

In reality, a channel with latency δ′ is at least as useful as one with latency δ > δ′. Our formulation
of bounded-delay channels is consistent with this intuition: for any 0 < δ′ < δ, Fδ,`bd-smt can be UC-realized

in the Fδ
′,`

bd-smt-hybrid model. Indeed, the simple Fδ
′,`

bd-smt-hybrid protocol that drops δ − δ′ (fetch)-queries
realizes Fδ,`bd-smt; the simulator also increases the delay appropriately. The converse is not true in general:
channels with smaller upper bound on the delay are strictly stronger when termination is required. This
is formalized in the following lemma, which again extends to both stand-alone security and to not locally
computable functionalities with guaranteed termination as in Section 4.

Lemma 3. For any 0 < δ′ < δ, the functionality [Fδ
′,`

bd-smt]NT can be realized in the Fδ,`bd-smt-hybrid model, but

Fδ
′,`

bd-smt cannot be realized.

Proof (sketch). We first prove the impossibility result, namely that Fδ
′,`

bd-smt cannot be realized in the Fδ,`bd-smt-
hybrid model. The idea is similar to the proof of Lemma 2. In particular, consider the dummy adversary A
and the environment Z that corrupts no party and provides as input to ps a uniformly random bit m. After
receiving the value (sent, `(m)) from the functionality (forwarded by A), Z instructs A to choose the delay
T = δ at the functionality. In the real (Fδ,`bd-smt-hybrid) world, this means that the channel will ignore the

next δ (fetch)-requests from pr; however, in the ideal world, the functionality Fδ
′,`

bd-smt will ignore at most
δ′ < δ (fetch)-requests from pr. Subsequently, Z activates pr with input (fetch) δ′ times; as a result, if Z
is witnessing the ideal-world execution, it will receive the message (sent,m) from pr (Fδ

′,`
bd-smt does not allow

the simulator to further delay this reply); hence, in the real world, the protocol of pr has to also output
(sent,m′) for some m′ to Z. Indeed, the other choices of pr are to not produce any output, or to send
(fetch) to Fδ,`bd-smt, or to use the channel in the opposite direction (i.e., as a sender); in all three cases, Z
is activated before pr receives the next output, which allows Z to detect that it is witnessing the real-world
execution. However, as pr has no information on m, the probability that m′ = m is 1/2, which results in a
noticeable distinguishing advantage for Z.

6 Previous versions of this functionality included a query (LearnBound) via which a higher-level protocol could learn
the guaranteed maximum delay of the channel. This is not needed, as following [10] the higher-level protocol also
contains the code of the hybrid functionalities, so the protocol can be assumed to be aware of the maximum delay.

8

The reduction of [Fδ
′,`

bd-smt]NT to Fδ,`bd-smt is done along the lines of the proof of Lemma 2, but we have to

take care of some details occurring due to the different bounds δ and δ′. We show that [Fδ
′,`

bd-smt]NT can be
realized from Fδ,`bd-smt using the simple protocol πδ′ that, on every (fetch)-query, activates the adversary.
On the other hand, upon an activation from the adversary, the protocol issues a (fetch)-query to Fδ,`bd-smt

and outputs the result. The simulator S works as follows: It simulates copies of A, Fδ,`bd-smt, and the protocol

machines internally and instructs the (ideal) channel to proceed without additional delay ([Fδ
′,`

bd-smt]NT is
defined to make only delayed outputs). S analyzes the communication among the simulated A and Fδ,`bd-smt

to determine the chosen delay, and examines the interaction between the protocol machines, A, and the
simulated channel. From this communication, S can easily deduce when the receiving protocol machine
would provide output and can instruct the ideal channel to deliver the message. ut

The proof technique already suggests that bounded-delay channels, without additional assumptions such as
synchronized clocks, are not sufficient for terminating computation. While Lemma 3 only handles the case
where the assumed channel has a strictly positive upper bound on the delay, the (more general) impossibility
in Lemma 5 holds even for instant-delivery channels, i.e., bounded-delay channels which become ready to
deliver as soon as they get input from the sender.

In the remainder of this paper, we use instant-delivery channels, i.e., Fδ,`bd-smt with δ = 1; however, our
results easily extend to arbitrary values of δ. To simplify notation, we completely omit the delay parameter,
i.e., we write F`bd-smt instead of F1,`

bd-smt. Furthermore, we use Fbd-auth and Fbd-sec to denote the corresponding
authenticated and secure bounded-delay channel with δ = 1, respectively.

4 Computation with Guaranteed Termination

Assuming bounded-delay channels is not, by itself, sufficient for achieving both input completeness and
termination. In this section, we introduce the functionality Fclock that, together with the bounded-delay
channels F`bd-smt, allows synchronous protocols to satisfy both properties simultaneously. In particular, we
define what it means for a protocol to UC-realize a given multi-party function with guaranteed termination,
and show how {Fclock,F`bd-smt}-protocols can satisfy this definition.

4.1 The Synchronization Functionality

To motivate the functionality Fclock, we examine how synchronous protocols in reality use the assump-
tions of bounded-delay (with a known upper bound) channels and synchronized clocks to satisfy the input-
completeness and the termination properties simultaneously: they assign to each round a time slot that is
long enough to incorporate the time for computing and sending all next-round messages, plus the network
delay. The fact that their clocks are (loosely) synchronized allows the parties to decide (without explicit
communication) whether or not all honest parties have finished all their operations for some round. Note
that it is sufficient, at the cost of having longer rounds, to assume that the clocks are not advancing in a
fully synchronized manner but there is an known upper bound on the maximum clock drift [23,26,32].

The purpose of Fclock is to provide the described functionality to (UC) protocols. But as Fclock is an
ordinary (UC) functionality, it has no means of knowing whether or not a party has finished its intended
operations for a certain round. This problem is resolved by having the parties signal their round status (i.e,
whether or not they are “done” with the current round) to Fclock. In particular, Fclock keeps track of the
parties’ status in a vector (d1, . . . , dn) of indicator bits, where di = 1 if pi has signaled that it has finished
all its actions for the current round and di = 0, otherwise. As soon as di = 1 for all pi ∈ H, Fclock resets
di = 0 for all pi ∈ P. In addition to the notifications, any party pi can send a synchronization request to
Fclock, which is answered with di. A party pi that observes that di has switched can conclude that all honest
parties have completed their respective duties.7 As Fclock does not wait for signals from corrupted parties,
Fclock cannot be realized based on well-formed functionalities. Nevertheless, as discussed above, in reality
time does offer this functionality to synchronous protocols.

7 For arbitrary protocols, the functionality offers too strong guarantees. Hence, we restrict ourselves to considering
protocols that are either of the type described here or do not use the clock at all.

9

Functionality Fclock(P)

Initialize for each pi ∈ P a bit di := 0.

– Upon receiving message (RoundOK) from party pi set di := 1. If for all pj ∈ H : dj = 1, then reset
dj := 0 for all pj ∈ P. In any case, send (switch, pi) to A.a

– Upon receiving (RequestRound) from pi, send di to pi.
– Upon receiving (corrupt, pi) from A, set H := H ∪ {pi}.

a The adversary is notified in each such call to allow attacks at any point in time.

Synchronous protocols as {Fclock,F`bd-smt }-hybrid protocols. The code of every party is a sequence of “send,”
“receive,” and “compute” operations, where each operation is annotated by the index of the round in which
it is to be executed. In each round r, each party first receives its messages from round r− 1, then computes
and sends its messages for round r. The functionalities Fclock and F`bd-smt are used in the straightforward
manner: At the onset of the protocol execution, each pi sets its local round index to 1; whenever pi receives
a message from some entity other than Fclock (i.e., from Z, A, or some other functionality), if a (RoundOK)
messages has not yet been sent for the current round (i.e., the computation for the current round is not
finished) the party proceeds with the computation of the current round (the last action of each round is
sending (RoundOK) to Fclock); otherwise (i.e., if (RoundOK) has been sent for the current round), the party
sends a (RequestRound) message to Fclock, which replies with the indicator bit di. The party pi uses this
bit di to detect whether or not every party is done with the current round and proceeds to the next round
or waits for further activations accordingly.

In an immediate application of the above described protocol template, the resulting protocol would not
necessarily be secure. Indeed, some party might start sending its round r + 1 messages before some other
party has even received its round r messages, potentially sacrificing security. (Some models in the literature,
e.g. [33], allow such an ordering, while others, e.g. [25], don’t.) The slackness can be overcome by introducing
a “re-synchronization” round between every two rounds, where all parties send empty messages.

The definition of corruption for synchronous protocols differs slightly from the standard definition in [10],
because the functionality Fclock needs to be aware of the exact set of parties that are corrupted. Technically,
we require the adversary to send the message (corrupt, pi) to the clock functionality Fclock immediately
after receiving a corresponding request (corrupt) for party pi ∈ P or (corrupt, pi) for a functionality other
than Fclock from the environment.8

Perfect vs. imperfect clock synchronization. Fclock models that once a single party observes that a round is
completed, every party will immediately (upon activation) agree with this view. As a “real world” assumption,
this means that all parties perform the round switch at exactly the same time, which means that the parties’
clocks must be in perfect synchronization. A “relaxed” functionality that models more realistic synchrony
assumptions, i.e., imperfectly synchronized clocks, can be obtained by incorporating “delays” as for the
bounded-delay channel F`bd-smt. The high-level idea for this “relaxed” clock Fδclock, for some integer δ, is the
following: for each party pi, Fδclock maintains a value ti that corresponds to the number of queries needed
by pi before learning that the round has switched. The adversary is allowed to choose (at the beginning
of each round), for each party pi a delay ti up to the upper bound δ > 0. A detailed description of the
functionality Fδclock is given in the following:

8 The requirement to immediately notify Fclock of corruptions is achieved by a simple change to the UC control
function.

10

Functionality Fδclock(P)

For each pi ∈ P, initialize a bit di := 0, a current delay Di := 1, and a round-total delay D̂i := 1.

– Upon receiving message (RoundOK) from pi set di := 1. If, for all pj ∈ H : dj = 1, then reset dj := 0,

Dj := 1, and D̂j := 1 for all pj ∈ P. Send (switch, pi) to A.a

– Upon receiving (RequestRound) from pi:
• If di = 1 or Di > 1, then set Di := Di − 1 and return 1 to pi.
• If di = 0 and Di = 1, then return 0 to pi.

– Upon receiving a message (delay, T, pi) from the adversary, if D̂i + T ≤ δ then set Di := D + T ,
D̂ := D̂ + T , and return (delay-set, pi) to the adversary; otherwise ignore the message.

– Upon receiving (corrupt, pi) from A, set H := H ∪ {pi}.

a The adversary is notified in each such call to facilitate attacks at any point in time.

4.2 Defining Guaranteed Termination

In formalizing what it means to UC-securely compute some specification with guaranteed termination, we
follow the principle described in Section 1. For simplicity, we restrict ourselves to non-reactive functionalities
(secure function evaluation, or SFE), but our treatment can be easily extended to reactive multi-party
computation. We refer to Appendix A.2 for details on this extension.

Let f : ({0, 1}∗)n×R −→ ({0, 1}∗)n denote an n-party (randomized) function, where the i-th component
of f ’s input (or output) corresponds to the input (or output) of pi, and the (n+1)-th input r ∈ R corresponds
to the randomness used by f . In simulation-based frameworks like [10], the secure evaluation of such a
function f is generally captured by an ideal functionality parametrized by f . For instance, the functionality
Ffsfe described in [10] works as follows: Any honest party can either submit input to Ffsfe or request output.

Upon input xi from some party pi, Ffsfe records xi and notifies A. When some party requests its output, Ffsfe
checks if all honest parties have submitted inputs; if so, Ffsfe evaluates f on the received inputs (missing inputs
of corrupted parties are replaced by default values), stops accepting further inputs, and outputs to pi its

output of the evaluation. For completeness we have included a detailed description of Ffsfe in Appendix A.1.

As described in Section 1, an ideal functionality for evaluating a function f captures guaranteed termi-
nation if the honest parties (or higher-level protocols, which are all encompassed by the environment in the
UC framework) are able to make the functionality proceed and (eventually) produce outputs, irrespective
of the adversary’s strategy. (Technically, we allow the respective parties to “poll” for their outputs.) The

functionality Ffsfe has this “terminating” property; yet, for most choices of the function f , there exists no
synchronous protocol realizing Ffsfe from any “reasonable” network functionality. More precisely, we say that
a network functionality Fnet provides separable rounds if for any synchronous Fnet-hybrid protocol which
communicates exclusively through Fnet, Fnet activates the adversary at least once in every round.9 The
following lemma then shows that for any function f which requires more than one synchronous round to
be evaluated, Ffsfe cannot be securely realized by any synchronous protocol in the Fnet-hybrid model. Note
that this includes many interesting functionalities such as broadcast, coin tossing, etc.

Lemma 4. For any function f and any network functionality Fnet with separable rounds, every Fnet-hybrid
protocol π that securely realizes Ffsfe computes its output in a single round.

Proof (sketch). Assume, towards a contradiction, that π is a two-round protocol securely computing Ffsfe.
Consider the environment Z that provides input to all parties and immediately requests the output from some
honest party. As Fnet provides separable rounds, after all inputs have been submitted, the adversary will
be activated at least twice before the protocols first generate outputs. This is not the case for the simulator
in the ideal evaluation of Ffsfe. Hence, the dummy adversary cannot be simulated, which contradicts the
security of π. ut

9 Functionalities in [10] are not necessarily of that form. A priori, if some ITI sends a message to some other ITI, the
receiving ITI will be activated next. Only if an ITI halts without sending a message, the “master scheduler”—the
environment—will be activated.

11

To obtain an SFE functionality that matches the intuition of guaranteed termination, we need to cir-
cumvent the above impossibility by making the functionality activate the simulator during the computation.
We parametrize Fsfe with a function Rnd(k) of the security parameter which corresponds to the number of
rounds required for evaluating f ; one can easily verify that for any (polynomial) round function Rnd(·) the

functionality Ff,Rndsfe will terminate (if there are sufficiently many queries at the honest parties’ interfaces)
independently of the simulator’s strategy. In each round, the functionality gives the simulator |P| activations
which will allow him to simulate the activations that the parties need for exchanging their protocol messages
and notifying the clock Fclock.

Functionality Ff,Rndsfe (P)

Ff,Rndsfe proceeds as follows, given a function f : ({0, 1}∗∪{⊥})n×R→ ({0, 1}∗)n, a round function Rnd,
and a player set P. For each pi ∈ P, initialize variables xi and yi to a default value ⊥ and a current delay
ti := |P|. Moreover, initialize a global round counter l := 1.

– Upon receiving input (input, v) from some party pi ∈ P, set xi := v and send a message (input, pi)
to the adversary.

– Upon receiving input (output) from some party pi ∈ P, if pi ∈ H and xi has not yet been set then
ignore pi’s message, else do:
• If ti > 1, then set ti := ti − 1. If (now) tj = 1 for all pj ∈ H, then set l := l + 1 and tj := |P| for

all pj ∈ P. Send (activated, pi) to the adversary.
• Else, if ti = 1 but l < Rnd, then send (early) to pi.
• Else,

∗ if xj has been set for all pj ∈ H, and y1, . . . , yn have not yet been set, then choose r
R← R and

set (y1, . . . , yn) := f(x1, . . . , xn, r).
∗ Output yi to pi.

Definition 1 (Guaranteed Termination). A protocol π UC-securely evaluates a function f with guar-

anteed termination if it UC-realizes a functionality Ff,Rndsfe for some polynomial Rnd(·).

