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Abstract. In this paper we give the minimal connectivity required in a
synchronous directed network, which is under the influence of a compu-
tationally unbounded Byzantine adversary that can corrupt a subset of
nodes, so that Secure Message Transmission is possible between sender
S and receiver R. We also show that secure communication between a
pair of nodes in a given synchronous directed network is possible in both
directions if and only if reliable communication is possible between them.
We assume that in a network, every node is capable of computation and
we model the network along the lines of [14].

Keywords: Directed networks, Connectivity, Information-theoretic se-
curity

1 Introduction

Achieving reliable and private communication is one of the fundamental prob-
lems in distributed computing. Most solutions to the problem of Secure Multi-
Party Computation assume that nodes are connected by secure channels ([1],[2],
[5],[11]). However, in practice, such a channel may not be present between every
pair of nodes. In such a case we need to simulate the channel using a protocol.
The problem of point-to-point Secure Message Transmission (SMT) studies the
possibility, optimality and feasibility of protocols in which – given a distributed
network where a subset of nodes may be faulty, and given a sender node S and
a receiver node R – S should be able to send any message m to R such that
even if all the faulty players collude with each other, R receives m reliably and
the faulty players get no information about m (privacy or secrecy). The general
form of this problem is usually denoted by (ǫ, δ)-SMT where ǫ denotes the error
in secrecy and δ the error in reliability [4].

The problem of Secure Message Transmission has been studied under various
network and corruption models. The case of synchronous directed (unicast) net-
works under the influence of a computationally unbounded Byzantine adversary

⋆ A shorter version appeared in [9].



has been studied in depth by the research community, beginning with the work
of Desmedt and Wang [3]. In [3], the authors abstract a directed network as a
collection of directed channels between S and R, and find the minimum number
of forward and backward channels required in a network, affected by a thresh-
old adversary, for (0, 0)-SMT and for (0, δ)-SMT. They also give protocols over
networks which satisfy the minimum connectivity requirements. Subsequently,
Patra et al. [10] and Yang and Desmedt [15] generalize these results to the case
of non-threshold adversary.

While the abstraction of a directed network as a collection of directed chan-
nels between S and R is suitable for networks where intermediate nodes are
routers, who can only forward messages and do not have any computing power
of their own, a more general way of modelling the network as digraphs with
computationally capable intermediate nodes is proposed in [14]. The main re-
sult of [14] is a characterization of directed networks, under the control of a
non-threshold mixed adversary, over which reliable message transmission (or
(1, δ)-SMT using the standard notation) is possible. Subsequently, in [13], the
minimal connectivity requirement in a network for (0, δ)-SMT is studied.

Our work is mainly inspired by the following analogous existing result: the
minimum connectivity requirement for (1, δ)-SMT in digraphs (characterized in
[14]) is strictly weaker than that required for (1, 0)-SMT in digraphs. Similarly,
we ask if the minimum connectivity requirement for (ǫ, δ)-SMT in digraphs is
strictly weaker than that required for (0, δ)-SMT. The existing results appear
to hint at a negative answer to the above question. Specifically, it is known
that “(0, δ)-SMT if and only if (ǫ, δ)-SMT” if (a) the network is abstracted as
a collection of disjoint directed paths between sender and receiver [15] or if (b)
the network is modelled as an undirected graph [4].

Notwithstanding, we present a characterization of the possibility of (ǫ, δ)-
SMT and find that in the case of digraphs influenced by a non-threshold Byzan-
tine adversary, there exist graphs in which (ǫ, δ)-SMT is possible while no (0, δ)-
SMT protocol is known. For instance, consider the network G given in Figure 1
with adversary structure A = {{b1}, {b2}}. We show that this digraph satisfies
the necessary and sufficient condition for the existence of a (ǫ, δ)-SMT protocol
as given in Theorem 5. On the other hand, no (0, δ)-SMT protocol is known over
G ([13]).

Further, to see why if intermediate nodes can compute, the results of [15] are
not applicable, again consider the network G with the same adversary structure
A. According to Theorem 6 and Corollary 1 in [15], (ǫ, δ)-SMT from S to R
tolerating A is possible if and only if there exists a path from S to R, or from
R to S, avoiding both the nodes b1 and b2. Since no such path is present in
the network, no protocol exists for (ǫ, δ)-SMT in G according to [15]. However,
if we assume that every node in the network can compute, there does exist an
(ǫ, δ)-SMT protocol in G as shown in Section 4.1.

We would like to emphasize that the main focus of this work is on the
(im)possibility and not the feasibility of SMT protocols. The protocols that
we give to prove the possibility of SMT are inefficient in both message and
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Fig. 1. Network G.

round complexity. Previous results on SMT shed some light on the anomalous
behaviour of protocols when “randomness meets directedness” [14, 12], which
makes it extremely hard to design worst case efficient protocols.

2 Model and Definitions

Network: The network is modelled as a directed graph N = (V, E), where the
set of vertices V represents the set of players and the set of edges E represents the
perfectly secure, point-to-point, directed channels in the network. The network
is assumed to be synchronous and any protocol is executed in a sequence of
rounds. In each round a player can send messages to its out-neighbours, receive
messages sent to it by its in-neighbours in that round and perform computations,
in that order. It is assumed that the network topology is known to every player.
Throughout the paper we represent the sender node by S and the receiver node
by R.

Adversary: Fault in the network is modelled via a computationally unbounded
centralized adversary that can corrupt a subset of nodes, excluding S and R, in
Byzantine fashion [8]. This means that the corrupted nodes are in complete con-
trol of the adversary and the adversary can make them behave in any arbitrary
manner. The adversary is non-threshold [6, 7] and is represented by an adver-
sary structure which is the collection of all possible subsets of nodes that can be
corrupted by the adversary. More formally, an adversary structure A is defined
as: A = {B1, B2, ..., Bn} where ∀i, Bi ⊆ V \ {S,R}. The adversary can choose
to corrupt any one subset of players from A and can control their behaviour
throughout the execution of the protocol. Note that the adversary is not allowed
to change the subset in the middle of an execution. These subsets are also known
as failure patterns in distributed computing. The adversary structure is mono-
tone which means that if B1 ∈ A then ∀B2 such that B2 ⊆ B1, B2 ∈ A. The
players are assumed to have no information about the corrupt subset before the
beginning of the protocol. It is assumed that the adversary knows the complete
protocol specification and the network topology.

We note that an adversary structure can be uniquely and concisely repre-
sented by its maximal basis.



Definition 1 (Maximal basis of A). : The maximal basis A for an adversary
structure A is defined as: A = {B | B ∈ A and ∄ X ∈ A s.t. B ( X}

Throughout this paper we use A to denote the adversary structure and A to
denote its maximal basis. Following [4], the adversary’s view consists of the
messages sent and received and the coin tosses made by the corrupt nodes in
each round of the protocol. Random variable adv(m, r) denotes the view of the
adversary when S chooses to send m and the coin tosses made by the adversary
is r.

Message Space: Let F be the message space where < F,+, ∗ > is a large finite
field. All the computations are done in this field. The sender S can select any
element from F to send to R. In any message transmission protocol we assume
that S starts with a message mS and R outputs mR at the end. Throughout the
paper we write |H| to denote the cardinality of the set H and h ∈R H denotes
that h is uniformly chosen from H.

