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Abstract

We put forward the notion of targeted malleability: given a homomorphic encryption scheme,
in various scenarios we would like to restrict the homomorphic computations one can perform
on encrypted data. We introduce a precise framework, generalizing the foundational notion
of non-malleability introduced by Dolev, Dwork, and Naor (SICOMP ’00), ensuring that the
malleability of a scheme is targeted only at a specific set of “allowable” functions.

In this setting we are mainly interested in the efficiency of such schemes as a function of the
number of repeated homomorphic operations. Whereas constructing a scheme whose ciphertext
grows linearly with the number of such operations is straightforward, obtaining more realistic
(or merely non-trivial) length guarantees is significantly more challenging.

We present two constructions that transform any homomorphic encryption scheme into one
that offers targeted malleability. Our constructions rely on standard cryptographic tools and
on succinct non-interactive arguments, which are currently known to exist in the standard
model based on variants of the knowledge-of-exponent assumption. The two constructions offer
somewhat different efficiency guarantees, each of which may be preferable depending on the
underlying building blocks.
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1 Introduction

Fully homomorphic encryption [RAD78, Gen09, SV10, vDGH+10] is a remarkable development in
cryptography enabling anyone to compute arbitrary functions on encrypted data. In many settings,
however, the data owner may wish to restrict the class of homomorphic computations to a certain
set F of allowable functions. In this paper we put forward the notion of “targeted malleability”:
given an encryption scheme that supports homomorphic operations with respect to some set of
functions F , we would like to ensure that the malleability of the scheme is targeted only at the
set F . That is, it should not be possible to apply any homomorphic operation other than the ones
in F .

Enforcing targeted malleability can be simply done by requiring the entity performing the ho-
momorphic operation to embed a proof in the ciphertext showing that the ciphertext was computed
using an allowable function. The decryptor then verifies the proof before decrypting the ciphertext,
and outputs ⊥ if the proof is invalid. Unfortunately, as the homomorphic operation is repeated the
number of proofs grows making the ciphertext grow at least linearly with the number of repeated
homomorphic operations. It is not difficult to see that targeted malleability with a linear-size
ciphertext is trivial to construct: Use any non-malleable encryption scheme, and embed in the
ciphertext a description of all the functions being computed. The decryptor decrypts the original
ciphertext and applies the embedded functions to it (verifying, of course, that these functions are
in the allowable set).

Minimizing ciphertext expansion. Targeted malleability is much harder to construct once
we require that ciphertext growth is at most sub-linear in the number of repeated homomorphic
operations. Our goal is to construct systems where even after t applications of the homomorphic
operation the ciphertext length does not increase much. In our main construction we are able to
completely shift the dependence on t from the ciphertext to the public key: the ciphertext size is
essentially independent of t. This is a natural goal since public keys are typically much more static
than ciphertexts which are frequently generated and transmitted.

Motivation. While targeted malleability is an interesting concept in its own right, it has many
applications in cryptography and beyond. We give a few illustrative examples:

• A spam filter implemented in a mail server adds a spam tag to encrypted emails whose content
satisfies a certain spam predicate. The filter should be allowed to run the spam predicate,
but should not modify the email contents. In this case, the set of allowable functions F would
be the set of allowable spam predicates and nothing else. As email passes from one server to
the next each server homomorphically computes its spam predicate on the encrypted output
of the previous server. Each spam filter in the chain can run its chosen spam predicate and
nothing else.

• More generally, in a distributed system users initiate encrypted requests to various servers.
To service a request a server may need to contact another server and that server may need to
contact another, resulting in a chain of messages from server to server until the transaction is
fulfiled. Each server along the way has an allowed set of operations it can apply to a recieved
message and it should be unable to apply any operation outside this approved set.

• In a voting system based on homomorphic encryption (e.g. [CGS97]) voters take turns incre-
menting an encrypted vote tally using a homomorphic operation. They are only allowed to
increase the encrypted tally by 1 (indicating a vote for the candidate) or by 0 (indicating a
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no vote for the candidate). In elections where each voter votes for one of ℓ candidates, voters
modify the encrypted tallies by adding an ℓ-bit vector, where exactly one entry is 1 and the
rest are all 0’s. They should be unable to modify the counters in any other way.

In all these examples there is a need to repeatedly apply a restricted homomorphic operation
on encrypted data. Limiting ciphertext expansion is highly desirable.

1.1 Our Contributions

We begin by introducing a precise framework for modeling targeted malleability. Our notion of se-
curity generalizes the foundational one of non-malleability due to Dolev, Dwork, and Naor [DDN00],
and is also inspired by the refinements of Bellare and Sahai [BS99], and Pass, Shelat, and Vaikun-
tanathan [PSV07]. Given a public-key encryption scheme that is homomorphic with respect to a
set of functions F we would like to capture the following intuitive notion of security1: For any
efficient adversary that is given an encryption c of a message m and outputs an encryption c′ of a
message m′, it should hold that either (1) m′ is independent of m, (2) c′ = c (and thus m′ = m), or
(3) c′ is obtained by repeatedly applying the homomorphic evaluation algorithm on c using func-
tions f1, . . . , fℓ ∈ F . The first two properties are the standard ones for non-malleable encryption,
and the third property captures our new notion of targeted malleability: we would like to target
the malleability of the scheme only at the class F (we note that by setting F = ∅ we recover the
standard definition of non-malleability)2. We consider this notion of security with respect to both
chosen-plaintext attacks (CPA) and a-priori chosen-ciphertext attacks (CCA1)3.

We emphasize that we do not make the assumption that the set of functions F is closed under
composition. In particular, our approach is sufficiently general to allow targeting the malleability of
a scheme at any subset F ′ ⊆ F of the homomorphic operations that are supported by the scheme.
This is significant, for example, when dealing with fully homomorphic schemes, where any set of
functions is in fact a subset of the supported homomorphic operations (see Section 1.3 for more
details).

Next, we present two general transformations that transform any homomorphic encryption
scheme into one that enjoys targeted malleability for a limited number of repeated homomorphic
operations. The resulting schemes are secure even in the setting of a-priori chosen-ciphertext
attacks (CCA1). The two constructions offer rather different trade-offs in terms of efficiency. In
this overview we focus on our first construction, as it already captures the main ideas underlying
our methodology.

1.2 Overview of Our Approach

Our approach is based on bridging between two seemingly conflicting goals: on one hand, we would
like to turn the underlying homomorphic scheme into a somewhat non-malleable one, whereas on
the other hand we would like to preserve its homomorphic properties. We demonstrate that the
Naor-Yung “double encryption” paradigm for non-malleability [NY90, DDN00, Sah99, Lin06] can
be utilized to obtain an interesting balance between these two goals. The structure of ciphertexts
in our construction follows the latter paradigm: a ciphertext is a 3-tuple (c0, c1, π) containing two

1For simplicity we focus here on univariate functions and refer the reader to Section 3 for the more general case
of multivariate functions

2We assume in this informal discussion that the adversary outputs a valid ciphertext, but our notion of security
in fact considers the more general case – see Section 3.

3See Section 6 for a discussion on a-posteriori chosen-ciphertext attacks (CCA2) in the setting of homomorphic
encryption, following the work of Prabhakaran and Rosulek [PR08].

2



encryptions of the same message using the underlying encryption scheme under two different keys
along with a proof π that the ciphertext is well formed. For ciphertexts that are produced by
the encryption algorithm, π is a non-interactive zero-knowledge proof, and for ciphertexts that are
produced by the homomorphic evaluation algorithm, π is a succinct non-interactive argument that
need not be zero-knowledge.

Specifically, the public key of the scheme consists of two public keys, pk0 and pk1, of the
underlying homomorphic scheme, a common reference string for a non-interactive zero-knowledge
proof system, and t common reference strings for succinct non-interactive argument systems (where
t is a predetermined upper bound on the number of repeated homomorphic operations that can
be applied to a ciphertext produced by the encryption algorithm). The secret key consists of the
corresponding secret keys sk0 and sk1. For encrypting a message we encrypt it under each of pk0
and pk1, and provide a non-interactive zero-knowledge proof that the resulting two ciphertexts are
indeed encryptions of the same message. Thus, a ciphertext that is produced by the encryption
algorithm has the form (c0, c1, πZK).

The homomorphic evaluation algorithm preserves the “double encryption” invariant. Specifi-
cally, given a ciphertext (c0, c1, πZK) that was produced by the encryption algorithm and a function
f ∈ F , the homomorphic evaluation algorithm first applies the homomorphic evaluation algo-

rithm of the underlying encryption scheme to each of c0 and c1. That is, it computes c
(1)
0 =

HomEvalpk0(c0, f) and c
(1)
1 = HomEvalpk1(c1, f). Then, it computes a succinct non-interactive argu-

ment π(1) to the fact that there exist a function f ∈ F and a ciphertext (c0, c1, πZK), such that πZK

is accepted by the verifier of the non-interactive zero-knowledge proof system, and that c
(1)
0 and

c
(1)
1 are generated from c0 and c1 using f as specified. We denote the language of the corresponding

argument system by L(1), and the resulting ciphertext is of the form c(1) =
(
1, c

(1)
0 , c

(1)
1 , π(1)

)
. We

point out that the usage of succinct arguments enables us to prevent the length of ciphertexts from
increasing significantly.

More generally, given a ciphertext of the form c(i) =
(
i, c

(i)
0 , c

(i)
1 , π(i)

)
, the homomorphic eval-

uation algorithm follows the same methodology for producing a ciphertext of the same form

c(i+1) =
(
i+ 1, c

(i+1)
0 , c

(i+1)
1 , π(i+1)

)
using a succinct non-interactive argument system for a lan-

guage L(i+1) stating that there exist a function f ∈ F and a ciphertext c(i) that is well-formed with
respect to L(i), which were used for generating the current ciphertext c(i+1).

On the proof of security. Given an adversary that breaks the targeted malleability of our
construction, we construct an adversary that breaks the security of (at least one of) the underlying
building blocks. As in [NY90, DDN00, Sah99, Lin06], we show that this boils down to having a
simulator that is able to decrypt a ciphertext while having access to only one of the secret keys
sk0 and sk1. This, in turn, enables the simulator to attack the public key pkb for which skb is
not known, where b ∈ {0, 1}. For satisfying our notion of security, however, such a simulator will
not only have to decrypt a ciphertext, but to also recover a “certification chain” demonstrating
that the ciphertext was produced by repeatedly applying the homomorphic evaluation algorithm.