Remark 1 (Lower Bounds). The above formulation offers a language for making UC statements about (lower
bounds on) the round complexity of certain problems in the synchronous setting. In particular, the question

whether Ff,Rndsfe can be realized by a synchronous protocol corresponds to the question: “Does there exist a
synchronous protocol π which securely evaluates f in Rnd(k) rounds?”, where k is the security parameter. As
an example, the statement: “A function f needs at least r rounds to be evaluated.” is (informally) translated

to “There exists no synchronous protocol which UC-realizes the functionality Ff,r
′

sfe , where r′ < r.”

Known results on feasibility of secure computation, e.g. [8,16,22,34], extend to our setting of UC with
termination. (This follows from the below theorem and the fact that these protocols are secure with respect
to an efficient straight-line black-box simulator.) The only modification is that the protocols start with a
void synchronization round where no honest party sends or receives any message. For a synchronous protocol
ρ, we denote by ρ̂ the protocol which is obtained by extending ρ with such a start-synchronization round.
The proof is based on ideas from [28].

Theorem 1. Let f be a function and let ρ be a protocol that, according to the notion of [11], realizes f
with computational (or statistical or perfect) security in the stand-alone model, with an efficient straight-
line black-box simulator. Then ρ̂ UC-realizes f with computational (or statistical or perfect) security and
guaranteed termination in the {Fclock,Fbd-sec}-hybrid model with a static adversary.

Before proving the above theorem, we make the following observations that are relevant for the proof: In
this section, we translate a result from Kushilevitz et al. [28] into our setting to obtain UC-secure protocols
for secure function evaluation with guaranteed termination. The structure of the proof of Theorem 1 is
similar to the proof of [28, Theorem 7.1] with some adaptations.

Because of the considered model of communication channels, it is important that the simulator can faith-
fully emulate the “communication pattern” of the protocol. In contrast, most of the literature on secure
function evaluation assumes that communication channels are perfectly secure: they do not even leak the

12

information that a message transmission takes place. This is in contrast to our channel Fbd-smt, which acti-
vates the adversary upon message transmission and, hence, leaks this information. But as our proof considers
“standard synchronous” protocols that proceed in rounds and, within each such round, send exactly one mes-
sage to each one of the other parties, this assumption can be seen to be fulfilled. To allow for a simulation of
the protocol behavior, the realized functionality Ff,Rndsfe requires |P| activations from each honest party in
every round, and for each such activation issues a message (activated, pi) to the simulator. The simulator
then uses these activations to simulate the message transmissions, reproducing the communication pattern
of the protocol.

As, in our model, the parties have access to the clock functionality Fclock, we redefine the notion of start
synchronization from [28] in a simpler way—we say that a protocol ρ has start synchronization if it begins
with the following steps for all parties:

1. Send (RoundOK) to Fclock,
2. In each further activation, query (RequestRound) to Fclock. Once Fclock answers with 0, proceed with

the execution of ρ.

The goal of start synchronization is that the first message of the protocol that actually depends on the
input of an honest party is sent only after the inputs to all honest parties are fixed. Technically, this is
needed to “fix” the honest users’ inputs from the environment Z in the simulated UC-execution. Recall that
for a synchronous protocol ρ, we denote by ρ̂ the protocol which is obtained by extending ρ with such a
start-synchronization round.

We do not use the fully non-adaptive version of [11] to start from, but the “initially adaptive” version
where the adversary is allowed to adaptively choose the parties to be corrupted until the first protocol
message is sent. This is equivalent to the non-adaptive version by [11, Section 4.1, Remark 5]. The same
argument is used implicitly in the proof of [28]. As in [28], we prove the statement only for the computational
setting, the extension to the statistical case is straightforward.

Furthermore, the network implied by [11] provides strong synchrony guarantees: the messages that all
honest parties receive in a round are determined when the first honest party starts the computation in that
round. (In reality, it would be conceivable that the first party pi has finished computation and sending for
round r before another party pj ’s clock tells pj to start computing. In this case, the adversary could inject
round r − 1 messages to pj that actually depend on the round r messages of pi.) This strong synchrony
assumption becomes explicit in our model by doubling the round number of ρ and implementing alternating
“receive” and “compute/send” rounds.

The synchronous protocol ρ has to be detailed slightly to implement the interface of Ff,Rndsfe . For each
pair of parties and round of the protocol, an independent channel Fbd-sec is used. In each round r, the
protocol first computes the messages for that round and then uses the following |P| activations to send the
messages mi,j,r via the channels to the protocol machines ρj and to send (RoundOK) to Fclock. Upon each
further activation, the protocol sends (RequestRound) to Fclock and outputs (early) locally while d = 1,
and proceeds with setting r := r + 1 and sending (fetch) to the channels Fbd-sec to obtain all messages
once d = 0.

Proof (of Theorem 1). By the assumption on the security of ρ, we know that there is a (stand-alone) efficient
straight-line black-box simulator Sρ. Without loss of generality, we assume that ρ has start synchronization,
i.e., ρ = ρ̂ (if this is not the case, then we can trivially extend ρ with the two “start-synchronizing” steps
sketched above). We describe a UC-simulator S for the protocol ρ executed in the {Fclock,Fbd-sec}-hybrid
model with the dummy adversary D, which makes black-box use of Sρ.

13

UC-simulator S
Create instances of the assumed stand-alone simulator Sρ, the ideal functionalities Fclock and Fbd-sec,
and the dummy adversary D.

– Forward all messages between the environment Z and the emulated adversary D (via input and
subroutine output tapes), as well as between D and the simulated ideal functionalities.

– Forward the corruption-related communication between Sρ and Ff,Rndsfe (via the respective communi-
cation tapes).

– Receiving (activated, pi) from Ff,Rndsfe :
• If this is the first such message in a round r, provide the messages sent via Fbd-sec(pj , pi) with
pj ∈ P \ H for round r − 1 to Sρ and obtain the round r messages mi,j,r from ρi to ρj with
pj ∈ P \ H in response.
• Using the communication pattern of the protocol, simulate either the transmission of a message

via Fbd-sec(pi, pj) if pj ∈ H, the message mi,j,r if pj ∈ P \H, or the notification (switch, pi) to D.

In the following, we have to show that if there exists an environment Z that distinguishes between
the real execution of protocol ρ and the ideal execution of Ff,Rndsfe with simulator S with non-negligible
advantage, then there is a stand-alone adversary AZ that attacks ρ in the stand-alone model with non-
negligible probability.

Stand-alone adversary AZ
Split the auxiliary input into a random tape and an auxiliary input for Z. Create and run an instance
of the environment Z with the random tape and input as above, as well as the (dummy) adversary D,
the clock Fclock and the channels Fbd-sec(pi, pj) for pi, pj ∈ P, pi 6= pj . In this simulated computation,
forward the communication between the simulated parties D, Z, Fclock, and Fbd-sec.

– Run the simulation until Z provides the first input to a protocol, answer corruption requests from D
with simulated “vanilla” ρ-states, and corrupt the corresponding parties in the execution of ρ.

– The UC-interaction is simulated almost entirely, with the exception for the computation of the hon-
est parties ρi. Instead, on every other round switch at Fclock, provide all messages injected by D
into Fbd-sec(pj , pi) in the name of the corrupted parties pj ∈ P \ H to the real ρi.

– Being activated with the messages mi,j,r with pi ∈ H and pj ∈ P \H, use these values in the further
simulation until the next but one round switch of Fclock signals that the round r messages of the
corrupted parties are also fixed.

– When a protocol machine ρi in the UC-execution terminates, output the transcript of the execution
(including the auxiliary input) and halt. This transcript is complete, as by the time that ρi does
produce output, it is guaranteed that all messages of the final round must be in the channels.

The main idea of the proof is the following. Since the protocol ρ has start synchronization, the input and
the random tape of Z determine the inputs that Z gives to the honest protocol machines (because the rest
of the execution within AZ is deterministic). This allows us to restrict our attention to this particular set of
inputs in the stand-alone execution. If the environment distinguishes the real and the ideal UC-executions,
then the distribution of the environment’s “view” of the execution of ρ (as a random variable consisting
of all messages sent and received by the environment) together with the outputs of the honest ρi must be
distinguishable. But this corresponds to the fact that the transcripts in the stand-alone executions of ρ with
AZ and Sρ (can be extended to transcripts which) are distinguishable.

The protocol execution begins with a corruption phase: according to the definition of static corruption
in [10], only parties pi for which the environment sent a (corrupt) message prior to the first input to a
protocol machine may be corrupted during the protocol execution (by the definition of the control function).
This is compatible with the “initially adaptive” corruption allowed for AZ by the description in [11]. In the
real stand-alone execution of ρ with AZ , the inputs provided by the environment Z to the honest parties
pi are determined by the auxiliary input and the random tape of the (simulated) environment Z: By the
start synchronization, the first message of the protocol ρ is sent only after all parties pi have sent their
synchronization messages, acknowledging their input. All computations that AZ , D, the honest ρi, and the
ideal functionalities have performed up to this point are deterministic. In the following description, we restrict

14

our attention to executions in the stand-alone model where the inputs to pi and ρi indeed coincide (both in
the real execution with AZ and the black-box ideal execution with AZ and Sρ).

The environment’s “view” in the real UC-execution is the same as the simulated “view” in the stand-
alone execution within AZ restricted to the cases where the inputs and outputs of the honest ρi indeed
coincide. For all inputs except for those that provoke a message from the channel Fbd-sec(pi, pj) to D, this
is straightforward: AZ only performs a straightforward simulation of the other ITMs. But for the messages
from Fbd-sec(pi, pj), the inputs and messages sent to the protocol machines ρi are equal (resp. have the same
distribution) by assumption, and the computation of the stand-alone and the UC-version of ρ are exactly
the same.

The environment’s “view” in the ideal UC-execution is the same as the simulated “view” in the stand-
alone execution in case the inputs and outputs of the honest ρi coincide. Again, responses that do not
contain (simulated) messages from the honest ρi are the same by the fact that both AZ and S perform a
straightforward simulation of the real setting. But responses that involve messages are also the same in both
cases: the simulator S in the UC-execution uses the messages supplied by Sρ as message intended from an
honest ρi to a corrupted ρj , and the same messages are used by AZ in the ideal (black-box straight-line)
execution with S.

Our goal is to conclude that, if an environment Z distinguishes with non-negligible advantage between
the real and ideal UC-executions, the stand-alone transcripts of the real execution with AZ and the ideal
execution with AZ and Sρ can also be distinguished with non-negligible advantage. We construct a distin-
guisher D as follows: By the above construction, the output of AZ contains the auxiliary input to AZ , which
determines the input and random tape to Z. Hence, D can replay the complete execution and obtain the
state of Z at the time the execution was aborted. D continues the simulation of the real model and provides
Z with the output of the honest protocol machines ρi as obtained from the transcript. Once the environment
Z halts with output bit b, D uses the same bit b as its output.

The auxiliary input to AZ is interpreted as a tuple x = (r, z) where r ∈ {0, 1}∗ is used as a random
tape and z ∈ {0, 1}∗ as an auxiliary output to Z. Hence, if we consider the ensembles corresponding to
the stand-alone settings where the variable R corresponding to Z’s random tape is chosen according to the
correct distribution, we obtain{

D
(
realSAρ,AZ (k, (R, z),x(R, z))

)}
k∈N,z∈{0,1}∗

≡
{
realUCρ,D,{Fclock,Fbd-sec},Z(k, z)

}
k∈N,z∈{0,1}∗

and {
idealUCFf,c

sfe ,S,Z
(k, z)

}
k∈N,z∈{0,1}∗

≡
{
D
(
idealSAf,SA(k, (R, z),x(R, z))

)}
k∈N,z∈{0,1}∗

,

where x(R, z) denotes the inputs that Z computes for the honest parties pi, given random tape R and
auxiliary input z. By the above arguments, these are the only parameters that determine the inputs. The
statement holds, as all values in the simulated UC-executions are determined according to exactly the same
computations as in the corresponding “real” UC-executions; note that the distribution ensembles in the
stand-alone case are not the same distributions that appear in the corresponding security definition, as part
of the auxiliary input is also chosen according to a specific distribution. Still, by the assumption that Z is a
successful distinguisher, we obtain that{

D
(
realSAρ,AZ (k, x)

)}
k∈N,x∈{0,1}∗

6≈
{
D
(
idealSAf,SA(k, x)

)}
k∈N,x∈{0,1}∗

,

which concludes the main argument.
As the functionality Ff,csfe models guaranteed termination, this proof implies that the protocol ρ achieves

guaranteed termination if it is executed using channels of the type Fbd-sec. The guaranteed-delivery property
of the channels is used in the proof to conclude that the messages provided to the honest parties ρi are indeed
available in the beginning of each “receive” sub-round by the fact that all honest parties inject them into
the channels before they agree to switch rounds, and the channel Fbd-sec immediately makes the messages
available to the intended receiver. ut

4.3 The Need for Both Synchronization and Bounded Delay

In this section, we formalize the intuition that each one of the two “standard” synchrony assumptions, i.e.,
bounded-delay channels and synchronized clocks, is alone not sufficient for computation with guaranteed

15

termination. We first show in Lemma 5 that bounded-delay channels (even with instant delivery) are, by
themselves, not sufficient; subsequently, we show in Lemma 6 that (even perfectly) synchronized clocks are
also not sufficient, even in combination with eventual-delivery channels (with no known bound on the delay).

The proof of the insufficiency of (solely) bounded-delay channels for terminating computation is based on
the following idea: Consider the two-party function f which, on input a bit x1 ∈ {0, 1} from party p1 (and

nothing from p2), outputs x1 to p2 (and nothing to p1). The functionality Ff,Rndsfe guarantees that an honest
p1 will be able to provide input, independently of the adversary’s behavior. On the other hand, a corrupted
p1 will not keep p2 from advancing (potentially with a default input for p1).10 However, in the real world,

the behavior of the bounded-delay channel in the above two cases is identical. The functionality [Ff,Rndsfe]NT

can be realized from Fbd-sec: p1 simply has to send the input to p2 via the Fbd-sec-channel. The simulator
makes sure that the output in the ideal model is delivered to p2 only after Z acknowledges the delivery.

Lemma 5. There is a function f such that for any polynomial Rnd and any δ > 0: [Ff,Rndsfe]NT can be realized

in the Fδbd-sec-hybrid model, but Ff,Rndsfe cannot.

Proof (sketch). Consider the deterministic two-party function f that on input a bit x1 ∈ {0, 1} from p1 (and
no input from p2) outputs x1 to p2 (f outputs y2 := 0 if x1 = ⊥) and nothing to p2. For the impossibility

of realizing Ff,Rndsfe , it is sufficient to argue for the case δ = 1, as the result extends to the case δ > 1 since
channels with larger δ can be realized from channels with smaller δ (see Section 3.3).

Assume, towards a contradiction, that there exists a F1
bd-sec-hybrid protocol π which securely realizes

Ff,Rndsfe . Consider the following two scenarios which involve a dummy adversary and an environment that
never corrupts p2:

– scenario 1: p1 is corrupted and the adversary is instructed to force p1 to never send any message. As a
result, in protocol π, the (fetch)-queries issued by p2 will result in an activation of Z.

– scenario 2: p1 is honest, but never activated by the environment. Again, in protocol π, the (fetch)-queries
issued by p2 will result in an activation of Z, and from the perspective of p2 the scenarios are identical.

In scenario 1, after receiving |P| ·Rnd queries of the type (output) from Z, the (real world) program of
p2 should output 0 (this is the default input of p1) to Z, as this is the result in the ideal world. However,
in scenario 2, p2 should output (early) to the environment, independently of the number of (output)-
messages received. Indeed, as both parties are honest, Fsfe will wait for p1’s input before producing output.
The environment chooses to implement one of the two above scenarios at random; as the two scenarios are
identical for p2, the action taken by p2 will differ from the “correct action” with probability at least 1/2,
which allows Z to distinguish.
For the possibility, we consider the cases (I) δ = 1 and (II) δ > 1 separately.