Definition 2 (Reliability). A message transmission protocol is said to be δ-
reliable if the probability that mR = mS is at least (1−δ), where the probability is
taken over the random coin tosses of all the players and the random coin tosses
of the adversary.

Definition 3 (Privacy). Again following [4], a message transmission protocol
is said to be ǫ-private if, for every two messages m and m′ ∈ F and every r,
∑

c |Pr[adv(m, r) = c]− Pr[adv(m′, r) = c]| ≤ 2ǫ. The probabilities are over the
coin tosses of the honest players and the sum is over all possible views of the
adversary.

Definition 4 ((ǫ, δ)-SMT). A message transmission protocol is said to be (ǫ, δ)-
SMT if it is ǫ-private and δ-reliable, where ǫ and δ are negligibly small.

Definition 5 (δ-URMT). A message transmission protocol is said to be δ-
URMT (Unconditionally Reliable Message Transmission) if it is δ-reliable.

Definition 6 (δ-URMTFK). We say that a message transmission protocol tol-
erating adversary structure A is δ-URMTFK if for all valid Byzantine corrup-
tions of any B ∈ A, the probability that R outputs mR = mS or knows that the
set B is faulty is at least (1 − δ).1

Throughout this paper we use the following terms interchangeably: (a) δ-URMT
and URMT (b) δ-URMTFK and URMTFK .

It should be noted that protocols with error probabilities greater than 1
2

or negligibly close to 1
2 in reliability or secrecy are not interesting. Instead, we

would like to have protocols with these error probabilities negligibly small.

Authentication Scheme: Our protocols use the following information theo-
retically secure authentication code to circumvent the low connectivity in the

1 FK stands for Fault Knowledge.



graph. Suppose two random keys k1 and k2 are privately shared between two
parties S and R.2 Let S send (m, m∗k1+k2) to R and let R receive (x, y). Then,
R can easily check if adversary has tampered with the authenticated message

by verifying if y
?
= x ∗ k1 + k2. If adversary has altered the messages en-route

then with probability at least 1 − 1
|F| , verification will fail and R will find out

(see [11] for proof). In addition to this if one more key k3 is privately shared
and S sends (m + k3, (m + k3) ∗ k1 + k2) to R, then the message m remains
perfectly secret, since m + k3 is independent of m. We use the following no-
tations in the paper: (i) χ(m, k1, k2) = (m,m ∗ k1 + k2); (ii) ζ(m, k1, k2, k3) =
χ(m+k3, k1, k2) = (m+k3, (m+k3)∗k1+k2); where m, k1, k2, k3 ∈ F. For brevity,
we sometimes abuse the notation and write ζ(m,K) to denote ζ(m, k1, k2, k3)
where K = (k1, k2, k3).

3 URMT

In [14], Srinathan and Pandu Rangan gave the characterization of directed
graphs for URMT tolerating mixed adversary (Byzantine and Fail-stop). In that
paper, they prove the following theorem that reduces the problem of URMT
tolerating adversary structures of arbitrary size to URMT tolerating two-sized
adversary structures.

Theorem 1. In a digraph N = (V, E), a δ-URMT protocol from S to R toler-
ating an arbitrary adversary structure A (|A| ≥ 2) exists iff δ-URMT protocols
tolerating every A s.t. A ⊆ A and |A| = 2 exist, where δ < 1

2 .

Once the problem is reduced to tolerating two-sized adversary structures
only, they give three constructions using which we can add virtual nodes and
edges in the graph. Finally a very simple condition remains to be checked in the
augmented graph which shows whether or not URMT is possible in the graph.

Since in this paper we are dealing with Byzantine adversary only, the three
constructions in [14] collapse to a single construction. We now give that con-
struction which shall be used extensively in the characterization for (ǫ, δ)-SMT
in Section 4.

Construction of Y : For a given adversary structure A = {B1, B2} and a given
node u ∈ V \ (B1 ∪ B2) we construct the set Y (u) as follows: Y (u) is initialized
to {u}; a node v ∈ V \ (B1 ∪ B2) is added to Y (u) if one of the following holds:

1. ∃ a ∈ Y (u) s.t. (v, a) ∈ E
2. ∃ b ∈ Y (u) s.t. (b, v) ∈ E and ∃ a ∈ Y (u),∃α ∈ {1, 2} s.t. v has a path to a

avoiding the set Bα where α = 3−α. This path may contain nodes from Bα

(see Figure 2).

The above steps are executed iteratively until no more nodes can be added. Note
that nodes in B1 ∪ B2 are never considered.

2 We take no such assumption in our protocols. The protocols establish keys between
parties on their own before using them.
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Fig. 2. Constructions for Y (u).

Remark: Unlike [14], where virtual paths with certain properties are added in
the graph for the above construction, we used the set notation, Y . Nevertheless,
the set notation is equivalent to what is done in [14], i.e. a node v added to Y (u)
is equivalent to adding a virtual path from v to u in the graph.

The following two Lemmas act as the basic blocks for the (ǫ, δ)-SMT char-
acterization.

Lemma 1. If a node v ∈ Y (u), then v can do δ-URMTFK to u, for any δ ≥ 1
|F| ,

with the additional property that the message sent will remain perfectly secret
from the adversary.

The proof of this lemma appears in [14]. They give a protocol, with the above
mentioned properties, that simulates the virtual path added in the graph. Al-
though the message remains perfectly secret throughout the protocol, it is not
mentioned explicitly in the proof. Nevertheless, for the sake of completeness, we
give the proof of this lemma in Appendix A.1.

Lemma 2. If a node v /∈ Y (u) then there does not exist any δ-URMT protocol
with δ < 1

2 .

Proof appears in [14]. It assumes that the adversary knows the message that
is being transmitted. We can do away with that assumption and show that any
URMT protocol with δ < 1

2 (1 − 1
|F| ) does not exist (a similar proof is given in

[4]).
The key idea used in the proof is that if v /∈ Y (u), then for any message

transmission protocol from v to u, the adversary can simulate a copy of the
node v (which we call v) on a message of its own choice in such a way that u
can’t distinguish between the “actual” v and the “simulated” v. In this way if v
intends to send message m and adversary simulates the node v on some message
m′ such that m 6= m′ 3, then u cannot do better than guessing between m and
m′.

Finally, using the construction of Y (R) we can restate the main theorem of
[14] as follows:

Theorem 2. In a digraph N = (V, E), for δ < 1
2

(

1 − 1
|F|

)

, δ-URMT from S to

R tolerating two-sized adversary structure A = {B1, B2} is possible if and only if

3 Adversary can do that with probability 1 − 1

|F|
by choosing m′ ∈R F.



S ∈ Y (R) and there exist two paths p1 and p2 from S to R with path pα avoiding
Bα for α ∈ {1, 2}.

4 (ǫ, δ)-SMT

We now characterize the family of graphs in which (ǫ, δ)-SMT from S to R
tolerating an adversary structure A is possible. As done in Section 3, we again
start with the theorem that reduces the adversary structures of arbitrary size
to two-sized adversary structures. Similar theorem has been proved in [13] for
(0, δ)-SMT.

