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Abstract. In this paper we present the first public key encryption scheme that is structure preserving, i.e.,
our encryption scheme uses only algebraic operations. In particular it does not use hash-functions or interpret
group elements as bit-strings. This makes our scheme a perfect building block for cryptographic protocols where
parties for instance want to prove, to each other, properties about ciphertexts or jointly compute ciphertexts.
Our scheme is also very efficient and is secure against adaptive chosen ciphertext attacks. We also provide a few
example protocols for our scheme. For instance, a joint computation of a ciphertext, generated from two secret
plaintexts from each party respectively, where in the end, only one of the parties learns the ciphertext. This
latter protocol serves as a building block for our second contribution which is a set of protocols that implement
the concept of oblivious trusted third parties. This concept has been proposed before, but no concrete realization
was known.

1 Introduction

Public key encryption and signature schemes have become indispensable building blocks for cryptographic
protocols such as anonymous credential schemes, group signatures, anonymous voting schemes, and e-cash
systems. To serve as building blocks, cryptographic primitives not only need to satisfy strong security
requirements but also need to have additional properties that allow for the construction of more complex
schemes. For instance, it is often necessary that one party be able to prove to another that it has correctly
signed or encrypted a message without revealing the message. While in theory this is possible to do for
any signature and encryption scheme, it is in general not efficient at all. Thus, suitable signature and
encryption schemes need to allow for doing such proofs efficiently with either so-called generalized Schnorr
protocols [1] or Groth-Sahai proofs [2]. Both these proof methods are efficient because they make use of
the structure of algebraic groups. Thus, for the design of suitable signature and encryption schemes one
should stay within the structure of algebraic groups and for instance not use hash-functions in an essential
way.

When it comes to signature schemes, a designer can pick from a number of schemes that are suitable
(e.g., [3–5]). Now, for adaptive chosen ciphertext attack (CCA) secure encryption schemes the situation is
quite different. Two schemes that are somewhat suitable are the Camenisch-Shoup and the Cramer-Shoup
encryption schemes [6, 7], allowing for the verifiable encryption (and decryption) of discrete logarithms
and group elements, respectively. Both make use of some sort of cryptographic hash functions to achieve



security against chosen ciphertext attacks. These, unfortunately, prevent one from efficiently proving certain
relations between their input and output. This, however, is an important feature in more advanced protocols
and is required, for instance, when two parties are to jointly compute an encryption of (a function of) their
messages without revealing them or when a user is to prove knowledge of a ciphertext, e.g., as a part of a
proof of knowledge of a leakage-resilient signature [8, 9] (proving knowledge of a signature is a central tool
in privacy-preserving protocols which so far is not possible for leakage-resilient signatures).

In this paper we present the first efficient structure preserving CCA secure encryption scheme. The
term “structure-preserving” is borrowed from the notion of structure-preserving digital signatures [5]. An
encryption scheme is called structure-preserving if its public keys, messages, and ciphertexts are group
elements and the encryption and decryption algorithm consists only of group and pairing operations. We
achieve structure preserving encryption by a novel way to implement the consistency check that does not
leave the realm of algebraic groups. More precisely, we make use of bilinear maps between algebraic groups
and we embed a semantically secure encryption scheme in the base group. Our ciphertext consistency
element(s) could be either one element in the target group or several pairs of group elements in the base
group. The former gives better efficiency, whereas the latter can be used in more scenarios, in particular
those making use of Groth-Sahai proofs [2]. We prove our encryption scheme secure under the decisional
linear assumption [10].

Our new encryption scheme is well suited to build a variety of protocols. For instance, with our scheme
the following protocol problems can be addressed which are common stumbling stones when designing
advanced cryptographic protocols:

– Our scheme can be used in the construction of leakage-resilient signatures [9] which will then enable,
for the first time, a user to prove knowledge of a leakage-resilient signature (we refer to the full paper
for the details on this).

– A user who is given a ciphertext and a Groth-Sahai proof that the ciphertext was correctly computed,
is able to prove to a third party that it is in possession of such a ciphertext without revealing it.

– Two users can jointly compute a ciphertext (of a function) of two plaintexts such that neither party
learns the plain text of the other party and only one of the parties learns the ciphertext.

The last problem typically appears in protocols that do some kind of conflict resolution via a trusted
third party. Examples include anonymity lifting (revocation) in group signatures and in anonymous cre-
dential systems [11] and optimistic fair exchange [12]. In these scenarios, there are typically two parties,
say Alice and Bob, who run a protocol with each other and then provide each other with a ciphertext
that can in case of a mishap (such as abuse of anonymity, conflict, unfair abortion of the protocol, etc.)
be presented to a third party for resolution by decryption. Hereby, it is of course important that (1) the
trusted third party be involved in case of mishap only and (2) the parties can convince each other that the
ciphertext indeed contains the right information. So far, protocol designers have used verifiable encryption,
which unfortunately has the disadvantage that both parties learn the ciphertexts of the other party. Hence,
Alice could for instance take Bob’s ciphertext and bribe the TTP so that it would act normally for all
decryption requests except when Bob’s ciphertext is presented in which case the TTP would just ignore
the request.

To address this problem Camenisch, Gross, and Heydt-Benjamin [13] propose the concept of oblivious
trusted third parties (OTP): here, such conflict resolution protocols are designed in such a way that the
trusted third party is kept oblivious of the concrete instance of the conflict resolution protocol. This means,
in such a protocol, if Bob goes to such a TTP for resolution, the TTP cannot possibly discriminate Bob.
Thus, if the TTP denies to co-operate too often it will be noted and otherwise there is no reason for Bob
to believe that the TTP will not resolve the conflict for him if need be. Unfortunately, Camenisch et al.
only provide a high-level construction for such a protocol but do not present a concrete instantiation. Their
construction has a number of limitations, e.g., the TTP is required to be online during user enrollment,
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and in fact it is unclear whether a full realization of their ambitious program is possible along the lines
they propose. In particular, our realization relies crucially on the CCA security of the encryption scheme,
as the TTP essentially acts as a decryption oracle.

As our second contribution, we present the first concrete protocols that implement OTP based on our
new encryption scheme. In our solution, the TTP becomes oblivious: Alice will not get any information
about Bob’s ciphertext nor about the plaintext contained in it and hence cannot provide the TTP with
any information that it could use to distinguish the request of Bob from any other request. We achieve
this by (1) a joint computation of the ciphertext such that Alice does not see Bob’s ciphertext and (2)
by ensuring that what gets encrypted is Alice’s plaintext input, masked by a blinding factor only known
to Bob. Thus, decryption will reveal only a random message that only Bob can unmask. Our encryption
scheme and protocols also support so-called labels [6] which are public messages attached to a ciphertext
and are important in these TTP scenarios to bind a decryption policy to the ciphertext.

We prove all our protocols secure in the so-called IITM simulation-based security model proposed by
Küsters [14]. While being in the spirit of the UC framework [15] and the reactive simulatability model [16],
it has certain (admittedly subjective) advantages over the UC model, as discussed in [14, 17, 18]. The results
presented here would, however, also carry over to the UC model.

Related Work. There is of course a lot of related work on encryption schemes, but our scheme is the first
one that is structure preserving. Considering our second contribution, the protocols for oblivious trusted
parties, the only related work is by Camenisch, Gross, and Heydt-Benjamin [13]. They introduced the
concept of oblivious trusted third parties but as we mentioned, do not provide any concrete protocol.

2 Preliminaries

2.1 Simulatability Model

We use strong simulation-based definitions that guarantee security under composition in the flavor of [15,
16, 14]. In particular we base our exposition on [14]. In [14] both ideal systems I and their realizations
as cryptographic protocols P are configurations of multi-tape interactive Turing machines (ITMs). In
particular, the framework of [14] guarantees that well-formed systems of polynomial time bounded ITMs
can be simulated by a single ITM. This allows us to interpret an ideal system and a protocol either as an
interconnected system that communicate via input/output tape pairs shared between component ITMs,
or as a single ITM that manages all external tapes. We consider only such well-formed systems.

An ITM is triggered by another ITM if the latter writes a message on an output tape that corresponds
to an input tape of the former. An ITM with the input tape named start for auxiliary input a, is called
master ITM. It is the first ITM triggered, and is triggered if no other ITM was triggered in the last run. The
master ITM can also write a binary decision on a decision tape at the end of a systems execution. Another
special tape contains the security parameter k, is read only, and accessible by all ITMs. As a convention
we bundle communication tapes into interfaces inf where an interface consists of named input/output tape
pairs. An input/output tape pair is named inf.R after a combination of the interface name inf and a role
name R. We refer to the set of all roles of an interface as inf.R. If a system of ITMs implementing an
interface inf, is connected to another ITM M then as a convention, we refer to the swapped input/output
tape pair of M connected to role R as inf.R.

For simulation-based security definitions, the ideal system I and the protocol P that emulates this ideal
system have to present the same application programming interface (API) inf towards their environment,
i.e., they must be API compatible. We refer to an ideal system and a protocol that is API compatible with
respect to interface inf as Iinf and Pinf respectively. In addition Iinf and Pinf must expose different network
interfaces ninf1 and ninf2.
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Strong simulatability. A proof that Pinf emulates Iinf , short Pinf ≤ Iinf will need to prove existance of a
simulator Sim that translates between the interfaces ninf1 and ninf2. This is formalized as strong simu-
latability which implies other simulatability notions such as dummy universal composability and blackbox
simulatability.

We recall two definitions in [14]. The notion of negligible function is standard and follows [15, 14].

Definition 1. Two systems P and Q are called indistinguishable (P ≈ Q) iff the function

f(1k, a) = |Pr[P(1k, a) = 1]− Pr[Q(1k, a) = 1]| is negligible.

Definition 2. A protocol system Pinf strongly emulates Iinf , short Pinf ≤
SS Iinf , iff there exists a simulator

Sim connected to Env on interface ninf2 and Iinf on interface ninf1 such that for all master ITMs Env (the
environment) that connect to inf and ninf2: Env|Pinf ≈ Env|Sim|Iinf

Corruption. Like [17], we use a standard corruption model for ITMs. We consider only static corruption.
A corrupted role forwards all inputs to ninfi.R and acts as a proxy that allows the environment to send
messages to any of its other connected tapes by sending control messages to ninfi.R.

We consider ideal systems that are fully described by a virtual incorruptible party Finf . As the func-
tionality Finf implements the security critical parts of an ideal system, the ITM’s representing the different
roles of the interface only need to implement forwarding and corruption. We refer to such a dummy party
for role R as DR.

When operating over an adversarially controlled network, even an ideal cryptographic system cannot
prevent denial of service attacks. We model delayed communication between an ideal functionality and a
dummy by an ITM that sits between Finf and DR and only passes output to DR once it leaked the type
and length of the message to ninf1 and was approved by a continue message over ninf1. As a convention,
inputs to Finf do not leak and do not get delayed.

Secure Channels, multi-session versions, and joint resources. To abstract from communication details in the
real world, we model communication as ideal systems. The ideal channel Isc supports only request/response
communication and only a single message can be sent at a time.5 We model corruption of sender and receiver
through dummy users DS1 and DS2 : Isc = DS1 |Fsc|DS2 .

Küsters [14] describes how to turn every system S of ITM’s into a multi session system S, by pro-
gramming each ITM instance to accept only messages prefixed with a specific session id, and adding the
same session id to all outputs produced by that instance. This is denoted by the session operator . For
polynomially many sessions the composition theorem guarantees that given Pinf ≤

SS Iinf , !Pinf ≤
SS!Iinf .

Informally, the bang operator ‘!’ denotes on demand creation of session specific instances.