Case I (δ = 1): [Ff,Rndsfe]NT can be realized from F1
bd-sec by the simple protocol in which p1 sends its input

via the channel F1
bd-sec. Indeed, the simulator is informed about who is corrupted and about when messages

are sent to [Ff,Rndsfe]NT and can delay the outputs of the functionality arbitrarily, therefore, it can ensure that
the exchanged outputs are only handed to the (dummy) parties when the environment expects to see them.

Case II (δ > 1): To complete the proof, we show that [Ff,Rndsfe]NT can be realized from Fδbd-sec: Lemma 3
implies that [F1

bd-sec]NT can be realized in the Fδbd-sec-hybrid model. Furthermore, in case I we showed that

F1
bd-sec is sufficient for [Ff,Rndsfe]NT, which extends to [F1

bd-sec]NT, as relaxing the hybrid F1
bd-sec to its non-

terminating relaxation does not have any effect on the statement as the functionality we want to achieve is
already of this type. In particular, we use the same protocol as in case I, the only difference in the simulation
is that whenever the adversary delays some output in the [F1

bd-sec]NT, the simulator also delays the outputs
of the ideal functionality accordingly. ut

In reality, synchronous clocks alone are not sufficient for synchronous computation if there is no known
upper bound on the delay of the channels (even with guaranteed eventual delivery); this statement is for-
malized using the clock functionality Fclock and the channels Fed-sec in the following lemma. The proof is
similar to the proof of Lemma 1.

10 This capability of distinguishing “honest” from “dishonest” behavior is key in synchronous models: as the honest
parties are guaranteed that they can send their messages on time, dishonest parties will blow their cover by not
sending a message prior to the deadline.

16

Lemma 6. There is a function f such that for any polynomial Rnd: [Ff,Rndsfe]NT can be realized in the

{Fed-sec,Fclock}-hybrid model, but Ff,Rndsfe cannot.

Proof (sketch). We prove the statement for f being the two-party function used in the proof of Lemma 5,
i.e., on input a bit x1 ∈ {0, 1} from p1 (and no input from p2) f outputs x1 to p2 (f outputs y2 := 0 if
x1 = ⊥) and nothing to p2.

The sufficiency of {Fed-sec,Fclock} for [Ff,Rndsfe]NT follows along the lines of the sufficiency condition in
case II in the proof of Lemma 5. Indeed, the channels Fed-sec are sufficient even without Fclock.

We show that Ff,Rndsfe cannot be realized by an {Fed-sec,Fclock}-hybrid protocol. Consider the dummy
adversary A and the environment Z which corrupts no party and has the following distinguishing strategy:
Z starts by giving a uniformly random two-bit input m ∈ {0, 1}2 to p1. As soon as it receives the leakage
`(m) from the functionality (forwarded by A), Z instructs A to give delay T = Rnd · |P| + 2 = 2Rnd + 2
to Fed-sec. Subsequently, Z activates p2 with input (fetch) 2Rnd + 1 times in a row; as a result, if Z is

witnessing the ideal-world execution, it will receive the message m from p2 (note that Ff,Rndsfe does not allow
the simulator to stall this reply). Hence, p2’s protocol (in the real world) also has to output the message
m to Z after 2Rnd + 1 activations. However, the protocol of p2 cannot get any information on m from
Fed-sec, because by setting the delay to T = 2Rnd + 2, the environment makes sure that the 2Rnd + 1 are
not sufficient for making Fed-smt deliver m to p2. The only possible way out for p2 is to interact with the
functionality Fclock. However, as p1 is activated only once, using the functionality Fclock allows for at most
one bit of communication (i.e., the bit indicating whether or not p1 has switched his indicator bit d1 in this
one activation). Because m is a two-bit message, the probability that p2 outputs m is at most 1/2, which
gives Z a noticeable distinguishing advantage. ut

4.4 Atomicity of Send/Receive Operations and Rushing

Hirt and Zikas [24] pointed out that the standard formulation of a “rushing” adversary [11] in the syn-
chronous setting puts a restriction on the order of the send/receive operations within a synchronous round.
The modularity of our framework allows to pinpoint this restriction by showing that the rushing assump-
tion corresponds to a “simultaneous multi-send” functionality which cannot even be realized using Fclock

and Fbd-sec.
Intuitively, a rushing adversary [11] cannot preempt a party while this party is sending its messages of

some round. This is explicitly stated in [11], where the notion of “synchronous computation with rushing”
is defined as follows:

“The computation proceeds in rounds; each round proceeds in mini-rounds, as follows. Each mini-
round starts by allowing A to corrupt parties one by one in an adaptive way, as long as at most t
parties are corrupted altogether. (The behavior of the system upon corruption of a party is described
below.) Next A chooses an uncorrupted party, p, that was not yet activated in this round and activates
it. Upon activation, p receives the messages sent to it in the previous round, generates its messages
for this round, and the next mini-round begins.”

In reality, it is arguable whether we can obtain the above guarantee by just assuming bilateral bounded-
delay channels and synchronized clocks. Indeed, sending multiple messages is typically not an atomic opera-
tion, as the messages are buffered on the network interface of the computer and sent one-by-one. Hence, to
achieve the simultaneity, one has to assume that the total time it takes for the sender to put all the messages
on the network minus the minimum latency of the network is not sufficient for a party to become corrupted.

The “simultaneous multi-send” guarantee is captured in the following (UC) functionality, which is referred
to as the simultaneous multi-send channel, and denoted by Fms. On a high level, Fms can be described as a
channel allowing a sender pi to send a vector of messages (x1, . . . , xn) to the respective receivers p1, . . . , pn
as an atomic operation. The formal description of Fms is similar to Fbd-smt with the following modifications:
First, instead of a single receiver, there is a set P of receivers, and instead of a single message, the sender
inputs a vector of |P| messages, one for each party in P. As soon as some party receives its message, the
adversary cannot replace any of the remaining messages that correspond to honest receivers, not even by
corrupting the sender. As in the case of bounded-delay channels, we denote by Fms-auth the multi-send channel
which leaks the transmitted vector to the adversary. The following lemma states that the delayed relaxation

17

of Fms-auth cannot be realized from Fbd-sec and Fclock when arbitrary many parties can be corrupted. This
implies that Fms-auth can also not be realized from Fbd-sec and Fclock.

Functionality F`ms(pi,P)

– Upon receiving a vector of messages m = (m1, . . . ,mn) from pi, record m and send a message
(sent, `(m)) to the adversary.

– Upon receiving (fetch) from pj ∈ P, output (sent,mj) to pj (with mj = ⊥ if m has not been
recorded).

– Upon receiving (replace,m′) from the adversary if no (honest or corrupted) pj received mj before
pi became corrupted, then replace m by m′.

Lemma 7. Let P be a player set with |P| > 3. Then there exists no protocol which UC-realizes [Fms-auth]NT

in the {Fclock,Fbd-auth}-hybrid model and tolerates a corrupted majority.

Proof (sketch). Garay et al. [21] showed that if atomic multi-send (along with a setup for digital signatures) is
assumed, then the broadcast protocol from Dolev and Strong [19] UC-realizes broadcast (without guaranteed
termination) in the presence of an adaptive adversary which corrupts any number of parties. Hence, if there
exist a protocol for realizing [Fms-auth]NT in the synchronous model, i.e., in the {Fclock,Fbd-auth}-hybrid
world, with corrupted majority and adaptive adversary, then one could also realize broadcast in this model,
contradicting the impossibility result of [24]. ut

The above lemma implies that the traditional notion of “synchronous computation with rushing” cannot
be, in general, achieved in the UC model unless some non-trivial property is assumed on the communication
channel. Yet, [Fms-auth]NT can be UC-realized from {[Fbd-auth]NT, [Fcom]NT}, where Fcom denotes the standard
(UC) commitment functionality [13]. The idea is the following: In order to simultaneously multi-send a vector
(x1, . . . , xn) to the parties p1, . . . , pn, the sender sends an independent commitment on xi to every recipient pi,
who acknowledges the receipt (using the channel [Fbd-auth]NT). After receiving all such acknowledgments, the
sender, in a second round, opens all commitments. The functionality Fcom ensures that the adversary (unless
the sender is corrupted in the first round) learns the committed messages xi only after every party has received
the respective commitment; but, from that point on, A can no longer change the committed message. For
completeness we state the above in the following lemma.

Lemma 8. There is a synchronous {[Fbd-auth]NT, [Fcom]NT}-hybrid protocol UC-realizing [Fms-auth]NT.

Proof. Let π be the protocol that proceeds as follows (we assume that the designated sender pi ∈ P is
specified in the session ID, and denote the corresponding protocol machine by πi). On input a message
vector m, the machine πi initializes one copy [Fcom]NTj and issues (commit,mj) to [Fcom]NTj for each receiver
pj ∈ P \{pi}. In the following activations, the machine πi repeatedly polls the channels [Fbd-sec]NT and waits
to receive a message (ack) from each pj . Afterward, πi proceeds by sending (open) messages to all [Fcom]NTj .
The protocol machines of the receiving parties pj wait for the notification (receipt) from the functionality
[Fcom]NTj and react by sending a message (ack) via the channel [Fbd-sec]NT to πi. After receiving both the
message (open,mj) from [Fcom]NTj and the query (fetch) on the input tape, πj outputs mj locally.

We describe the simulator S that is used to prove that π achieves the desired goals. Upon receiving
(sent,m) from [Fms-auth]NT, S simulates (in each of the subsequent activations of πi) a public delayed
message (receipt) from [Fcom]NTj for one of the pj 6= pi. Whenever the environment acknowledges the
delivery of such a message for [Fcom]NTj , S simulates the transmission of the message (ack) on the channel
[Fbd-auth]NT from pj to pi. On every subsequent activation of pi, the machine S simulates the behavior
of the channels [Fbd-auth]NT that πi is polling, until all acknowledgments (would) have arrived—this is by
simply counting the respective activations. On the following activations of pi, S simulates the notifications
(open,mj) from the functionalities [Fcom]NTj , and after the environment acknowledged this opening and S
obtained the notification for the output from [Fms-auth]NT, S acknowledges this output. If the environment
requests to corrupt a party, the simulator can easily construct the expected internal state since all data that
does not solely represent the state of the protocol is the message vector m which is provided to S in the first
activation.

18

Note that the two executions are indeed indistinguishable: The messages produced by the simulator
have exactly the correct distribution (except for the opening message, all messages only represent state
transitions of the protocol, and the messages mj in the opening messages are exactly the ones obtained from
[Fms-auth]NT). Also, the restriction that S cannot replace the message vector if pi was honest while sending m
and the first message was already delivered to a pj is consistent with the restrictions in the real execution,
as if pi is corrupted after the first commitment is opened, all other messages to the honest receivers are
already immutable in the respective commitment functionalities (by the strict ordering of events enforced by
πi and the acknowledgments sent upon receiving a (receipt)) and can not be changed unless the respective
receivers are corrupted. Hence, the same restrictions apply in the real model. ut

Using Lemmas 7 and 8, and the fact that the delayed relaxation of any F can be realized in the F-hybrid
model, we can extend the result of [13] on impossibility of (UC) commitments to our synchronous setting.

Corollary 1. There exists no protocol which UC-realizes the functionality Fcom in the {Fbd-auth,Fclock}-
hybrid model.

5 Existing Synchronous Models as Special Cases

In this section, we revisit existing models for synchronous computation. We show that the Fsyn-hybrid model
as specified in [10] and the Timing model from [26] are sufficient only for non-terminating computation (which
can be achieved even in a fully asynchronous environment). We also show that the models of [33] and [25]
can be expressed as special cases in our model.

5.1 The Fsyn-Hybrid Model

In [10], a model for synchronous computation is specified by a synchronous network functionality Fsyn. On
a high level, Fsyn corresponds to an authenticated network with storage, which proceeds in a round-based
fashion; in each round r, every party associated to Fsyn inputs a vector of messages, where it is guaranteed
that (1) the adversary cannot change the message sent by an honest party without corrupting this party,
and (2) the round index is only increased after every honest party as well as the adversary have submitted
their messages for that round. Furthermore, Fsyn allows the parties to query the current value of r along
with the messages of that round r. For completeness, we have included the detailed description of the
functionality Fsyn in Appendix B.
Fsyn requires the adversary to explicitly initiate the round switch; this allows the adversary to stall

the protocol execution (by not switching rounds). Hence, Fsyn cannot be used for evaluating a not locally
computable function f with guaranteed termination: because we require termination, for every protocol
which securely realizes Fsfe and for every adversary, the environment Z which gives inputs to all honest
parties and issues sufficiently many fetch requests has to be able to make π generate its output from the
evaluation. This must, in particular, hold when the adversary never commands Fsyn to switch rounds, which
leads to a contradiction.

Lemma 9. For every not locally computable n-party function f and for every polynomial Rnd: there is no
Fsyn-hybrid protocol which securely realizes Ff,Rndsfe with guaranteed termination.

Proof. Let f be a function that is not locally computable and assume, towards contradiction that there
is a protocol π which securely realizes Ff,Rndsfe in the Fsyn-hybrid model. As f is not locally computable,
there are input vectors x and x′ and a party pi ∈ P such that xi = x′i but (f(x, R))i 6≈ (f(x′, R))i.
Consider the following environment: Z corrupts no party, tosses a coin and hands inputs either x or x′ to
the parties. Subsequently, Z activates the parties Rnd · |P| times in a round-robin fashion using (output)-
queries. Throughout this computation, Z ignores all activations from the adversary and never activates the
adversary, but Z records the values yi provided as output by the honest parties in the last round of the
computation.

In the ideal-world execution (i.e., in the Ff,Rndsfe -hybrid model with some simulator S), by the definition

of Ff,Rndsfe , this behavior will result in an output vector y that is distributed as either f(x, R) or f(x′, R),

19

depending on the inputs provided by the environment. In contrast, in the Fsyn-hybrid world with the dummy
adversary A, the network Fsyn will not allow the parties to exchange any message (as the round does not
advance). As a result, the distribution of the output yi is the same independent of whether the input provided
by Z is x or x′ (as all messages received by the protocol machine of party pi are exactly the same). Z uses
the distinguisher guaranteed for (f(x, R))i and (f(x′, R))i and obtains half the distinguishing advantage
(which is still non-negligible). ut

The only advantage that Fsyn offers on top of what can be achieved from (asynchronous) channels is
that Fsyn defines a point in the computation (chosen by A) in which the round index advances for all
parties simultaneously. This, however, is also achieved by the (ideal) clock functionality Fclock. Indeed,
the functionality Fsyn can be realized by a protocol using Fclock and fully asynchronous channels. This
protocol follows the ideas of [2,26]: In each round r, each party pi sends a message to all other parties. After
receiving messages from all pj , pi uses the clock Fclock to synchronize with all other pj . Once all parties
have acknowledged the reception, pi prepares the messages received in that round for local output (upon
request) and starts the next round (as soon as messages have been provided as local input). This proves the
following lemma.11

Lemma 10. There exists a protocol that UC-realizes the functionality Fsyn in the {Fclock,Fauth}-hybrid
model.

5.2 The Timing Model

The “Timing model” [23,26] integrates a notion of time into the protocol execution by extending the model
of computation. Each party, in addition to its communication and computation tapes, has a clock tape that
is writable for the adversary in a monotone and “bounded drift”-preserving manner: The adversary can only
increase the value of the clocks, and, for any two parties, the distance ε of their clocks’ speed (drift) at any
point in time is bounded by a known constant. The value of a party’s clock tape defines the local time of this
party. Depending on this time, protocols delay sending messages or time out if a message has not arrived as
expected. We formalize this modeling of time in UC in the following straightforward manner: We introduce
a functionality Ftime that maintains a clock value for each party and allows the adversary to advance this
clock in the same monotone and “bounded drift”-preserving way. Instead of reading the local clock tape,
Ftime-hybrid protocols obtain their local time value by querying Ftime.