Theorem 3. In digraph N = (V, E), (ǫ, δ)-SMT tolerating an arbitrary adver-
sary structure A (|A| ≥ 2) is possible if and only if (ǫ, δ)-SMT tolerating A for
all A ⊆ A, such that |A| = 2, is possible, where ǫ ≤ 1

648 and δ ≤ 1
864 .

Proof. The only-if part is obvious. We prove the if part here. Suppose that
(ǫ, δ)-SMT protocols tolerating all two-sized subsets of A exist. Let A = {B1, B2,
..., Bn} and let Πi,j be the (ǫ, δ)-SMT protocol tolerating {Bi, Bj} where 1 ≤
i, j ≤ n. Using these as the subprotocols we construct a (ǫ, δ)-SMT protocol Π
tolerating A (which is also the protocol tolerating A).

We show how to construct a (ǫ, δ)-SMT protocol Π ′
i,j,k tolerating {Bi, Bj , Bk}

using Πi,j ,Πj,k and Πk,i. The protocol Π ′
i,j,k is a (6ǫ, 12δ)-SMT protocol as will

be shown in Lemmas 3 and 4. Further, in Lemma 5, we will show how this proto-
col can be used to construct an (ǫ, δ)-SMT protocol Πi,j,k (the upper bounds on
ǫ and δ become critical here). The key idea used in the construction of Π ′

i,j,k is
that each of the subsets Bi, Bj and Bk are tolerated in two of the three protocols
which means that no matter which set is corrupt, two of them will be successful.
Similar process can be used to construct a protocol Πi,j,k,l using protocols Πi,j,k,
Πi,j,l and Πj,k,l. In general for any µ > 2, a µ-sized set H can be divided into
three ⌈ 2µ

3 ⌉-sized subsets H1, H2 and H3 such that every element h ∈ H occurs
in at least two of H1, H2 and H3. In this way, ultimately the grand protocol Π
that tolerates all the n subsets simultaneously is constructed. It can be easily
shown that poly(n) sub-protocols are used to construct the protocol Π.

The protocol Π ′
i,j,k consists of 3 phases where in each phase, protocols Πi,j ,

Πj,k and Πk,i are run in parallel. Phase 2 begins only after the completion of
Phase 1 and similarly Phase 3 begins only after the completion of Phase 2.4 The
protocol proceeds in the following steps:

– S chooses 3 set of keys K1,K2 and K3 randomly from F3 where Ki =
(ki1, ki2, ki3), i ∈ {1, 2, 3}.

– S sends ζ(mS ,K1), ζ(mS ,K2) and K3 through the protocol Πi,j in phases 1,
2 and 3 respectively. Similarly S sends ζ(mS ,K2), ζ(mS ,K3) and K1 through
the protocol Πj,k and sends ζ(mS ,K3), ζ(mS ,K1) and K2 through the pro-
tocol Πk,i in phases 1, 2 and 3 respectively.

4 Although Phase 1 and 2 are separated just for better understanding, it is crucial
that Phase 3 begins only after Phases 1 and 2 have ended.



– Let R receive (xi,j
1 , yi,j

1 ), (xi,j
2 , yi,j

2 ) and K ′
3 from Πi,j in phases 1, 2 and 3

respectively. Similarly R receives (xj,k
2 , yj,k

2 ), (xj,k
3 , yj,k

3 ) and K ′
1 from Πj,k,

and (xk,i
3 , yk,i

3 ), (xk,i
1 , yk,i

1 ) and K ′
2 from Πk,i in phases 1, 2 and 3 respectively

(see Figure 3) where K ′
i = (k′

i1, k
′
i2, k

′
i3).

– R tries to find an α ∈ {i, j, k} such that the messages received through
the two protocols tolerating Bα are consistent with each other. For in-
stance, the messages received through two protocols tolerating Bi (Πi,j and

Πk,i) are consistent with each other when (xi,j
2 , yi,j

2 ) = χ(xi,j
2 , k′

21, k
′
22) and

(xk,i
3 , yk,i

3 ) = χ(xk,i
3 , k′

31, k
′
32) and xi,j

2 − k′
23 = xk,i

3 − k′
33.

• If more than one such α exists, proceed with any one of them. If no such
α exists then choose α ∈R {i, j, k} and proceed.

• If α is i then output xi,j
2 − k′

23. Similarly if α is j then output xj,k
3 − k′

33

and if α is k then output xk,i
1 − k′

13.

⊓⊔

Phase 1 Phase 2 Phase 3 Phase 1 Phase 2 Phase 3

ζ(mS , K1) (xi,j
1 , yi,j

1 )K3ζ(mS , K2) (xi,j
2 , yi,j

2 ) K ′
3

ζ(mS , K2) ζ(mS , K3) K1 (xj,k
2 , yj,k

2 ) (xj,k
3 , yj,k

3 ) K ′
1

ζ(mS , K3) ζ(mS , K1) K2 (xk,i
3 , yk,i

3 ) (xk,i
1 , yk,i

1 ) K ′
2

Πi,j

Πk,i

Πj,k

S sends R receives

Fig. 3. Protocol Π ′
i,j,k

We give proof ideas for the following three lemmas here. Formal proofs of
Lemma 3, Lemma 4 and Lemma 5 appear in Appendix A.2, A.3 and A.4 respec-
tively.

Lemma 3. Protocol Π ′
i,j,k is (12δ)-reliable.

Proof idea: With probability at least (1 − δ)12, R will be able to find a pair of
protocols such that the messages received through them are consistent and the
message that R finally outputs is mS .

Lemma 4. Protocol Π ′
i,j,k is (6ǫ)-secure.



Proof idea: The messages sent through the protocol, that is not tolerating the
corrupt set, can be completely revealed to the adversary. In that case there are
six messages that are sent along the other two ǫ-secret protocols that are such
that mS remains secret iff these 6 messages remain secret. This in turn shows
that Π ′

i,j,k is (6ǫ)-secure.

Lemma 5. An (ǫ, δ)-SMT protocol Πi,j,k can be constructed using a (6ǫ, 12δ)-
SMT protocol Π ′

i,j,k.

Proof idea: To enhance reliability we can repeat the protocol thrice and let R
output the majority element. This brings the error in reliability down to 432δ2

but increases the error in secrecy to 18ǫ. Next, to enhance security, any message
m is sent by sending f and m + f in separate executions, where f ∈R F. This
reduces the error in secrecy to 648ǫ2 but increases the error in reliability to
864δ2. For the given upper bounds on ǫ and δ, the protocol becomes (ǫ, δ)-SMT.

4.1 (ǫ, δ)-SMT Characterization

Following Theorem 3, it is now sufficient to give only a characterization for
(ǫ, δ)-SMT tolerating two-sized adversary structures of the form A = {B1, B2}.

We make use of the set Y defined in Section 3. In addition, we define two
more sets Z1 and Z2.

Construction of Z1: For a given adversary structure A = {B1, B2} and a given
node u ∈ V\ (B1∪B2) we construct Z1(u) as follows: Z1(u) is initialized to {u};
a node v ∈ V \ (B1 ∪ B2) is added to Z1(u) if one of the following hold:

1. ∃ a ∈ Z1(u) s.t. (v, a) ∈ E , or,
2. ∃ b ∈ Z1(u) s.t. b can do URMTFK to v (in other words, b ∈ Y (v)) and v

has a path to u avoiding the set B2. This path may contain nodes from B1.