The default way of obtaining a multi-session version of a protocol by the bang and session operator
requires a fresh copy of all ITMs in a system for every session. However, the sessions of a protocol can often
make use of joint resources. For an adequate joint-state realization P1|Isc|P2|Icrs of Pinf that, for instance,
makes use of a common reference string functionality6, we can write !P1|Isc|P2|Icrs ≤

SS!Iinf . For further
information on the joint state theorem for the model of [14] we refer to [17].

Our construction of oblivious third parties operates in the Ireg-hybrid model [15], where parties register
their public keys at a trusted registration entity. Below we depict the ideal system Ireg, which is param-
eterized with a set of participants R that in our case is restricted to contain U, SP, SA and RA only.7

5 See Listing 17 in Appendix A for the details of the Isc functionality.
6 See Listing 20 in Appendix A for the details of the Icrs functionality.
7 See Listing 21 in Appendix A for the details of the Ireg functionality.
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2.2 Practical Zero-Knowledge Proof of Knowledge Protocols

For the types of relations required in our protocols, there exist practical ZK protocols — indeed, our
protocols were designed with such protocols specifically in mind. We refer to [19] for details.

We will be proving statements of the form

Kw1, . . . , wn : φ(w1, . . . , wn, bases). (1)

Here, we use the symbol “ K” instead of “∃” to indicate that we are proving “knowledge” of a witness,
rather than just its existence. φ is a predicate — we will presently place restrictions on the form of the
domains and the predicate. A witness for a statement of the form (1) is a tuple (w1, . . . , wn) of integers
such that φ(w1, . . . , wn, bases) holds. In cases where only the residue class of wi modulo m is important,
we may treat the domain of wi as Zm.

The predicate φ(w1, . . . , wn, bases) is given by a formula that is built up from “atoms” using arbitrary
combinations of ANDs and ORs. An atom may express several types of relations among the wi’s: (i) integer
relations, such as F = 0, F ≥ 0, F ≡ 0 (mod m), or gcd(F ,m) = 1, where F is an integer polynomial in

the variables w1, . . . , wn, and m is a positive integer; (ii) group relations, such as
∏k

j=1 g
Fj

j = 1, where
the gj ∈ bases are elements of an abelian group, and the Fj ’s are integer polynomials in the variables
w1, . . . , wn.

We define the proof instance inst to consist of the set of bases and of a descriptions of the abelian
groups. The proof relation ((w1, . . . , wn), inst) ∈ R holds iff the predicate φ(w1, . . . , wn, bases) holds. We
call a relation R tractable, if such a predicate φ and consequently an efficient proof protocol for it, exists.

Camenisch et al. [19, 20] show how to construct efficient protocols for these types of statements that,
under reasonable assumptions, multi-realize an ideal functionality with joint access to a common reference
string. The computational complexity of these proof systems can be easily related to the arithmetic circuit
complexity of the polynomials that appear in the description of φ: the number of exponentiations is
proportional to the sum of the circuit complexities. We now describe an ideal functionality that fits into
our definitional framework.

Listing 1 Functionality Fzk(R):

Fzk receives input from DPv over Fzk.Pv and provides output to DVf through the delayed communication tape Fzk.Vf . Variable
state is initialized to “ready”.

On (Prove, inst ,wit) from Fzk.Pv where state = “ready” and (inst ,wit) ∈ R

− let state = “final”; send (Prove, inst) to Fzk.Vf

Listing 1 is, essentially, a simplification of the FR,R′

ZK functionality of [19] for which we consider only
static corruption, fixed size proofs for a particular relation, and languages with R = R′. This allows us
to reuse their ZK protocol compiler to obtain efficient multi-session instantiations Pzk of Izk(R) in the
hybrid Isc and joint-state Icrsmodel. More formally, Pzk = Pv|Isc|Vf|Icrs, Izk(R) = DPv|Fzk(R)|DVf , and
!Pv|Isc|Vf|Icrs ≤

SS !Izk(R).

3 Structure Preserving Encryption and Secure Joint Ciphertext Computation

In this section, we define structure preserving encryption and present the first instantiation of such a
scheme. Next, we build a secure joint ciphertext computation based on this encryption scheme. We work
in a group G of prime order q generated by g and equipped with a non-degenerate efficiently computable
bilinear map ê : G×G→ GT .
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3.1 Structure-Preserving Encryption

The term “structure-preserving” is borrowed from the notion of structure-preserving digital signatures [5].
It represents the idea that ciphertexts are constructed purely using group and (optionally) bilinear map
operations in a generic way. This is important for protocols such as our joint ciphertext computation
protocol that require not to reveal the ciphertext and yet need to provide evidence (using zero-knowledge
proofs) of certain properties about the structure of the ciphertext or it’s components.

Definition 3. Structure Preserving Encryption. A structure-preserving encryption scheme has public keys,
messages, and ciphertexts that consist entirely of group elements. Moreover, the encryption and decryption
algorithm perform only group and bilinear map operations.

Note that the well known Cramer-Shoup [21, 7] and Camenisch-Shoup [6] encryption schemes are not
structure preserving, as they make use of a cryptographic hash function. Even the hash-free variant of
Cramer-Shoup is not structure preserving, because its consistency check requires group elements to be
interpreted as exponents, which is not a group operation. The details of a proof of knowledge of a hash-free
ciphertext would depend on the group’s internal structure, e.g., it might be based on so called double-
discrete logarithm proofs [22], which are bit-wise and thus much less efficient than standard discrete
logarithm representation proofs.

Construction. Recall the well-known DLIN assumption [10]:

Definition 4. Decisional Linear Assumption (DLIN). Let G be a group of prime order q. For randomly
chosen g1, g2, g3 ← G and r, s, t← Zq, the following two distributions are computationally indistinguishable:

(G, g1, g2, g3, g
r
1, g

s
2, g

t
3) ≈ (G, g1, g2, g3, g

r
1, g

s
2, g

r+s
3 ) .

We construct a structure-preserving CCA encryption scheme secure under DLIN. For simplicity, we
describe the scheme when encrypting a message that is a single group element in G, but it is easily
extended to encrypt vectors of group elements. The scheme shares some similarities with the hash-free
Cramer-Shoup encryption and with the Linear Cramer-Shoup encryption described by Shacham [23], the
security of which is also based on DLIN, but relies crucially on the use of a hash function (hence, not
structure-preserving).

Our scheme also supports labels. We consider the case when a label L is a single group element, but
the scheme extends trivially for the case of a label which is a vector of group elements. Also, labels from
the space {0, 1}∗ could be hashed to one or several group elements. Hence, labels could be any bit string.

– KeyGen(1λ): Choose random group generators g1, g2, g3 ← G∗. For randomly chosen α← Z3
q, set h1 =

gα1
1 gα3

3 and h2 = gα2
2 gα3

3 . Then, select β0, . . . ,β5 ← Z3
q, and compute fi,1 = g

βi,1

1 g
βi,3

3 , fi,2 = g
βi,2

2 g
βi,3

3 ,
for i = 0, . . . , 5. Output pk = (g1, g2, g3, h1, h2, {fi,1, fi,2}

5
i=0) and sk = (α, {β}5i=0).

– Enc(pk, L,m): To encrypt a message m with a label L, choose random r, s← Zq and set

u1 = gr1, u2 = gs2, u3 = gr+s
3 , c = m · hr1h

s
2, v =

3∏

i=0

ê(f ri,1f
s
i,2, ui) · ê(f

r
4,1f

s
4,2, c) · ê(f

r
5,1f

s
5,2, L),

where u0 = g. Output c = (u1, u2, u3, c, v).
– Dec(sk, L, c): Parse c as (u1, u2, u3, c, v). Then check whether

v
?
=

3∏

i=0

ê(u
βi,1

1 u
βi,2

2 u
βi,3

3 , ui) · ê(u
β4,1

1 u
β4,2

2 u
β4,3

3 , c) · ê(u
β5,1

1 u
β5,2

2 u
β5,3

3 , L),

where u0 = g. If the latter is unsuccessful, reject the ciphertext as invalid.
Otherwise, output m = c · (uα1

1 uα2
2 uα3

3 )−1.
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If needed, using the pairing randomization techniques of [24], v ∈ GT can be replaced by six random group
elements v0, . . . , v5 ∈ G for which the following equation holds: v =

∏3
i=0 ê(vi, ui) · ê(v4, c) · ê(v5, L). This

way, the ciphertext would consist only of elements in G.

To observe the correctness of the decryption, note that

c · (uα1
1 uα2

2 uα3
3 )−1 = m · hr1h

s
2 ·
(
(gr1)

α1(gs2)
α2(gr+s

3 )α3
)−1

= m · (gα1
1 gα3

3 )r(gα2
2 gα3

3 )s ·
(
(gr1)

α1(gs2)
α2(gr+s

3 )α3
)−1

= m.

The correctness of the validity element v can be verified similarly.

Next, we show the CCA security of the encryption scheme. Our security proof follows the high level idea
of the Hash Proof System (HPS) paradigm [25]. Essentially, Lemma 1 says the “proof” π, which is used as
a one-time pad for the encryption of the message, has a corresponding HPS which is 1-universal, whereas
Lemma 2 shows that the “proof” ϕ, which constitutes the consistency check element, has a corresponding
HPS that is 2-universal. To make the proof below more accessible to readers unfamiliar with the HPS
paradigm, we opt for a self-contained proof which can be easily translated into the HPS framework.

Theorem 1. If DLIN holds, the above public key encryption scheme is secure against chosen-ciphertext
attacks (CCA).

Proof sketch of Theorem 1: We proceed in a sequence of games. We start with a game where the challenger
behaves like in the standard IND-CCA game (i.e., the challenge ciphertext is an encryption of mb, for a
randomly chosen bit b, where m0,m1 are messages given by the adversary), and end up with a game where
the challenge ciphertext is an encryption of a message chosen uniformly at random from the message space.
Then we show that all those games are computationally indistinguishable. Let Wi denote the event that
the adversary A outputs b′ such that b = b′ in Game i.

Game 0. This is the standard IND-CCA game. Pr[W0] =
1
2 + AdvA(λ).

Game 1. For (m0,m1, L) chosen by the adversary, the challenge ciphertext c = (u, c, v) is computed
using the “decryption procedure”, i.e., u1 = gr1, u2 = gs2, u3 = gr+s

3 , c = mb · u
α1
1 uα2

2 uα3
3 and v =∏3

i=0 ê(u
βi,1

1 u
βi,2

2 u
βi,3

3 , ui) · ê(u
β4,1

1 u
β4,2

2 u
β4,3

3 , c) · ê(u
β5,1

1 u
β5,2

2 u
β5,3

3 , L). The change is only syntactical, so the
two games produce the same distributions. Pr[W1] = Pr[W0].

Game 2. The randomness vector u = (u1, u2, u3) of the challenge ciphertext is computed as non-DLIN
tuple, i.e., u1 = gr1, u2 = gs2, u3 = gt3 where r, s, t ← Zq and r + s 6= t. Game 1 and Game 2 are
indistinguishable by DLIN. Therefore, | Pr[W2]− Pr[W1] | = negl(λ).

Game 3. First note that in the previous game, as well as in this one, any decryption query with “correct”
ciphertext, i.e., which has a randomness vector a DLIN tuple, yields a unique plaintext. That is, regardless
of the concrete choice of sk which matches pk seen by the adversary, such queries do not reveal any
information about the secret key.

In this game, unlike the previous one, any decryption query with “malformed” ciphertext, i.e, which
has a non-DLIN randomness vector û, is rejected. Let’s consider two cases:

– (û, ĉ, L̂) = (u, c, L). Such decryption query is rejected because it is either the challenge ciphertext
(when v̂ = v) or the verification predicate fails trivially (when v̂ 6= v). So, this case is the same in Game
2 and Game 3.