That is, given a well-formed ciphertext c(i) =
(
i, c

(i)
0 , c

(i)
1 , π(i)

)
, the simulator needs to generate a

“certification chain” for c(i) of the form
(
c(0), f (0), . . . , c(i−1), f (i−1), c(i)

)
, where:

1. c(0) is an output of the encryption algorithm, which can be decrypted while knowing only one
of sk0 and sk1.

2. For every j ∈ {1, . . . , i} it holds that c(j) is obtained by applying the homomorphic evaluation
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algorithm on c(j−1) and f (j−1).

For this purpose, we require that the argument systems used in the construction exhibit the follow-
ing “knowledge extraction” property: for every efficient malicious prover P∗ there exists an efficient
“knowledge extractor” ExtP∗ , such that whenever P∗ outputs a statement x and an argument π
that are accepted by the verifier, ExtP∗ when given the random coins of P∗ can in fact produce a
witness w to the validity of x with all but a negligible probability.

By repeatedly applying such extractors the simulator is able to produce a certification chain.
Then, given that the initial ciphertext c(0) is well-formed (i.e., the same messages is encrypted
under pk0 and pk1), it can be decrypted using only one of the corresponding secret keys.

An alternative trade-off. In our first construction, the length of the ciphertext is essentially
independent of t, and the public key consists of t + 1 common reference strings. In our second
construction the number of common reference strings in the public key is only log t, and a cipher-
text now consists of log t ciphertexts of the underlying homomorphic scheme and log t succinct
arguments. Such a trade-off may be preferable over the one offered by our first construction, for
example, when using argument systems that are tailored to the NP languages under considera-
tions, or when it is not possible to use the same common reference string for all argument systems
(depending, of course, on the length of the longest common reference strings).

The main idea underlying this construction is that the arguments computed by the homomorphic
evaluation algorithm form a tree structure instead of a path structure. Specifically, instead of using
t argument systems, we use only d = log t argument systems where the i-th one is used for arguing
the well-formedness of a ciphertext after 2i repeated homomorphic operations.

Succinct extractable arguments. As explained above, our construction hinges on the exis-
tence of succinct non-interactive argument systems that exhibit a knowledge extractor capable of
extracting a witness from any successful prover. Gentry and Wichs [GW11] recently showed that
no sub-linear non-interactive argument system can be proven secure by a black-box reduction to a
falsifiable assumption. Fortunately, while we need succinct arguments, their lengths need not be
sub-linear. It suffices for our purposes that arguments are shorter by only a multiplicative constant
factor (say, 1/4) than the length of the witness, and therefore the negative result of Gentry and
Wichs does not apply to our settings. Nevertheless, all known argument systems that satisfy our
needs are either set in the random oracle model or are based on non-falsifiable assumptions in the
sense of Naor [Nao03].

The first such system was constructed by Micali [Mic00] using the PCP theorem. Computational
soundness is proved in the random oracle model [BR93] and the length of the proofs is essentially
independent of the length of the witness. Valiant [Val08] observed that the system is extractable
as needed for our proof of security. Unfortunately, we inherently cannot use an argument system
set in the random oracle model. To see why, consider a fresh ciphertext c which is an encryption
of message m. After the first homomorphic operation we obtain a new ciphertext c′ containing a
proof π showing that c′ is an encryption of f(m) for some allowable function f ∈ F . Verifying π
requires access to the random oracle. Now, consider the second homomorphic operation resulting
in c′′. The proof embedded in c′′ must now prove, among other things, that there exists a valid
proof π showing that c′ is a well-formed ciphertext. But since π’s verifier queries the random
oracle, this statement is in NPO where O is a random oracle. Since PCPs do not relativize, it
seems that Micali’s system cannot be used for our purpose. In fact, there are no known succinct
argument systems for proving statements in NPO. This issue was also pointed out by Chiesa
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and Tromer [CT10] in a completely different context, who suggested to overcome this difficulty by
providing each prover with a smartcard implementing a specific oracle functionality.

Instead, we use a recent succinct non-interactive argument system due to Groth [Gro10] (see
also the refinement by Lipmaa [Lip11]). Soundness is based on a variant of the “knowledge of
exponent assumption,” a somewhat non-standard assumption (essentially stating that the required
extractor exists by assumption, backed up with evidence in the generic group model) . This class of
assumptions was introduced by Damg̊ard [Dam91] and extended by Bellare and Palacio [BP04b].
Interestingly, Bellare and Palacio [BP04a] succeeded in falsifying one such assumption using the De-
cision Diffie-Hellman problem. We note that while Groth’s argument system is even zero-knowledge,
we primarily use the soundness property of the system (see the discussion in Section 6 on exploiting
its zero-knowledge property).

1.3 Related Work

The problem of providing certain non-malleability properties for homomorphic encryption schemes
was studied by Prabhakaran and Rosulek [PR08]. As a positive result, they presented a variant
of the Cramer-Shoup encryption scheme [CS98] that provably supports linear operations and no
other operations. There are two main differences between our work and the work of Prabhakaran
and Rosulek: (1) their framework only considers sets of allowable functions that are closed un-
der composition, and (2) their framework does not prevent ciphertext expansion during repeated
applications of the homomorphic operation, whereas this is a key goal for our work.

In our work we do not make the assumption that the set of allowable functions F is closed
under composition. As already discussed, one of the advantages of avoiding this assumption (other
than the obvious advantage of capturing a wider class of homomorphic schemes) is that we are in
fact able to target the malleability of a scheme at any subset F ′ ⊆ F of its supported homomorphic
operations (which may be determined by the specific application in which the scheme is used), and
this is especially significant when dealing with fully homomorphic schemes. Another advantage is
the ability to limit the number of repeated homomorphic operations.

We note that when assuming that the set of functions F is closed under composition, there
is in fact a trivial solution: For encrypting a message m compute (Encpk(m), id) using any non-
malleable encryption scheme, where id is the identity function. Then, the homomorphic evaluation
algorithm on input a ciphertext (c, f1) and a function f2 ∈ F simply outputs (c, f2 ◦ f1) (where ◦
denotes composition of functions). In this light, Prabhakaran and Rosulek focused on formalizing a
meaningful notion of security for a-posteriori chosen-ciphertext attacks (CCA2), following previous
relaxations of such attacks [ADR02, CKN03, Gro04, PR07]. This is orthogonal to our setting in
which the issue of avoiding a blow-up in the length of the ciphertext makes the problem challenging
already for chosen-plaintext attacks.

Finally, we note that targeted malleability shares a somewhat similar theme with the problem of
outsourcing a computation in a verifiable manner from a computationally-weak client to a powerful
server (see, for example, [GKR08, GGP10, CKV10, AIK10] and the references therein). In both
settings the main goal from the security aspect is to guarantee that a “correct” or an “allowable”
computation is performed. From the efficiency aspect, however, the two settings significantly
differ: whereas for targeted malleability our main focus is to prevent a blow-up in the length of
the ciphertext resulting from repeated applications of a computation, for verifiable computation the
main focus is to minimize the client’s computational effort within a single computation.
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1.4 Paper Organization

The remainder of this paper is organized as follows. In Section 2 we present the basic tools that
are used in our constructions. In Section 3 we formalize the notion of targeted malleability. In
Sections 4 and 5 we present our constructions. Finally, in Section 6 we discuss possible extensions
of our work and several open problems.

2 Preliminaries

In this section we present the basic tools that are used in our constructions: public-key encryp-
tion and homomorphic encryption, succinct non-interactive arguments, and non-interactive zero-
knowledge proofs.

2.1 Public-Key Encryption

A public-key encryption scheme is a triplet Π = (KeyGen,Enc,Dec) of probabilistic polynomial-
time algorithms, where KeyGen is the key-generation algorithm, Enc is the encryption algorithm,
and Dec is the decryption algorithm. The key-generation algorithm KeyGen receives as input the
security parameter, and outputs a public key pk and a secret key sk. The encryption algorithm
Enc receives as input a public key pk and a message m, and outputs a ciphertext c. The decryption
algorithm Dec receives as input a ciphertext c and a secret key sk, and outputs a message m or the
symbol ⊥.

Functionality. In terms of functionality, in this paper we require the property of almost-all-keys
perfect decryption [DNR04], defined as follows:

Definition 2.1. A public-key encryption scheme Π = (KeyGen,Enc,Dec) has almost-all-keys per-
fect decryption if there exists a negligible function ν(k) such that for all sufficiently large k with
probability 1− ν(k) over the choice of (sk, pk)← KeyGen(1k), for any message m it holds that

Pr [Decsk(Encpk(m)) = m] = 1 ,

where the probability is taken over the internal randomness of Enc and Dec.

We note that Dwork, Naor, and Reingold [DNR04] proposed a general transformation turning
any encryption scheme into one that has almost-all-keys perfect decryption. When starting with
a scheme that has a very low error probability, their transformation only changes the random
bits used by the encryption algorithm, and in our setting this is important as it preserves the
homomorphic operations. When starting with a scheme that has a significant error probability, we
note that the error probability can be reduced exponentially by encrypting messages under several
independently chosen public keys, and decrypting according to the majority. This again preserves
the homomorphic operations.

Security. In terms of security, we consider the most basic notion of semantic-security against
chosen-plaintext attacks, asking that any efficient adversary has only a negligible advantage in
distinguishing between encryptions of different messages. This is formalized as follows:

Definition 2.2. A public-key encryption scheme Π = (KeyGen,Enc,Dec) is semantically secure
against chosen-plaintext attacks if for any probabilistic polynomial-time adversary A = (A1, A2) it
holds that

AdvCPAΠ,A(k)
def
=

∣∣∣Pr [ExptCPAΠ,A,0(k) = 1
]
− Pr

[
ExptCPAΠ,A,1(k) = 1

]∣∣∣
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is negligible in k, where ExptCPAΠ,A,b(k) is defined as follows:

1. (sk, pk)← KeyGen(1k).

2. (m0,m1, state)← A1(1
k, pk) such that |m0| = |m1|.

3. c∗ ← Encpk(mb).