Functionality Fεtime(P)

For every party pi ∈ P, the functionality Ftime maintains an integer ti (pi’s current time) and two bits
ai, si ∈ {0, 1}. For initialization, Ftime sets ai := 0 and si := 1 and expects to receive a vector T of |P|
integers from A and ti := T i (otherwise ti = 0 for all pi ∈ P).

– Upon receiving (deactivate, pi) from A, set ai := 0 and si := 0, and send (ok) to A.
– Upon receiving (set, (ρi)pi∈P) from A, check whether ai = 0 for all pi ∈ P and whether setting ti to
ρi for all pi ∈ P preserves the property of being ε-drift preserving. If this is the case, set ti := ρi and
si := 1 for all pi ∈ P. Send (ok) to A.

– Upon receiving (activate, pi) from A, if si = 1 then set ai := 1. Send (ok) to A.
– Upon receiving (time) from pi, if ai = 1 then send (time, ti) to pi, otherwise send (inactive) to pi.

The different scheduling schemes used in [10] and [26] impose some further technical details on Ftime:
While in [10], the “master scheduler” activated by default is defined to be the environment Z, this task
is fulfilled by the adversary A in [26]. To be able to show the relation between security statements in the
two models, we have to define the functionality Ftime such that it “protects” parties from being activated
without the acknowledgment of the adversary.

Lemma 11 shows that Ftime can be realized from fully asynchronous authenticated communication.
Together, Lemmas 11 and 12 demonstrate that “timed” protocols cannot UC-realize more functionalities
than non-“timed” protocols, which is consistent with [26, Theorem 2]. In contrast, “timed” protocols can
securely realize arbitrary functionalities under composition with δ-delayed protocols [26, Theorem 1].

11 In previous versions of the work, we proved that a relaxed version of Fsyn is achieved even without Fclock. Adapting
the statement allows us to omit this additional functionality, while preserving the high-level result due to Lemma 6.

20

Lemma 11. Let P be a player set and ε ≥ 1. The functionality Fεtime(P) can be UC-realized from pairwise
authenticated channels Fauth.

Proof. The protocol τ realizes Ftime in the Fauth-hybrid model.

Protocol τ(P)

For (each) party pi, initialize variables t
(i)
j := 0 and a

(i)
j := 1 for all j ∈ P. Initialize a channel Fauth(pi, pj)

to each pj ∈ P. If several messages are to be sent in a single activation, they are stored in a buffer and
sent during the following activations.

– Upon a (set-inactive, ρj) message from pj , set a
(i)
j := 0.

• If a
(i)
i = 1 and t

(i)
i ≤ t

(i)
l for all pl ∈ P, then become inactive.

• If for all l ∈ P : ((a
(i)
l = 0 ∧ t

(i)
l ≥ t

(i)
i) ∨ t

(i)
l > t

(i)
i), then set t

(i)
i := t

(i)
i + 1 and a

(i)
i := 1, and

send (set-active, t
(i)
i) to all pl ∈ P \ {pi}.

– Upon a (set-active, ρj) message from pj with ρj > t
(i)
j , set a

(i)
j := 1 and t

(i)
j := ρj .

– Upon local input (time), if a
(i)
i = 0 then output (inactive), otherwise output (time, t

(i)
i).

– Upon any activation via the communication tape while no outgoing messages are pending and a
(i)
j = 1

for all pj ∈ P, become inactive.

– Becoming inactive: Set a
(i)
i := 0 and send a message (set-inactive, t

(i)
i) to all pj ∈ P \ {pi}.

Messages that do not match any of the rules are ignored.

The simulator S for the protocol τ and the dummy adversary D proceeds as follows. All messages between
Z and (the simulated) D are simply forwarded. S also simulates protocol machines τi running protocol τ for
each party pi, and maintains buffers for the (simulated) functionalities Fauth(pi, pj). During the execution,
S behaves as follows:

– For a message m sent among (the simulated) τi and τj , simulate (leak,m) from Fauth(pi, pj) to D.
– If D activates τj or issues a message (deliver) to a (non-empty) channel Fauth(pi, pj), run the simulated
τj with the respective input, and:

• if τj changes a
(j)
j from 1 to 0, then send (deactivate, pj) to Ftime. If τj was the last (honest) protocol

machine to make this transition for the current round value, then increase the clock counter for all
pi ∈ P using the (set, (ρi)pi∈P) message to Ftime.

• if τj changes a
(j)
j from 0 to 1, then send (activate, pj) to Ftime.

– Corruption of parties can be handled easily because S internally simulates the complete state of the
protocol.

The described simulator is perfect. In particular, we show that any query by Z will lead to the same state
transitions and replies in the two executions.

There are three main arguments that build the proof: First, the transitions of the variables a
(i)
j and

t
(i)
j within the parties in the real execution and the simulated protocol machines in the ideal execution are

consistent for every query of Z. Second, throughout the complete ideal execution, the invariant ai = a
(i)
i ,

ai = 1 ⇒ ti = t
(i)
i , (ai = 0 ∧ si = 0) ⇒ ti = t

(i)
i , (ai = 0 ∧ si = 1) ⇒ ti = t

(i)
i + 1, and t

(j)
l ≤ tl is always

preserved, where ai, ti are the values in Ftime and a
(j)
i , t

(j)
i are the values within the simulated protocol

machine τj . Third, the responses of the real and ideal model on the same queries are always identical, given
that the state is consistent. (The fact that the protocol is deterministic simplifies some arguments.)

The environment can initiate the following queries at its interfaces (and those of D):

Query (time) at τj: In both cases, the response is (inactive) if aj = 0 and (time, tj) if aj = 1 (consistently

for the values a
(j)
j and t

(j)
j).

21

Query (deliver) at Fauth(pi, pj): If the buffer has the same contents in both cases prior to this query,
then the contents is the same after this query. Also, if the buffer is empty, then Z is activated in both
cases.
If the first message in the buffer is a (set-active, ρi) message, then both the real and the simulated τj
will update their internal view of τi’s state, but will not change their own state.
If the first message in the buffer is a (set-inactive, ρj) message, then the state transition of the real
and the ideal τj will also be the same. We have to argue that the effect on the behavior of Ftime coincides
with the behavior of τj for (time)-queries.

a
(j)
j = 1 a

(j)
j = 0: S sends (deactivate, pj) to Ftime, which sets in aj = 0 and sj = 0. Since neither

tj nor t
(j)
j changed, the invariant is preserved.

If al = 0 and sl = 0 for all pl ∈ H, then the invariant implies that tl = t
(l)
l . Also, S (which can easily

keep track of this) will advance tl := tl + 1 for all pl ∈ P by sending
(
set, (tl + 1)pl∈P

)
, which will

also set sl := 1 for all pl ∈ P. Hence, after the switch, we have al = 0, sl = 1, and tl = t
(l)
l + 1 for all

pl ∈ H, so the invariant is preserved.

a
(j)
j = 0 a

(j)
j = 1: S will send (activate, pj) to Ftime, which induces aj := 1.

Note that τj only switches if a
(j)
l = 0 or t

(j)
l > t

(j)
j for all pl ∈ P. If there is an pl ∈ H with a

(j)
l = 1,

then tj = tl ≥ t
(j)
l > t

(j)
j and hence sj = 1 and tj = t

(j)
j + 1. Otherwise, if a

(j)
l = 0 for all pl ∈ H,

then we must have tl ≥ t
(j)
l ≥ t

(j)
j , so all parties are inactive and (at least) in the “current” round,

so we also have sj = 1 and tj = t
(j)
j + 1. Hence, after this transition, we have aj = a

(j)
j = 1 and

t
(j)
j = tj .

Empty activation at τj: This is a special case of the above.

The initial state of the system also fulfills the invariant. Note that while corrupted parties can easily stall
the computation (by simply withholding the respective messages), they cannot undermine the consistency
guarantees of the protocol. Also, note that the protocol is non-trivial: in presence of an adversary that
forwards messages among the protocol machines and occasionally activates them via the network, the protocol
will indeed make progress. ut

Translating functionalities. As for the different definitions of protocol executions, there are several differences
between the definitions of ITMs in [26] and those in [10]. In particular, ITMs in [26] have an explicit outgoing
communication tape, on which all messages (both “communication” messages intended for communication
over the network and “ideal” messages directed to an ideal functionality) are written (albeit the adversary
cannot access the contents of the ideal messages, but merely sees their length). ITMs can write an (a
priori) arbitrary number of messages for arbitrary receivers to their outgoing communication tape in a single
activation. In [10], in contrast, communication is defined as writing directly to the respective input tape of the
receiving ITI. This implies that ideal messages are not communicated via A, and that, in a single activation,
messages can only be sent to a single receiver. For ideal functionalities, the differences that must be leveraged
by the transformation T are: For inputs to and outputs from parties, the lengths of the respective messages
are leaked to A. Also, A may schedule the delivery of any such “ideal” message.

We define the transformation mapping TT as follows. The functionality TT (F), upon receiving an input
message x from any honest party pi, sends a notification (input, pi, |x|) to the adversary. After the adversary
has acknowledged this input, TT (F) simulates x as an input to F. All outputs y of F to a party pi are sent
by TT (F) as (private) delayed outputs, where additionally the length |y| is leaked.

Translating protocols. The protocol compiler CT translates the ITMCs (interactive Turing machines with
clocks) from [26] to Ftime-hybrid ITMs. At the beginning of each activation (except for replies from Ftime),
CT (π) sends a message (time) to the functionality Ftime and writes the returned time value to the simulated
clock tape of π. If Ftime replies with (inactive), then CT (π) buffers the input (if necessary) and halts. The
protocol compiler also leverages for the different semantics of communication. This means that the Fauth-
hybrid protocol CT (π), instead of writing network messages to the outgoing communication tape, inserts

22

them into the authenticated channel Fauth(pi, pj) that pi shares with the receiver pj . After the initial input
is obtained, CT (π) ignores all further activations via the input tape.12

Lemma 12 then shows that any security statement about a functionality F in the Timing model can be
translated into a statement about TT (F) in the {Ftime,Fauth}-hybrid model (in UC). The proof appears in
Section C of the appendix. Following [10, Claim 12], it is sufficient to show the that a protocol is secure in
the Timing model if and only if it is secure in UC with respect to specialized simulators.

Lemma 12. For an arbitrary functionality F and a protocol π in the Timing model, π securely realizes F (in
the Timing model) if and only if the compiled protocol CT (π) UC-realizes TT (F) in the {Ftime,Fauth}-hybrid
model in the presence of a static13 adversary and with respect to specialized simulators.

5.3 Models with Explicit Round-Structure

Nielsen’s framework [33]. The framework described in [33] is an adaptation of the asynchronous frame-
work of [12] to authenticated synchronous networks. While the general structure of the security definition
is adopted, the definition of protocols and their executions differs considerably. For instance, the “subrou-
tine” composition of two protocols is defined in a “lock-step” way: the round switches occur at the same
time. Similarly to our bounded-delay channels, messages in transfer can be replaced if the sender becomes
corrupted. Lemma 13 allows to translate, along the lines of Section 5.2, any security statement in the model
of [33] into a security statement about a synchronous protocol in the {Fclock,Fbd-auth}-hybrid model. As
in the previous section, the translation is done by a functionality compiler TN (·) that resolves the type
mismatch between the functionalities in UC and in [33], and a corresponding protocol compiler CN (·). The
descriptions of these compilers along with the proof of Lemma 13 are provided in Appendix D, where we also
briefly describe the model of [33]. We emphasize that the converse statement of Lemma 13 does not hold,
i.e., there are UC statements about synchronous protocols that cannot be modeled in the [33] framework.
For instance, our synchronous UC model allows protocols to use further functionalities that run mutually
asynchronously with the synchronous network, which cannot be modeled in [33].

Lemma 13. For an arbitrary functionality F and a protocol π in [33], π securely realizes F (in [33]) if and
only if the compiled protocol CN (π) UC-realizes TN (F) in the {Fclock,Fbd-auth}-hybrid model.

Hofheinz and Müller-Quade’s framework [25]. The framework of [25] also models authenticated synchronous
networks based on the framework of [12], but the rules of the protocol execution differ considerably: The
computation proceeds in rounds, and each round is split into three phases. In each phase, only a subset of
the involved ITIs are activated, and the order of the activations follows a specific scheme. The adversary
has a relaxed rushing property: while being the last to specify the messages for a round, he cannot corrupt
parties within a round. This corresponds to a network with guarantees that are stronger than simultaneous
multi-send: once the first message of an honest party is provided to the adversary, all messages of honest
parties are guaranteed to be delivered correctly.14 We model this relaxed rushing property in UC by the
functionality Fms+ (see Appendix E), which is a modified version of Fms and exactly captures this guarantee.
As before, we translate the security statements of [25] to our model (where Fms+ is used instead of Fauth)
through a pair of compilers (TH(·), CH(·)).

Lemma 14. For an arbitrary functionality F and a protocol π in [25], π securely realizes F (in [25]) if and
only if the compiled protocol CH(π) UC-realizes TH(F) in the {Fclock,Fms+}-hybrid model.

12 In contrast to the Timing model, protocols in the model of [10] can only send a single message within an activation.
On the other hand, this property of the Timing model leaks some additional information to the adversary, namely
the information that the messages on the outgoing communication tape are all messages to be sent prior to the
next input. In order to equip the UC-adversary with the same power, we define that the protocol π sends an empty
message to the adversary if it is activated for sending but there are no pending messages.

13 The Timing model [26] considers only static adversaries.
14 In the context of [25], this is an advantage as it strengthens the impossibility result.

23

6 Conclusion

We described a modular security model for synchronous computation within the (otherwise inherently asyn-
chronous) UC framework by specifying the real-world synchrony assumptions of bounded-delay channels and
loosely synchronized clocks as functionalities. The design principle that underlies these functionalities allows
us to treat guaranteed termination; previous approaches for synchronous computation within UC either re-
quired fundamental modifications of the framework (which also required re-proving fundamental statements)
or did not allow to make such statements altogether.

The framework faithfully models the guaranteed expected from synchronous networks within the formal
UC framework, which we demonstrated by revisiting and translating basic results from the literature on
synchronous protocols. Furthermore, the flexibility of our framework allows to cast previous specialized
frameworks as special cases of our model by introducing network functionalities that provide the guarantees
formalized in those models.

Acknowledgments. We thank Ran Canetti for interesting discussions and comments on the comparison
of our model with the Fsyn-hybrid formulation. The first author was supported by NSF awards #0447075,
#1111599, and #1223623. The second and third authors were supported by the Swiss National Science
Foundation (SNF), project no. 200020-132794. The fourth author was partially supported by a fellowship
from the SNF, project no. PBEZP2-134445.

24

References

1. Asharov, G., Lindell, Y., Rabin, T.: Perfectly-Secure Multiplication for Any t < n/3. In: Rogaway, P. (ed.)
CRYPTO 2011. LNCS, vol. 6841, pp. 240–258. Springer, Heidelberg (2011)

2. Awerbuch, B.: Complexity of Network Synchronization. Journal of the ACM 32, pp. 804–823 (1985)
3. Backes, M.: Unifying Simulatability Definitions in Cryptographic Systems under Different Timing Assumptions.