– (û, ĉ, L̂) 6= (u, c, L). By Lemma 2, such decryption query is rejected in Game 2 with overwhelming
probability, whereas in Game 3 it is always rejected.

As the number of decryption queries is polynomial, | Pr[W3]− Pr[W2] | = negl(λ).
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Game 4. The challenge ciphertext encrypts a random message from the message space. Game 3 and Game
4 are (information theoretically) indistinguishable by Lemma 1. Pr[W4] = Pr[W3].

In the last game, the challenger’s choice b is independent from the ciphertext, so Pr[W4] = 1
2 . Then,

by the indistinguishability of the consecutive games Pr[W0] =
1
2 + negl(λ), hence AdvA(λ) = negl(λ). ⊓⊔

Lemma 1 which we used in the above proof says that the one-time pad of the message, when computing
the challenge ciphertext in Game 4, can be replaced by a random element. Whereas Lemma 2 shows that
any decryption query with “malformed” ciphertext ĉ is rejected with overwhelming probability because the
adversary A can hardly do better than guess the correct validity element.

For the formulation and proof of the lemmas, let g1, g2, g3 ← G∗ and u1 = gr1, u2 = gs2, u3 = gt3,
where r, s, t are randomly chosen from Zq and r + s 6= t. And for convenience, denote z1 = dlogg(g1),
z2 = dlogg(g2), and z3 = dlogg(g3).

Lemma 1. For randomly chosen α← Z3
q, let h1 = gα1

1 gα3
3 , h2 = gα2

2 gα3
3 , and π = uα1

1 uα2
2 uα3

3 . Then, for a
randomly chosen ψ ← G it is true that the following distributions are equivalent: (h1, h2, π) ≡ (h1, h2, ψ).

Proof sketch of Lemma 1: Note that h1 = gα1z1+α3z3 and h2 = gα2z2+α3z3 . Then, for the tuple (h1, h2, π)
the following equation holds:



z1 0 z3
0 z2 z3
rz1 sz2 tz3


 ·



α1

α2

α3


 =




dlogg(h1)

dlogg(h2)
dlogg(π)




Denote the matrix with M . It has a determinant det(M) = z1z2z3(t− r− s) which is not equal to 0 due to
the choice of the parameters. Therefore the matrix is invertible, and for any π ∈ G, and fixed h1, h2, there
exists a unique x which yields the tuple (h1, h2, π). ⊓⊔

Lemma 2. Let û = (û1, û2, û3) be any tuple such that û1 = gr̂1, û2 = gŝ2, and û3 = gt̂3, for r̂ + ŝ 6= t̂. And

for randomly chosen β0,β1, . . . ,β5 ← Z3
q, let fi,1 = g

βi,1

1 g
βi,3

3 , fi,2 = g
βi,2

2 g
βi,3

3 , for i = 0, . . . , 5. For any m

and m̂ in G∗ 5, let

ϕ =
5∏

i=0

ê(u
βi,1

1 u
βi,2

2 u
βi,3

3 ,mi) and ϕ̂ =
5∏

i=0

ê((û1)
βi,1(û2)

βi,2(û3)
βi,3 , m̂i),

where m0 = m̂0 = g. Then, for any m and m̂, m 6= m̂, it is true that the following two distributions are
equivalent: ({fi,1fi,2}

5
i=0, ϕ, ϕ̂) ≡ ({fi,1fi,2}

5
i=0, ϕ, ψ), where ψ ← GT is randomly chosen.

Proof sketch of Lemma 2: Similarly to the proof of the previous lemma, let’s define all variables which
depend on {βi}

5
i=0 as the result of a constant matrix M multiplied by the vector (β⊤

0 ||β
⊤
1 || . . . ||β

⊤
5 )

⊤. For
convenience, denote with wi = dlogg(mi) and ŵi = dlogg(m̂i), for i = 1, . . . , 5. Then, we have:




z1 0 z3 − − − . . . − − −
0 z2 z3 − − − . . . − − −
− − − z1 0 z3 . . . − − −
− − − 0 z2 z3 . . . − − −
...

...
...

...
...

...
. . .

...
...

...
− − − − − − . . . z1 0 z3
− − − − − − . . . 0 z2 z3
rz1 sz2 tz3 w1rz1 w1sz2 w1tz3 . . . w5rz1 w5sz2 w5tz3
r̂z1 ŝz2 t̂z3 ŵ1r̂z1 ŵ1ŝz2 ŵ1t̂z3 . . . ŵ5r̂z1 ŵ5ŝz2 ŵ5t̂z3




·




|
β0

|
...
|
β5

|




=




dlogg(f0,1)
dlogg(f0,2)
dlogg(f1,1)
dlogg(f2,2)

...
dlogg(f5,1)
dlogg(f5,2)
dlog(ϕ)
dlog(ϕ̂)




.
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We would like to argue that the rows of the matrix M are linearly independent. As there exists i, i ≥ 1,
such that mi 6= m̂i, if we choose the sub-matrix M ′ consisting of the intersection of the last two rows and
rows 1, 2, 2i+ 1, 2i+ 2 with columns 1, 2, 3, 3i+ 1, 3i+ 2, 3i+ 3, we get:

M ′ =




z1 0 z3 0 0 0
0 z2 z3 0 0 0
0 0 0 z1 0 z3
0 0 0 0 z2 z3
rz1 sz2 tz3 wirz1 wisz2 witz3
r̂z1 ŝz2 t̂z3 ŵir̂z1 ŵiŝz2 ŵi t̂z3



.

If the rows of M are not linearly independent, so are the rows of M ′. However, M ′ has a determinant
det(M ′) = ±z21z

2
2z

2
3(wi − ŵi)(t− r − s)(t̂− r̂ − ŝ) which is not equal to 0 due to choice of the parameters.

Therefore, the rows of M are linearly independent. ⊓⊔

Our oblivious third party protocol makes use of a multi-message extension of the scheme. It is obtained
in a straight-forward manner, and the details are described in Section 3.3.

3.2 Joint Computation of Ciphertext

We consider a two-party protocol for the joint computation of a ciphertext under a third-party public
key pk. The encrypted value is a function of two secrets, each of which remains secret from the other
protocol participant. We study the case where only the first party learns the ciphertext whereas the second
one has no output. Listing 2 describes a general two-party computation for the joint computation of any
function f on verifiable inputs inp1 and inp2. When performing such a two-party computation, party P1+i

is guaranteed that P2−i knows a witness wit2−i for its input inp2−i such that (inst , (wit2−i, inp2−i)) ∈ R2−i.
We restrict ourselves to tractable relations Ri for which we can give efficient universally composable proofs
of knowledge as described in Section 2.2. We are interested in a secure two party computation where
inpi = (li,xi), pub = pk, and f is fJC(pk, (l1,x1), (l2,x2) ) = Enc(pk, gl1+l2 , (gx1,1+x1,2 , . . . , gxn,1+xn,2)) .

Listing 2 Functionality Ftpc(f,R1,R2)

Ftpc communicates with DP1 and DP2 through delayed communication tapes Ftpc.P1 and Ftpc.P2. Variables inst , pub, inp1

store the input of the first party; variable state is initialized to “ready”.

On (Input1, inst
′, pub′,wit ′1, inp

′

1) from Ftpc.P1 where state = “ready” and (inst ′, (wit ′1, inp
′

1)) ∈ R1

− let inp1 = inp′

1, inst = inst ′, pub = pub ′, and state = “input1”; send (Input1, inst , pub) to Ftpc.P2

On (Input2,wit2, inp2) from Ftpc.P2 where state = “input1” and (inst , (wit2, inp2))) ∈ R2

− let state = “final”; send (Result, f(pub, inp1, inp2)) to Ftpc.P1

We model an ideal secure two-party computation system Itpc(f,R1,R2) with interface tpc as the com-
bination of two dummy Parties DP1 and DP2 and an ideal two party computation functionality Ftpc:
Itpc(f,R1,R2) = DP1 |Ftpc(f,R1,R2)|DP2 .

Implementing Ptpc. We present the protocol for the special case where the jointly computed ciphertext
encrypts a single message. This extends trivially in the multi-message case.

The idea of the protocol is as follows. The first party computes a partial and blinded encryption of her
secret, she proves that the computation is carried out correctly, and sends the partial encryption to the other
party. The second party takes the values from the first flow of the protocol and, using its secret and some
randomness, computes a blinded full encryption of the agreed function of the two plaintext contributions.
Then, the second party sends these values and proves that they are computed correctly. Finally, the first
party unblinds the ciphertext and updates the consistency element to obtain a valid encryption of the
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function of the two secrets under jointly chosen randomness. The function could be any polynomial of the
two secrets; for simplicity, we consider the function gx1+x2 where g is a fixed group element and x1, x2 are
the two secrets.

Listing 3 Protocol Pjcc(R1,R2) = P1(R1,R2)|Izk1(RP1(R1))|Izk2(RP2(R2))|P2(R1,R2)

Party P1 and P2 receive input from tpc.P1 and tpc.P2 respectively and communicate over Izk1 and Izk2 .

On (Input1, inst , pk,wit1, (l1, x1)) from tpc.P1

− if (inst , (wit1, l1, x1)) /∈ R1 P1 aborts
− P1 computes (msg1, aux 1) ← BlindEnc1(pk, l1, x1) and proves ((msg1, pk, inst), (wit1, l1, x1, aux 1)) ∈ RP1(R1) to P2 using
Izk1(RP1(R1))

− P2 learns (msg1, pk, inst) from Izk1 and outputs (Input1, inst , pk) to tpc.P2

On (Input2,wit2, (l2, x2)) from tpc.P2

− if (inst , (wit2, l2, x2)) /∈ R2 P2 aborts
− P2 runs (msg2, aux 2)← BlindEnc2(pk, l2, x2,msg1)
− P2 proves ((msg2, pk, inst), (wit2, l2, x2, aux 2)) ∈ RP2(R2) to P1 using Izk2(RP2(R2))
− P1 computes c← UnblindEnc(pk,msg2, aux 1)
− P1 outputs (Result, c) to tpc.P1

We now give the details for the BlindEnc1, BlindEnc2, and UnblindEnc algorithms.

Listing 4 Algorithms of Ptpc

(msg1, aux1)← BlindEnc1(pk, l1, x1)
– parse pk as (g1, g2, g3, h1, h2, {fi,1, fi,2}

5
i=0).

– pick {γi}
5
i=1, {δi}

2
i=1, r1, and s1 at random and compute

ū′
1 = gγ1 · gr11 , ū′

2 = gγ2 · gs12 , ū′
3 = gγ3 · gr1+s1

3 , ū′
4 = gγ4 · gx1 · hr1

1 hs1
2 , ū′

5 = gγ5 · gl1 ,
v̄′1 = ê(g1, g

δ1) ·
∏

i=1 ê(fi,1, g
γi), v̄′2 = ê(g2, g

δ2) ·
∏

i=1 ê(fi,2, g
γi).

– output msg1 = (ū′1, ū
′
2, ū

′
3, ū

′
4, ū

′
5, v̄

′
1, v̄

′
2) and aux 1 = ({γi}

5
i=1, {δi}

2
i=1, r1, s1).

(msg2, aux2)← BlindEnc2(pk, l2, x2,msg1)
– parse pk as (g1, g2, g3, h1, h2, {fi,1, fi,2}

5
i=0) and msg1 as (ū′

1, ū
′
2, ū

′
3, ū

′
4, ū

′
5, v̄

′
1, v̄

′
2).