4. b′ ← A2(c
∗, state)

5. Output b′.

Homomorphic encryption. A public-key encryption scheme Π = (KeyGen,Enc,Dec) is homo-
morphic with respect to a set of efficiently computable functions F if there exists a homomorphic
evaluation algorithm HomEval that receives as input a public key pk, an encryption of a message m,
and a function f ∈ F , and outputs an encryption of the message f(m). Formally, with overwhelming
probability over the choice of (sk, pk)← KeyGen(1k) (as in Definition 2.1), for any ciphertext c such
that Decsk(c) ̸= ⊥ and for any function f ∈ F it holds that Decsk (HomEvalpk(c, f)) = f (Decsk(c))
with probability 1 over the internal randomness of HomEval and Dec.

The main property that is typically required from a homomorphic encryption scheme is compact-
ness, asking that the length of the ciphertext does not trivially grow with the number of repeated
homomorphic operations. In our setting, given an upper bound t on the number of repeated ho-
momorphic operations that can be applied to a ciphertext produced by the encryption algorithm,
we are interested in minimizing the dependency of the length of the ciphertext on t.

An additional property, that we do not consider in this paper, is of function privacy. Informally,
this property asks that the homomorphic evaluation algorithm does not reveal which function from
the set F it receives as input. We refer the reader to [GHV10] for a formal definition. We note
that in our setting, where function privacy is not taken into account, we can assume without loss
of generality that the homomorphic evaluation algorithm is deterministic.

2.2 Non-Interactive Extractable Arguments

A non-interactive argument system for a language L =
∪

k∈N L(k) with a witness relation R =∪
k∈NR(k) consists of a triplet of algorithms (CRSGen,P,V), where CRSGen is an algorithm gener-

ating a common reference string crs, and P and V are the prover and verifier algorithms, respectively.
The prover takes as input a triplet (x,w, crs), where (x,w) ∈ R, and outputs an argument π. The
verifier takes as input a triplet (x, π, crs) and either accepts or rejects. In this paper we consider
a setting where all three algorithms run in polynomial time, CRSGen and P may be probabilistic,
and V is deterministic.

We require three properties from such a system. The first property is perfect completeness: for
every (x,w, crs) such that (x,w) ∈ R, the prover always generates an argument that is accepted by
the verifier. The second property is knowledge extraction: for every efficient malicious prover P∗

there exists an efficient “knowledge extractor” ExtP∗ , such that whenever P∗ outputs (x, π) that is
accepted by the verifier, ExtP∗ when given the random coins of P∗ can in fact produce a witness w
such that (x,w) ∈ R with all but a negligible probability. We note that this implies, in particular,
soundness against efficient provers.

The perfect completeness and knowledge extraction properties are in fact trivial to satisfy: the
prover can output the witness w as an argument, and the verifier checks that (x,w) ∈ R (unlike for
CS proofs [Mic00, Val08] we do not impose any non-trivial efficiency requirement on the verifier).
The third property that we require from the argument system is that of having rather succinct
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arguments: there should exist a constant 0 < γ < 1 such that the arguments are of length at most
γ|w|.

Definition 2.3. Let 0 < γ < 1 be a constant. A γ-succinct non-interactive extractable argument
system for a language L =

∪
k∈N L(k) with a witness relation RL =

∪
k∈NRL(k) is a triplet of

probabilistic polynomial-time algorithms (CRSGen,P,V) with the following properties:

1. Perfect completeness: For every k ∈ N and (x,w) ∈ RL(k) it holds that

Pr

[
V(1k, x, π, crs) = 1

∣∣∣∣ crs← CRSGen(1k)

π ← P(1k, x, w, crs)

]
= 1

where the probability is taken over the internal randomness of CRSGen, P and V.

2. Adaptive knowledge extraction: For every probabilistic polynomial-time algorithm P∗

there exist a probabilistic polynomial-time algorithm ExtP∗ and a negligible function ν(·) such
that

Pr

(x,w) /∈ RL(k) and V(1k, x, π, crs) = 1

∣∣∣∣∣∣
crs← CRSGen(1k), r ← {0, 1}∗

(x, π)← P∗(1k, crs; r)
w ← ExtP∗(1k, crs, r)

 ≤ ν(k)

for all sufficiently large k, where the probability is taken over the internal randomness of
CRSGen, P∗, V, and ExtP∗.

3. γ-Succinct arguments: For every k ∈ N, (x,w) ∈ RL(k) and crs ∈ {0, 1}∗, it holds that

P(1k, x, w, crs) produces a distribution over strings of length at most γ|w|.

Instantiation. An argument system satisfying Definition 2.3 (with a deterministic verifier) was
recently constructed by Groth [Gro10] in the common-reference string model based on a certain
“knowledge of exponent” assumption. His scheme is even zero-knowledge, and the length of the
resulting arguments is essentially independent of the length of the witness. The length of the
common-reference string, however, is at least quadratic in the length of the witness4, and this will
limit our constructions to support only a constant number of repeated homomorphic operations.
Any argument system satisfying Definition 2.3 with a common-reference string of length linear in
the length of the witness will allow our first construction to support any logarithmic number of
repeated homomorphic operations, and our second construction to support any polynomial number
of such operations.

The running time of the knowledge extractor. The proofs of security of our constructions
involve nested invocations of the knowledge extractors that are provided by Definition 2.3. When
supporting only a constant number of repeated homomorphic operations the simulation will always
run in polynomial time. When supporting a super-constant number of repeated homomorphic op-
erations, we need to require that the knowledge extractor ExtP∗ corresponding to a malicious prover
P∗ runs in time that is linear in the running time of P∗. This (together with a common-reference
string of linear length) will allow our first construction to support any logarithmic number of re-
peated homomorphic operations, and our second construction to support any polynomial number
of such operations.

4For proving the satisfiability of a circuit of size s, the common-reference string in [Gro10] consists of O(s2) group
elements, taken from a group where (in particular) the discrete logarithm problem is assumed to be hard. Lipmaa
[Lip11] was able to slightly reduce the number of group elements, but even in his construction it is still super-linear.
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2.3 Non-Interactive Simulation-Sound Adaptive Zero-Knowledge Proofs

We define the notion of a non-interactive simulation-sound adaptive zero-knowledge proof system
[BFM88, FLS90, BSM+91, Sah99].

Definition 2.4. A non-interactive simulation-sound adaptive zero-knowledge proof system for
a language L =

∪
k∈N L(k) with a witness relation RL =

∪
k∈NRL(k) is a tuple of probabilistic

polynomial-time algorithms Π = (CRSGen,P,V, S1,S2) with the following properties:

1. Perfect completeness: For every k ∈ N and (x,w) ∈ RL(k) it holds that

Pr

[
V(1k, x, π, crs) = 1

∣∣∣∣ crs← CRSGen(1k)

π ← P(1k, x, w, crs)

]
= 1

where the probability is taken over the internal randomness of CRSGen, P and V.

2. Adaptive soundness: For every algorithm P∗ there exists a negligible function ν(·) such
that

Pr

[
x /∈ L(k) and V(1k, x, π, crs) = 1

∣∣∣∣ crs← CRSGen(1k)
(x, π)← P∗(1k, crs)

]
≤ ν(k)

for all sufficiently large k, where the probability is taken over the internal randomness of
CRSGen, P∗, and V.

3. Adaptive zero knowledge: For every probabilistic polynomial-time algorithm A there exists
a negligible function ν(·) such that

AdvZKΠ,A(k)
def
=

∣∣∣Pr [ExptZKΠ,A(k) = 1
]
− Pr

[
ExptZKΠ,A,S1,S2(k) = 1

]∣∣∣ ≤ ν(k)

for all sufficiently large k, where the experiment ExptZKΠ,A(k) is defined as:

(a) crs← CRSGen(1k)

(b) b← AP(1k,·,·,crs)(1k, crs)

(c) Output b

and the experiment ExptZKΠ,A,S1,S2(k) is defined as:

(a) (crs, τ)← S1(1
k)

(b) b← AS′2(1
k,·,·,τ)(1k, crs), where S′2(1

k, x, w, τ) = S2(1
k, x, τ)

(c) output b

4. Simulation soundness: For every probabilistic polynomial-time algorithm A there exists a
negligible function ν(·) such that

AdvSSΠ,A(k)
def
= Pr

[
ExptSSΠ,A(k) = 1

]
≤ ν(k)

for all sufficiently large k, where the experiment ExptSSΠ,A(k) is defined as:

(a) (crs, τ)← S1(1
k)

(b) (x, π)← AS2(1k,·,τ)(1k, crs)

(c) Denote by Q the set of S2’s answers to A’s oracle queries

(d) Output 1 if and only if x /∈ L(k), π /∈ Q, and V(1k, x, π, crs) = 1
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3 Defining Targeted Malleability

In this section we introduce a framework for targeted malleability by formalizing non-malleability
with respect to a specific set of functions. We begin by discussing the case of univariate functions,
and then show that our approach naturally generalizes to the case of multivariate functions. Given
an encryption scheme that is homomorphic with respect to a set of functions F we would like to
capture the following notion of security: For any efficient adversary that is given an encryption c
of a message m and outputs an encryption c′ of a message m′, it should hold that either (1) m′ is
independent of m, (2) c′ = c (and thus m′ = m), or (3) c′ is obtained by repeatedly applying the
homomorphic evaluation algorithm on c using functions f1, . . . , fℓ ∈ F . The first two properties
are the standard ones for non-malleability [DDN00], and the third property captures targeted
malleability.

Following [DDN00, BS99, PSV07] we formalize a simulation-based notion of security that com-
pares a real-world adversary to a simulator that is not given any ciphertexts as input. Specifically,
we consider two experiments: a real-world experiment, and a simulated experiment, and require
that for any efficient real-world adversary there exists an efficient simulator such that the outputs
of the two experiments are computationally indistinguishable5. We consider both chosen-plaintext
attacks (CPA) and a-priori chosen-ciphertext attacks (CCA1). We assume that the set of functions
F is recognizable in polynomial time, and it may or may not be closed under composition.

Chosen-plaintext attacks (CPA). In the real-world experiment we consider adversaries that
are described by two algorithms A = (A1, A2). The algorithm A1 takes as input the public key of
the scheme, and outputs a description of a distributionM over messages, a state information state1
to be included in the output of the experiment, and a state information state2 to be given as input
to the algorithm A2. We note that state1 and state2 may include pk andM. Then, the algorithm
A2 takes as input the state information state2 and a sequence of ciphertexts that are encryptions
of messages m1, . . . ,mr sampled from M. The algorithm A2 outputs a sequence of ciphertexts
c1, . . . , cq, and the output of the experiment is defined as (state1,m1, . . . ,mr, d1, . . . , dq), where for
every j ∈ {1, . . . , q} the value dj is one of two things: if cj is equal to the i-th input ciphertext for
some i then dj is a special symbol copyi; otherwise dj is the decryption of cj .