In: Amadio, R., Lugiez, D. (eds.) CONCUR 2003. LNCS, vol. 2761, pp. 350–365. Springer, Heidelberg (2003)
4. Backes, M., Hofheinz, D., Müller-Quade, J., Unruh, D.: On Fairness in Simulatability-based Cryptographic Sys-

tems. In: Proceedings of FMSE, pp. 13–22. ACM (2005)
5. Backes, M., Pfitzmann, B., Steiner, M., Waidner, M.: Polynomial Fairness and Liveness. In: Proceedings of the

15th Annual IEEE Computer Security Foundations Workshop, pp. 160–174. IEEE (2002)
6. Backes, M., Pfitzmann, B., Waidner, M.: The Reactive Simulatability (RSIM) Framework for Asynchronous

Systems. Information and Computation 205, pp. 1685–1720 (2007)
7. Ben-Or, M., Canetti, R., Goldreich, O.: Asynchronous Secure Computation. In: Proceedings of the 25th Annual

ACM Symposium on Theory of Computing, pp. 52–61. ACM (1993)
8. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness Theorems for Non-Cryptographic Fault-Tolerant Dis-

tributed Computation. In: Proceedings of the 20th Annual ACM Symposium on Theory of Computing, pp. 1–10.
ACM (1988)

9. Canetti, R.: Studies in Secure Multiparty Computation and Applications. PhD thesis, The Weizmann Institute
of Science (1996)

10. Canetti, R.: Universally Composable Security: A New Paradigm for Cryptographic Protocols. In: Cryptology
ePrint Archive, Report 2000/067 (2005)

11. Canetti, R.: Security and Composition of Multiparty Cryptographic Protocols. In: Journal of Cryptology 13, pp.
143–202 (2000)

12. Canetti, R.: Universally Composable Security: A New Paradigm for Cryptographic Protocols. In: Proceedings of
the 42nd Annual IEEE Symposium on Foundations of Computer Science, pp. 136–145. IEEE (2001)

13. Canetti, R., Fischlin, M.: Universally Composable Commitments. In: Kilian, J. (ed.) CRYPTO 2001, LNCS, vol.
2139, pp. 19–40. Springer, Heidelberg (2001)

14. Canetti, R., Krawczyk, H.: Universally Composable Notions of Key Exchange and Secure Channels. In: Knudsen,
L. R. (ed.) EUROCRYPT 2002, LNCS, vol. 3027, pp. 337–351. Springer, Heidelberg (2002)

15. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally Composable Two-Party and Multi-Party Secure
Computation. In: Proceedings of the 34th Annual ACM Symposium on Theory of Computing, pp. 494–503. ACM
(2002)

16. Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty Unconditionally Secure Protocols. In: Proceedings of the 20th
Annual ACM Symposium on Theory of Computing, pp. 11–19. ACM (1988)

17. Chor, B., Moscovici, L.: Solvability in Asynchronous Environments. In: Proceedings of the 30th Annual IEEE
Symposium on Foundations of Computer Science, pp. 422–427. IEEE (1989)

18. Dodis, Y., Micali, S.: Parallel Reducibility for Information-Theoretically Secure Computation In: Bellare, M. (ed.)
CRYPTO 2000. LNCS, vol. 1880, pp. 74–92. Springer, Heidelberg (2000)

19. Dolev, D., Strong, H. R.: Polynomial Algorithms for Multiple Processor Agreement. In: Proceedings of the 14th
Annual ACM Symposium on Theory of Computing, pp. 401–407. ACM (1982)

20. Dwork, C., Naor, M., Sahai, A.: Concurrent Zero-Knowledge. In: Proceedings of the 30th Annual ACM Sympo-
sium on Theory of Computing, pp. 409–418. ACM (1998)

21. Garay, J. A., Katz, J., Kumersan, R., Zhou, H.-S.: Adaptively Secure Broadcast, Revisited. In: Proceedings of
the 30th Annual ACM Symposium on Principles of Distributed Computing, pp. 179–186. ACM (2011)

22. Goldreich, O., Micali, S., Wigderson, A.: How to Play any Mental Game—A Completeness Theorem for Protocols
with Honest Majority. In: Proceedings of the 19th Annual ACM Symposium on Theory of Computing, pp. 218–
229. ACM (1987)

23. Goldreich, O.: Concurrent Zero-Knowledge with Timing, Revisited. In: Proceedings of the 34th Annual ACM
Symposium on Theory of Computing, pp. 332–340. ACM (2002)

24. Hirt, M., Zikas, V.: Adaptively Secure Broadcast. In: Gilbert, H. (ed.) EUROCRYPT 2010, LNCS, vol. 6110, pp.
466–485. Springer, Heidelberg (2010)

25. Hofheinz, D., Müller-Quade, J.: A Synchronous Model for Multi-Party Computation and the Incompleteness of
Oblivious Transfer. In: Proceedings of Foundations of Computer Security — FCS’04, pp. 117–130. (2004)

26. Kalai, Y. T., Lindell, Y., Prabhakaran, M.: Concurrent General Composition of Secure Protocols in the Timing
Model. In: Proceedings of the 37th Annual ACM Symposium on Theory of Computing, pp. 644–653. ACM (2005)

27. Künzler, R., Müller-Quade, J., Raub, D.: Secure Computability of Functions in the IT Setting with Dishonest
Majority and Applications to Long-Term Security. In: Reingold, O. (ed.) Theory of Cryptography, LNCS, vol.
5444, pp. 238–255. Springer, Heidelberg (2009)

25

28. Kushilevitz, E., Lindell, Y., Rabin, T.: Information-theoretically Secure Protocols and Security under Composi-
tion. In: Proceedings of the 38th Annual ACM Symposium on Theory of Computing, pp. 109–118. ACM (2006)

29. Maji, H., Prabhakaran, M., Rosulek, M.: Cryptographic Complexity Classes and Computational Intractability
Assumptions. In: Innovations in Computer Science. Tsinghua University Press (2010)

30. Maurer, U.: Constructive Cryptography: A New Paradigm for Security Definitions and Proofs. In: Mödersheim,
S., Palamidessi, C. (eds.) TOSCA, LNCS, vol. 6993, pp. 33–56. Springer, Heidelberg (2011)

31. Maurer, U., Renner, R.: Abstract Cryptography. In: Innovations in Computer Science. Tsinghua University Press
(2011)

32. Maurer, U., Tackmann, B.: Synchrony Amplification. In: International Symposium on Information Theory Pro-
ceedings, pp. 1583–1587. IEEE (2012)

33. Nielsen, J. B.: On Protocol Security in the Cryptographic Model. PhD thesis, University of Aarhus (2003)
34. Rabin, T., Ben-Or, M.: Verifiable Secret Sharing and Multiparty Protocols with Honest Majority. In: Proceedings

of the 21st Annual ACM Symposium on Theory of Computing, pp. 73–85. ACM (1989)

A Supplementary Material

This section contains supplementary material that has been deferred from the main paper, but which is
useful to consult while reading the paper. Some of the functionalities presented here are material imported
from other papers and restated using our conventions, and some of the functionalities are only described
informally in the body of the paper.

A.1 Secure Function Evaluation

An (albeit hard to implement) version of the secure function evaluation (SFE) functionality Fsfe appears
in [10]. The functionality models the strictest version of termination one can hope for: once all honest
parties have provided input, the functionality will produce output in the next activation. This functionality
cannot be implemented if the network leaks any information about transferred messages (e.g., the fact that a
message is transferred). Also, depending on the set-up used by protocols, the functionality must potentially
be weakened to drop guarantees if too many parties become corrupted.

Functionality Ffsfe(P)

Ffsfe proceeds as follows, given a function f : ({0, 1}∗ ∪ {⊥})n × R → ({0, 1}∗)n and a player set P.
Initialize the variables x1, . . . , xn, y1, . . . , yn to a default value ⊥.

– Upon receiving input (input, v) from some party pi ∈ P, set xi := v and send a message (input, pi)
to the adversary.

– Upon receiving input (output) from some party pi with pi ∈ P, do:

• If xj has been set for all pj ∈ H, and y1, . . . , yn have not yet been set, then choose r
R← R and

set (y1, . . . , yn) := f(x1, . . . , xn, r).
• Output yi to pi.

A.2 Secure (Reactive) Multi-Party Computation

We next describe the functionality Fmpc for reactive multi-party computation. For simplicity, we first describe
the extension of Fsfe from [10] to the reactive case. As with the non-reactive function evaluation (SFE),
this MPC functionality is too strong to be implemented in “reasonable” synchronous networks. However,
introducing it will allow us to deal with reactiveness separately from the problems that occur due to delays
and synchronization issues.

A reactive computation can be specified as an ordered sequence of secure function evaluations which
can maintain a joint state. The state used to evaluate any function in this sequence is passed on to the
subsequent functions. For simplicity we assume, as in the case of Fsfe, that each time a party is expected
to give input to (resp. receive output from) the computation, every party gives an—potentially void—input
(resp. receives output). More precisely, the computation is described as a vector of functions f = (f1, . . . , fm),
where each fλ ∈ f takes as input a vector of values from {0, 1}∗ ∪ {⊥}, a uniformly random value r from a

26

known domain R, as well as a state vector Sλ ∈ (({0, 1}∗ ∪ {⊥})n × R)(λ−1). The state vector Sλ contains
the inputs and randomness used for evaluating the functions f1, . . . , fλ−1; each fλ ∈ f outputs a vector of
strings yλ ∈ {0, 1}n.

The functionality Ff
mpc is parametrized by the vector of functions f = (f1, . . . , fm). For each fλ ∈ f ,

Fmpc might receive an input xi,λ from party i at any point before fλ is evaluated (as soon as fλ is evaluated

and the output has been given to some party, Ff
mpc stops accepting inputs for fλ). In that case, Fmpc records

xi,λ as pi’s input to the evaluation of fλ. We denote the vector of the parties’ inputs to the function fλ as
xλ = (x1,λ, . . . , xn,λ). Similarly, we denote the vector of the parties’ outputs from fλ as yλ = (y1,λ, . . . , yn,λ).
We say that xλ (resp. yλ) has been set if all the honest parties have handed Fmpc their input for fλ (resp.
the output of fλ has already been computed). When a request for producing output for some fλ is received
from some honest pj , Fmpc checks that the input xλ and all outputs y1, . . . ,yλ−1 have been set; if so, Fmpc

computed fλ’s outcome yλ = (y1,λ, . . . , yn,λ) using the inputs and the state vector Sλ, records the output,
and hands to pj his part of the output, i.e., yi,λ. Recall that the state consist of the inputs to all previous
functions and the corresponding randomness, i.e. Sλ = (x1, . . . ,xλ−1, r1, . . . , rλ−1). A detailed description

of Ff
mpc appears in the following.

Functionality Ff
mpc(P)

Ff
mpc proceeds as follows, given a vector of functions f = (f1, . . . , fm) and a player set P, where |P| = n,

and for λ = 1, . . . ,m, fλ : ({0, 1}∗ ∪ {⊥})n × (({0, 1}∗ ∪ {⊥})n ×R)(λ−1) ×R→ ({0, 1}∗)n. Initialize the
variables x1,1, . . . , xn,m, y1,1, . . . , yn,m to a default value ⊥ and S0 := (⊥, . . . ,⊥).

– Upon receiving input (input, λ, v) from some party pi ∈ P and λ ∈ {1, . . . ,m}, if yλ has not yet been
set, then set xi,λ := v and send a message (input, pi, λ) to the adversary.

– Upon receiving input (output, λ) from some party pi ∈ P and λ ∈ {1, . . . ,m}, do:

• If xλ and y1, . . . ,yλ−1 have been set, and yλ has not yet been set, then choose rλ
R← R and set

(y1,λ, . . . , yn,λ) := f(xλ,Sλ−1, rλ); also set Sλ := (x1, . . . ,xλ, r1, . . . , rλ).
• Output yi,λ to pi.

As already mentioned, the above functionality cannot be realized under “reasonable” synchrony assump-

tions. Indeed, one can verify that this would contradict Lemma 4, as Ffsfe is the same as Ff ′

mpc, where f ′ = (f).
For that reason, we modify it along the ways of the modification we did for the SFE functionality from [10]:
the MPC functionality is parametrized, in addition to the vector of functions f = (f1, . . . , fm) , by a vector
of round functions Rnd = (Rnd1(·), . . . , Rndm(·)), where each Rndλ ∈ Rnd is a function of the security
parameter which specifies the number of rounds that are used for evaluating fλ. As in the case of Fsfe, in each
round the simulator is given |P| activations for each party pi, to simulate the messages sent from pi in that
round. Because Rndλ corresponds to the number of rounds needed for the evaluation of fλ, and the output
of fλ should be generated only after the outputs of f1, . . . , fλ−1 have been set, if the MPC functionality

receives a request for output (from some pi ∈ H) for fλ in round ` <
∑λ
ρ=1Rndρ, then it notifies pi that it

is too early for generating this output.

Definition 2 (Guaranteed Termination—Reactive Computation). We say that a protocol UC-securely
realizes a (possibly reactive) computation described by the function vector f with guaranteed termination, if

it UC-realizes a functionality Ff ,Rnd
mpc for some vector of round functions Rnd.

All the results of Section 4.2 that are stated for Ffsfe and for Ff,Rndsfe , i.e., Lemma 4 and Theorem 1, apply
also to Ff

mpc and Ff ,Rnd
mpc , respectively.

B Canetti’s Universally Composable Synchronous Network

In the 2005 version of the UC framework [10], Canetti describes a functionality that models a synchronous
network. We describe this functionality Fsyn adapted to our conventions. We assume that all the parties
in P are aware that the corresponding synchronous session has started. (If we do not want to make this
assumption, we can have Fsyn send an initialization message to every player in P.)

27

Functionality Ff ,Rnd
mpc (P)

Ff ,Rnd
sfe proceeds as follows, given a vector of functions f = (f1, . . . , fm), a vector of round functions Rnd =

(Rnd1, . . . , Rndm), and a player set P, where |P| = n, and for λ = 1, . . . ,m, fλ : ({0, 1}∗ ∪ {⊥})n × (({0, 1}∗ ∪
{⊥})n × R)(λ−1) × R → ({0, 1}∗)n. Initialize the variables x1,1, . . . , xn,m, y1,1, . . . , yn,m to a default value ⊥,
initialize S0 := (⊥, . . . ,⊥), and for each pair (pi, λ) ∈ P × {1, . . . ,m} initialize the delay ti,λ := |P|. Moreover,
initialize a global round counter ` := 1.

– Upon receiving input (input, λ, v) from some party pi ∈ P and λ ∈ {1, . . . ,m}, if yλ has not yet been set,
then set xi,λ := v and send a message (input, pi, λ) to the adversary.

– Upon receiving input (output, λ) from some party pi ∈ P and λ ∈ {1, . . . ,m}, if pi ∈ H and for some
ρ ∈ {1, . . . , λ} the input xi,ρ has not yet been set then ignore pi’s message, else do:
• If ti,λ > 1, then set ti,λ := ti,λ − 1. If (now) tj,λ = 1 for all pj ∈ H, then set ` := `+ 1 and tj,λ := |P| for

all pj ∈ P. Send (activated, pi, λ) to the adversary.
• Else, if ti,λ = 1 but ` <

∑λ
ρ=1Rndρ, then send (early) to pi.

• Else,

∗ If xλ and y1, . . . ,yλ−1 have been set, and yλ has not yet been set, then choose rλ
R← R and set

(y1,λ, . . . , yn,λ) := f(xλ,Sλ−1, rλ); also set Sλ := (x1, . . . ,xλ, r1, . . . , rλ).
∗ Output yi,λ to pi.

Functionality Fsyn (P)

Initialize a round counter r := 1.

– Upon receiving input (send,M) from a party p ∈ P, where M is a vector of n messages (one for each
party in P), record (p,M , r) and output (p,M , r) to the adversary. (If p later becomes corrupted
then the record (p,M , r) is deleted.)

– Upon receiving a message (Advance-Round,N) from the adversary, do: If there exists p ∈ H for which
no record (p,M , r) exists then ignore the message. Else:
1. Interpret N as the list of messages sent by corrupted parties in the current round r.
2. Prepare for each p ∈ P the list Lrp of messages that were sent to it in round r.
3. Update r := r + 1.

– Upon receiving input (receive) from party p, output (sent, Lr−1p , r) to p. (Let L0
p = ⊥).