– pick r2 and s2 at random and compute

ū1 = ū′
1 · g

r2
1 , ū2 = ū′

2 · g
s2
2 , ū3 = ū′

3 · g
r2+s2
3 , ū4 = ū′

4 · g
x2 · hr2

1 hs2
2 , ū5 = ū′

5 · g
l2 ,

v̄ =
(∏

i=0 ê(fi,1, ūi)/v̄
′
1

)r2 ·
(∏

i=0 ê(fi,2, ūi)/v̄
′
2

)s2 ,
where ū0 = g.

– output msg2 = (ū1, ū2, ū3, ū4, ū5, v̄) and aux 2 = (r2, s2).

c← UnblindEnc(pk,msg2, aux1)
– parse pk as (g1, g2, g3, h1, h2, {fi,1, fi,2}

5
i=0), msg2 as (ū1, ū2, ū3, ū4, ū5, v̄)

and aux1 = ({γi}
5
i=1, {δi}

2
i=1, r1, s1).

– compute
u1 = ū1/g

γ1 = gr1 , u2 = ū2/g
γ2 = gs2, u3 = ū3/g

γ3 = gr+s
3 ,

u4 = ū4/g
γ4 = gx1+x2 · hr

1h
s
2, u5 = ū5/g

γ5 = gl1+l2 ,

v = v̄ · ê(u1g
−r1
1 , gδ1) · ê(u2g

−s1
2 , gδ2) ·

∏
i=0 ê(f

r1
i,1f

s1
i,2, ui),

where u0 = g.
– output c = (u1, u2, u3, u4, v) encrypted with label u5.

We show how to efficiently prove the relations RP1(R1)) and RP2(R2)) by giving a Klanguage statement
in Listing 8 in Section 4.3.

Correctness. Recall the structure of the ciphertext of the public-key encryption scheme described in Section
3.1: for a public key pk = (g1, g2, g3, h1, h2, {fi,1, fi,2}i=0), label u5, and randomly chosen r, s ← Zq, the
ciphertext is computed as

(u1, u2, u3, u4, v) =

(
gr1, g

s
2, g

r+s
3 , m · hr1h

s
2,

5∏

i=0

ê(f ri,1f
s
i,2, ui)

)
,where u0 = g.
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Note that the protocol in Listing 3 computes a valid ciphertext because u1 = gr1 for r = r1 + r2, u2 = gs2
for s = s1 + s2, u3 = gr+s

3 , u4 = m · hr1h
s
2 for m = gx1+x2 , and v =

∏
i=0 ê(f

r
i,1f

s
i,2, ui). To see v is indeed

computed this way, note that:

v̄ =

(∏

i=0

ê(fi,1, ūi)/v̄
′
1

)r2

·

(∏

i=0

ê(fi,2, ūi)/v̄
′
2

)s2

=

∏
i=0 ê(f

r2
i,1f

s2
i,2, ui)

ê(g1, gτ1)r2 · ê(g2, gτ2)s2

and

v̄ · ê

(
u1
gr11

, gτ1
)
· ê

(
u2
gs12

, gτ2
)

= v̄ · ê(gr21 , g
τ1) · ê(gs22 , g

τ2) =
∏

i=0

ê(f r2i,1f
s2
i,2, ui).

Theorem 2. The joint ciphertext computation protocol (Listing 3) strongly emulates the ideal two-party
computation protocol (Listing 2) for function fJC: Pjcc(R1,R2) ≤

SS Itpc(fJC,R1,R2).

Proof sketch of Theorem 2: To prove security of Theorem 2 in Section 3.2, we show that there exists a
simulator Sim connected to Env on interface ntpc2 and to Itpc on interface ntpc1 such that Env|Pjcc ≈
Env|Sim|Itpc. The main cases to be considered for the security proof are when P1 is corrupted and P2 is
honest, and vice versa.

For the case when P1 is corrupted by Env, in the first step Sim receives ū′1, ū
′
2, ū

′
3, ū

′
4, ū

′
5, v̄

′
1, v̄

′
2, pk as

well as x1, l1, r1, s1, δ1, δ2 as a part of (Prove, (msg1, pk, inst), (wit1, l1, x1, aux 1)) being send to the simulated
Izk1 . Then, Sim sends (Input1, inst , pk,wit1, (l1, x1)) to Itpc and receives back (û1, û2, û3, û4, û5, v̂) which
is the ciphertext (û1, û2, û3, û4, v̂) to be computed at the end by P1 with a label û5. Using the values
r1, s1, r1, s1, δ1, δ2 obtained earlier, Sim computes:

ū1 = û1 · ū
′
1/g

r1
1 , ū2 = û2 · ū

′
2/g

s1
2 , ū3 = û3 · ū

′
3/g

r1+s1
3 ,

ū4 = û4 · ū
′
4/g

x1
1 , ū5 = û5 · ū

′
5/g

l1 ,

v̄ = v̂
(
ê
(
u1g

−r1
1 , gδ1

)
ê
(
u2g

−s1
2 , gδ2

)∏
i=0 ê

(
f r1i,1f

s1
i,2, ui

))−1
,

and sends those to P1 as part of the instance sent to Izk2 . Thus, the jointly computed ciphertext obtained
by P1 is the one which was produced by the ideal functionary Itpc.

In the case when P2 is corrupt, Sim chooses random ū′1, ū
′
2, ū

′
3, ū

′
4, ū

′
5,← G and v̄′1, v̄

′
2 ← GT , and delivers

those to P2 via Izk1 . In the next step, Sim receives from P2 the values ū1, ū2, ū3, ū4, ū5, v̄ as well as x2, l2 as
a part of the message (Prove, (msg2, pk, inst), (wit2, l2, x2, aux 2)) sent to the simulated Izk2 by P2. Finally,
Sim submits (Input2,wit2, (l2, x2)) to Itpc and P1 obtains the correct ciphertext.

For the case when both P1 and P2 are honest, simulation is easy due to the use of Izk1 and Izk2 , which
only requires Env to receive certain notifications. No meaningful messages have to be exchanged between
the two parties as the statements are not revealed to the environment over the network interfaces.

⊓⊔

3.3 Multi-Message Version.

The scheme presented in Section 3.1 easily extends to encrypt multiple messages at the same time:

– KeyGen(1λ): Choose random group generators g1, g2, g3 ← G∗. For randomly chosen α1, . . . ,αn ← Z3
q,

set h1,i = g
αi,1

1 g
αi,3

3 and hi,2 = g
αi,2

2 g
αi,3

3 , where i = 1, . . . , n. Then, select β0, . . . ,βn+4 ← Z3
q, and

compute fi,1 = g
βi,1

1 g
βi,3

3 and fi,2 = g
βi,2

2 g
βi,3

3 , for i = 0, . . . , n+4. Output pk = (g1, g2, g3, {hi,1, hi,2}
n
i=1,

{fi,1, fi,2}
n+4
i=0 ) and sk = ({α}ni=1, {β}

n+4
i=0 ).
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– Enc(pk, L,m): To encrypt a message vector m with a label L, choose random r, s← Zq and set

u1 = gr1, u2 = gs2, u3 = gr+s
3 , ci = mi · h

r
i,1h

s
i,2, for i = 1, . . . , n,

v =
∏3

i=0 ê(f
r
i,1f

s
i,2, ui) ·

∏n+3
i=4 ê(f

r
i,1f

s
i,2, ci−3) · ê(f

r
(n+4),1f

s
(n+4),2, L),

where u0 = g. Output c = (u1, u2, u3, c, v).
– Dec(sk, L, c): Parse c as (u1, u2, u3, c, v). Then check whether

v
?
=

3∏

i=0

ê(u
βi,1

1 u
βi,2

2 u
βi,3

3 , ui) ·

n+3∏

i=4

ê(u
βi,1

1 u
βi,2

2 u
βi,3

3 , ci−3) · ê(u
β(n+4),1

1 u
β(n+4),2

2 u
β(n+4),3

3 , L),

where u0 = g. If the latter is unsuccessful reject the ciphertext as invalid.

Otherwise, compute mi = ci ·
(
u
αi,1

1 u
αi,2

2 u
αi,3

3

)−1
, for i = 1, . . . , n, and output m.

The security proof follows the same steps, with Lemma 1 modified to represent the n times more h-elements
and one-time pads, and Lemma 2 adjusted to have n+5 rather than 6 pairs of f -elements and corresponding
pairing products when computing ϕ.

4 Oblivious Third Parties

4.1 Modeling oblivious third parties

Transactions in the real world can be intricately related. They may depend on many conditions, of which
the verification can be deferred to a number of (as oblivious as possible) third parties. For the sake of
concreteness, we now formally model a system that involves two oblivious third parties: a satisfaction
authority and a revocation authority. In our example scenario, after a service enrollment between a user
U and a service provider SP, the user ought to make a payment for the service before tdue. Upon request,
the satisfaction authority SA checks that the user indeed made the payment and provides the user with
a blinded transaction token. The user unblinds the token and publishes it to prove the satisfaction of
the payment. Finally, the revocation authority RA reveals the user’s identity to the service provider if no
payment has been made before the payment deadline (i.e. no token corresponding to the enrollment was
published).

We model the security and privacy requirements of such a system with the help of an ideal functionality
Fotp. As usual, corruption is modeled via dummiesDU,DSP,DSA,DRA that allow to access the functionality
both over the environment interface (before corruption) and the network interface (after corruption).

The Ideal System Iotp. The ideal system Iotp is depicted in Figure 1(a) and consists of the ideal functionality
connected to the dummy parties over delayed communication tapes. The system exports an environment
interface named otp with roles R = {U,SP,SA,RA} and a network interface named notp1 with roles
R ∪ {CR}R∈R. Roles CR are for the delays on the channel, while roles U,SP,SA,RA allow to corrupt
dummy parties and remotely control their behavior.
Listing 5 specifies the reactive behavior of Fotp. A user that can prove his identity with the help of a witness
such that (inst , (id ,wit)) ∈ R, is allowed to enroll. In particular, this interface supports the case where wit
and inst are the secrets and the public key of a CL-signature [3] on the user’s identity, i.e. an anonymous
credential [11, 4], or the opening and a commitment to the user’s identity, i.e. a pseudonym [11]. For all
these cases, the relation R is tractable.

Enrollment consists of three rounds. The first round commits the user to her identity. The second round
provides the user with a random satisfaction label with respect to which she can satisfy the condition, e.g.
make the necessary payment. In this round the user is also made aware of the due date tdue for the
payment. Note that the user has to check that tdue fulfills reasonable uniformity constraints to protect her
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DU

DSP

DSA

DRA

notp1 .U

notp1 .SP

notp1 .SA

notp1 .RA

otp.U

otp.SP

otp.RA

otp.SA

Fotp.SPFotp.U

Fotp.SA Fotp.RA

Fotp

notp1 .F

(a) Iotp = DU|Fotp|DSP|DSA|DRA

U

SP

SA

RA

otp.U

otp.SP

otp.RA

otp.SA

Isc1

Isc2

notp2 .SA

notp2 .U

notp2 .SP

notp2.RA

Itpc1

Isc3

IzkSA

IzkRA
Ireg

(b) Potp = SA|Isc1 |IzkSA |U|Isc3 |Itpc1 |Itpc2 |SP|Isc2 |IzkRA |RA|Ireg

Fig. 1. The ideal OTP system Iotp and its realization as a protocol Potp: The realization makes use of ideal resources Isci , IzkR ,
Ireg, Ijcci for secure communication, proofs of knowledge, key registration, and joint ciphertext computation respectively.

privacy. The last round gives the service provider the possibility to ask the identity revocation authority
for the user’s identity. As a common limitation with other escrow mechanisms for anonymous credentials,
we cannot extract the identity itself, but only the image of a bijection of it. We model this by giving the
simulator the possibility to choose the bijection. As the identity space of realistic systems is small enough
to allow for exhaustive search, this is not a serious limitation.