In the simulated experiment the simulator is also described by two algorithms S = (S1, S2).
The algorithm S1 takes as input the public key, and outputs a description of a distributionM over
messages, a state information state1 to be included in the output of the experiment, and a state
information state2 to be given as input to the algorithm S2 (as in the real world). Then, a sequence
of messages is sampled from M, but here the algorithm S2 does not receive the encryptions of
these messages, but only state2. The algorithm S2 should output q values, where each value can
take one of three possible types. The first type is the special symbol copyi, and in this case we
define dj = copyi. This captures the ability of real-world adversary to copy one of the ciphertexts.
The second type is an index i ∈ {1, . . . , r} and a sequence of functions f1, . . . , fℓ ∈ F , where ℓ is at
most some predetermined upper bound t on the number of repeated homomorphic operations. In
this case we define dj = f(mi) where f = f1 ◦ · · · ◦ fℓ. This captures the ability of the real-world
adversary to choose one of its input ciphertexts and apply the homomorphic evaluation algorithm
for at most t times. The third type is a ciphertext cj , and in this case dj is defined as its decryption.
As the simulator does not receive any ciphertexts as input, this captures the ability of the adversary
to produce a ciphertext that is independent of its input ciphertexts. The output of the experiment

5As commented by Pass et al. [PSV07], note that a distinguisher between the two experiments corresponds to
using a relation for capturing non-malleability as in [DDN00, BS99].
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is defined as (state1,m1, . . . ,mr, d1, . . . , dq).

Definition 3.1. Let t = t(k) be a polynomial. A public-key encryption scheme Π = (KeyGen,Enc,
Dec,HomEval) is t-bounded non-malleable against chosen-plaintext attacks with respect to a set of
functions F if for any polynomials r = r(k) and q = q(k) and for any probabilistic polynomial-time
algorithm A = (A1, A2) there exists a probabilistic polynomial-time algorithm S = (S1, S2) such that
the distributions

{
RealCPAΠ,A,t,r,q(k)

}
k∈N and

{
SimCPA

Π,S,t,r,q(k)
}
k∈N (see Figure 1) are computationally

indistinguishable.

RealCPAΠ,A,t,r,q(k):

1. (sk, pk)← KeyGen(1k)

2. (M, state1, state2)← A1(1
k, pk)

3. (m1, . . . ,mr)←M

4. c∗i ← Encpk(mi) for every i ∈ {1, . . . , r}

5. (c1, . . . , cq)← A2(1
k, c∗1, . . . , c

∗
r , state2)

6. For every j ∈ {1, . . . , q} let

dj =

{
copyi if cj = c∗i
Decsk(cj) otherwise

7. Output (state1,m1, . . . ,mr, d1, . . . , dq)

SimCPA
Π,S,t,r,q(k):

1. (sk, pk)← KeyGen(1k)

2. (M, state1, state2)← S1(1
k, pk)

3. (m1, . . . ,mr)←M

4. (c1, . . . , cq)← S2(1
k, state2)

5. For every j ∈ {1, . . . , q} let

dj =



copyi if cj = copyi

f(mi)

if cj = (i, f1, . . . , fℓ)

where i ∈ {1, . . . , r},
ℓ ≤ t, f1, . . . , fℓ ∈ F ,
and f = f1 ◦ · · · ◦ fℓ

Decsk(cj) otherwise

6. Output (state1,m1, . . . ,mr, d1, . . . , dq)

Figure 1: The distributions RealCPAΠ,A,t,r,q(k) and SimCPA
Π,S,t,r,q(k).

Dealing with multivariate functions. Our approach naturally generalizes to the case of mul-
tivariate functions as follows. Fix a set F of functions that are defined on d-tuples of plaintexts for
some integer d, and let A be an efficient adversary that is given a sequence of ciphertexts c∗1, . . . , c

∗
r

and outputs a sequence of ciphertexts c1, . . . , cq, as in Definition 3.1. Intuitively, for each output
ciphertext cj it should hold that either (1) Decsk(cj) is independent of c∗1, . . . , c

∗
r, (2) cj = c∗i for

some i ∈ {1, . . . , r}, or (3) cj is obtained by repeatedly applying the homomorphic evaluation algo-
rithm using functions from the set F and a sequence of ciphertexts where each ciphertext is either
taken from c∗1, . . . , c

∗
r or is independent of c∗1, . . . , c

∗
r.

Formally, the distribution RealCPAΠ,A,t,r,q(k) is not modified, and the distribution SimCPA
Π,S,t,r,q(k) is

modified by only changing the output cj = (i, f1, . . . , fℓ) of S2 to a d-ary tree of depth at most
t: each internal node contains a description of a function from the set F , and each leaf contains
either an index i ∈ {1, . . . , r} or a plaintext m. The corresponding value dj is then computed by
evaluating the tree bottom-up where each index i is replaced by the plaintext mi that was sampled
fromM.

Dealing with randomized functions. The above definitions assume that F is a set of determin-
istic functions. More generally, one can also consider randomized functions. There are two natural
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approaches for extending our framework to this setting. The first approach is to view each function
f ∈ F and string r ∈ {0, 1}∗ (of an appropriate length) as defining a function fr(m) = f(m; r),
and to apply the above definitions to the set F ′ = {fr}f∈F ,r∈{0,1}∗ of deterministic functions. The

second approach is to modify the distribution SimCPA
Π,S,t,r,q(k) as follows: instead of setting dj to the

value f(mi), we sample dj from the distribution induced by the random variable f(mi). Each of
these two approaches may be preferable depending on the context in which the encryption scheme
is used, and for simplifying the presentation in this paper we assume that F is a set of deterministic
functions.

A-priori chosen-ciphertexts attacks (CCA1). Definition 3.1 generalizes to a-priori chosen-
ciphertext attacks by providing the algorithm A1 oracle access to the decryption oracle before
choosing the distribution M. At the same time, however, the simulator still needs to specify
the distribution M without having such access (this is also known as non-assisted simulation).
Specifically, we define {RealCCA1Π,A,t,r,q(k)}k∈N and {SimCCA1

Π,S,t,r,q(k)}k∈N as follows: RealCCA1Π,A,t,r,q(k) is

obtained from RealCPAΠ,A,t,r,q(k) by providing A1 with oracle access to Decsk(·), and SimCCA1
Π,S,t,r,q(k) is

identical to SimCPA
Π,S,t,r,q(k).

Definition 3.2. Let t = t(k) be a polynomial. A public-key encryption scheme Π = (KeyGen,Enc,
Dec,HomEval) is t-bounded non-malleable against a-priori chosen-ciphertext attacks with respect
to a set of functions F if for any polynomials r = r(k) and q = q(k) and for any probabilistic
polynomial-time algorithm A = (A1, A2) there exists a probabilistic polynomial-time algorithm S =
(S1, S2) such that the distributions {RealCCA1Π,A,t,r,q(k)}k∈N and {SimCCA1

Π,S,t,r,q(k)}k∈N are computationally
indistinguishable.

4 The Path-Based Construction

In this section we present our first construction. The construction is based on any public-key
encryption scheme that is homomorphic with respect to some set F of functions, a non-interactive
zero-knowledge proof system, and γ-succinct non-interactive argument systems for γ = 1/4. The
scheme is parameterized by an upper bound t on the number of repeated homomorphic operations
that can be applied to a ciphertext produced by the encryption algorithm. The scheme enjoys the
feature that the dependency on t is essentially eliminated from the length of the ciphertext, and
shifted to the public key. The public key consists of t + 1 common reference strings: one for the
zero-knowledge proof system, and t for the succinct argument systems. We note that in various
cases (such as argument systems in the common random string model) it may be possible to use
only one common-reference string for all t argument systems, and then the length of the public key
decreases quite significantly.

In Section 4.1 we formally specify the building blocks of the scheme, and in Section 4.2 we
provide a description of the scheme. In Section 4.3 we prove the security of the scheme against
chosen-plaintexts attacks (CPA), and in Section 4.4 we show tat the proof in fact extends to deal
with a-priori chosen-ciphertext attacks (CCA1).

4.1 The Building Blocks

Our construction relies on the following building blocks:

1. A homomorphic public-key encryption scheme Π = (KeyGen,Enc,Dec,HomEval) with respect
to an efficiently recognizable set of efficiently computable functions F . We assume that the
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scheme has almost-all-keys perfect decryption (see Definition 2.1). In addition, as discussed
in Section 2.1, as we do not consider function privacy we assume without loss of generality
that HomEval is deterministic.

For any security parameter k ∈ N we denote by ℓpk = ℓpk(k), ℓm = ℓm(k), ℓr = ℓr(k), and
ℓc = ℓc(k) the bit-lengths of the public key, plaintext, randomness of Enc, and ciphertext6,
respectively, for the scheme Π. In addition, we denote by VF the deterministic polynomial-
time algorithm for testing membership in the set F , and denote by ℓF = ℓF (k) the bit-length
of the description of each function f ∈ F .

2. A non-interactive deterministic-verifier simulation-sound adaptive zero-knowledge proof sys-

tem (see Section 2.3) Π(0) =
(
CRSGen(0),P(0),V(0)

)
for the NP-language L(0) =

∪
k∈N L(0)(k)

defined as follows.

L(0)(k) =


(
pk0, pk1, c

(0)
0 , c

(0)
1

)
∈ {0, 1}2ℓpk+2ℓc :

∃(m, r0, r1) ∈ {0, 1}ℓm+2ℓr s.t.

c
(0)
0 = Encpk0(m; r0)

and c
(0)
1 = Encpk1(m; r1)


For any security parameter k ∈ N we denote by ℓcrs(0) = ℓcrs(0)(k) and ℓπ(0) = ℓπ(0)(k) the bit-
lengths of the common-reference strings produced by CRSGen(0) and of the proofs produced
by P(0), respectively. Without loss of generality we assume that ℓπ(0) ≥ max {ℓc, ℓF} (as
otherwise proofs can always be padded).