The above steps are executed iteratively until no new node can be added. Nodes
in (B1∪B2) are never considered. This completes the construction of Z1(u). The
set Z2(u) is constructed along similar lines (replacing B2 with B1 and vice-versa
in step (2) of the iteration).

Figure 4 describes the situations in which S can be added to Z1(R).

b

(1) (2)

B1

Z1(R)Z1(R)

RaS SR

URMTFK

Fig. 4. Constructions for Z1(R).



Theorem 4. In a directed network N = (V, E), (ǫ, δ)-SMT from S to R toler-
ating A = {B1, B2} is possible if and only if S ∈ Y (R) ∩ Z1(R) ∩ Z2(R).

The proof is divided into two parts - Sufficiency (if part) and Necessity (only
if part).

Sufficiency. To prove the sufficiency of the theorem we give a protocol for
(ǫ, δ)-SMT from S to R, with ǫ ≤ 1

648 and δ ≤ 1
864 . The upper bounds on the

error probabilities ensure that these protocols, tolerating two-sized adversary
structures, can then be used to build the final protocol tolerating the complete
adversary structure. The protocol makes use of the 3 properties of S viz. S ∈
Y (R), S ∈ Z1(R) and S ∈ Z2(R) in 3 distinct subprotocols and at the end, R,
from its view of the entire protocol, outputs mR such that mR = mS with a
very high probability and mS remains secret.

The 3 subprotocols (corresponding to S ∈ Y (R), S ∈ Z1(R) and S ∈ Z2(R))
are as follows:

1. Subprotocol PF : S sends mS to R through the URMTFK protocol.
2. Subprotocol P1: If S was added to Z1(R) by:

– Construction (1), then it simply sends the message mS to the node a
through the honest edge (see Figure 4). The node a then starts another
instance of the protocol P1 to send mS to R.

– Construction (2), then b first chooses a random set of keys K = (k1, k2, k3)
and sends it to S through URMTFK (see Figure 4). Let S receive K ′.
Since S ∈ Z1(R), S has a path to R that avoids B2. Let that path be p2.
• If S successfully verifies K ′, it sends ζ(mS ,K ′) to R along the path

p2. In addition to this it also sends m′ ∈R F to R along p2.
• If the verification fails then S knows the identity of the corrupt set

with very high probability. Let IS denote the identity knowledge of
S. First S chooses (f1, f2) ∈R F2 on its own and sends (f1, f2) to R
through p2 (thus, tries to inform R that it didn’t receive the keys
from b). Next, if IS = B1 then S sends m′ ∈R F to R through p2.
But if IS = B2 then S sends mS to R through that path.

Let R receive (x, y) and mp. Now b starts new instances of protocol P1

to send the elements of key K to R.
3. Subprotocol P2: P2 is exactly same as P1 with B1 replaced with B2 and

vice-versa.

Computation by R: At the end of the subprotocol PF , R either receives mS

or knows the identity of the corrupt set with probability at least 1 − 1
|F| . Let

IR be its identity knowledge. If R receives m′ which it is able to verify then it
outputs mR = m′ and stops. Otherwise, if IR = B2 it ignores all the messages it
received from P2 and does the following computation on the messages received
through P1 (analogous behaviour when IR = B1). If S was added to Z1(R) by
Construction (1), then R simply receives mS (recursively) from node a. In case
of Construction (2), it receives a set of keys KR = (kR

1 , kR
2 , kR

3 ) from b. From



S it receives one authenticated message (x, y) and a plain message mp. If R is
able to verify (x, y) with KR then it outputs mR = x− kR

3 otherwise it outputs
mR = mp.

We now prove that this protocol is δ-reliable and ǫ-secure such that we can
make ǫ and δ arbitrarily small by increasing the size of F.

Reliability: Suppose w.l.o.g. that B2 is corrupt. At the end of the subprotocol
PF , if R outputs the message m′ then Pr[mS = m′] ≥ 1 − 1

|F| , else Pr[IR =

B2] ≥ 1 − 1
|F| . Now consider the execution of P1. We initially assume that the

instances of P1, that are called inside P1 recursively, finish successfully. In case
of Construction (1), R simply receives mS from node a. In case of Construction
(2) since B2 is corrupt, whatever S sends to R through the path p2, that avoids
B2, reaches R with perfect reliability and secrecy. We also know that Pr[K ′ =
K ∨IS = B2] ≥ 1− 1

|F| , where K ′ are the keys S receives from b. If K ′ = K then

R will be able to verify (x, y) with the keys K that it receives from b and output
mS = x − k3. Otherwise, when IS = B2, S sends (x, y) = (f1, f2) ∈R F2 to R
along with mS . Therefore (x, y) will not verify with the keys K with probability
at least 1− 1

|F| and hence R is informed to output mp = mS . We can easily find

the success probability as follows: Let Ev be the event that verification of (x, y)
at R fails given that S had sent (f1, f2) ∈R F2.

Pr[mR = mS ] ≥ Pr[m′ = mS ∨ IR = B2] ∗ Pr[K ′ = K ∨ IS = B2] ∗ Pr[Ev]

≥
(

1 −
1

|F|

)

∗
(

1 −
1

|F|

)

∗
(

1 −
1

|F|

)

≥
(

1 −
3

|F|

)

Hence, the protocol is 3
|F| -reliable. This argument can be further extended to

show that through this protocol even if S sends a set of messages MS (|MS | >
1), in parallel, the probability that R receives all of them reliably is still at
least 1 − 3

|F| . This can be shown by replacing single messages in the probability

expressions by message sets and they shall be considered equal only when all the
messages in them are equal. The main reason behind the error probability not
increasing is that the fault knowledge (IS or IR), once achieved, can be reused.

The above probabilities are conditioned on the fact that all the messages sent
through instances of Protocol P1 that are invoked recursively inside P1 itself are
received reliably. At most there can be t such recursive calls to the Protocol P1,
where t = |V|, which are all 3

|F| -reliable. If we choose F such that |F| ≥ 864 ∗ 3t,

we get δ = 3t
|F| ≤

1
864 .

Secrecy: Suppose w.l.o.g. that B1 is corrupt. Adversary’s view will only consist
of the messages sent through the corrupt paths (that contain nodes from B1).
We already know that messages sent through URMTFK remain perfectly secret
from the adversary. Hence we will only consider adversary’s view as the messages
sent by S to R along p2, that is the path avoiding B2 in protocol P1. Now we
prove using induction that messages sent from S to R using P1 remain 1

|F| -secret



under the assumption that messages sent by nodes already in Z1(R) remain
1
|F| -secret. In case of Construction (1), S simply sends mS to a and since a was

already in Z1(R), mS remains 1
|F| -secret when it is sent from a to R. Now we

discuss Construction (2). Take the case when adversary alters the keys sent by
b to S through URMTFK . With probability at least 1 − 1

|F| , S will find out

that B2 is corrupt and in that case all the messages sent along path p2 will be
independent of mS . But with probability at most 1

|F| , S may get the wrong fault

information in which case it will send mS in plaintext along p2. In any case, the
authenticated message (x, y) conveys no additional information about mS to the
adversary. Hence we consider the view of the adversary as the plain message mp

sent along p2 and find the error in secrecy.