The client interface towards the ideal oblivious parties, i.e. the interface of the user and the service
provider respectively, consists of two messages ReqAction and TestAction, with Action ∈ {Satisfy, Open}.
The obliviousness requirement guarantees that oblivious parties do not learn anything about the transac-
tions of their clients. Indeed the decision of an oblivious party cannot be influenced in a transaction specific
way, even if the other transaction participant colludes with the oblivious party. This is modeled with the
help of test requests that are not related to any transaction. As these requests are indistinguishable from
real requests, they allow the user to check whether the oblivious party indeed operates as required. 8

Consequently, the decision of an oblivious party can only depend on explicit and relevant information.
For satisfaction, this is the user known satisfaction label L with respect to which she makes her payment.
For the opening, it is the transaction token T that is secret until after satisfaction, when it is learned by
the user. We abstract from the way through which users make T available to the revocation authority, but
envision some kind of anonymous publicly available bulletin board. It is in the responsibility of the user
to make the token learned during satisfaction available to RA, and in the responsibility of RA to check
it’s existence. All the protocol guarantees is that RA learns the same T value during opening as the user
learned during satisfaction.

Listing 5 Functionality Fotp

Upon initialization, let state = “ready”,L = T = id = T̂ = îd = F = T = L = ǫ.
On (SetF, F ′,T′,L′) from notp1.F where state = “ready”:

− abort if F ′ is an efficient bijection and T′ and L′ are not of sufficient size;
set F = F ′, T = T′, and L = L′.

On (EnrollU, inst , (id ′, wit′)) from Fotp.U where state = “ready”:

− if (inst , (id ′, wit′)) /∈ R) abort;
− set state = “enrollu”; set id = id ′; send (EnrollU, inst) to FT.SP.

On (DeliverEnrollU, tdue
′) from FT.SP where state = “enrollu”:

− set tdue = tdue
′; set T ,L to random values from T and L respectively;

8 An extension that allows not only the requester, but arbitrary external parties, e.g. an auditor, to make test requests is a
useful and cryptographically straightforward extension to this interface.
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− set state = “deliverenrollu”; send (DeliverEnrollU,L, tdue) to Fotp.U.

On (DeliverEnrollSP) from Fotp.U where state = “deliverenrollu”:

− set state = “enrolled”; send (DeliverEnrollSP) to Fotp.SP.

On (ReqSatisfy) from Fotp.U where L 6= ǫ and T̂ = ǫ:

− set T̂ = T ; send (ReqSatisfy,L) to Fotp.SA.

On (TestSatisfy,L′,T ′) from Fotp.U where T̂ = ǫ:

− set T̂ = T ′; send (ReqSatisfy,L′) to Fotp.SA.

On (Satisfy, satisfied) from Fotp.SA where T̂ 6= ǫ:

− if satisfied , set m = (Satisfy, T̂ ), otherwise set m = (Satisfy,⊥); set T̂ = ǫ; send m to Fotp.U.

On (ReqOpen) from Fotp.SP where state = “enrolled” and îd = ǫ:

− set îd = id ; send (ReqOpen,T , tdue) to Fotp.RA.

On (TestOpen,T ′, id ′, tdue
′) from Fotp.SP:

− set îd = id ′; send (ReqOpen,T ′, tdue
′) to Fotp.RA.

On (Open, open) from Fotp.RA where îd 6= ǫ:

− if open, set m = (Open, F (îd)) , otherwise set m = (Open,⊥); set îd = ǫ; send m to Fotp.SP.

4.2 Implementing oblivious third parties

To construct a protocol that securely emulates the above functionality we make essential use of (adaptive
chosen-ciphertext attack secure) encryption. As depicted in Figure 1(b) the protocol makes use of several
cryptographic building blocks. But at the core of the protocol are two joint-ciphertext computations that,
as described in Section 3.2, can be efficiently realized thanks to structure preserving encryption.

The enrollment protocol has a few more communication rounds, because of the zero-knowledge proofs,
but otherwise closely follows the three phases of the ideal system. In the first phase the user commits to
and proves her identity. Both the user and the service provider commit to randomness that they will use
to jointly compute the transaction token T . The user proves knowledge of the opening of her commitment
as part of the joint computation of the satisfaction ciphertext c1. In the second phase, the service provider
transfers tdue, completes the joint ciphertext computation, and starts the computation of the revocation
ciphertext c2. In both cases, he proves knowledge of the opening to his commitment to guarantee that
the transaction token is embedded correctly into both ciphertexts. The user outputs the label of c1 as
the random satisfaction label L. In the last phase the user again proves knowledge of openings for her
commitments in the computation of c2 to guarantee that it contains the transaction token T and a blinded
user identity gid under label gtdue .

To satisfy her financial obligations, the user makes a payment with respect to label L and then asks
the satisfaction authority to decrypt c1. The user receives the blinded transaction token, that she unblinds
using her locally stored randomness to learn T . She makes T available to the revocation authority, through
some out-of-band anonymous bulletin board mechanism. Test satisfaction requests are just encryptions of
blinded T ′ under label L′. To request the opening of a user identity, the service provider sends the ciphertext
c2 to the revocation authority, which checks the label tdue, decrypts the ciphertext to learn T and verifies
whether T was posted by the user. Test opening requests are just encryptions of T ′ and blinded id ′ under
label tdue

′.

The Real System Potp. The real protocol Potp implements the same API interface as Iotp (see Figure 1(b)),
but is realized as a distributed cryptographic protocol with parties U, SP, SA, and RA each with their
corresponding pairs of API tapes otp.U, otp.SP, otp.SA, otp.RA, towards the environment.

The core security guarantees are achieved through the use of secure two-party computation, secure
communication, and zero-knowledge proof protocols. We model secure communication through ideal sys-
tems Isc1 , Isc2 and Isc3 , zero-knowledge proofs through IzkSA , IzkRA , and two-party computation through
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Itpc1 , Itpc2 , which are instances of respectively Isc, Izk, and Itpc with renamed tapes. Like in the ideal
system, we model corruption via an adversarial interface to the protocol parties U, SP, SA, RA that allows
to control corrupted parties. During initialization, protocol parties SA and RA register public keys pkSA
and pkRA with a key registration authority Ireg.

The real protocol has a few more rounds but follows the same three phases as the ideal system. In the
first phase the user commits to and proves her identity. Both the user and service provider commit to the
randomness that they will use to compute the revocation token T in commitments Cx′

1
and Cx2. The user

proves knowledge of the opening of Cx′
1
as part of the joint computation of the satisfaction ciphertext c1.

In the second phase, the service provider transfers tdue, completes the joint ciphertext computation, and
proves that his contribution to the blinded revocation token corresponds to the value in Cx2. The user
outputs the label of this ciphertext as her random satisfaction label. The last phase does a joint ciphertext
computation of the revocation token T and the user’s identity gid under label gtdue .

Listing 6 Protocol Potp = SA|Isc1 |IzkSA |U|Isc3 |Itpc1 |Itpc2 |SP|Isc2 |IzkRA |RA|Ireg

Upon initialization SA and RA generate keys (skSA, pkSA) and (skRA, pkRA) for the structure preserving encryption scheme and
register pkSA and pkRA with Ireg. U and SP retrieve these keys on demand.
On (EnrollU, (id , wit), inst) from otp.U:

− if (inst , (id, wit)) /∈ R), U aborts, else U generates commitment parameters paramsU and sends them to SP over Isc3 .
− SP receives paramsU, generates a random openx2

, computes Cx2 ← Commit(paramsU, x2, openx2
), generates commitment

parameters paramsSP, and sends Cx2 , paramsSP to U over Isc3 .
− U receives Cx2 and paramsSP, generates random open

id
and openx′

1
, computes Cid ← Commit(paramsSP, id , open id

),

Cx′

1
← Commit(paramsSP, x

′
1, openx′

1
) and sends Cid , Cx′

1
to SP over Isc3 .

− SP receives Cid , Cx′

1
and sends an acknowledgement over Isc3 .

− U sends (Input1, (inst , paramsU, paramsSP,Cid ,Cx′

1
,Cx2), pkSA, (id ,wit , open id

, x′
1, openx′

1
), (l1, x1)) to Itpc1 .P1.

− SP receives (Input1, (inst , paramsU, paramsSP,Cid ,Cx′

1
,Cx2), pkSA) on Itpc1 .P2 and sends (EnrollU, inst) to otp.SP.

On (DeliverEnrollU, tdue) from otp.SP:

− SP sends tdue over Isc3 and U replies with an acknowledgment.
− SP sends (Input2, (openx2

, (l2, x2))) to Itpc1 .P2.

− U receives c1 = Enc(pkSA, g
l1+l2 , (gx1 · gx2)) and L = gl1+l2 from Itpc1 .P1 and sends (DeliverEnrollU, L, tdue) to otp.U.

On (DeliverEnrollSP) from otp.U:

− U sends an acknowledgment to SP over Isc3 and SP sends (Input1, (paramsU, paramsSP,Cid ,Cx′

1
,Cx2 ,Tdue), pkRA, openx2

,

(tdue, x2, x
′
2)) to Itpc2 .P1.

− U receives (Input1, (paramsU, paramsSP,Cid ,Cx′

1
,Cx2), pkRA) from Itpc2 .P2 and sends (Input2, (open id

, openx′

1
), (0, x′

1, id))
to Itpc2 .P2.

− SP receives c2 with c2 = Enc(pkRA, g
tdue , (gx

′

1+x2 , gid+x′

2)) from Itpc2 .P1 and sends (DeliverEnrollSP) to otp.SP.

On (ReqSatisfy) from otp.U where L 6= ǫ:

− U sends (c1,L) to SA over Isc1 .
− SA receives c1 from Isc1 and if the ciphertext with label L validates correctly, SA sends (ReqSatisfy,L) to otp.SA.

On (TestSatisfy, L̂, T̂ ) from otp.U:

− U generates a new ciphertext ĉ1 = Enc(pkSA, L̂, (T̂ · g
x1−x′

1)) with random x1 and x′
1 and sends (̂c1, L̂) to SA over Isc1 .

− SA receives ĉ1 from Isc1 and if the ciphertext with label L̂ validates correctly, SA sends (ReqSatisfy, L̂) to otp.SA.

On (Satisfy, satisfied) from otp.SA

− SA skips a communication round for Isc1 .
− if satisfied , SA decrypts c1 and proves correct decryption of the blinded token m = Dec(skSA,L, c1) to U using IzkSA .

otherwise, SA proves m =⊥ with an otherwise random instance and witness of correct size to U using IzkSA .
− U receives m′ as the instance of IzkSA .

− if m′ 6=⊥, U unblinds T = m′ ·gx
′

1−x1 = gx
′

1+x2 and sends (Satisfy,T ) to otp.U; otherwise U sends (Satisfy,⊥) to otp.U.

On (ReqOpen) from otp.SP where state = “enrolled”:

− SP sends (c2, tdue) to RA over Isc3 .

− RA receives (c2, tdue) from Isc3 , decrypts c2 under label gtdue into (T , gid+x′

2), it sends (ReqOpen,T ) to otp.SA.

On (TestOpen, T̂ , îd , t̂due) from otp.SP:
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− SP generates ciphertext ĉ2 = Enc(pkRA, g
tdue , (T̂ , g îd+x′

2)) with random x′
2 and sends (̂c2, t̂due) to RA over Isc2 .

− RA receives (̂c2, t̂due) from Isc2 , decrypts the ciphertext under label gt̂due into (T̂ ,m) and sends (ReqOpen, T̂ ) to otp.SP.

On (Open, open) from otp.RA:

− RA skips a communication round for Isc2 .
− if open , RA proves correct decryption of the blinded identity m to SP using IzkRA . otherwise, RA proves m =⊥ with an

otherwise random instance and witness of correct size to SP using IzkRA ;
− SP receives m′ as the instance of IzkRA .