3. For every i ∈ {1, . . . , t} a 1/4-succinct non-interactive deterministic-verifier extractable ar-

gument system (see Section 2.2) Π(i) =
(
CRSGen(i),P(i),V(i)

)
for the NP-language L(i) =∪

k∈N L(i)(k) defined as follows.

L(i)(k) =



(
pk0, pk1, c

(i)
0 , c

(i)
1 , crs(i−1), . . . , crs(0)

)
∈ {0, 1}2ℓpk+2ℓc+

∑i−1
j=0 ℓcrs(j) :

∃
(
c
(i−1)
0 , c

(i−1)
1 , π(i−1), f

)
∈ {0, 1}2ℓc+ℓ

π(i−1)+ℓF s.t.

• VF (f) = 1

• c
(i)
0 = HomEvalpk0

(
c
(i−1)
0 , f

)
• c

(i)
1 = HomEvalpk1

(
c
(i−1)
1 , f

)
• V(i−1)

((
pk0, pk1, c

(i−1)
0 , c

(i−1)
1 , crs(i−2), . . . , crs(0)

)
, π(i−1), crs(i−1)

)
= 1


For any security parameter k ∈ N we denote by ℓcrs(i) = ℓcrs(i)(k) and ℓπ(i) = ℓπ(i)(k) the
bit-lengths of the common-reference strings produced by CRSGen(i) and of the arguments
produced by P(i), respectively.

4.2 The Scheme

The scheme Π′ = (KeyGen′,Enc′,Dec′,HomEval′) is parameterized by an upper bound t on the
number of repeated homomorphic operations that can be applied to a ciphertext produced by the
encryption algorithm. The scheme is defined as follows:

6For simplicity we assume a fixed upper bound ℓc on the length of ciphertexts, but this is not essential to
our construction. More generally, one can allow the length of ciphertexts to increase as a result of applying the
homomorphic operation.
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• Key generation: On input 1k sample two pairs of keys (sk0, pk0) ← KeyGen(1k) and
(sk1, pk1) ← KeyGen(1k). Then, for every i ∈ {0, . . . , t} sample crs(i) ← CRSGen(i)(1k).
Output the secret key sk = (sk0, sk1) and the public key pk =

(
pk0, pk1, crs

(0), . . . , crs(t)
)
.

• Encryption: On input a public key pk and a plaintext m, sample r0, r1 ∈ {0, 1}∗ uniformly

at random, and output the ciphertext c(0) =
(
0, c

(0)
0 , c

(0)
1 , π(0)

)
, where

c
(0)
0 = Encpk0(m; r0) ,

c
(0)
1 = Encpk1(m; r1) ,

π(0) ← P(0)
((

pk0, pk1, c
(0)
0 , c

(0)
1

)
, (m, r0, r1) , crs

(0)
)

.

• Homomorphic evaluation: On input a public key pk, a ciphertext
(
i, c

(i)
0 , c

(i)
1 , π(i)

)
, and

a function f ∈ F , proceed as follows. If i /∈ {0, . . . , t− 1} or

V(i)
((

pk0, pk1, c
(i)
0 , c

(i)
1 , crs(i−1), . . . , crs(0)

)
, π(i), crs(i)

)
= 0

then output ⊥. Otherwise, output the ciphertext c(i+1) =
(
i+ 1, c

(i+1)
0 , c

(i+1)
1 , π(i+1)

)
, where

c
(i+1)
0 = HomEvalpk0

(
c
(i)
0 , f

)
,

c
(i+1)
1 = HomEvalpk1

(
c
(i)
1 , f

)
,

π(i+1) ← P(i+1)
((

pk0, pk1, c
(i+1)
0 , c

(i+1)
1 , crs(i), . . . , crs(0)

)
,
(
c
(i)
0 , c

(i)
1 , π(i), f

)
, crs(i+1)

)
.

• Decryption: On input a secret key sk and a ciphertext
(
i, c

(i)
0 , c

(i)
1 , π(i)

)
, output ⊥ if i /∈

{0, . . . , t} or

V(i)
((

pk0, pk1, c
(i)
0 , c

(i)
1 , crs(i−1), . . . , crs(0)

)
, π(i), crs(i)

)
= 0 .

Otherwise, compute m0 = Decsk0

(
c
(i)
0

)
and m1 = Decsk1

(
c
(i)
1

)
. If m0 ̸= m1 then output ⊥,

and otherwise output m0.

Note that at any point in time a ciphertext of the scheme is of the form
(
i, c

(i)
0 , c

(i)
1 , π(i)

)
, where

i ∈ {0, . . . , t}, c(i)0 and c
(i)
1 are ciphertexts of the underlying encryption scheme, and π(i) is a proof

or an argument with respect to one of Π(0), . . . ,Π(t). Note that the assumption that the argument
systems Π(1), . . . ,Π(t) are 1/4-succinct implies that the length of their arguments is upper bounded
by length of the proofs of Π(0) (i.e., ℓπ(i) ≤ ℓπ(0) for every i ∈ {1, . . . , t}). Thus, the only dependency
on t in the length of the ciphertext results from the ⌈log2(t+ 1)⌉ bits describing the prefix i.

4.3 Chosen-Plaintext Security

We now prove that the construction offers targeted malleability against chosen-plaintext attacks.
For concreteness we focus on the case of a single message and a single ciphertext (i.e., the case
r(k) = q(k) = 1 in Definition 3.1), and note that the more general case is a straightforward
generalization. Given an adversary A = (A1, A2) we construct a simulator S = (S1, S2) as follows.

14



The algorithm S1. The algorithm S1 is identical to A1, except for also including the public key
pk and the distributionM in the state that it forwards to S2. That is, S1 on input (1k, pk) invokes
A1 on the same input to obtain a triplet (M, state1, state2), and then outputs (M, state1, state

′
2)

where state′2 = (pk,M, state2).

The algorithm S2. The algorithm S2 on input (1k, state′2) where state′2 = (pk,M, state2), first
samples m′ ← M, and computes c∗ ← Enc′pk(m

′). Then, it samples r ← {0, 1}∗, and computes

c =
(
i, c

(i)
0 , c

(i)
1 , π(i)

)
= A2(1

k, c∗, state2; r). If i /∈ {0, . . . , t} or

V(i)
((

pk0, pk1, c
(i)
0 , c

(i)
1 , crs(i−1), . . . , crs(0)

)
, π(i), crs(i)

)
= 0

then S2 outputs c. Otherwise, S2 utilizes the knowledge extractors guaranteed by the argument
systems Π(1), . . . ,Π(t) to generate a “certification chain” for c of the form(

c(0), f (0), . . . , c(i−1), f (i−1), c(i)
)

satisfying the following two properties:

1. c(i) = c.

2. For every j ∈ {1, . . . , i} it holds that c(j) = HomEval′pk
(
c(j−1), f (j−1)

)
.

We elaborate below on the process of generating the certification chain. If S2 fails in generating
such a chain then it outputs c. Otherwise, S2 computes its output as follows:

1. If c(0) = c∗ and i = 0, then S2 outputs copy1.

2. If c(0) = c∗ and i > 0, then S2 outputs f (0) ◦ · · · ◦ f (i−1).

3. If c(0) ̸= c∗, then S2 outputs c.

Generating the certification chain. We say that a ciphertext
(
i, c

(i)
0 , c

(i)
1 , π(i)

)
is valid if i ∈

{0, . . . , t} and
V(i)

((
pk0, pk1, c

(i)
0 , c

(i)
1 , crs(i−1), . . . , crs(0)

)
, π(i), crs(i)

)
= 1 .

Viewing the algorithm A2 as a malicious prover with respect to the argument system Π(i) with the

common reference string crs(i), whenever A2 outputs a valid ciphertext c(i) =
(
i, c

(i)
0 , c

(i)
1 , π(i)

)
, the

algorithm S2 invokes the knowledge extractor ExtA2 that corresponds to A2 (recall Definition 2.3)

to obtain a witness
(
c
(i−1)
0 , c

(i−1)
1 , π(i−1), f (i−1)

)
to the fact that(

pk0, pk1, c
(i)
0 , c

(i)
1 , crs(i−1), . . . , crs(0)

)
∈ L(i) .

Note that S2 chooses the randomness for A2, which it can then provide to ExtA2 . If successful then

by the definition of L(i) we have a new valid cipertext c(i−1) =
(
i− 1, c

(i−1)
0 , c

(i−1)
1 , π(i−1)

)
. If i = 1

then we are done. Otherwise (i.e., if i > 1), viewing the combination of A2 and ExtA2 as a malicious
prover with respect to the argument system Π(i−1) with the common reference string crs(i−1), the
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algorithm S2 invokes the knowledge extractor Ext(A2,ExtA2
) that corresponds to the combination of

A2 and ExtA2 to obtain a witness
(
c
(i−2)
0 , c

(i−2)
1 , π(i−2), f (i−2)

)
to the fact that(

pk0, pk1, c
(i−1)
0 , c

(i−1)
1 , crs(i−2), . . . , crs(0)

)
∈ L(i−1) ,

and so on for i iterations or until the first failure.
Having described the simulator we now prove the following theorem stating the security of the

scheme in the case r(k) = q(k) = 1 (noting again that the more general case is a straightforward
generalization). As discussed in Section 2.2, the quadratic blow-up in the length of the common-
reference string in Groth’s argument system [Gro10] restricts our treatment here to a constant
number t of repeated homomorphic operations, and any improvement to Groth’s argument system
with a common-reference string of linear length will directly allow any logarithmic number of
repeated homomorphic operations (and any polynomial number of such operations in the scheme
presented in Section 5).

Theorem 4.1. For any constant t ∈ N and for any probabilistic polynomial-time adversary A the
distributions {RealCPAΠ′,A,t,r,q(k)}k∈N and {SimCPA

Π′,S,t,r,q(k)}k∈N are computationally indistinguishable,
for r(k) = q(k) = 1.

Proof. We define a sequence of distributions D1, . . . ,D7 such that D1 = SimCPA
Π′,S,t,r,q and D7 =

RealCPAΠ′,A,t,r,q, and prove that for every i ∈ {1, . . . , 6} the distributions Di and Di+1 are com-
putationally indistinguishable. For simplicity in what follows we assume that the scheme Π =
(KeyGen,Enc,Dec,HomEval) actually has perfect decryption for all keys (and not with an over-
whelming probability over the choice of keys). This assumption clearly does not hurt any of the
indistinguishability arguments in our proof, since we can initially condition on the event that both
(sk0, pk0) and (sk1, pk1) provide perfect decryption.