∀m, r, Pr[adv(m, r) = m] =
1

|F|
∗ 1 + (1 −

1

|F|
) ∗

1

|F|
=

2

|F|
−

1

|F|2

∀m,m′, r, s.t.,m 6= m′Pr[adv(m, r) = m′] = (1 −
1

|F|
) ∗

1

|F|
=

1

|F|
−

1

|F|2

⇒ ∀m,m′, r
∑

c

|Pr[adv(m, r) = c] − Pr[adv(m′, r) = c]| ≤
2

|F|

where the sum is over all possible views of the adversary, i.e. c ∈ F. Since the
sum is bounded by 2

|F| , the protocol is 1
|F| -secret.

Now take the case when the adversary does not alter the keys sent by b to
S. In that case, (x, y) and mp sent along p2 are independent of mS as long as
the keys K remain secret. Hence the secrecy of the protocol completely depends
upon the secrecy of K which is sent to R by b. But we know that messages sent
by b remain 1

|F| -secret and hence, the complete protocol is 1
|F| -secret. We already

chose F such that |F| ≥ 864 ∗ 3t ≥ 648, therefore ǫ = 1
|F| ≤

1
648 .

Thus we prove the sufficiency.

Necessity. It is obvious that S ∈ Y (R) is necessary for (ǫ, δ)-SMT because it
is necessary for URMT alone from S to R. For the same reason the two paths
(not necessarily distinct) avoiding sets B1 and B2 respectively are also necessary
for (ǫ, δ)-SMT . Now we show that S ∈ Z1(R) and S ∈ Z2(R) are necessary too.
We prove the necessity of S ∈ Z1(R) and the proof for the latter is similar.

Lemma 6. S ∈ Z1(R) is necessary for (ǫ, δ)-SMT from S to R.

Proof. Let S /∈ Z1 (in this proof, we simply write Z1 to denote Z1(R)). We know
that S has a path avoiding B2 to R. Therefore the reason behind S not being in
Z1 is that there is no node in Z1 that can do URMTFK to S. We now show that
there does not exist any (ǫ, δ)-SMT protocol from S to R in that case. Suppose,
for contradiction, that there exists such a protocol. We now divide the set of
honest nodes not in Z1 into the following sets:

– XR = {x | ∃ a ∈ Z1 s.t. a can do URMTFK to x}
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Fig. 5. Connections between the disjoint sets.

– XS = {x | x /∈ XR}

From the definition of Z1 and the above sets the following facts are clear: (i)
XS , XR and Z1 are disjoint and XS ∪ XR ∪ Z1 = V \ (B1 ∪ B2); (ii) R ∈ Z1;
(iii) S ∈ XS ; (iv) ∀ u ∈ Z1 ∪ XR, u cannot do URMTFK to any node in XS ;
(v) ∀x ∈ XR, any path from x to Z1 will have to pass through some node in B2

otherwise x would be in Z1. Figure 5 describes the possible connections between
the sets. A path p (of a particular kind) from a set H1 to a set H2 means that
∃h1 ∈ H1,∃h2 ∈ H2, s.t. there is a path p (of that kind) from h1 to h2. For
example the edge from XR to Z1 labelled B2 means that ∃x ∈ XR, ∃z ∈ Z1,
s.t. there is a path from x to z that passes through some nodes in B2. Paths
with no labels are honest paths.

Note that, given the constraints, these are the best possible connections for
the feasibility of the protocol in the graph. For instance there may or may not
be an honest path from set XS to XR, but we have assumed there is. We shall
now give an adversary strategy to prove the impossibility of (ǫ, δ)-SMT in the
above graph which will imply that (ǫ, δ)-SMT will be impossible in all the other
graphs where S /∈ Z1.

The adversary always corrupts one of {B1, B2}. We describe later how it
chooses which set to corrupt. The corrupt set Bα behaves as follows:

– It does not send any messages to Z1, XR and Bα and also ignores all the
messages it receives from these sets. Here α = 3 − α.

– It simulates a copy of each node in Z1 and XR. Call the simulated sets of
nodes Z1 and XR respectively. The simulation is carried out as described in
[14].

Notice that since Z1 and XR can’t do URMTFK to XS , from Lemma 2 we know
that the adversary will always be able to successfully simulate Z1 and XR and
thereby will be able to confuse XS between the messages it receives from the
“actual” and the “simulated” sets. Also note that “XR can’t do URMTFK to
XS” is independent of whether XS has an honest path to XR or not.

Observe that one of {B1, B2} is always corrupt. Let Bα be the corrupt set.
The “simulated” sets interact only with Bα and the “actual” sets interact only
with Bα. In this way if MR is the set of messages Z1 intends to send to XS , then
XS will receive M1

R from B1 and M2
R from B2.

Consider the case when B2 is corrupt. In this case: (a) Z1 will only receive
messages from XS sent along the path avoiding B2, (b) Z1 will not receive any



message from XR, (c) Pr[M1
R = MR] = 1 and for |MR| ≥ 1, Pr[M2

R = MR] ≤
1
|F| .

We now describe how the adversary chooses which set to corrupt. Consider
the event E when XS sends some set of messages MS along the path containing
B1 (and avoiding B2) such that mS can be recovered by R from the knowledge
of MS and M1

R only, i.e. without the knowledge of M2
R. For a given protocol, the

adversary strategy depends on Pr[E]:

– Case 1: if Pr[E] ≤ 1
2 , then corrupt B2

– Case 2: if Pr[E] > 1
2 , then corrupt B1.

It is easy to see that with such a strategy a (ǫ, δ)-SMT protocol will not exist
with δ < 1

2

(

1 − 1
|F|

)

and ǫ < 1
2 simultaneously which means that these error

probabilities cannot be made arbitrarily small.
In Case 1, B2 is corrupt and hence R receives messages only from XS that

were sent along the path containing B1 (and avoiding B2). Hence R can recover
mS if E happens. In addition to this, even if E does not happen, R may be able
to recover the message mS if B2 simulates the sets on the message set MR itself.
This means that Pr[mR = mS ] ≤ Pr[E] ∗Pr[MR 6= M2

R] + 1 ∗Pr[MR = M2
R] ≤

1
2

(

1 + 1
|F|

)

.5 Therefore δ ≥ 1
2

(

1 − 1
|F|

)

. In Case 2, B1 is corrupt and hence if E

happens B1 will always be able to recover mS from MS if it knows M1
R. Since

M1
R was the set of messages on which it simulated the copy of Z1, it knows M1

R.
Therefore in this case, since Pr[E] > 1

2 , it gets the message with probability
> 1

2 , i.e. ǫ > 1
2 .

This completes the proof of necessity. ⊓⊔

Combining the result of Theorem 3 and Theorem 4 we can now give the
Main Theorem of the paper that gives the complete characterization of directed
networks in which (ǫ, δ)-SMT is possible.