− if m′ 6=⊥, SP unblinds ID = gid+x′

2 · g−x′

2 = gid and sends (Open, ID) to otp.SP; otherwise it sends (Open,⊥) to otp.SP.

The two-party computation Itpc1 = Itpc(fJC1
(pkSA, (l1, x1), (l2, x2)),R1,1,R1,2) is parameterized by the

function fJC1
and two relations R1,1 and R1,2 for computing the satisfaction ciphertext c1 that contains an

encryption of gx1+x2 under a jointly chosen label L = gl1+l2 :

R1,1 = {((inst , paramsU, paramsSP, Cid ,Cx′
1
,Cx2), (id ,wit , open id , x

′
1, openx′

1
, l1, x1)) | (inst , (id ,wit)) ∈ R∧

Cid = Commit(paramsSP, id , open id ) ∧ Cx′
1
= Commit(paramsSP, x

′
1, openx′

1
)} and

R1,2 = {(inst , paramsU, paramsSP, Cid ,Cx′
1
,Cx2), (openx2

, l2, x2)) | Cx2 = Commit(paramsU, x2, openx2
)} .

Similarly, the two-party computation Itpc2 = Itpc(fJC2
(pkRA, (ǫ, (x

′
1, id)), (tdue, (x2, x

′
2)),R1,1,R1,2) is pa-

rameterized by the function fJC2
and relations R1,1,R1,2 for computing the identity ciphertext c2 that

contains an encryption of (gx
′
1+x2 , gid+x′

2) under key pkRA with public label gtdue :

R2,1 = {((paramsU, paramsSP, Cid ,Cx′
1
, Cx2 ,Tdue ), (openx2

, tdue, x2, x
′
2)) |

Cx2 = Commit(paramsU, x2, openx2
) ∧ Tdue = gtdue} ,

R2,2 = {((paramsU, paramsSP, Cid ,Cx′
1
, Cx2 ,Tdue), (open id , openx′

1
, 0, x′1, id)) |

Cid = Commit(paramsSP, id , open id ) ∧ Cx′
1
= Commit(paramsSP, x

′
1, openx′

1
)} .

The commitment scheme can be realized as a simple Pedersen commitment. Given a tractable relation R

the relations R1,1, R1,2, R2,1, and R2,2 are themselves tractable.

Satisfaction and opening make use of proofs of correct decryption. In case SA or RA rejects a request
by U and SP respectively, we abuse the functionality Izki as a secure channel, by proving a statement with
an arbitrary instance, and witness. We assume that the instance is of the correct size to thwart traffic
analysis. The relations RSA and RRA for proving correct decryption are defined as follows:

RSA = {((c1, pkSA, L,m), skSA) | (m = Dec(skSA, L, c1) ∧m 6=⊥) ∨m =⊥} ,

RRA = {((c2, pkRA, g
tdue ,m), (skRA,T ) | ((m,T ) = Dec(skRA, g

tdue , c2) ∧m 6=⊥) ∨m =⊥} ,

Listing 7 Efficient realization of PzkSA ≤
SS IzkSA(RSA) and PzkRA ≤

SS IzkRA(RRA)

Verifiable Decryption - a proof that c = (u1, u2, u3, c, v) decrypts to m for a label L with a secret key sk = ({α}ni=1, {β}
(n+4)
i=0 )

corresponding to pk = ({hi,1, hi,2}
n
i=1, {fi,1, fi,2}

(n+4)
i=0 ).

π = K{α}ni=1, {β}
n+4
i=0 : { hi,1 = g

αi,1

1 g
αi,3

3 }ni=1 ∧ { hi,2 = g
αi,2

2 g
αi,3

3 }ni=1 ∧ { fi,1 = g
βi,1

1 g
βi,3

3 }(n+4)
i=0 ∧

{ fi,2 = g
βi,2

2 g
βi,3

3 }(n+4)
i=0 ∧ { mi = ci ·

3∏

j=1

u
−αi,j

j }ni=1

∧ v =
3∏

j=1

(
3∏

i=0

ê(uj , ui)
βi,j ·

n+3∏

i=4

ê(uj , ci−3)
βi,j · ê(uj , L)

β(n+4),j

)
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Theorem 3. Given the CCA security of the encryption scheme, our oblivious third party protocol (See
Listing 6) strongly emulates the ideal oblivious third party system (See Listing 5): Potp(R) ≤SS Iotp(R).

A note on using the same group setup. The proofs of Section 2.2 can efficiently deal with different abelian
groups. This means that we can compose tractable relations that make use of different group setups and
still obtain a tractable relation. This, however, comes with a cost on the performance of the proofs. To
achieve optimal performance, parties should use common group parameters as much as possible. Such group
parameters need to exist both in the real world and the ideal world, so they can be used by the identity
certification system for implementing the relation (inst , (wit , id)) ∈ R. Two ways of achieving this are:
1) to describe a deterministic procedure for deriving adequate pairing parameters based on the security
parameter alone. 2) use a global setup that exists both in the real world and the ideal world, i.e. we prove
Potp(R)|Icrs ≤

SS Iotp(R)|Icrs. Where Icrs only provides a pairing setup. This can be seen as a variant of
the GUC model [26]. We note, however, that this Icrs does not allow us to overcome the impossibility
results that have been shown for GUC. We still make use of UC common reference strings for the proofs
of knowledge. We leave the construction of an OTP protocol based on an augmented common reference
string as further work, but point to [27] as a starting point.

Multi-session version of the protocol. In a realistic deployment, a large number of users will be interact-
ing with a slightly smaller number of service providers, the latter needing to accept multiple enrollment
transactions in parallel. Moreover, to achieve real unlinkability between the different transactions of a user,
secure channels need to be replaced with secure anonymous channels. The latter require a separation be-
tween network identifiers and session identifiers. However, the multi-session functionalities Izk and Itpc do

not provide anonymity and cannot be realized without Isc which outputs the same session id/address that
it receives as input.

To see that a proof for the single session version of the OTP protocol is sufficient to guarantee the cryp-
tographic property of the multi-session protocol with anonymous channels, we apply the split functionality
theorem of [28, 29] that states that for every functionality realizable with authenticated/secure channels,
there exists a corresponding split functionality that is realizable with split authenticated/secure channels.
Intuitively in the split functionality it is the adversary that in a multi-session version controls which parties
communicate together over which functionality. By applying the split functionality theorem and the com-
position theorem multiple times, a hybrid protocol with multiple split functionalities can be transformed
into a protocol, that contains only split secure channels. After proving implicit session disjointness, one
can achieve a multi-session version of the OTP protocol that has only local session ids [30].

4.3 Efficient Realization of Zero-Knowledge Proofs

We show how to efficiently prove the relations RP1(R1)) and RP2(R2)). Note that aux 1 = ({γi}
5
i=1,

{δi}
2
i=1, r1, s1) and aux 2 = (r2, s2). We write φ1, φ2, and bases to refer to the formulas of the tractable

relations R1, R2 and the bases in inst respectively.

Listing 8 Efficient realization of Pzk1 ≤
SS Izk1(RP1(R1)) and Pzk2 ≤

SS Izk2(RP2(R2))

The proofs of correctness are as follows:

π1 = Kwit1, l1, x1, γ1, . . . , γ5, r1, s1, δ1, δ2 : φ1(wit1, l1, x1, bases) ∧ ū′

1 = gγ1 · gr11 ∧ ū′

2 = gγ2 · gs12 ∧

ū′

3 = gγ3 · gr1+s1
3 ∧ ū′

4 = gγ4 · gx1 · hr1
1 hs1

2 ∧ ū′

5 = gγ5 · gl1 ∧ v̄′1 = ê(g1, g
δ1) ·

5∏

i=1

ê(fi,1, g
γi) ∧

v̄′2 = ê(g2, g
δ2) ·

5∏

i=1

ê(fi,2, g
γi)
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and

π2 = Kwit2, l2, x2, r2, s2 : φ2(wit2, l2, x2, bases) ∧ ū1 = ū′

1 · g
r2
1 ∧ ū2 = ū′

2 · g
s2
2 ∧ ū3 = ū′

3 · g
r2+s2
3 ∧

ū4 = ū′

4 · g
x2 · hr2

1 hs2
2 ∧ ū5 = ū′

5 · g
l2 ∧ v̄ =

(
5∏

i=0

ê(fi,1, ūi)/v̄
′

1

)r2
(

5∏

i=0

ê(fi,2, ūi)/v̄
′

2

)s2

,

where ū0 = g.

Listing 9 Efficient realization of PzkSA ≤
SS IzkSA(RSA) and PzkRA ≤

SS IzkRA(RRA)

Verifiable Decryption - a proof that c = (u1, u2, u3, c, v) decrypts to m for a label L with a secret key sk = ({α}ni=1, {β}
(n+4)
i=0 )

corresponding to pk = ({hi,1, hi,2}
n
i=1, {fi,1, fi,2}

(n+4)
i=0 ).

π = K{α}ni=1, {β}
n+4
i=0 : { hi,1 = g

αi,1

1 g
αi,3

3 }ni=1 ∧ { hi,2 = g
αi,2

2 g
αi,3

3 }ni=1 ∧ { fi,1 = g
βi,1

1 g
βi,3

3 }(n+4)
i=0 ∧

{ fi,2 = g
βi,2

2 g
βi,3

3 }(n+4)
i=0 ∧ v =

3∏

j=1

(
3∏

i=0

ê(uj , ui)
βi,j ·

n+3∏

i=4

ê(uj , ci−3)
βi,j · ê(uj , L)

β(n+4),j

)
∧ { mi = ci ·

3∏

j=1

u
−αi,j

j }ni=1

4.4 Proof of Oblivious Third Party Protocol

The simulator needs to do some trivial forwarding for every corrupted role R: it forwards all messages
from the environment leaked through notp1.R to notp2.R; all messages from notp2.R, addressed to the
environment are forwarded to the corrupted party on notp1.R. The simulator internally simulates most of
the real world ideal functionalities to simulate delays and corruption of submodules. All messages addressed
to another corrupted real world entity are forwarded to an internal simulation of that entity.

For ideal communication between honest roles, the simulator simply simulates the delays of the real
communication internally based on the delays in the ideal communication. The simulator creates and
registers the keys of honest SA and RA. After the keys of RA are registered, Sim sends (SetF, F,G,G) to
Fotp to set F (id) = gid .

As we will see, the two most interesting cases of the simulation are when either the user or the service
provider, but not both are corrupted. We cover the other corner cases first.

Listing 10 Sim if both user and service provider are corrupted

We only need to simulate for an honest SA or RA.

− Upon receiving (c1,L) from Isc1 , the simulator checks whether the ciphertext correctly decrypts under label L to some
value m, picks a random T and sends (TestSatisfy,L, T ) to notp1.U.

− Upon receiving (Satisfy,⊥) or (Satisfy, T ), it skips a communication round for Isc1 and either proves m =⊥ with an
otherwise random instance and witness of correct size or ((c1, pkSA,L, m), skSA) ∈ RSA respectively.

− Upon receiving (c2, tdue) from Isc2 , the simulator decrypts the ciphertext under label gtdue into (T ,m), picks a random
id , and sends (TestOpen,T , id , tdue) to notp1.SP.

− Upon receiving (Open,⊥) or (Open, id), it skips a communication round for Isc2 and either proves m =⊥ with an otherwise
random instance and witness of correct size or ((c2, pkRA, g

tdue , m), (skRA, T )) ∈ RRA respectively.

Listing 11 Sim if both user and service provider are honest

We only need to simulate for a corrupted SA or RA.