The distribution D1. This is the distribution SimCPA
Π′,S,t,r,q.

The distribution D2. This distribution is obtained from D1 via the following modification. As
in D1, if S2 fails to obtain a certification chain, then output (state1,m,⊥). Otherwise, the
output is computed as follows:

1. If c(0) = c∗ and i = 0 then output (state1,m, copy1). This is identical to D1.

2. If c(0) = c∗ and i > 0 then output (state1,m, f(m)), where f = f (0) ◦ · · · ◦ f (i−1). This
is identical to D1.

3. If c(0) ̸= c∗ then compute the message m(0) = Dec′sk(c
(0)). If m(0) ̸= ⊥ then output(

state1,m, f
(
m(0)

))
, where f = f (0) ◦ · · · ◦ f (i−1), and otherwise output (state1,m,⊥).

That is, in this case instead of invoking the decryption algorithm Dec′ on c(i), we invoke
it on c(0), and then apply the functions given by the certification chain.

The distribution D3. This distribution is obtained from D2 by producing crs(0) and π∗ (where
c∗ = (c∗0, c

∗
1, π

∗)) using the simulator of the NIZK proof system Π(0).

The distribution D4. This distribution is obtained from D3 by producing the challenge cipher-
text c∗ = (c∗0, c

∗
1, π

∗) with c∗0 = Encpk0(m) (instead of c∗0 = Encpk0(m
′) as in D3).

The distribution D5. This distribution is obtained from D4 by producing the challenge cipher-
text c∗ = (c∗0, c

∗
1, π

∗) with c∗1 = Encpk1(m) (instead of c∗1 = Encpk1(m
′) as in D4).
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The distribution D6. This distribution is obtained from D5 by producing crs(0) and π∗ (where
c∗ = (c∗0, c

∗
1, π

∗)) using the algorithms CRSGen(0) and P(0), respectively (and not by using the
simulator of the NIZK proof system Π(0) as in D5).

The distribution D7. This is the distribution RealCPAΠ′,A,t,r,q.

Before proving that the above distributions are computationally indistinguishable, we first prove
that S2 fails to produce a certification chain with all but a negligible probability.

Lemma 4.2. In distributions D1, . . . ,D6, whenever A2 outputs a valid ciphertext, S2 generates a
certification chain with all but a negligible probability.

Proof. Assume towards a contradictions that in one of D1, . . . ,D6 with a non-negligible probability
it holds that A2 outputs a valid ciphertext but S2 fails to generate a certification chain. In particular,
there exists an index i ∈ {1, . . . , t} for which with a non-negligible probability A2 outputs a valid

ciphertext of the form c(i) =
(
i, c

(i)
0 , c

(i)
1 , π(i)

)
, but S2 fails to generate a certification chain. Recall

that for generating a certification chain starting with c(i), the simulator S2 attempts to invoke
i knowledge extractors (until the first failure occurs) that we denote by Ext(i), . . . ,Ext(1). These
knowledge extractors correspond to the malicious provers described in the description of S2 for the
argument systems Π(i), . . . ,Π(1), respectively. Then, there exists an index j ∈ {1, . . . , i} for which
with a non-negligible probability S2 is successful with Ext(i), . . . ,Ext(j+1) but fails with Ext(j).
The fact that S2 is successful with Ext(j+1) implies that it produces a valid ciphertext c(j) =(
j, c

(j)
0 , c

(j)
1 , π(j)

)
. In particular, it holds that

V(j)
((

pk0, pk1, c
(j)
0 , c

(j)
1 , crs(j−1), . . . , crs(0)

)
, π(j), crs(j)

)
= 1 .

Now, the fact that with a non-negligible probability S2 fails with Ext(j) immediately translates to a
malicious prover that contradicts the knowledge extraction property of the argument system Π(j).

We now prove that for every i ∈ {1, . . . , 6} the distributions Di and Di+1 are computationally
indistinguishable.

Lemma 4.3. The distributions D1 and D2 are computationally indistinguishable.

Proof. Whenever A2 outputs an invalid ciphertext, or outputs a valid ciphertext and S2 generates
a certification chain, the distributions D1 and D2 are identical. Indeed, in such a case the perfect
decryption property guarantees that Dec′sk

(
c(i)

)
= f

(
m(0)

)
. Therefore, D1 and D2 differ only

when when A2 outputs a valid ciphertext but S2 fails to generate a certification chain. Lemma 4.2
guarantees that this event occurs with only a negligible probability.

Lemma 4.4. The distributions D2 and D3 are computationally indistinguishable.

Proof. This follows from the zero-knowledge property of Π(0). Specifically, any efficient algorithm
that distinguishes between D2 and D3 can be used (together with S) in a straightforward manner
to contradict the zero-knowledge property of Π(0).

Lemma 4.5. The distributions D3 and D4 are computationally indistinguishable.
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Proof. The simulation soundness of Π(0) guarantees that instead of computing Dec′sk
(
c(0)

)
we

can verify that V(0)
((

pk0, pk1, c
(0)
0 , c

(0)
1

)
, π(0), crs(0)

)
= 1, and then compute Decsk1

(
c
(0)
1

)
. The

resulting distribution will be identical with all but a negligible probability. This implies that we do
not need the key sk0, and this immediately translates to a distinguisher between (pk0,Encpk0(m))
and (pk0,Encpk0(m

′)), where m and m′ are sampled independently fromM. That is, the simulation
soundness of Π(0) and the semantic security of the underlying encryption scheme guarantee that
D3 and D4 are computationally indistinguishable.

Lemma 4.6. The distributions D4 and D5 are computationally indistinguishable.

Proof. As in the proof of Lemma 4.5, the simulation soundness of Π(0) guarantees that instead of

computing Dec′sk(c
(0)) we can verify that V(0)

((
pk0, pk1, c

(0)
0 , c

(0)
1

)
, π(0), crs(0)

)
= 1, and then com-

pute Decsk0

(
c
(0)
0

)
. The resulting distribution will be identical with all but a negligible probability.

This implies that we do not need the key sk1, and this immediately translates to a distinguisher be-
tween (pk1,Encpk1(m)) and (pk1,Encpk1(m

′)), where m and m′ are sampled independently fromM.
That is, the simulation soundness of Π(0) and the semantic security of the underlying encryption
scheme guarantee that D4 and D5 are computationally indistinguishable.

Lemma 4.7. The distributions D5 and D6 are computationally indistinguishable.

Proof. As in the proof of Lemma 4.4, this follows from the zero-knowledge property of Π(0).
Specifically, any efficient algorithm that distinguishes between D5 and D6 can be used (together
with S) in a straightforward manner to contradict the zero-knowledge property of Π(0).

Lemma 4.8. The distributions D6 and D7 are computationally indistinguishable.

Proof. In the distributions D6 and D7 the algorithm A2 receives an encryption c∗ ofm, and outputs
a ciphertext c. First, we note that in both D6 and D7, if c = c∗ then the output is (state1,m, copy1),
and if c is invalid then the output is (state1,m,⊥). Therefore, we now focus on the case that c ̸= c∗

and c is valid. In this case, in D7 the output is (state1,m,Dec′sk(c)), and we now show that with
an overwhelming probability the same output is obtained also in D6.

In D6 Lemma 4.2 guarantees that whenever c is valid S2 produces a certification chain with all
but a negligible probability. There are now two cases to consider. In the first case, if c(0) = c∗ and
i > 0 then the output of D6 is (state1,m, f(m)), where f = f (0) ◦ · · · ◦ f (i−1). Since c∗ is in fact
an encryption of m, then the perfect decryption property guarantees that Dec′sk(c) = f(m). In the
second case, if c(0) ̸= c∗ then the output of D6 is

(
state1,m, f

(
m(0)

))
where m(0) = Dec′sk

(
c(0)

)
.

Again by the perfect decryption property, it holds that Dec′sk(c) = f(m(0)).

This concludes the proof of Theorem 4.1.

4.4 Chosen-Ciphertext Security

We now show that the proof of security in Section 4.3 in fact extends to the setting of a-priori
chosen-ciphertext attacks (CCA1). The difficulty in extending the proof is that now whereas the
adversary A1 is given oracle access to the decryption algorithm, the simulator S1 is not given
such access. Therefore, it is not immediately clear that S1 can correctly simulate the decryption
queries of A1. We note that this issue seems to capture the main difference between the simulation-
based and the indistinguishability-based approaches for defining non-malleability, as pointed out
by Bellare and Sahai [BS99].
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We resolve this issue using the approach of [DDN00, BS99]: S will not run A on the given public
key pk, but instead will sample a new public key pk′ together with a corresponding secret key sk′,
and run A on pk′. This way, S can use the secret key sk′ for answering all of A1’s decryption queries.
In addition, when A2 outputs a ciphertext, S then uses sk′ for “translating” this ciphertext from
pk′ to pk.

We now provide the modified description of S. Given an adversary A = (A1, A2) we define the
simulator S = (S1, S2) as follows.

The algorithm S1. The algorithm S1 on input (1k, pk) first samples (sk′, pk′) ← KeyGen′(1k).
Then, it invokes A1 on the input (1k, pk′) while answering decryption queries using the secret key
sk′, to obtain a triplet (M, state1, state2). Finally, it outputs (M, state1, state

′
2) where state′2 =

(M, pk, sk′, pk′, state2).

The algorithm S2. The algorithm S2 on input (1k, state′2) where state
′
2 = (M, pk, sk′, pk′, state2),

first samples m′ ←M and computes c∗ ← Enc′pk′(m
′). Then, it samples r ← {0, 1}∗ and computes

c =
(
i, c

(i)
0 , c

(i)
1 , π(i)

)
= A2(1

k, c∗, state1; r). If c is invalid with respect to pk′, that is, if i /∈ {0, . . . , t}
or

V(i)
((

pk′0, pk
′
1, c

(i)
0 , c

(i)
1 , crs′(i−1), . . . , crs′(0)

)
, π(i), crs′(i)

)
= 0

then S2 outputs any ciphertext that is invalid with respect to pk (e.g., (t+ 1,⊥,⊥,⊥)). Other-
wise, as in Section 4.3, S2 utilizes the knowledge extractors guaranteed by the argument systems
Π(1), . . . ,Π(t) to generate a “certification chain” for c of the form(

c(0), f (0), . . . , c(i−1), f (i−1), c(i)
)

.