Theorem 5. In a directed network N = (V, E), (ǫ, δ)-SMT from S to R tol-
erating A is possible if and only if for every A = {B1, B2} where A ⊆ A, we
have S ∈ Y (R) ∩ Z1(R) ∩ Z2(R) where Y (R), Z1(R) and Z2(R) are defined for
a particular {B1, B2} as described in Section 3 and Section 4.1.

Proof of the theorem is immediate from Theorem 3 and Theorem 4.

We can now see that (ǫ, δ)-SMT, tolerating A = {{b1}, {b2}}, is possible over
the network G in Figure 1 with the help of the above theorem. Notice that there
is only one 2-sized subset of A that needs to be considered, which is A itself.

We construct sets Y (R), Z1(R) and Z2(R) for B1 = {b1} and B2 = {b2}. S
is added to Y (R) through the following steps: w is first added to Y (R) through
Construction 2, v is then added through Construction 1, u is then added through
Construction 2, and finally, S is added through Construction 1. Hence S ∈ Y (R).
We can follow similar steps to show R ∈ Y (S). Now, since S has a path to R
avoiding b2 and R ∈ Y (S), S ∈ Z1(R). Similarly, S ∈ Z2(R), which further
implies that S ∈ Y (R) ∩ Z1(R) ∩ Z2(R). Thus, (ǫ, δ)-SMT is possible from S to
R.
5 If |MR| = 0 then Pr[mR = mS ] ≤ Pr[E].



5 Concluding Remarks

From the above characterization it follows that URMT between two nodes u
and v in both the directions is necessary and sufficient for (ǫ, δ)-SMT between
them. URMT between u and v implies that for any given adversary structure
A = {B1, B2} (A ⊆ A), the following holds:

1. v ∈ Y (u) and u ∈ Y (v)
2. u has path p1 and p2 to v with pα avoiding nodes from Bα

3. v has paths q1 and q2 to u with qα avoiding nodes from Bα.

(1) and (2) ⇒ u ∈ Y (v)∩Z1(v)∩Z2(v); (1) and (3) ⇒ v ∈ Y (u)∩Z1(u)∩Z2(u).
Therefore (ǫ, δ)-SMT between u and v is possible in both directions.

This is in line with the existing results in literature, e.g. in both directed and
undirected graphs, Perfectly Reliable Message Transmission (PRMT) between
two nodes in both directions implies Perfectly Secure Message Transmission
(PSMT) between them.

We leave it as an open problem to devise worst case efficient protocols or to
characterize graphs over which efficient protocols for (ǫ, δ)-SMT exist.
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dian Association for Research in Computing Science (IARCS) for their generous
support towards travel expenses.

References

[1] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness Theorems for Non-
cryptographic Fault-tolerant Distributed Computation. In Proceedings of the 20th
Symposium on Theory of Computing (STOC), pages 1–10. ACM Press, 1988.

[2] D. Chaum, C. Crepeau, and I. Damgard. Multi-party Unconditionally Secure
Protocols. In Proceedings of 20th Symposium on Theory of Computing (STOC),
pages 11–19. ACM Press, 1988.

[3] Y. Desmedt and Y. Wang. Perfectly Secure Message Transmission Revisited. In
Proceedings of Advances in Cryptology EUROCRYPT ’02, volume 2332 of Lecture
Notes in Computer Science (LNCS), pages 502–517. Springer-Verlag, 2002.

[4] Matthew K. Franklin and Rebecca N. Wright. Secure communication in minimal
connectivity models. J. Cryptology, 13(1):9–30, 2000.

[5] O. Goldreich, S. Micali, and A. Wigderson. How to Play any Mental Game. In
Proceedings of the 19th Symposium on Theory of Computing (STOC), pages 218–
229. ACM Press, 1987.

[6] M. Hirt and U. Maurer. Complete Characterization of Adversaries Tolerable
in Secure Multi-party Computation. In Proceedings of the 16th Symposium on
Principles of Distributed Computing (PODC), pages 25–34. ACM Press, August
1997.

[7] M.V.N.A. Kumar, P. R. Goundan, K. Srinathan, and C. Pandu Rangan. On
perfectly secure communication over arbitrary networks. In Proceedings of the
21st Symposium on Principles of Distributed Computing (PODC), pages 193–202,
Monterey, California, USA, July 2002. ACM Press.



[8] Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals
problem. ACM Trans. Program. Lang. Syst., 4(3):382–401, 1982.

[9] Manan Nayak, Shashank Agrawal, and Kannan Srinathan. Minimal connectivity
for unconditionally secure message transmission in synchronous directed networks.
In ICITS, pages 32–51, 2011.

[10] Arpita Patra, Bhavani Shankar, Ashish Choudhary, K. Srinathan, and C. Rangan.
Perfectly secure message transmission in directed networks tolerating threshold
and non threshold adversary. In Feng Bao, San Ling, Tatsuaki Okamoto, Huaxiong
Wang, and Chaoping Xing, editors, Cryptology and Network Security, volume 4856
of Lecture Notes in Computer Science, pages 80–101. Springer Berlin / Heidelberg,
2007.

[11] T. Rabin and M. Ben-Or. Verifiable Secret Sharing and Multiparty Protocols with
Honest Majority. In Proceedings of the 21st Symposium on Theory of Computing
(STOC), pages 73–85. ACM Press, 1989.

[12] Bhavani Shankar, Prasant Gopal, Kannan Srinathan, and C. Pandu Rangan. Un-
conditionally reliable message transmission in directed networks. In SODA ’08:
Proceedings of the nineteenth annual ACM-SIAM symposium on Discrete algo-
rithms, pages 1048–1055, Philadelphia, PA, USA, 2008. Society for Industrial and
Applied Mathematics.

[13] Kannan Srinathan, Arpita Patra, Ashish Choudhary, and C. Pandu Rangan. Un-
conditionally secure message transmission in arbitrary directed synchronous net-
works tolerating generalized mixed adversary. In ASIACCS ’09: Proceedings of
the 4th International Symposium on Information, Computer, and Communica-
tions Security, pages 171–182, New York, NY, USA, 2009. ACM.

[14] Kannan Srinathan and C. Pandu Rangan. Possibility and complexity of proba-
bilistic reliable communications in directed networks. In Proceedings of 25th ACM
Symposium on Principles of Distributed Computing (PODC’06), 2006.

[15] Qiushi Yang and Yvo Desmedt. Cryptanalysis of secure message transmission
protocols with feedback. In Kaoru Kurosawa, editor, Information Theoretic Secu-
rity, volume 5973 of Lecture Notes in Computer Science, pages 159–176. Springer
Berlin / Heidelberg, 2010.

A Appendix

A.1 Proof of Lemma 1

We give a proof by induction on the iteration at which a node is added. We
denote by Πv the URMTFK protocol which is run in the network to enable v to
send a message to u.

Base Step: The first node added to Y (u) is u which can obviously send any
message reliably and securely to itself. Hence, Πu is trivial.

Induction Step: Assume that k− 1 nodes v1, v2, . . . , vk−1 (v1 = u) have been
added to Y (u) in that order. At the k-th iteration, node vk is added. Let mk

be the message vk intends to send. Protocol Πvk
proceeds as follows. If vk was

added to Y (u) by:

– Construction (1), then there exists a node vi ∈ Y (u) (1 ≤ i ≤ k − 1) s.t. vk

has an honest path p to vi. First, vk sends message mk to vi along path p,



which vi receives reliably and securely. Now, protocol Πvi
is run on message

mk in the network. As Πvi
is a URMTFK protocol with perfect secrecy, so

is Πvk
.