− Upon receiving (ReqSatisfy,L), the simulator picks a random message m and sends (Enc(pkSA,L,m),L) to Isc1 .
− When receiving (Prove,⊥), it sends (Satisfy, false) to notp1.SA.
− When receiving (Prove, c1, pkSA,L,m), it sends (Satisfy, true).
− Upon receiving (ReqOpen,T , tdue), the simulator picks a random message m and send Enc(pkRA; g

tdue ;T ,m) to Isc2 .
− When receiving (Prove,⊥), it sends (Open, false) to notp1.RA. When receiving (Prove, c2, pkRA, g

tdue , m) it sends (Open, true).
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Fig. 2. OTP simulator

Because of the use of ideal functionalities, the simulation for all of these cases is perfect. We now consider
a corrupted user and an honest service provider.

Listing 12 Sim if the user is corrupted, the service provider is honest

The simulator Sim sets state = “ready” and follows the instructions for SP of the real world protocol.

On input paramsU on Isc3 with state = “ready”;

− generate commitment parameters paramsSP and Cx2 ← Commit(paramsU, x2, openx2
) on random openx2

, and return both
to Isc3 .

− wait for Cid and Cx′

1
over Isc3 and reply with an acknowledgment.

− wait for (Input1, (inst , paramsU, paramsSP,Cid ,Cx′

1
,Cx2), pkSA, (id ,wit , open id

, x′
1, openx′

1
), (l1, x1)) on Itpc1 .P1, store id ,

wit , x′
1, x1 and forward the message to the simulated Ftpc1 .P1.

− wait for (Input1, (inst , paramsU, paramsSP,Cid ,Cx′

1
,Cx2), pkSA) on Ftpc1 .P2, send (EnrollU, inst , (id ,wit)) to Fotp.U, and

continue the delay on Fotp.SP.
− let state = “enrollu”.

On a delay on Fotp.U with state = “enrollu”:

− confirm the delay and wait for (DeliverEnrollU,L, tdue) from Fotp.U.
− send tdue over Isc3 to notp2.U and wait for an acknowledgment.

− if SA corrupted, send (ReqSatisfy,L) to Fotp.U, confirm satisfaction, learn (Satisfy,T ) and set m = T · gx1−x′

1 .
− otherwise set m = 1.
− send (Input2, openx2

, (l2, x2)) to the simulated Itpc2 , in which we set c1 = Enc(pkSA,L,m) and store c1. Finally, set
state = “deliverenrollu”.

On the acknowledgment over Isc3 with state = “deliverenrollu”

− send (Input1, (paramsU, paramsSP,Cid ,Cx′

1
,Cx2 ,Tdue), pkRA, openx2

, (tdue, x2, x
′
2)) to Itpc2 .P1.

− wait for (Input2, (ôpen id
, ôpenx′

1
), (0, x′

1, id)) on notp2.U, simulate Itpc2 resulting in the ciphertext c2.

− finally, set state = “enrolled” and send (DeliverEnrollSP) to Fotp.U with a confirmation on the delay of Fotp.SP.
9

As the user is corrupted and the service provider is honest, no extra simulation is needed for a corrupted SA, or a honest RA.
If SA is honest, we have to handle satisfaction requests.10

On (̂c1, L̂) on notp2.U with state = “enrolled”;
9 If ôpen

id
, and ôpenx′

1
correspond to the open

id
, and openx′

1
sent by the user during the EnrollU phase, this simulation step

is perfect. We will show in Lemma 3 that given the binding property of the commitment scheme this is the case except with
negligible probability.

10 Note that in this case, as we did not know the value of T yet, we used a fake encryption of 1 and rely on the CCA security
of the ciphertext for the indistinguishability of the simulation. We describe the reduction in Lemma 4.
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− simulate Isc1 and if c1 = ĉ1, send (ReqSatisfy) to the corrupted Fotp.U, otherwise if the ciphertext validates with label L,
pick a random T and send (TestSatisfy,L,T ). Finally, confirm the delay on Fotp.SA.

On a delay on Fotp.U

− confirm the delay and wait for (Satisfy, T̂ ) on Fotp.U;

− if T̂ = ǫ prove m =⊥ with an otherwise random instance and witness of correct size using a simulated IzkSA .

− if T̂ 6= ǫ, if this is in reply to a TestSatisfy request, prove correct decryption of the blinded token m = Dec(skSA, L̂, ĉ1)
using IzkSA to notp2.U, otherwise (this is in reply to a ReqSatisfy) prove correct decryption of the blinded token m =

Dec(skSA,L, c1) = T · gx1−x′

1).

If RA is corrupted, we have to simulate opening requests towards it. This is done in the same way as for the case of an honest
U and an honest SP.11

Lemma 3. Given the DLIN assumption, if U is corrupted, SP is honest, and SA and RA are either honest
or corrupted, Potp(R) ≤SS Iotp(R).

Proof sketch of Lemma 3: We proceed in a sequence of games. We start with a game where the environment
interacts with the real protocol, and end up with a game where the environment interacts with the simulator
and the ideal system. Then we show that all those games are computationally indistinguishable. Let Wi

denote the event that the environment Env outputs 1 in Game i.

Game 0. This is the real protocol run.

Game 1. This game is the same as Game 0, except that the game aborts if the environment controlling the
corrupted user sends two different openings for one of the commitments Cid or Cx′

1
as part of its input to

Itpc1 and Itpc2 . An environment that distinguishes between Game 0 and Game 1 breaks the binding property
of the commitment scheme which for Pedersen commitments would contradict the Discrete Logarithm
assumption. Therefore |Pr[W1]− Pr[W0]| = negl(k).

Game 2. This game is the same as Game 1, except that the checks of relations in the zero-knowledge
functionality and the two party computation are turned off for honest parties, and that the real commitment
of the service provider is replaced by a random commitment. Honest users never do proofs that wouldn’t
verify, and commitments are perfectly hiding. Therefore Pr[W2] = Pr[W1].

Game 3. This game is the same as Game 2, except that, if SA is honest, the ciphertext c1 is replaced with
an encryption of 1. By Lemma 4, |Pr[W3]− Pr[W2]| = negl(k).

Game 4. Game 4 replaces the control logic of the real protocol with the control logic of the simulator and
the ideal functionality. No further cryptographic values need to be changed. Therefore Pr[W4] = Pr[W3].

⊓⊔

Lemma 4. If U is corrupted, SP and SA are honest, and RA is either honest or corrupted |Pr[W3] −
Pr[W2]| = negl(k), if KeyGen, Enc, Dec is a CCA secure encryption scheme.

Proof. The proof is by contradiction, by showing a reduction from a distinguishing environment Env to a
successful CCA adversary A. A receives the public key pk as input and playing the role of the honest SA,
registers it with Ireg. Depending on the bit b of the CCA challenger, the adversary will (without knowing
it himself) either simulate Game 2 or Game 3 towards Env.

A follows the instructions of the games but uses the decryption oracle to decrypt messages. When
the ciphertext c1 needs to be created, the CCA adversary A asks for a challenge ciphertext c by sending
m0 = gx1+x2 and m1 = 1 to the CCA challenge oracle and uses the result as c1. For the rest of the
interactions with Env, A follows the joint instructions of the games and forwards the output of Env as its
guess.

11 This aspect of the simulation is perfect.
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If the bit b chosen by the CCA challenge game is 0 the behavior of the CCA adversary perfectly follows
the behavior of Game 2, otherwise it corresponds to Game 3. Consequently, A has the same advantage as
Env. ⊓⊔

Listing 13 Sim when the service provider is corrupted, the user is honest

The simulator sets state = “ready” and follows the instructions for U of the real world protocol.

On a delay on FT .SP with state = “ready”:

− confirm the delay and wait for (EnrollU, inst) from the corrupted Fotp.SP, store inst .

− generate paramsU and send them over Isc3 .
− wait for Cx2 and paramsSP on Isc3 , generate random l1, id , x1, x

′
1, open id

and openx′

1
, compute Cid ← Commit(paramsSP,

id , open
id
), Cx′

1
← Commit(paramsSP, x

′
1, openx′

1
) and send Cid and Cx1 over Isc3 .

− upon receiving an acknowledgement over Isc3 , set state = “enrollu”, and send (Input1, (inst , paramsU, paramsSP,Cid ,
Cx′

1
,Cx2), pkSA, (id ,wit , open id

, x′
1, openx′

1
), (l1, x1)) to Itpc1 .

On tdue on Isc3 where state = “enrollu”:

− reply with an acknowledgment.
− receive (Input2, (openx2

, (l2, x2, x
′
2))) on notp2.SP and forward it to the simulated Itpc1 resulting in c1 and l = gl1+l2 .

− set state = “deliverenrollu”, and send (DeliverEnrollU, tdue) to Fotp.SP with a confirmation on the delay of Fotp.U.

On a delay on Fotp.SP where state = “deliverenrollu”:

− confirm the delay, wait for (DeliverEnrollSP) from Fotp.SP and send an acknowledgement over Isc3
− wait for (Input1, (paramsU, paramsSP,Cid ,Cx′

1
,Cx2 ,Tdue), pkRA, ôpenx2

, (tdue, x2, x
′
2)), simulate Itpc2 and receive message

(Input1, (paramsU, paramsSP,Cid ,Cx′

1
,Cx2), pkRA).

12

− if RA is corrupted, send (ReqOpen) to Fotp.SP, learn T , confirm the opening, learn (Open,ID) and set m = (T , ID · gx
′

2).

− otherwise set m = (1, 1).

− send (Input2, (open id
, openx′

1
), (0, x′

1, id)) to the simulated Itpc2 in which we set c2 = Enc(pkSA, tdue,m).
− set state = “enrolled”.

As the service provider is corrupted and the user is honest, no extra simulation is needed for an honest SA, or a corrupted
RA. If RA is honest, we have to handle opening requests.13

On (̂c2, tdue) on notp2.SP where state = “enrolled”;

− simulate Isc2 and if c2 = ĉ2, send (ReqOpen) to the corrupted Fotp.SP, otherwise if the ciphertext validates with label gtdue ,
pick a random T , id and send (TestSatisfy,T , id , tdue). Finally, confirm the delay on Fotp.RA.

On a delay on Fotp.SP where state = “enrolled”:

− confirm the delay and wait for (Open, ÎD) on Fotp.SP.

− if ÎD = ǫ prove m =⊥ with an otherwise random instance and witness of correct size using a simulated IzkRA .

− if ÎD 6= ǫ, if this is in reply to a TestOpen request, prove correct decryption of the blinded identity m = Dec(skRA, tdue, ĉ2)
using IzkRA to notp2.SP, otherwise (this is in reply to a ReqOpen) prove correct decryption of the blinded identity m =

Dec(skRA, tdue, c2) = ID · gx
′

2 .

If SA is corrupted, we have to simulate satisfaction requests towards it. This is done in the same way as for the case of an
honest U and an honest SP.14

Lemma 5. Given the DLIN assumption, if SP is corrupted, U is honest, and SA and RA are either honest
or corrupted, Potp(R) ≤SS Iotp(R).

The proof follows the proof of Lemma 3.

12 If ôpenx2
correspond to the openx2

sent by the service provider during the EnrollU phase, this simulation step is perfect.
We will show in Lemma 5 that given the binding property of the commitment scheme this is the case except with negligible
probability.

13 Note that in this case, as we did not know the value of T and id yet, we used a fake encryption of (1, 1) and rely on the
CCA security of the ciphertext for the indistinguishability of the simulation. We describe the reduction in Lemma 5.