We begin by describing the protocol in more detail. Each protocol machine keeps internally a vector
of “current” received messages which is initialized to ⊥. Whenever a protocol machine obtains an input
(receive) on the input tape, it writes this “current” vector on the subroutine output tape of it’s “parent”
ITI. For each party pi, each round r starts by obtaining input (send,M) on the input tape. (Ignore all
further such requests until the next round switch.) For each pj ∈ P \ {pi}, the party pi will then send the
message Mj to pj . This process takes n− 1 activations, where the first one comes from the send-request and
the following n−2 activations are obtained from A. The party pi then waits until it obtains all messages from
pj 6= pi on the channels Fauth(pj , pi), and then sends (RoundOK) to Fclock. All subsequent activations are
used to initially query (RequestRound) at Fclock, after such a query returns di = 0, the received messages
are stored to be the “current” messages and further sending requests on the input tape are processed.

Lemma 10. There exists a protocol that UC-realizes the functionality Fsyn in the {Fclock,Fauth}-hybrid
model.

Proof (idea). We describe a simulator S as follows:

– Receiving the message (p,M , r) from Fsyn for some party p ∈ P in round r, simulate the first message
(sent,Mj) for some pj 6= p on the Fauth channel from p to pj . The following n− 2 activations of p are
handled by simulating the next n− 2 such messages.

– For further activations of p, until all messages intended for p in the current round have been delivered
on the simulated channels Fauth(pi, p) for pi 6= p, the corresponding activations are merely dropped. The
last such message leads to the simulation of (switch, p) from Fclock.

28

– Once the messages (switch, p) have been simulated for all p ∈ H, input (Advance-Round,N) with the
vector N of messages sent by the corrupted parties to Fsyn.

Corruption is treated in the obvious way: message replacements are allowed only if the messages are not
supposed to be delivered to the parties already. (This can be handled by S easily, as the activations via A let
S track which messages have been obtained by the parties and which have not. Moreover, at the point where
S has to hand the vector N to Fsyn, all messages are from the honest parties are determined already.) ut

C Transferring Statements from the Timing Model

The goal of the “Timing model” [26] is to examine the guarantees that can be used by cryptographic protocols
if certain guarantees concerning time are assumed. The respective guarantees considered by the model are
two-fold.

Bounded clock drift: The parties have clocks that are, for some global parameter ε ≥ 1, ε-drift preserving :
When some local clock advanced by time δ, all other local clocks must have advanced by time δ′ with
δ/ε < δ′ < ε · δ.

Maximum latency: There is an upper bound ∆ on the time it takes to compute, send, and deliver messages
between parties via the assumed channels.

To be able to compare our security model to the Timing model from [26], we provide an analogous
extension of the protocol machines. The model of [26] defines the protocol machines to be ITMCs—interactive
Turing machines with clocks. These protocol machines have a specific clock tape that can be written to by
the adversary, under the restriction that the values are advanced according to the ε-drift preserving property.
Unlike for other tapes, an ITM is not activated when the adversary writes to the clock tape. We model this
extension of the ITMs as an ideal functionality Ftime that is available to the protocol machines, where instead
of accessing the local clock tape, the protocol machines access the ideal functionality Ftime. As in [26], the
adversary fulfills the task of actually advancing the value of the clock, where the functionality Ftime ensures
that the ε-drift preserving property is preserved.

Lemma 12. For an arbitrary functionality F and a protocol π in the Timing model, π securely realizes F (in
the Timing model) if and only if the compiled protocol CT (π) UC-realizes TT (F) in the {Ftime,Fauth}-hybrid
model in the presence of a static15 adversary and with respect to specialized simulators.

Proof. We describe how the adversarial interfaces in Timing model and in the {Ftime,Fauth}-hybrid model
of UC can be translated. Adversaries or simulators can be translated between the Timing model and UC by
applying the suitable conversion strategies at both the interface to the “execution” and the interface to the
environment.

The interface to the real execution. In the execution in the Timing model, the adversary can communicate
with the protocol machines πi (by sending a message “earmarked” for πi to pi, respectively receiving a
message from πi via pi), and can write (valid) time values to the clock tapes of the pi. In UC, the adversary
can communicate with the protocol machines CT (π)i, the authenticated channels Fauth(pi, pj), and the time
functionality Ftime via the respective communication tapes. The actions in the Timing model translate as
follows.

Updating the clock tapes of (πi)pi∈P to (ρi)pi∈P : sending (deactivate, pi) to Ftime for all pi ∈ P,
sending a message (set, (ρi)pi∈P) to Ftime, and activating all pi by sending (activate, pi) to Ftime.

Obtaining messages sent by πi: obtaining the messages one-by-one by activating CT (π)i until no further
message is sent. Messages for πj correspond to (leak,m) from Fauth(pi, pj).

Delivering message from πi to πj: issuing (deliver,m) to Fauth(pi, pj).
Sending a message for a corrupt πi: inserting the message into the corresponding Fauth(pi, pj).

In between two activations of players, the Timing model adversary must update either the clock tapes
of all parties or none at all. This stems from the definition of the ε-drift preserving property. In UC, this is
captured by the functionality Ftime that takes a vector of values for all parties.

15 The Timing model [26] considers only static adversaries.

29

The interface to the ideal execution. In the execution in the Timing model, the adversary can communicate
with the ideal functionality F using the communication tapes of F. Also, the adversary can forward ideal
messages from F to pi and vice versa by copying them to the corresponding tape. In UC, the adversary can
communicate with TT (F) via communication tapes.

Obtaining ideal messages from F for ψi: obtaining notifications (including message length) for the de-
layed output from TT (F).

Obtaining ideal messages from ψi for F: obtaining notifications (input, pi, |x|) from TT (F).
Delivering output from F: acknowledging the delivery of the delayed output at TT (F).
Delivering input to F: acknowledging the delivery of the delayed input at TT (F).
Communication with F: communication with TT (F).

The interface to the environment. In UC, the adversary communicates with the environment directly via its
local input and the environment’s subroutine output tape. In the Timing model, the role of the environment is
taken by the malicious protocol ψ, which communicates with the adversary using the generic communication
tapes. The translation is straightforward: a message from or to Z corresponds directly to a message from or
to some protocol machine running ψ. Note that, in UC, the environment is the master scheduler, whereas
this task is fulfilled by the adversary in the Timing model. This difference must be accounted for by carefully
designing input/output behavior of all involved systems.

Security in the Timing model implies security in UC. To show security in UC with respect to specialized
simulators, we have to show that for each adversary A and environment Z, there is a simulator S such
that the outcomes of the real and the ideal execution are indistinguishable. We convert A into a Timing
model adversary A′ and Z into a malicious protocol ψZ and conclude that there is a good Timing model
simulator S ′. From this simulator, we construct a UC-simulator S and show that the output of Z and the
Timing model distinguisher D are the same for both the real and the ideal executions.

The adversary A′ is constructed from the adversary A by the above described interface transformations.
We detail the translation of A’s clock tape handling to A′: The definition of the adversarial interface of Ftime

guarantees that the values of the clock tapes of all parties advance simultaneously, so A′ can write the
values (ρi)pi∈P to the clock tapes of (πi)pi∈P after seeing the (set, (ρi)pi∈P) message from A between two
activations of parties (this is necessary for A′ to be ε-drift preserving). Also, the fact that A′ controls the
activations of the πi (by means of the ψZi , see below) allows A′ to only activate pi if reading the time tape
would succeed for the protocol CT (πi) and can otherwise activate protocol machine ψZ0 .

The distinguisher Z is converted into a malicious protocol ψZ as follows. We define ψZ0 to run the ITM
Z and relay all messages intended for A to A′, and mask the messages from A′ as messages from A. Inputs
to and outputs from CT (π)0 can be processed locally by ψZ0 , inputs for CT (π)i with i 6= 0 are sent via A′ to
the respective ψZi , which only acts as a forwarder between CT (π)i and ψZ0 . The protocol machine ψZ0 allows
the adversary to schedule the input to π0. When Z generates local output, ψZ0 outputs the same message
(the local output of ψZi for i 6= 0 is constant).

By the fact that π is secure in the Timing model, we know that there is a good simulator S ′. From this
simulator, we obtain a simulator S in UC using the translations described above.

Finally, we track the messages sent (by Z) in both executions and verify that the messages returning
to Z are computed using the same functions on identically distributed inputs in the execution in UC and
the execution within ψZ0 in the Timing model, in both the real and the ideal cases. Note that, in UC, the
environment Z is the master scheduler that is also activated in the beginning of the execution, whereas this
task is fulfilled by the adversary A′ in the Timing model.

In more detail, we have to argue that, for each activation, the inputs and the state of the ITMs πi, A,
and Z have the same distribution in the executions execCT (π),{Ftime,Fauth},A,Z in UC and execπ,A′,ψZ in
the Timing model. We then conclude the same for the outputs by an inductive argument. Note that we also
have to argue that the clock tape of πi has the same contents. The following types of activations occur in
the real execution.

Local input at πi: πi computes based on the input from Z and the clock tape, which is guaranteed to have
consistent contents by potentially buffering the input (either within CT (π) or within ψZ by the fact that
ψZi awaits the acknowledgment of A′). Moreover, it is easy for A′ to track which πi can be activated and
what the contents of their clock tapes must be like.

30

Receive message at πi: The (new) values considered by πi are the contents of the message and the clock
tape. Again, the consistency of the clock tapes is guaranteed by providing the messages to πi only if pi
is marked as active in Ftime.

Leaked message from Fauth at A: The contents of the messages is generated by πi and the “envelopes”
can be easily simulated by A′.

Reply from Ftime to A: The messages are constant (the purpose is to return the activation).
Communication between Z at A: The correct “forwarding” of these messages is guaranteed by the “pro-

tocol” used among ψZ and A′.
Empty activation from CT (πi) at A: This can easily be simulated as A′ keeps track of the messages that

are otherwise buffered by CT (πi).
Output of πi at Z: The output is simply forwarded by ψZi .

Of course, we must also provide the same arguments for the ideal executions.

Inputs to F (from ψi/Z): The input notifications of TT (F) are wrapped as messages among the ψZi by
S, and the input is acknowledged by S as soon as S ′ decides to deliver the messages (among the ψZi and
the ideal input message to F). This guarantees that F will obtain the same inputs in the same order in
both cases.

Outputs of F to ψi/Z: The notifications for delayed outputs from TT (F) are collected by S and simulated
as ideal messages from F to ψi. S asks TT (F) to deliver the outputs once S ′ delivers the ideal messages
to ψZi and the (forwarded) message to ψZ0 . This guarantees that Z obtains the outputs in the correct
order.

Communication between F and S ′: The communication is simply forwarded by the definition of TT (F)
and S.

Messages among S ′ and ψi/Z: Messages from Z are “wrapped” as messages from ψi by S before handing
them to S ′. This means that messages from Z to A are wrapped as special messages from ψ0 (as done
by ψZ0), and the input notifications from TT (F) are wrapped as described above. On the other hand, S
also “unwraps” the messages originating from S ′ before handing them to Z. The consistent behavior of
S and ψZ0 guarantees that communication between S ′ and Z works identically in both settings.

The input to the UC-execution is one auxiliary input string for Z, whereas in the Timing model, the
input is one such string for each party pi, and one for the adversary A′. Hence, the auxiliary input for Z is
provided to p0, while the inputs to all other parties as well as the adversary are empty. Note that all parties
pi with i 6= 0 provide empty output, while p0 forwards the output of Z. As Z’s “view” is identical in both
the ideal executions in the Timing model and UC and in the real executions in the Timing model and UC,
the distinguishing advantage of D′ simply forwarding Z’s decision in the Timing model is at least as large
as the advantage of Z in specialized simulator UC.

Security in the Timing model is defined as

∀ψ,A′ ∃S ′ :
{
execπ,A′,ψ(k, x, z)

}
k∈N,x∈({0,1}∗)m,z∈{0,1}∗

c
≈
{
execF,S′,ψ(k, x, z)

}
k∈N,x∈({0,1}∗)m,z∈{0,1}∗

.

Following the above descriptions, we transform any pair Z,A of a UC-environment and a UC-adversary into
such a pair ψZ ,A′. The simulator S ′ guaranteed by the above definition can be converted into a UC-simulator
S, such that the (computational) distance of the output vectors of the two Timing model experiments is as
large as the (statistical) distance of the outcomes of the two UC experiments, meaning that we have

∀Z,A ∃S :
{
execCT (π),{Ftime,Fauth},A,Z(k, x)

}
k∈N,x∈{0,1}∗

≈
{
execTT (F),S,Z(k, x)

}
k∈N,x∈{0,1}∗

.

Security in UC implies security in the Timing model. We employ the above described interface conversion
strategy to convert the Timing model adversary A′ and malicious protocol ψ into a UC-adversary A and
environment Zψ. The adversary A notifies the environment Zψ upon the first activation originating from A′
for each party ψi such that Zψ can take care of providing ψi with the correct input. The environment Zψ
emulates ψi for all pi, forwards the local input to the CT (π)i and the messages of the ψi to the adversary.

31

Finally, Z tailors a transcript of the corresponding Timing model execution and outputs it. The distinguisher
D′ of from the Timing model can hence be used to distinguish the outputs of Zψ in the real and ideal cases.
Also, we employ the inverse conversion to transform the guaranteed UC-simulator S into a Timing model
simulator S ′.

Translating the handling of the clock tapes is straightforward: once A′ has finished the writing operation
(i.e., proceeds with the next activation), A deactivates all parties at Ftime, submits a vector of new clock
values, and re-activates all parties.

The remainder of the argument is as above: The distribution of the inputs obtained and outputs generated
by the ITMs πi, ψi, andA′ is the same in the execution in the Timing model and the one in UC. The transcript
for D′ is obtained in a deterministic way (and also has the same distribution). As the transcripts have the
same distribution, the distinguishing advantage achieved by D′ is the same as well.

More detailed, what are the actions that can happen within the system.

Local input to πi: The ITM πi computes based on this local input (which is easily forwarded from the
simulated ψi by Zψ) and the contents of the clock tape (which is kept in a consistent state by the above
described strategy).

Local input to ψi: This is derived from Zψ’s auxiliary input and is provided by Zψ at the correct point
in time (according to the clock tape of ψi), which is ensured by the collaboration of A and Zψ, once A′
schedules pi for the first time.

Message delivered for πi, ψi, or local output from πi to ψi: The consistency of both these messages
and the contents of pi’s clock tape is argued as above. In the Timing model, the messages among the
ψi are scheduled and delivered via A′. Hence, Zψ (and A) forward all messages among the simulated ψi
via A′ to guarantee the correct scheduling.

Local output of ψi: This output is faithfully included in the transcript by ZD′,ψ.
Messages obtained by A′: The messages generated by the (simulated) ψi are easily obtained and for-

warded to A by Zψ, the messages generated by πi can be extracted from CT (πi) by the above described
scheme.

Of course, we have to provide a similar analysis for the ideal setting (the involved objects are F, ψ, S,
and D′).

Input from ψi to F: The protocol machine ψi sends its input to F by means of an ideal message. In Zψ,
this is translated into an input to TT (F) at interface i, which yields an input notification to S. Once S
acknowledges this input to F, S ′ will deliver the ideal message to F.

Communication between F and S: The conversion between the two different communication modes is
done identically by TT (F) and S ′.

Local input to ψi: As in the real case.
Message delivered for ψi: In the execution in the Timing model, the communication among the ψi is

scheduled by S ′. In UC, Zψ simulates the protocol machines ψi, providing the messages to A to obtain
the scheduling via A′. The simulator S ′ behaves consistently: It provides S with the notifications that
would have been provided by Zψ and also acts according to S’s replies.

Output from F to ψi: The messages from F to ψi are ideal messages that are scheduled by S ′. In UC, the
functionality TT (F) first sends the notification for the delayed output to S (which has to acknowledge
the delivery). Hence, S ′ can deliver the message once S sends the acknowledgment.