– Construction (2), then there exist two nodes vi, vj ∈ Y (u) (1 ≤ i, j ≤ k − 1)
s.t. vi has an honest path p1 to vk and vk has a path p2 passing through at
most one of B1 and B2 to vj . Let p2 pass through Bα. Protocol Πvk

proceeds
in the following sequence of steps:
1. Node vi chooses three random keys k1, k2, k3 ∈R F and sends them along

path p1 to vk which vk receives reliably and securely.
2. Node vk sends ζ(mk, k1, k2, k3) to vj along p2.
3. Let vj receive (f1, f2) along p2. If vj does not receive two field elements

along p2, it picks two elements f1, f2 ∈R F on its own6. Now, protocol
Πvj

is run twice in the network, first on message f1, then on message f2.
4. Protocol Πvi

is run thrice in the network, first on message k1, then on
message k2 and then on k3.

Since both Πvj
and Πvi

are URMTFK protocols with perfect security, any tam-
pering of the messages sent through either of them is detected with probability
at least (1 − 1

|F| ). If there is no tampering of the message sent through these

protocols then u receives f1, f2 and keys k1, k2, k3 reliably and securely. There-
fore u will be able to recover the message mk or detect any tampering by Bα

(α ∈ {1, 2}) on path p2 with at least (1 − 1
|F| ) probability (due to the property

of the authentication code). Hence, Πvk
is a URMTFK protocol. Also, since

adversary does not know k1, k2 and k3, it gets no information about m from
ζ(m, k1, k2, k3).

A.2 Proof of Lemma 3

Each one of protocols Πi,j , Πj,k and Πk,i are (ǫ, δ)-SMT protocols. Let us sup-
pose w.l.o.g. that Bi is corrupt. It means that protocols Πi,j and Πk,i will be
δ-reliable and ǫ-secret. Therefore, with probability at least (1 − δ)10, R will re-
ceive the following 10 elements sent through Πi,j and Πk,i reliably: ζ(mS ,K2),
K3, ζ(mS ,K3) and K2.

7 In that case protocols Πi,j and Πk,i will be consistent

with each other and mR = xi,j
2 − k′

23 will be equal to mS if R chooses α to be
i. But α can have other possible values also. The corrupt set Bi can read and
alter all the messages that are sent through the protocol Πj,k. Suppose, in Phase
3, it modifies K1 to K ′

1 such that a different message, m′ 6= mS , is recovered
when ζ(mS ,K1) is unlocked using K ′

1. Then it also must modify at least one of
ζ(mS ,K2) (in Phase 2) and ζ(mS ,K3) (in Phase 3) such that the verification
passes and the message recovered is m′. But the probability that both these
verifications fail (if altered) is at least (1− 1

|F| )
2, since adversary does not know

the keys K2 and K3 during Phase 1 and 2 (this is why it is crucial that Phase

6 This is an attempt to inform R that path p2 (and thus, Bα) is corrupt.
7 Recall that ζ(mS , K) consists of 2 field elements and K consists of 3 field elements

for any K ∈ {K1, K2}



3 begins only after the completion of Phases 1 and 2). Hence the probability
that R chooses i as α, given that it received the 10 elements reliably, is at least
(1 − 1

|F| )
2.

⇒ Pr[mR = mS ] ≥ (1 − δ)10 ∗ (1 −
1

|F|
)2

⇒ Pr[mR = mS ] ≥ (1 − δ)12, choose F such that δ ≥
1

|F|

⇒ Pr[mR = mS ] ≥ 1 − 12δ, since δ ≤
1

864

Note that there is another way in which Bi can always pass the verifications,
i.e. by not altering any messages. But it won’t affect this probability because in
that case mR will always be equal to mS no matter what value of α is chosen.
Hence the protocol Πi,j,k is (12δ)-reliable.

A.3 Proof of Lemma 4

Suppose w.l.o.g. that Bi is corrupt. Therefore Πj,k will fail completely and hence
ζ(mS ,K2), ζ(mS ,K3) and K1 will be revealed to the adversary. But we see that
these messages convey no information about mS to the adversary because of the
following reasons:

– due to the property of ζ function if K is not known to the adversary then
ζ(mS ,K) is independent of mS .

– since K1 was randomly chosen by S it has no relation with the message mS .

Now notice that among all the messages sent to R through the protocols Πi,j

and Πk,i only six contain “useful” information for the adversary viz.: ζ(mS ,K1)
and k33 sent through Πi,j and ζ(mS ,K1) and k23 sent through Πk,i. ζ(mS ,K2)
and ζ(mS ,K3) are not useful because they are already revealed to the adversary.
Only the third element of the keys K2 and K3, i.e. k23 and k33, are useful because
if they are known, even if adversary knows the other two elements it gains no
extra information about the message mS . Also, without the third element the
other two elements give absolutely no information about mS . For example, even
if adversary knows ζ(mS ,K2), k21 and k22 it has no information about mS . On
the other hand if it knows ζ(mS ,K2) and k23, it knows mS completely.

Therefore there are 6 elements sent through Πi,j and Πk,i that need to be kept
secret from the adversary. Let {ai |1 ≤ i ≤ 6} be the variables representing these
six elements. It can be clearly seen that if any ai is revealed to the adversary,
mS will be revealed. For example, if the first element of ζ(mS ,K1), i.e. mS +k13

sent through Πi,j is revealed then it can find out mS since it already knows k13.
Similarly, it can find out mS using any of the other 5 “useful” elements. In other
words once ζ(mS ,K2), ζ(mS ,K3) and K1 are revealed to the adversary (that
means once they are fixed), for a given message mS the values of all the ai’s are
fixed. Also, we send all these elements through some ǫ-secret protocol. Suppose
protocol Pi was used to send ai. To find the secrecy factor of the entire protocol



Π ′
i,j,k we look at it as a series of 6 protocols (P1, P2, ..., P6). Therefore, we need

to find an upper bound on the expression

X =
∑

c

|Pr[adv(m0, r) = c] − Pr[adv(m1, r) = c]|,∀m0,m1 ∈ F,∀r

where r denotes all the coin tosses of the adversary in the six executions com-
bined, i.e. r = (r1, r2, . . . r6). The sum is over all possible views of the adversary
for the execution of the six protocols. In other words c ∈ C = C1 × C2 · · · × C6

where Ci is the set of all possible views of the adversary for an execution of
protocol Pi.

We now define the following notation for readability. pi(m, r, c) is the proba-
bility that adversary’s view is c when the message sent was m and its coin tosses
were r in an execution of Pi. Notice that these probabilities are over the coin
tosses of honest players and hence all the six pi’s are independent of each other.

Let ab
i be the value fixed for ai when m = mb, b ∈ {1, 2}. Hence we can

rewrite the expression X as:

X =
∑

(c1,c2,...c6)∈C

|
6

∏

i=1

pi(a
0
i , ri, ci) −

6
∏

i=1

pi(a
1
i , ri, ci)|

Now we list out some properties of pi(m, c, r) which will help us in evaluating
the above expression:

– ∀m, r,
∑

c∈Ci

pi(m, r, c) = 1 where 1 ≤ i ≤ 6.