14 This aspect of the simulation is perfect.
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5 Conclusion

We propose the first public key encryption scheme that is structure preserving and secure against adaptive
chosen ciphertext attacks. We demonstrate the usefulness of this new primitive by the joint ciphertext
computation protocol and our proposal for instantiating oblivious third parties. We conjecture, however,
that the combination of the structure preserving encryption scheme and efficient zero-knowledge proofs
facilitate a much larger set of efficient protocol constructions. All protocols are proven secure in the IITM
model. The results carry over to the universal composability model.
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A Details on the IITM Model

The inexhaustible interactive Turing machines (IITM) model [14] is a refinement of the universal compos-
ability and reactive simulatability model. In the IITM model both ideal functionalities F and protocols
P are configurations of IITMs. The inexhaustibility, guarantees that a well-formed system of polynomial
time bounded IITMs can be simulated by a single ITM. This allows us to interpret ideal functionalities and
protocols either as interconnected systems that communicate via input-output tape pairs shared between
component IITMs, or as a single ITM.

An IITM with an (enriching) input tape named start, is called a master IITM. It is triggered if no other
IITM was triggered. An IITM is triggered by another IITM if the latter writes a message on an output
tape that corresponds to an input tape of the former. Note that on each activation of an IITM, it can
write to at most one output tape. Each IITM M has an associated polynomial q which is used to bound
the computation time per activation where the polynomial is not only in the security parameter, but also
in the length of the current input and the size of the current configuration (i.e. the length of the content
written on the working tapes). As a result, inputs of arbitrary size (e.g. stream ciphers) may be processed.
Input tapes can be either consuming (→) or enriching (→→), of which the length of the inputs on the
latter is a bounding factor for the size of the current configuration and the output produced by that IITM.
In order to ensure that such systems run in polynomial time, well-formed systems require a graph defined
by the enriching tapes to be acyclic. In addition, systems of IITMs may contain an unbound number of
copies of IITMs as indicated by the bang operator (‘!’). Küsters therefore proposes a flexible and generic
mechanism for addressing those copies of IITMs. An IITM may run in 2 modes: in the CheckAddress mode
the IITM runs a deterministic algorithm to verify that a message is in fact addressed to it; in the Compute

mode the IITM will do the actual processing of the input and possibly writes output to one of its output
tapes. If no current instance of the banged IITM accepts the input, and the default instance accepts in the
CheckAddress mode, a new instance is created.

Tapes. As a convention we bundle external15 tapes of systems into interfaces. An interface inf consists
of named input-output tape pairs. An input-output tape pair is named inf.R after a combination of the
interface name inf and a role name R. We refer to the set of all roles of an interface as inf.R. If a system
of IITMs implementing an interface inf, is connected to another ITM M , then as a convention we refer to
the input-output tape pair of party M that is connected to role R of the interface as inf.R.

For each system Sinf implementing a functionality inf, we distinguish between the API interface inf

(called IO interface in Küsters terminology), defining the environmental/trusted connections of the system
and network interface ninf, defining the adversarial/untrusted connections of the system.

For example, if an IITM M wants to send a message to role R of a system of IITMs Sinf implementing
inf, M would write the request to the output tape of inf.R and Sinf would read it on the input tape of
inf.R. To answer the request S would write the response on the output tape of inf.R and M would read the

15 As apposed to internal tapes connecting the internal IITMs of a system.
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request on the input tape of inf.R. Similarly, an adversary A would send messages to the network output
tape of ninf.R and Sinf would read it on the input tape of ninf.R.

For simulation-based security definitions the ideal protocol I and the real protocol P that emulates this
ideal system have to present the same API interface inf towards their environment, i.e., they must be API
compatible. We refer to an ideal system and a protocol that is API compatible with respect to interface inf

as Iinf and Pinf respectively. In addition Iinf and Pinf must expose different network interfaces ninf1 and
ninf2.

Simulatability. A proof that Pinf emulates Iinf , short Pinf ≤
SS Iinf will need to prove existance of a simulator

Sim that translates between the interfaces ninf1 and ninf2. This is formalized as strong simulatability which
implies other simulatability notions such as dummy universal composability and blackbox simulatability.

Definition 5 (Strong Simulatability (SS). Pinf ≤
SS Iinf). A protocol system Pinf strongly emulates

Iinf if there exists a simulator Sim connected to environment Env on interface ninf2 and Iinf on interface
ninf1 such that for all master IITMs Env that connect to inf and ninf2: Env|Pinf ≡ Env|Sim|Iinf

Corruption. Küsters [17] presents a standard corruption model for ITMs listed below. In our exposition,
we consider only static corruption. A corrupted role forwards all inputs on tapes TU to ninfi.R and acts as a
proxy that allows the environment to send messages to any of its tapes in TU, by sending control messages
to ninfi.R.

Listing 14 Macro Corr(corrupted ∈ Bool , corruptible ∈ Bool , initialized ∈ Bool ,msg , inf.R, ninf.R,TU)

Initialization: res =0
Compute:

On (Corrupted?) from inf .R where initialized:
– send (corrupted) to inf .R. (*Corruption Request*)

On (Corrupt) received from ninf.R where corruptable, initialized and not corrupted (*Corruption*)
– let corrupted = true; send (Corrupted,msg) to ninf.R

On m received from T ∈ TU where corrupted (*Forward to ninf.R (Rule takes precedence over all other rules)*)
– let res← 0; send (LeakRecv,m, T ) to ninf.R

On (Send,m, T ) received from ninf.R, T ∈ TU, corrupted , 0 < |m| ≤ res (*Forward to tape*)
– let res← 0; send m to T .

On (Resources, r) received from inf.R where corrupted (*Resources*)
– let res← |r| and send (Resources, r) to ninf.R.

As mentioned before, cryptography has a particular interest in ideal systems that model a virtual
incorruptible party FT . As the functionality FT implements the security critical parts of an ideal system, the
parties representing the different roles of the interface only need to implement forwarding and corruption.
We describe this in the following macro:

Listing 15 Dummy functionality: Dummy(inf.R, ninf.R, FT.R):

Tapes inf.R←→→ inf.R, ninf.R←→ ninf.R, FT.R 6←←→ FT.R
Initialization: state = ǫ, corrupted = corruptible = false.
Compute:

On (Ready) from inf.R where state = ǫ:
let state = “ready”; let corruptible = true
send (Ready) to ninf.R

On m from inf.R where state = “ready”
– let corruptible = false; send m to F T.R

On m from F T.R where state = “ready”
– let corruptible = false; send m to inf.R

Corruption: Corr (corrupted, corruptible, state 6= ǫ, ǫ, inf.R, ninf.R, {inf .R, FT.R})
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A.1 Modeling communication channels

Both ideal and real protocols have to model communication. Ideal protocols model both ideal cryptography,
as well as ideal communication. A common situation is when the adversary is ideally only able to arbitrarily
delay the delivery of results. This models the restriction that cryptography cannot prevent denial of service
attacks against an adversary that is in control of communication resources. We model this commonly
recurring pattern as an IITM that, on the (Continue) command on adversarial channel C, copies messages
from one tape to another.

Delayed communication. We model enriching delayed communication T
C

6←←→ T which leaks to network tape
C by the following ideal system. In short, we delay all messages in the non-enriching direction.

Listing 16 Functionality Delay(T, T ,C) ≡ T
C

6←←→ T

Tapes: Taux ←→→ T , T aux ←←→ T , C ←→ C
Initialization: buffer = ǫ.
Compute:

On m = (. . . , 〈MsgName〉, . . . ) or m = (〈MsgName〉, . . . ) from Taux :
− let nC fresh C nonce
− store (nC,m) in buffer and leak (nC, Leak〈MsgName〉, |m|) to C
On (nC, Continue) from C:
– if (nC,m) /∈ buffer abort

– remove (nC,m) from buffer and send m to T aux

On m from T aux : forward m to Taux .

To abstract from communication details, we model communication as functionalities. One important
mechanism is TLS like end to end authenticated secure communication. Key exchange protocols and
public-key infrastructures allow for the construction of such secure channels. For simplicity we model
secure channels through an ideal uncorruptible functionality.

Secure Channel Isc. We model an ideal secure channel, as a channel in which both the receiver and sender
is authenticated. The ideal channel functionality Isc supports only request/response communication and
only a single message can be sent at a time. We model corruption of sender and receiver through dummy
users DS1 = Dummy(sc.S1, nsc.S1,Fsc.S1) and DS2 = Dummy(sc.S2, nsc.S2,F sc.S2): Isc = DS1 |Fsc|DS2 .

Listing 17 Functionality Fsc

Tapes: sc.S1 6←←→ sc.S1, sc.S2 6←←→ sc.S2

Initialization: active = 1.
Compute:

On (Send,m) on Fsc.S2−i where active = 2− i
– set active = 1 + i; send (Send, m) to Fsc.S1+i

On (Skip) on Fsc.S2−i where active = 2− i
– set active = 1 + i; send (Skipped) to Fsc.S2−i

Anonymous Channel Iac. We model an ideal anonymous channel, as a channel in which the receiver
is authenticated, but the sender is anonymous. Once a channel is established, the receiver is, however,
guaranteed that he is talking to the same party.

The ideal system for realizing such a channel consists of multiple sender ITM instances FacS and
one anonymizing receiver ITM instance FacR which corresponds to a trusted anonymization proxy. More
formally Iac =!FacS|FacR.

Listing 18 Functionality FacS
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Tapes: ac.S←←→ ac.S, nac.S←→ nac.S, nac.C←→ nac.C, FacR ←→→ FacR

Initialization: state = sid = nC = nR = corrupted = corruptible = ǫ.
Compute:

On (sid′, Ready) from ac.S where state = ǫ:
– let state = “ready”; let corruptible = true; let sid = sid′; send (sid, Ready) to nac.S

On (sid, Send, m) on ac.S where state = “ready” and ssid′ = ssid
let corruptible = false; let nC fresh C nonce
send (nC, LeakSend) to nac.C; rcv (nC, InfSend) from nac.C
let state = “sent”; let nR to fresh S nonce
send (nR, Send, m) to FR.acS

On (nR, Reply, m) from FR.acS where state = “sent”
let nC fresh C nonce
send (nC, LeakReply) to nac.C; rcv (nC, InfReply) from nac.C
let state = “ready”
send (sid, Reply, m) to ac.S

Corruption: Corr (corrupted, corruptible, state 6= ǫ, ǫ, ac.S, nac.S, {ac.S, F acR})
CheckAddress: Once sid is set check for it in all messages from ac.S Check for nC respectively ssid, nR in all messages from

nac.C1 and FR.S respectively.

Listing 19 Functionality FacR

Tapes: ac.R←←→ ac.R, nac.R←→ nac.R, FacR ←→→ F acR

Initialization: state = corrupted = corruptible = ǫ.
Compute:

On (Ready) from ac.R where state = ǫ:
– let state = “ready”; let corruptible = true; send (Ready) to nac.R

On (nR, Send, m) from FU.R where state = “ready”:
– let corruptible = false; send (nR, Send, m) to ac.R

On (nR, Reply, m) from ac.R where state = “ready”
– send (nR, Reply, m) to FacR

A.2 Other Functionalities

We describe a common reference string and a key registration functionality for the IITM model.

Listing 20 Functionality Icrs(R, {Dk}k∈N)

Tapes: {crs.R←←→ crs.R}R∈R

Initialization: params = ǫ.
Compute:

On (GetParams) on Icrs.R, R ∈ R
– if params = ǫ sample params ← Dk.
– send (Params, params) to Icrs.R

Listing 21 Functionality Ireg(R)

Tapes: {reg.R←←→ reg.R}∈R

Initialization: state = ∅. On (Register, v) from reg.R ∈ R
Compute:

– Records the value (R, v).
On (Retrieve,R) from reg.R′ ∈ R
– If (R, v) is recorded then return (Retrieve, v) to reg.R′.
– Otherwise send (Retrieve,⊥) to reg.R′
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