As the outputs of the simulated ψ are used to construct the transcript, the input to D′ has the same
distribution in both cases.

The input to the Timing model execution consists of one auxiliary string for each pi along with one such
string for the adversary A′. These inputs can all be encoded into one single auxiliary string provided to Zψ
in UC, which recovers the original contents and provides it as an input to the ψi and (via A) to A′.

Security in specialized simulator UC is defined as

∀A,Z ∃S :
{
execCT (π),{Ftime,Fauth},A,Z(k, x)

}
k∈N,x∈{0,1}∗

≈
{
execTT (F),S,Z(k, x)

}
k∈N,x∈{0,1}∗

.

32

Our goal is to conclude security in the Timing model, which is

∀ψ,A′ ∃S ′ :
{
execπ,A′,ψ(k, x, z)

}
k∈N,x∈({0,1}∗)m,z∈{0,1}∗

c
≈
{
execF,S′,ψ(k, x, z)

}
k∈N,x∈({0,1}∗)m,z∈{0,1}∗

.

Starting from a Timing model adversary A′ (and a protocol ψ), we obtain a UC-adversary A and a UC
environment Zψ, and transform the guaranteed UC-simulator S into a Timing model simulator S ′. A dis-
tinguisher D′ for Timing model transcripts can then also be applied to the output of the UC environment
Zψ, and achieves a distinguishing advantage at least as good as D′. Hence, by the fact that the protocol
is UC-secure with respect to specialized simulators, we can conclude that it is also secure in the Timing
model. ut

By combining the above lemma, namely that statements from the Timing model can be faithfully trans-
lated into the {Ftime,Fauth}-hybrid model of UC, with Lemma 11 from the main paper, that the Timing
model does not allow to prove that a protocol achieves guaranteed termination.

D Nielsen’s Model

Nielsen [33] adapts the asynchronous UC framework of Canetti [12] to the setting of authenticated syn-
chronous networks. While the general structure of the security definition is adopted, the frameworks differ
considerably in their concrete definitions. For instance, Nielsen defines the composition of two synchronous
protocols in a “lock-step” way: the round switches of all protocols occur at the same time. In Section D.1,
we sketch the basic structure of Nielsen’s framework [33] and point out an ambiguity in the original formu-
lation. In Section D.2, we show the relation of this framework to our {Fclock,Fbd-auth}-hybrid model (in the
framework of [12]). In particular, we show that the framework also allows to capture guaranteed termination.
For a more detailed introduction to the model, refer to Chapter 3 of [33].

D.1 Description of the Model

The fundamental structure of the security definition in [33] is adopted from the framework of universally
composable security in [12]: the security of a protocol π is defined by an ideal functionality F, and π is
deemed secure if there is a simulator S such that an execution of the protocol π in the synchronous network
is indistinguishable from an execution of F with the simulator S.

The synchronous protocol π among parties P = {p1, . . . , pn} is executed in rounds, and the model
guarantees that each party pi is activated exactly once per round. In each round r, the protocol machine
πi of party pi obtains local input as well as the local output generated by sub-protocols and, for each party
pj ∈ P, one message that πj sent in round r− 1. During the activation, πi produces local output, local input
for each sub-protocol, and, for each pj ∈ P, one message that will be delivered to πj in round r + 1.

The course of the execution is directed by the environment Z. In each round r, Z may choose the
order in which the (honest) parties pi with pi ∈ H are activated. Z chooses the messages sent to pi by the
corrupted parties immediately before the activation, which corresponds to the strongly rushing property.
Also, the messages generated by pi for other parties are given to Z immediately after the activation. After
all activations of a round are completed, Z may switch the computation to the next round. At any point
of the computation, Z may corrupt honest parties pj , obtaining the internal state16 of πj . The fact that Z
controls pj in the further execution is modeled by having Z specify all future messages sent by pj . Ideal
functionalities must explicitly specify the gained capabilities of Z in terms of messages leaked to and received
from the simulator.

The composition of two ideal functionalities is defined as executing both functionalities in a “lock-step”
way. This means that the rounds are defined globally for the complete execution, and that all ideal func-
tionalities switch rounds synchronously. Hence, this also holds for protocols executed both in parallel or as

16 The original version of [33] was based on an earlier version of [10] and only leaked the random tape. Leaking the
complete internal state is consistent with the “standard corruption” of [10, Page 68], possibly including also the
local inputs and messages received in previous executions. Also, corruption in [33] is PID-wise.

33

sub-protocols. Note that the communication between a protocol and a sub-protocol also adheres to these
rounds of execution, which implies that if a protocol is composed of several layers of sub-protocols, each
such layer introduces one round of delay for messages propagated from the functionalities to the player’s
interfaces.

Ambiguity of Corruption. Upon corruption of a party pi in round r, the model sets C := C ∪{pi} to store the
information that pi has been corrupted. At a later activation (activate, pj , xj,r, (mi,j,r−1)pi∈C) in the same
round r, the adversary is—technically—also allowed to specify the message mi,j,r−1 which was sent by pi in
round r − 1. We assume that this behavior is not intended, and propose fixing the ambiguity by explicitly
specifying whether pi was corrupted in round r − 1, for instance by keeping a sequence of corruption sets
(Cr′)r′∈N with Cr ⊆ Cr+1.

D.2 Relation to our Model

In this section, we prove that, for a protocol π and a functionality F defined in Nielsen’s model, there is
a compiled protocol CN (π) that implements the translated functionality TN (F) in the {Fclock,Fbd-auth}-
hybrid model of [12] if and only if π implements F in the model of [33]. Moreover, the translation TN (·)
preserves the termination guarantees (if a functionality achieves guaranteed termination in [33], then the
transformed functionality TN (F) also achieves this in our model).

Translating the synchronous functionalities from [33]

For a player set P, the functionality initializes r := 1, H = P, as well as ri := 1, ci := 0, and di := 1 for all pi ∈ P.

– On activation while ri > r and ci ≥ |P| for all pi ∈ H:
• If the received message is (end round, v′F) from A, then produce outputs yi,r for all pi ∈ P as defined by

the functionality F. Set r := r + 1, ci := 0 for all pi ∈ P, and send (yj,r)pj∈P\H to A.

• Any other activation is interpreted as (end round,⊥) messagea from A (except that the functionality
does not send the corrupted parties’ outputs to A).

– On input (input, xi,ri) with r = ri = di from party pi ∈ H, compute the value vF as specified by the
functionality F and set ri := ri + 1 and ci := 0. Send (leaked, i, vF) to A.

– On an empty activation from pi with ri > r, set ci := ci + 1. If ri = r > di, set di := ri. Send (activated, pi)
to A.

– On input (output) from party pi or (output, pj) with pj ∈ P \ H from A, reply with (output, yi,r).
– On input (corrupt, pi) from A with pi ∈ H, set H := H\{pi}, obtain the value vF from F by simulating the

corresponding corruption message for F and output vF to A.

a Assumed to be the default input.

Translating Protocols. A protocol machine πi in the model of [33], in each round r, takes a local input
xi,r and a set of messages (mj,i,r−1)pj∈P (where the message mi,i,r−1 models keeping state), and produces

local output yi,r as well as messages (mi,j,r)pj∈P . The protocol π is transformed into an ITM π′ in the

{Fclock,Fbd-auth}-hybrid model as follows. The ITM π′ keeps an (initially empty) internal buffer B with
messages that have been computed but not yet output or sent via a channel. Set the round counter to ri = 1
and define mj,i,0 = ⊥ for pj ∈ P.

– On local input (output), output the latest value yi,r′ that is marked as ready for output.
– On local input (input, xi,ri), use π to compute

(
(mi,j,ri)pj∈P , yi,ri

)
:= π

(
(mj,i,ri−1)pj∈P , xi,ri

)
and

store the messages mi,j,r in B. Deliver the first message.
– Upon an empty activation, deliver one message from B. That is, send (send,mi,j,r) to the channel
Fbd-auth(pi, pj). Once B is empty, send (RoundOK) to Fclock.

– Upon an empty activation, check via (RequestRound) with Fclock whether the round switch occurred
(i.e., d = 0). In this case, mark yi,r as ready for output and send (RoundOK) to Fclock.

34

– Upon each activation, check via (RequestRound) with Fclock whether the next round switch occurred
(i.e., d = 0). In this case, set ri := ri + 1 and obtain the messages mj,i,ri−1 by sending (fetch) to
Fbd-auth(pj , pi) for all pj ∈ P \ {pi} and proceed with the first step.

Lemma 13 is an immediate consequence of the following lemma.

Lemma 15. Let π be a protocol and F be an ideal functionality in the model of [33]. Then, the protocol π
implements the functionality F in the model of [33] if and only if CN (π) UC-implements the functionality
TN (F) in the {Fclock,Fbd-auth}-hybrid model.

Proof. We first show that any environment that is a good synchronous distinguisher for the model of [33] is
also a good distinguisher for the {Fclock,Fbd-auth}-hybrid model (i.e., security in UC implies security in [33]).
Hence, we describe a transformation that converts a synchronous environment into a UC-environment. This
resulting environment Z ′ proceeds as follows.

– A query (activate, pi, xi,r, (mj,i,r−1)pj∈C) from Z is handled by injecting the messages mj,i,r−1 into

the channels Fbd-auth(pj , pi) and providing local input (input, xi,r) to π′i. Then, repeatedly activate π′i
until all messages for round r are in the channels Fbd-auth(pi, pj). Provide the vector (mi,j,r)pj∈P\{pi} of

messages leaked on the channels Fbd-auth(pi, pj) to Z.
– On query (end round) from Z, request the local outputs yj,r by first activating π′j and receiving

(switch, pj) from Fclock for each pj ∈ H (this is done twice in rounds), and then querying (output)
again at each π′j for pj ∈ H. Return the vector (yj,r)pj∈H to Z.

– On query (corrupt, pi) from Z, issue the same request to Fclock, all Fbd-auth(pi, pj) and Fbd-auth(pj , pi)
with pj ∈ P, and instruct the adversary to corrupt π′i. The internal state of π′i contains the internal state
of πi. Extract this information and return it to Z.

– If Z issues a query that would not be allowed in [33], then output 0 and halt. Otherwise, once Z provides
local output, write the same value on the output tape and halt.

Claim. The described “adapter” perfectly emulates the environment’s view. Formally,

∀Z : realπ,Z ≡ hyb
{Fclock,Fbd-auth}
π′,D,Z′ ,

with the real model of [33] and the UC-hybrid model.
We use an inductive argument: Prior to each query, all random variables in the executions have the

same distribution (all messages, inputs, and outputs can be interpreted as random variables defined on the
random tapes) in the two cases. During each query, the exact same transformations are applied to these
random variables in either case; so the equivalence is extended to the outputs. By induction on the number
of queries, we conclude that the output of the two execution also has the same distribution. Again, we
differentiate between the three different types of queries.

– For each pi ∈ H, one query (activate, pi, xi,r, (mj,i,r−1)pj∈C) is allowed for each round r. In realπ,Z ,

such a query results in the output (mi,j,r)pj∈P\{pi}. In the converted execution, injecting the messages

mj,i,r−1 into the corresponding channels is allowed for pj ∈ C, as the channels allow for replacing
messages (this is important in case pj is corrupted after the activation in the current round.) Providing
input (input, xi,r) to π′i results in the same distribution for inputs to πi as in the execution realπ,Z , so
the values computed by πi also have the same distribution. By making π′i send all messages mi,j,r to the
channels, the converter obtains the tuple (mi,j,r)pj∈P\{pi} with the same distribution as in the “real”

execution.
– After all honest parties have been activated in round r, the (end round)-query is answered with (yi,r)pi∈H.

The converter activates all honest parties and queries their outputs, and the equivalence follows by the
same argument as above.

– Upon corruption, the converter obtains the internal state of π′i. By the definition of π′, this includes the
state of πi as expected by the environment Z.

Altogether, this proves the above claim for all environments Z.

35

Claim. The described “adapter” indistinguishably emulates the environment’s view in the ideal case, if the
synchronous simulator T is constructed from the UC-simulator as described below. Formally,

∀S ∃T ∀Z : idealF,T ,Z ≈ execF ′,S,Z′ ,

where the left random variable is defined by an execution in [33] and the right random variable is defined by
a UC-execution.

Converting simulators from UC to the synchronous model
The simulator T is given oracle access to S and proceeds as follows.

– On query (activate, pi, vF , (mj,i,r−1)pj∈C), first inject the messages mj,i,r−1 into the channels sim-

ulated by S (expect S to answer consistently with the behavior of real channels—in particular, if
a some pj was corrupted after inserting a message into the channel, the message will be replaced).
Then, provide the message (leaked, pi, vF) to S as a message from TN (F) and repeatedly send
(activated, pi) until all messages mi,j,r are supposed to be in (and leaked on) the channels. Provide
the tuple (mi,j,r)j∈P\{i} as output.

– On query (end round), send one message (activated, pi) for each pi ∈ H, and expect the message
(switch, pi) from Fclock to be simulated. Before S simulates the last such notification, it may pose
the query (end round, vF) to TN (F) (otherwise T sets vF := ⊥). Provide vF as output.

– On input (yi,r)pi∈C , record this tuple. If S provided a value vF , provide the tuple (yi,r)pi∈C to S and

expect the last missing (switch, pi)-message. Upon future (output, pj) queries from S to TN (F) with
pj ∈ P \ H, reply with (output, yj,r). Simulate one further message (activated, pi) for each pi ∈ H
to S and expect to receive the corresponding (switch, pi)-messages as a response.

– On query (corrupt, pi), generate the corruption requests for Fclock, all Fbd-auth(pi, pj) and
Fbd-auth(pj , pi), and π′i for S. For each of these requests, expect S to answer according to the behavior
of the respective systems. If S, at any future point in time, makes a (corrupt, pi) request to TN (F),
query (corrupt, pi) to obtain a value vF and provide this value to S. Expect a message from S to
the environment that describes the internal state of π′i, and extract and output the state of πi.

– If any message from S is unexpected, halt immediately.

– On queries (activate, pi, xi,r, (mj,i,r−1)pj∈C) for pi ∈ H, the messages returned to the environment are

determined equivalently. The synchronous execution first provides (pi, xi,r) to F to obtain the value
vF , before T injects the messages mj,i,r−1 for pj ∈ C into the channels simulated by S, provides a
message (leaked, pi, vF) to S, and provokes the computation for the simulated π′i by repeatedly issuing
(activated, pi) to S. In the UC-execution, the same messages are injected into the channels simulated by
S, and the (input, xi,r) given to TN (F) also triggers the output of the value vF to S by F. This results in
an equally distributed message (leaked, pi, vF) to S. In both cases, S repeatedly obtains (activated, pi)
messages until all messages mi,j,r are leaked on the channels. Since the activations of the systems πj , S,
and F occur in the same order with equally distributed inputs, all variables have the same distribution
after the activate-query.

– Upon the (end round)-query, S is allowed to produce a (end round, vF)-message to F (or otherwise
accept that vF = ⊥). In the synchronous execution, the (end round) message is given to T , which sends
one (activate, pi) message for each pi ∈ H to S to potentially obtain vF as a response to the last
message. If S provides such a value vF it is provided as an output and given to F, and the resulting
messages (yi,r)pi∈P\H are returned to S via T . In the UC-execution, the converter activates the π′i (in

rounds), which yields messages (activated, pi) to S, and (by the assumption on S, otherwise we can
easily build a good distinguisher) the simulator S translates these into messages (switch, pi). Before
simulating the last such message, S may issue a (end round, vF)-query to TN (F), which will be given to
F, and the messages (yi,r)pi∈P\H are returned to S. If S does not send such a message, vF := ⊥ provided

to F as the simulator’s input by TN (·), as Z ′′ issues a further round of activations to the π′i with pi ∈ H.
This is consistent with the synchronous execution. In both cases, S can now access the values yi,r for
pi ∈ C generated by F on input vF . In [33], the tuple (yi,r)pi∈H is directly given to Z; in the converted

execution, the converter extracts the same messages by requesting the outputs via (output) at all π′i
with pi ∈ H.