– ∀m1,m2, r,
∑

c∈Ci

|pi(m1, r, c) − pi(m2, r, c)| ≤ 2ǫ since all the protocols are

ǫ-secure.

Using the result of Lemma 7 it can be easily shown that X ≤ 12.ǫ. Hence
the protocol Π ′

i,j,k is (6ǫ)-secure.

Corollary 1. If an ǫ-secret protocol is repeated k number of times then the error
in secrecy increases at most by a factor of k. (In that case all the useful elements,
ai’s are m itself).

Lemma 7. Given n pairs of vectors ui and vi of size li, i.e. ui = (ui1, ui2, . . . uili)
and vi = (vi1, vi2, . . . vili), i ∈ {1, 2, . . . , n}. Also given that ∀i ∈ {1, 2, . . . , n}:

1.

li
∑

j=1

uij ≤ 1 and

li
∑

j=1

vij ≤ 1

2.

li
∑

j=1

|uij − vij | ≤ 2ǫ

Then
∑

k1,k2,...kn

|
n

∏

i=1

uiki
−

n
∏

i=1

viki
| ≤ 2n.ǫ, where ki varies from 1 to li.



Proof (By Induction). Let Tn denote the sum in the expression and let P (n)
denote the above inequality. In other words:

P (n) ⇒ (Tn ≤ 2n.ǫ)

We know that P (1) is true since it is given that
∑l1

k1=1 |u1k1
− v1k1

| ≤ 2ǫ.
Suppose P (n − 1) is true. Therefore we have: Tn−1 ≤ 2(n − 1).ǫ.
Now,

Tn =
∑

k1,k2,...kn

|
n

∏

i=1

uiki
−

n
∏

i=1

viki
|

⇒ Tn =
∑

k1,k2,...kn

|

( n−1
∏

i=1

uiki
−

n−1
∏

i=1

viki

)

.unkn
+

( n−1
∏

i=1

viki

)

(unkn
− vnkn

)|

⇒ Tn ≤
∑

k1,k2,...kn

|

( n−1
∏

i=1

uiki
−

n−1
∏

i=1

viki

)

.unkn
| +

∑

k1,k2,...kn

|

( n−1
∏

i=1

viki

)

(unkn
− vnkn

)|

⇒ Tn ≤ Tn−1.1 + 1.2ǫ

⇒ Tn ≤ 2(n − 1).ǫ + 2ǫ

⇒ Tn ≤ 2n.ǫ

⊓⊔

A.4 Proof of Lemma 5

Consider the protocol Π ′′
i,j,k in which a message m is sent by sending it thrice

through Π ′
i,j,k. R outputs the majority element (if it exists). From Corollary 1

it is clear that the error in secrecy of Π ′′
i,j,k increases to 18ǫ since it was 6ǫ for

Π ′
i,j,k. Now we find its error in reliability.

Pr[R outputs m] = 1 − Pr[R doesn’t receive m in at least 2 executions]

≥ 1 − 3(12δ)2

Hence the error in reliability for Π ′′
i,j,k is 432δ2.

Now consider the protocol Πi,j,k which sends m by choosing f ∈R F and
sending m + f and f in two separate executions of Π ′′

i,j,k. It can be clearly seen
that the error in reliability gets doubled because both these messages need to
be received reliably. Hence error in reliability for Πi,j,k is 864δ2. Now we find
its error in secrecy. We claim that it gets squared, i.e. from 18ǫ it becomes
2.(18ǫ)2 = 648ǫ2. Intuitively, the error in secrecy decreases because now any one
share doesn’t contain any information about the original message m and hence
the message is revealed only when both m + f and f are revealed. We prove
formally in Lemma 8 that the error in secrecy of Πi,j,k becomes 648ǫ2.

Since ǫ ≤ 1
648 and δ ≤ 1

864 , 648ǫ2 ≤ ǫ and 864δ2 ≤ δ. Hence, Πi,j,k is an
(ǫ, δ)-SMT protocol.



Lemma 8. Let P be a protocol that is ǫ-secret. If a protocol P ′ is such that S
sends m by sending m + f and f where f ∈R F through protocol P then the
protocol P ′ is 2ǫ2-secret.

Proof. Protocol P is ǫ-secret, therefore we have:

∑

c

|p(m0, r, c) − p(m1, r, c)| ≤ 2ǫ

where p(m, r, c) is the probability that adversary’s view is c when the message
sent was m and adversary’s coin tosses are r for the execution of protocol P .
Define p′(m, r, c) similarly for P ′. Notice that P ′ is nothing but two executions
of P on different messages and hence adversary’s view is denoted by an ordered-
pair (c1, c2), where ci is its view in the ith execution, i ∈ {1, 2}. Similarly its
coin tosses are denoted by (r1, r2). So to find the secrecy factor of P ′ we find an
upper bound on the following expression:

X =
∑

c1,c2

|p′(m0, (r1, r2), (c1, c2)) − p′(m1, (r1, r2), (c1, c2))|

We can write p′(m, (r1, r2), (c1, c2)) as the following summation:

p′(m, r, (c1, c2)) =
∑

f∈F

(
1

|F|
) ∗ p(m + f, r1, c1) ∗ p(f, r2, c2) (1)

Using (1) we can rewrite X as:

X = (
1

|F|
)

∑

c1,c2

|
∑

f∈F

[(

p(m0 + f, r1, c1) − p(m1 + f, r1, c1)
)

∗ p(f, r2, c2)
]

| (2)

Since ∀m1,m2, r, c
∑

f∈F

p(m1 + f, r, c) =
∑

f∈F

p(m2 + f, r, c), we have:

∀m1,m2, r, c,
∑

f∈F

(p(m1 + f, r, c) − p(m2 + f, r, c)) = 0 (3)

We know from (3) that for any f ′ ∈ F:

∑

f∈F

[p(m0 + f, r1, c1) − p(m1 + f, r1, c1)] ∗ p(f ′, r2, c2) = 0 (4)

By (2) and (4), we get:

X = (
1

|F|
)

∑

c1,c2

|
∑

f∈F

[(

p(m0+f, r1, c1)−p(m1+f, r1, c1)
)

∗
(

p(f, r2, c2)−p(f ′, r2, c2)
)]

|

Using the triangular inequality:

X ≤ (
1

|F|
)

∑

c1,c2

∑

f∈F

[

|
(

p(m0+f, r1, c1)−p(m1+f, r1, c1)
)

|∗|
(

p(f, r2, c2)−p(f ′, r2, c2)
)

|
]



Reversing the order of summation we get:

X = (
1

|F|
)
∑

f∈F

∑

c1

∑

c2

[

|
(

p(m0+f, r1, c1)−p(m1+f, r1, c1)
)

|∗|
(

p(f, r2, c2)−p(f ′, r2, c2)
)

|
]

X ≤ (
1

|F|
) ∗ |F| ∗ (2ǫ) ∗ (2ǫ)

⇒ X ≤ 2.(2ǫ2)

Hence P ′ is 2ǫ2-secret. ⊓⊔
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