If S2 fails in generating such a chain then it again outputs any invalid ciphertext with respect to
pk. Otherwise, S2 computes its output as follows:

1. If c(0) = c∗ and i = 0, then S2 outputs copy1.

2. If c(0) = c∗ and i > 0, then S2 outputs f (0) ◦ · · · ◦ f (i−1).

3. If c(0) ̸= c∗, then S2 outputs the ciphertext c̃ that is obtained by “translating” c from pk′ to
pk as follows. First, S2 computes m̃ = Decsk′

(
c(0)

)
. Then, it computes c̃(0) = Encpk (m̃), and

c̃(j) = HomEvalpk
(
c̃(j−1), f (j−1)

)
for every j ∈ {1, . . . , i}. The ciphertext c̃ is then defined as

c̃(i).

Having described the modified simulator we now prove the following theorem stating the security
of the scheme in the case r(k) = q(k) = 1 (noting once again that the more general case is a
straightforward generalization).

Theorem 4.9. For any constant t ∈ N and for any probabilistic polynomial-time adversary A the
distributions {RealCCA1Π′,A,t,r,q(k)}k∈N and {SimCCA1

Π′,S,t,r,q(k)}k∈N are computationally indistinguishable,
for r(k) = q(k) = 1.

Proof. As in the proof of Theorem 4.1 we define a similar sequence of distributions D1, . . . ,D7

such that D1 = SimCCA1
Π′,S,t,r,q and D7 = RealCCA1Π′,A,t,r,q, and prove that for every i ∈ {1, . . . , 6} the

distributions Di and Di+1 are computationally indistinguishable. The main difference is that in
this case we change the distribution of the public key pk′ chosen by the simulator, and not of the
given public key pk. The proofs are very similar, and therefore here we only point out the main
differences.
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The distribution D1. This is the distribution SimCCA1
Π′,S,t,r,q.

The distribution D2. This distribution is obtained from D1 via the following modification. As
in D1, if S2 fails to obtain a certification chain, then output (state1,m,⊥). Otherwise, the
output is computed as follows:

1. If c(0) = c∗ and i = 0 then output (state1,m, copy1). This is identical to D1.

2. If c(0) = c∗ and i > 0 then output (state1,m, f(m)), where f = f (0) ◦ · · · ◦ f (i−1). This
is identical to D1.

3. If c(0) ̸= c∗ then compute m(0) = Dec′sk′
(
c(0)

)
. If m(0) ̸= ⊥ output

(
state1,m, f

(
m(0)

))
,

where f = f (0) ◦ · · · ◦ f (i−1), and otherwise output (state1,m,⊥). That is, in this case
instead of invoking the decryption algorithm Dec′ on c(i), we invoke it on c(0), and then
apply the functions given by the certification chain.

The distribution D3. This distribution is obtained from D2 by changing the distribution of pk′

(that is chosen by S) and the challenge ciphertext: we produce crs′(0) and π∗ (where c∗ =
(c∗0, c

∗
1, π

∗)) using the simulator of the NIZK proof system Π(0).

The distribution D4. This distribution is obtained from D3 by producing the challenge cipher-
text c∗ = (c∗0, c

∗
1, π

∗) with c∗0 = Encpk′0(m) (instead of c∗0 = Encpk′0(m
′) as in D3).

The distribution D5. This distribution is obtained from D4 by producing the challenge cipher-
text c∗ = (c∗0, c

∗
1, π

∗) with c∗1 = Encpk′1(m) (instead of c∗1 = Encpk′1(m
′) as in D4).

The distribution D6. This distribution is obtained from D5 by changing the distribution of pk′

(that is chosen by S) and the challenge ciphertext: we produce crs′(0) and π∗ (where c∗ =
(c∗0, c

∗
1, π

∗)) using the algorithms CRSGen(0) and P(0), respectively (and not by using the
simulator of the NIZK proof system Π(0) as in D5).

The distribution D7. This is the distribution RealCPAΠ′,A,t,r,q.

The remainder of the proof is essentially identical to the proof of Theorem 4.1. The only subtle
point is that S1 can simulate the decryption oracle to A1 while knowing only one of sk′0 and sk′1.

Specifically, given a ciphertext
(
i, c

(i)
0 , c

(i)
1 , π(i)

)
, it outputs ⊥ if i /∈ {0, . . . , t} or

V(i)
((

pk′0, pk
′
1, c

(i)
0 , c

(i)
1 , crs′(i−1), . . . , crs′(0)

)
, π(i), crs′(i)

)
= 0 .

Otherwise, it computes mb = Decsk′b

(
c
(i)
b

)
for the value b ∈ {0, 1} for which its known the key sk′b.

The soundness of the proof system Π(0) and of the argument systems Π(1), . . . ,Π(t) guarantee that
the simulation is correct with all but a negligible probability.

5 The Tree-Based Construction

In this section we present our second construction which is obtained by modifying our first con-
struction to offer a different trade-off between the length of the public key and the length of the
ciphertext. As in Section 4, the scheme is parameterized by an upper bound t on the number of
repeated homomorphic operations that can be applied to a ciphertext produced by the encryption
algorithm. Recall that in our first construction, the length of the ciphertext is essentially indepen-
dent of t, and the public key consists of t+1 common reference strings. In our second construction
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the number of common reference strings in the public key is only log t, and a ciphertext now consists
of log t ciphertexts of the underlying homomorphic scheme and log t succinct arguments. Such a
trade-off may be preferable over the one offered by our first construction, for example, when using
argument systems that are tailored to the NP languages under considerations and or when it is not
possible to use the same common reference string for all argument systems (depending, of course,
on the length of the longest common reference strings).

The main idea underlying this construction is that the arguments computed by the homomorphic
evaluation algorithm form a tree structure instead of a path structure. Specifically, instead of using
t argument systems, we use only d = log t argument systems where the i-th one is used for arguing
the well-formedness of a ciphertext after 2i repeated homomorphic operations.

In Section 5.1 we formally specify the building blocks of the scheme, and in Section 5.2 we pro-
vide a description of the scheme and discuss its proof of security against a-priori chosen-ciphertext
attacks (CCA1), which is rather similar to that of our first construction.

5.1 The Building Blocks

Our construction relies on the following building blocks:

1. A homomorphic public-key encryption scheme Π = (KeyGen,Enc,Dec,HomEval) with respect
to an efficiently recognizable set of efficiently computable functions F . We assume that the
scheme has almost-all-key perfect decryption (see Definition 2.1). In addition, as discussed
in Section 2.1, as we do not consider function privacy we assume without loss of generality
that HomEval is deterministic.

For any security parameter k ∈ N we denote by ℓpk = ℓpk(k), ℓm = ℓm(k), ℓr = ℓr(k), and
ℓc = ℓc(k) the bit-lengths of the public key, plaintext, randomness of Enc, and ciphertext7,
respectively, for the scheme Π. In addition, we denote by VF the deterministic polynomial-
time algorithm for testing membership in the set F , and denote by ℓF = ℓF (k) the bit-length
of the description of each function f ∈ F .

2. A non-interactive deterministic-verifier simulation-sound adaptive zero-knowledge proof sys-

tem (see Section 2.3) Π(0) =
(
CRSGen(0),P(0),V(0)

)
for the NP-language L(0) =

∪
k∈N L(0)(k)

defined as follows.

L(0)(k) =


(
pk0, pk1, c

(0)
0 , c

(0)
1

)
∈ {0, 1}2ℓpk+2ℓc :

∃(m, r0, r1) ∈ {0, 1}ℓm+2ℓr s.t.

c
(0)
0 = Encpk0(m; r0)

and c
(0)
1 = Encpk1(m; r1)


For any security parameter k ∈ N we denote by ℓcrs(0) = ℓcrs(0)(k) and ℓπ(0) = ℓπ(0)(k) the bit-
lengths of the common reference strings produced by CRSGen(0) and of the proofs produced
by P(0), respectively.

3. For every j ∈ {1, . . . , d} (where d = ⌈log t⌉) a 1/7-succinct non-interactive deterministic-

verifier extractable argument system (see Section 2.2) Π(j) =
(
CRSGen(j),P(j),V(j)

)
for the

7For simplicity we assume a fixed upper bound ℓc on the length of ciphertexts, but this is not essential to
our construction. More generally, one can allow the length of ciphertexts to increase as a result of applying the
homomorphic operation.
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NP-language L(j) =
∪

k∈N L(j)(k) defined as follows for j = 1

L(1)(k) =



(
pk0, pk1, c

(1)
0 , c

(1)
1 , c

(2)
0 , c

(2)
1

)
∈ {0, 1}2ℓpk+4ℓc :

∃f ∈ {0, 1}ℓF s.t.
• VF (f) = 1

• c
(2)
0 = HomEvalpk0

(
c
(1)
0 , f

)
• c

(2)
1 = HomEvalpk1

(
c
(1)
1 , f

)


and defined as follows for j > 1:

L(j)(k) =

(
pk0, pk1, c

(1)
0 , c

(1)
1 , c

(2j)
0 , c

(2j)
1 ,−→crs(j−1)

)
∈ {0, 1}ℓ

(j)
1 :

∃
(
c
(2j−1)
0 , c

(2j−1)
1 , c

(2j−1+1)
0 , c

(2j−1+1)
1 , f, π

(j−1)
L , π

(j−1)
R

)
∈ {0, 1}ℓ

(j)
2 s.t.

• VF (f) = 1

• c
(2j−1+1)
0 = HomEvalpk0

(
c
(2j−1)
0 , f

)
• c

(2j−1+1)
1 = HomEvalpk1

(
c
(2j−1)
1 , f

)
• V(j−1)

((
pk0, pk1, c

(1)
0 , c

(1)
1 , c

(2j−1)
0 , c

(2j−1)
1 ,−→crs(j−2)

)
, π

(j−1)
L , crs(j−1)

)
= 1

• V(j−1)
((

pk0, pk1, c
(2j−1+1)
0 , c

(2j−1+1)
1 , c

(2j)
0 , c

(2j)
1 ,−→crs(j−2)

)
, π

(j−1)
R , crs(j−1)

)
= 1


where ℓ

(j)
1 = 2ℓpk+4ℓc+

∑d−1
t=1 ℓcrs(t) , ℓ

(j)
2 = 4ℓc+ℓF+2ℓπ(j−1) , and for every 1 ≤ j ≤ d we define

−→crs(j) =
(
crs(j), . . . , crs(1)

)
. For any security parameter k ∈ N we denote by ℓcrs(j) = ℓcrs(j)(k)

and ℓπ(j) = ℓπ(j)(k) the bit-lengths of the common reference strings produced by CRSGen(j)

and of the arguments produced by P(j), respectively.