36

– For a (corrupt, pi), the simulator T is notified and converts it into corruption queries for Fclock, the
channels, and π′i. The same messages are generated and given to the simulator S by the converter C.
If (at any future point in time) S sends a (corrupt, pi) query to F ′, then T asks F to corrupt pi and
provides the obtained value vF to S. In our model, the (corrupt, pi) message is given to F ′, which
obtains the value vF in the same way and provides it to S. Hence, the distribution of the representation
of π′i’s internal state generated by S is the same, hence the state of πi extracted by T and C also has the
same distribution.

Several above arguments make the assumption that the queries or answers generated by S are of a certain
format. These points are highlighted by explicitly making the simulator T fail if the answers are different.
Yet, in all of these cases, the ideal execution with S would clearly be distinguishable from the real execution,
and since S is assumed to be a good simulator, such a condition is violated with at most negligible probability.

Combining the above two claims, we conclude that

∃S ∀Z : realπ,Z ≈ hyb
{Fclock,Fbd-auth}
π′,D,Z′ ≈ idealF ′,S,Z′ ≈ idealF,S,Z ,

where the first and the third indistinguishability are proven above and the middle indistinguishability follows
from the security statement in the hybrid model.

Security in [33] Implies Security in UC. We describe a converter Z ′′ that transforms a UC-environment into
an synchronous environment. This converter internally simulates the functionalities Fclock and Fbd-auth and
behaves as follows.

– On input (input, xi,r) at π′i, if this is not the first such input in the current round, it is dropped.
Otherwise, in any round except for the first one, assemble the vector (mj,i,r−1)pj∈C from the messages

obtained at the channels (set all messages to ⊥ in the first round). Call (activate, pi, xi,r, (mj,i,r−1)pj∈C)

to obtain (mi,j,r)pj∈P\{pi}, and store these messages in a buffer Bi. Simulate the first message on a channel

Fbd-auth(pi, pj).
– On further activations of π′i, if Bi is not empty, remove the first message from Bi and simulate it on

the channel Fbd-auth(pi, pj). For the first activation after Bi is empty, simulate a message (switch, pi)
from Fclock, and ignore all further such activations until this message has been simulated for all parties
pi ∈ H.

– On the next empty activation, call (end round) and record the tuple (yi,r)pi∈H. For each empty activation

at π′j for pj ∈ H, mark the output yj,r as ready for output and simulate a message (switch, pj) from
Fclock.

– On input (output) at π′i, return (output, yi,r′) with the latest output yi,r′ marked as ready.
– On a corruption message (corrupt, pi) to the functionality Fclock, issue the call (corrupt, pi) to obtain

the internal state of πi and mark πi as corrupted in Fclock. In the further activations, simulate the
execution of πi as if it were honest. Yet, in future rounds, if Z did not provide messages for the channels
Fbd-auth(pi, pj), set the corresponding messages mi,j,r to a default value ⊥.

– On a corruption message (corrupt, pi) to a functionality Fbd-auth(pi, pj) or Fbd-auth(pj , pi), issue the call
(corrupt, pi) to obtain the internal state of πi and mark pi as corrupted for the corresponding channel.
In the further activations, simulate the execution of π′i as if it were honest. (In particular, if pi is not
corrupted at Fclock, then proceed only once the simulated π′i would have sent (RoundOK).) From here
on, allow Z to replace messages in the corresponding channel. If pi is corrupted in several channels or in
channels and Fclock, it looses further guarantees in the straightforward way.

– Upon a corruption message (corrupt) to the protocol machine π′i, issue the call (corrupt, pi) to obtain
the internal state of πi. Since π′i only uses πi in a straightforward way, the state of π′i can be easily
simulated. If pi is not corrupted on all channels and the Fclock, force Z to use the corresponding honest
interfaces.

Claim. The described “adapter” perfectly emulates the environment’s view. More formally, for all UC envi-
ronments Z there is a synchronous environment Z ′′ such that

hyb
{Fclock,Fbd-auth}
π′,D,Z ≡ realπ,Z′′ ,

37

where the left random variable is defined by a UC-execution and the right random variable is defined by a
synchronous execution.
We use the same inductive argument as above to handle the queries of Z one-by-one.

– The (input, xi,r)-query is only allowed once for each pi ∈ H and r, and ignored otherwise in both cases.
The values yi,r and mi,j,r for pj ∈ P are computed by an invocation of the protocol πi on equivalently
distributed inputs: For xi,r, this follows by the induction, so we only have to show that the messages
mj,i,r−1 are consistent. For pj ∈ H, this is clear, and parties pj that are corrupted only at Fclock still
perform their computations honestly, so Z ′′ can ensure the consistency. The same argument holds if the
corrupted pj is the receiver at some channel. If pj is the sender or the protocol machine π′i is corrupted,
then Z can inject messages mj,i,r−1 only before πi switches to round r, so Z ′′ can include these messages
in the activate-query.

– Activating π′i after the (input, xi,r)-query results in a message mi,j,r being leaked to Z, before a single
message (switch, pi) from Fclock is sent. The same output is produced by Z ′′.

– For each pi ∈ H, activating π′i after all parties have sent their messages in the current round causes π′i
to mark the freshly recorded output value yi,r as ready and output a message (switch, pi). This is done
consistently by Z ′′. All further activations are ignored until all parties have been activated.

– The queries (output) and (output, pj) with pj ∈ P \ H are answered consistently because the same
values are marked as ready in both cases, and the distribution of yi,r is the same by induction.

– A corruption message (corrupt, pi) to either Fclock or one of the functionalities Fbd-auth(pi, pj) or
Fbd-auth(pj , pi) has no immediate effect on the computation; the indirect effects are described in the
input-step.

– Upon a corruption message (corrupt) to the protocol machine π′i, the (simulated) internal state of π′i is
leaked to Z in both cases. By the construction of the protocol machine π′i, the state can be easily derived
from the state of πi.

Claim. The described “adapter” indistinguishably emulates the environment’s view in the ideal case, if
the UC-simulator S is obtained from the synchronous simulator as described below. More formally, for all
“synchronous” simulators T there is a UC simulator S such that for all UC environments Z there is a
“synchronous” environment Z ′′ such that

execF ′,S,Z ≈ idealF,T ,Z′′ ,

where the left random variable is defined by a UC-execution and the right random variable is defined by a
synchronous execution.

– The (input, xi,r)-query is only allowed once per honest pi and round r, and ignored otherwise in both
cases. In the adapted execution, Z ′′ executes the activate-query. As a result, the input is provided to F,
and the value vF produced by F is given to the simulator T together with the messages (mj,i,r−1)pj∈C .

T produces messages (mi,j,r)pj∈P\{pi}, which are buffered by Z ′′. The first message is simulated on

Fbd-auth(pi, pj). In the UC-execution, the input is provided to TN (F), which also provides it to F and
leaks the resulting output vF to S. The simulator S uses T to compute (mi,j,r)pj∈P\{pi}, buffers these

messages, and simulates the first message on Fbd-auth(pi, pj). It remains to show that the messages
(mj,i,r−1)pj∈C used by S have the correct distribution. But this holds since S and Z ′′ handle the injection

of messages into the channels Fbd-auth(pj , pi) for pj ∈ P \ H in the same way.
– Upon further activations of π′i, the buffered messages (mi,j,r)pj∈P\{pi} are simulated as sent over the

channels Fbd-auth(pi, pj), and by simulating one message (switch, pi) afterward (and ignoring all further
activations until the messages have been simulated for all honest parties). This is done by Z ′′ in the
adapted execution, and S produces these messages when notified by TN (F) via (activated, pi) in the
UC-execution.

– Upon the first further activation of π′i, the simulator T is invoked on input (end round) in both cases,
and the resulting value vF is given to F (via Z ′′ and the model in one case, and via S and TN (·) in the
other case). The values (yi,r)pj∈P\H are provided to T either directly by the model, or by TN (·) and S.

The values (yi,r)pj∈H are stored by Z ′′ and TN (F), respectively. Since F computes on equally distributed

values, the values yi,r also have the same distribution in both cases. For the first such activation of π′i,

38

Converting synchronous simulators to UC

The simulator S is given oracle access to T , simulates copies of Fclock and Fbd-auth, and proceeds as follows.

– On input (leaked, pi, vF) from TN (F), compute (mi,j,r)pj∈P\{pi} := T ((mi,j,r−1)pi∈C , vF) and store the

messages in a buffer Bi. Simulate the first message on a channel Fbd-auth(pi, pj).
– On input (activated, pi) where Bi is not empty, remove the first message m from Bi and simulate m as a

message on the respective channel Fbd-auth(pi, pj). On the first such activation after Bi is empty, simulate a
message (switch, pi) from Fclock. Once this message has been simulated for all pi ∈ H, proceed to the next
step.

– On further input (activated, pi), if this is the first such message, send (end round) to T to obtain the value
vF and Send (end round, vF) to TN (F) to obtain the outputs (yi,r)pi∈C , and provide these values to T . For
each such message, simulate one further message (switch, pi) for each pi ∈ H.

– Upon (corrupt, pi) for Fclock, issue (corrupt, pi) to TN (F) to obtain vF and use T to obtain the state of πi,
from which the state of π′i can be generated. Unless explicitly corrupted, simulate πi as honest (but note that
π′i looses the guarantees of Fclock). Yet, if in a round not all messages expected by π′i are in the channels, set
the undefined mi,j,r to ⊥.

– On a message (corrupt, pi) to Fbd-auth(pi, pj) or Fbd-auth(pj , pi), obtain the internal state of π′i as above, mark
pi as corrupted for the channel. If, for some pj ∈ H, Z provides an input message m to Fbd-auth(pi, pj), record
this as mi,j,r−1 := m for the activation. (If pj ∈ H is activated without such an input, set mi,j,r−1 := ⊥.)
Unless explicitly corrupted, simulate π′i as honest.

– Upon (corrupt) to π′i, obtain the state of π′i as above and leak it to Z. If pi is not corrupted on all channels
and the Fclock, make Z use the corresponding honest interfaces.

the value yi,r is made available for output in both cases and the message (switch, i) is simulated, either
by Z ′′ or by TN (F) and S, respectively.

– By the above arguments, the returned value (output, yi,r′) upon input (output) at π′i is always consistent.

– Corruption messages (corrupt, pi) to the functionality Fclock or the channels Fbd-auth(pi, pj) or Fbd-auth(pj , pi)
have no immediate effect on the computation. The indirect effects are described in the previous steps.

– Upon a corruption message (corrupt) to the protocol machine π′i, the simulated internal state of π′i is
leaked to Z in both cases. As above, the state is obtained in the same way. By the construction of the
protocol machine π′i, the state can be easily derived from the state of πi.

By the same arguments as above, this shows that if no environment can distinguish the real execution of π
and the ideal execution of F in the model of [33], then no environment can distinguish the {Fclock,Fbd-auth}-
hybrid execution of π′ and the ideal execution of F ′ in UC. This concludes the proof. ut

Both the model of [33] and UC allow for a “universal” composition operation (which is the terminology
from [12] for using sub-protocols). For the full proof of Lemma 13, we have to generalize the statement of
Lemma 15 to protocols defined in hybrid models.

We first generalize the mapping TN (·) to T c(·), where the parameter c ∈ N denotes the number of
empty activations required by the functionality before providing output to the parties. This is necessary
because the TN (G)-hybrid protocol CN (π) must, besides sending messages and synchronizing using the
clock, also provide the activations to the functionality TN (G). In more detail, the statement we are going
to prove is that π implements the functionality F in the G-hybrid model of [33] if and only if CN (π) UC-
implements T c+n+1(F) in the {T c(G),Fclock,Fbd-auth}-hybrid model. The protocols CN (π), after computing
the messages (mi,j,r)pi∈P , the output yi,r, and the input xGi,r for G, first provides input xGi,r as well as

sufficiently many activations to TN (G). Then, CN (π) sends the messages (mi,j,r)pj∈P\{pi} via the channels

Fbd-auth(pi, pj). In the beginning of the next round, CN (π) also requests the output yi,r from TN (G), which
is also taken as an input to the computation of the messages for the next round.

The converters and the simulators in the proof of Lemma 15 must be adapted only slightly: the increased
number of empty activations for honest parties has to be taken into account, and the values communicated
at the adversarial interface of G must be forwarded to and from Z.

39

E Hofheinz and Müller-Quade’s Model

Hofheinz and Müller-Quade [25] devise another model for synchronous computation based on the paradigms
of the framework of universally composable security [12]. The definition of a protocol execution differs
strongly from both the models of [12] and [33]. The model assumes a network of pairwise authenticated
communication channels between the honest parties.

E.1 Description of the Model

The execution is defined as an interaction between ITMs. The definition of these machines is similar to the
one defined in [10], but differs slightly with respect to the communication and the definition of efficiency.
As in [12], the entities involved in the execution are the environment Z, the adversary A, the protocol
machines π, and the ideal functionalities Fj .

The execution proceeds in rounds, each of which is further divided into three phases: the attack phase,
the party computation phase, and the ideal functionality computation phase. In each of these phases, only a
subset of the ITMs is activated, and the interaction within each of these phases follows a specific set of rules.
The attack phase models the activities of Z and A. In particular, the allowed interaction corresponds to the
actions of corrupted parties; in this phase, the adversary is allowed to corrupt further parties, interact with
the functionalities Fj in the name of the corrupted parties, and generate messages to the honest parties in
the name of the corrupted ones. In the party computation phase, all honest parties are activated in parallel,
obtain their inputs, the outputs of the Fj , and the messages from all other parties, and generate the respective
responses. After this phase, only the messages to the Fj and the adversary are delivered immediately. In the
ideal functionality computation phase, all Fj are activated with the inputs generated by the honest parties.
After this phase, the computation proceeds to the attack phase of the next round.

Upon corruption of a party pi, A immediately obtains pi’s internal state containing the complete history
with tapes and head positions. From there on, A may write arbitrary messages on the outgoing communica-
tion tape in the name of pi and obtains all messages that are sent to pi.

E.2 Relation to our Model

It turns out that the network implicitly assumed by [25] is very strong. Yet, the model does allow for
guaranteed termination. Overall, one can show that it is embedded into the {Fclock,Fms+}-hybrid world of
our model. Note that, in particular, the message sent by an honest party can no longer be changed after
they are input to Fms+.

Functionality Fms+(P)

Initialize a round counter r := 1 and a bit di := 0 for each pi ∈ P. For each round, proceed as follows.

– Upon receiving input (send,M) from a party pi ∈ P, where di = 0 and M is a vector of |P| messages,
record (pi,M , r), set di := 1 and output (input, pi) to the adversary.

– Once di = 1 for all pi ∈ H, provide the recorded tuples (pi,M , r) to A for all pi ∈ H, and allow the
adversary to specify the messages to be sent in the name of the players pj ∈ P \ H.

– Upon receiving input (receive) from party pj ∈ P: if di = 1 for all pi ∈ H, set di := 0 for all pi ∈ H
and set r := r + 1 (if the adversary did not specify any messages, they are defined to be ⊥). Output
all messages that have been sent to pi in round r − 1.

The fact that the model of [25] assumes this network can be seen by analyzing the phases that describe
the computation: messages are generated by all honest parties in parallel, without giving the adversary the
possibility to interfere. Moreover, the message delivery mechanism is defined in such a way that the adversary
cannot prevent messages that have been sent while a party was still honest from being delivered (to other
honest parties).

40

	Universally ComposableSynchronous Computation