We note that for j = 1 we in fact do not need an argument system, as we can use the witness
f ∈ F as the arguments. Without loss of generality we assume that ℓπ(1) ≥ max {ℓc, ℓF}
(as otherwise arguments can always be padded). Thus, the assumption that the argument
systems Π(2), . . . ,Π(d) are 1/7-succinct implies that the length of their arguments is upper
bounded by that of Π(1) (and therefore independent of t).

5.2 The Scheme

The scheme Π′ = (KeyGen′,Enc′,Dec′,HomEval′) is parameterized by an upper bound t on the
number of repeated homomorphic operations, and we let d = ⌈log t⌉. The key-generation and
encryption algorithm are essentially identical to those described in Section 4.2:

• Key generation: On input 1k sample two pairs of keys (sk0, pk0) ← KeyGen(1k) and
(sk1, pk1) ← KeyGen(1k). Then, for every j ∈ {0, . . . , d} sample crs(j) ← CRSGen(j)(1k).
Output the secret key sk = (sk0, sk1) and the public key pk =

(
pk0, pk1, crs

(0), . . . , crs(d)
)
.

• Encryption: On input a public key pk and a plaintext m, sample r0, r1 ∈ {0, 1}∗ uniformly

at random, and output the ciphertext c(0) =
(
c
(0)
0 , c

(0)
1 , π(0)

)
, where

c
(0)
0 = Encpk0(m; r0) ,

c
(0)
1 = Encpk1(m; r1) ,

π(0) ← P(0)
((

pk0, pk1, c
(0)
0 , c

(0)
1

)
, (m, r0, r1) , crs

(0)
)

.
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• Homomorphic evaluation: The homomorphic evaluation algorithm follows the same ap-
proach used in Section 4.2, but computes the arguments of well-formedness in the form of a
sparse binary tree. The leaves of the tree correspond to a chain of ciphertexts

(
c(1), . . . , c(i)

)
that are generated from one another using the homomorphic evaluation algorithm. Each
internal node at level j ∈ {1, . . . , d} (where the leaves are considered to be at level 0) is a
succinct argument for membership in the language L(j). We first describe how to generate
the leaves and the internal nodes, and then describe the content of a ciphertext (i.e., which
nodes of the tree should be contained in a ciphertext).

– The leaves: The leftmost leaf in the tree c(1) =
(
c
(1)
0 , c

(1)
1

)
is generated from a cipher-

text c(0) =
(
c
(0)
0 , c

(0)
1 , π(0)

)
that is produced by the encryption algorithm and a function

f (0) ∈ F . It is defined as

c
(1)
0 = HomEvalpk0

(
c
(0)
0 , f (0)

)
,

c
(1)
1 = HomEvalpk1

(
c
(0)
1 , f (0)

)
.

From this point on both the ciphertext c(0), the function f (0), and the leaf c(1) are kept
part of all future ciphertexts.

For every i ∈ {1, . . . , t−1} the leaf c(i+1) =
(
c
(i+1)
0 , c

(i+1)
1

)
is generated from the previous

leaf c(i) =
(
c
(i)
0 , c

(i)
1

)
and a function f (i) ∈ F by computing

c
(i+1)
0 = HomEvalpk0

(
c
(i)
0 , f (i)

)
,

c
(i+1)
1 = HomEvalpk1

(
c
(i)
1 , f (i)

)
.

– The internal nodes: Each internal node v at level j ∈ {1, . . . , d} is an argument
for membership in the language L(j). For j = 1, the two children of x are leaves

c(i) =
(
c
(i)
0 , c

(i)
1

)
and c(i+1) =

(
c
(i+1)
0 , c

(i+1)
1

)
, and in this case v is an argument that c(i+1)

is obtained from c(i) using the homomorphic operation with some function f (i) ∈ F . This
is computed as:

π ← P(1)
((

pk0, pk1, c
(i)
0 , c

(i)
1 , c

(i+1)
0 , c

(i+1)
1 ,

)
, f (i), crs(1)

)
.

For every j ∈ {2, . . . , d}, denote by vL and vR the two children of v. These are arguments

for membership in L(j−1). Denote by c(1) =
(
c
(1)
0 , c

(1)
1

)
and c(2

j−1) =
(
c
(2j−1)
0 , c

(2j−1)
1

)
the leftmost and rightmost leaves in the subtree of vL, respectively. Similarly, denote

by c(2
j−1+1) =

(
c
(2j−1+1)
0 , c

(2j−1+1)
1

)
and c(2

j) =
(
c
(2j)
0 , c

(2j)
1

)
the leftmost and rightmost

leaves in the subtree of vR, respectively. Then, the node v is an argument that vL is a

valid argument for
(
c(1), . . . , c(2

j−1)
)
, vR is a valid argument for

(
c(2

j−1+1), . . . , c(2
j)
)
,

and that c(2
j−1+1) is obtained from c(2

j−1) using the homomorphic operation with some
function f (2j−1) ∈ F . This is computed as π ← P(j)

(
x,w, crs(j)

)
, where:

x =
(
pk0, pk1, c

(1)
0 , c

(1)
1 , c

(2j)
0 , c

(2j)
1 ,−→crs(j−1)

)
w =

(
c
(2j−1)
0 , c

(2j−1)
1 , c

(2j−1+1)
0 , c

(2j−1+1)
1 , f (2j−1), π

(j−1)
L , π

(j−1)
R

)
.
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Figure 2: The above illustration shows the structure of a ciphertext after 13 repeated homo-
morphic operations. The ciphertext c(0) is an output of the encryption algorithm, and for every
i ∈ {1, . . . , 13} the ciphertext c(i) is obtained from c(i−1) by applying the homomorphic evaluation
algorithm using a function f (i) ∈ F . The internal nodes on levels 1, 2, and 3 contain succinct
arguments for membership in the languages L(1), L(2), and L(3), respectively. The ciphertext of
the new scheme consists of the black nodes and the functions f (0), f (8), and f (12).

– The ciphertext: The ciphertext always includes the initial ciphertext c(0) that was
produced by the encryption algorithm, the first leaf c(1), and the function f (0) ∈ F that
was used for generating c(1) from c(0). Then, every time we compute the value of two
adjacent internal nodes vL and vR at some level j − 1 that belong to the same subtree,
we compute the value of their parent v at level j, as described above. As a result, we
do not longer keep any information from the subtree of v, except for its leftmost and
rightmost leaves. In addition, for every two adjacent subtrees we include the function
that transforms the rightmost leaf of the first subtree to the leftmost leaf of the second
subtree. Note that such subtrees must be of different depths, as otherwise they are
merged. Thus, at any point in time a ciphertext may contain at most 2d+1 ciphertexts
of the underlying scheme, d short arguments, and d descriptions of functions from F
(connecting subtrees). See Figure 2 for an illustration of the structure of a ciphertext.

• Decryption: On input the secret key sk and a ciphertext of the above form, verify the validity
of the non-interactive zero-knowledge proof contained in c(0), verify that c(1) is obtained from
c(0) using the function f (0) ∈ F , verify that the given tree has the right structure (with
functions from F connecting subtrees), and verify the validity of all the arguments in the non-
empty internal nodes of the tree. If any of these verifications fail, then output ⊥. Otherwise,

compute m0 = Decsk0

(
c
(i)
0

)
and m1 = Decsk1

(
c
(i)
1

)
, where c(i) =

(
c
(i)
0 , c

(i)
1

)
is the rightmost

leaf. If m0 ̸= m1 then output ⊥, and otherwise output m0.

Chosen-ciphertext security. As this scheme is obtained from the one in Section 4 by only
changing the structure of the arguments that generate the ciphertext, the proof of security is
rather similar to that in Sections 4.3 and 4.4. The only difference is in the way S2 produces
the “certification chain” for the ciphertext that the adversary outputs: instead of using the path
structure of the ciphertext, the simulator now uses the tree structure of the ciphertext and applies
the knowledge extractors accordingly. The remainder of the proof is exactly the same.

6 Extensions and Open Problems

We conclude the paper with a discussion of several extensions of our work and open problems.
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The number of repeated homomorphic operations. Our schemes allow any pre-specified
constant bound t ∈ N on the number of repeated homomorphic operations. It would be interesting
to allow this bound to be a function t(k) of the security parameter. As discussed in Section 2.2,
the bottleneck is the super-linear length of the common-reference string in Groth’s and Lipmaa’s
argument systems [Gro10, Lip11]. Any improvement to these argument systems with a common-
reference string of linear length will directly allow any logarithmic number of repeated homomorphic
operations in the path-based scheme, and any polynomial number of such operations in the tree-
based scheme.

Function privacy and unlinkability. For some applications a homomorphic encryption scheme
may be required to ensure function privacy [GHV10] or even unlinkability [PR08]. Function privacy
asks that the homomorphic evaluation algorithm does not reveal (in a semantic security fashion)
which operation it applies, and unlinkability asks that the output of the homomorphic evaluation
algorithm is computationally indistinguishable from the output of the encryption algorithm. For
example, the voting application discussed in the introduction requires function privacy to ensure
that individual votes remain private. Our approach in this paper focuses on preventing a blow-up in
the length of ciphertexts, and incorporating function privacy and unlinkability into our framework
is an interesting direction for future work. We note that since Groth’s argument system [Gro10]
is also zero-knowledge it is quite plausible to show that ciphertexts in our schemes reveal nothing
more than the number of repeated homomorphic operations.

A-posteriori chosen-ciphertext security (CCA2). As discussed in Section 1.3, Prabhakaran
and Rosulek [PR08] considered the rather orthogonal problem of providing a homomorphic encryp-
tion scheme that is secure against a meaningful variant of a-posteriori chosen-ciphertext attacks
(CCA2). In light of the fact that our schemes already offer targeted malleability against a-priori
chosen-ciphertext attacks (CCA1), it would be interesting to extend our approach to the setting
considered by Prabhakaran and Rosulek.
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