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Abstract. The resistance of cryptographic implementations to side channel analysis is matter of consider-
able interest to those concerned with information security. It is particularly desirable to identify the attack
methodology (e.g. di�erential power analysis using correlation or distance-of-means as the distinguisher)
able to produce the best results. Attempts to answer this question are complicated by the many and varied
factors contributing to attack success: the device power consumption characteristics, an attacker's power
model, the distinguisher by which measurements and model predictions are compared, the quality of the
estimations, and so on. Previous work has delivered partial answers for certain restricted scenarios. In
this paper we assess the e�ectiveness of mutual information analysis within a generic and comprehensive
evaluation framework. Complementary to existing work, we present several notions/characterisations of
attack success, as well as a means of indicating the amount of data required by an attack. We are thus able
to identify scenarios in which mutual information o�ers performance advantages over other distinguishers.
Furthermore we observe an interesting feature � unique to the mutual information based distinguisher �
resembling a type of stochastic resonance, which could potentially enhance the e�ectiveness of such attacks
over other methods in certain noisy scenarios.
Keywords: side channel analysis, mutual information

1 Introduction

Side Channel Analysis (SCA) refers to a collection of cryptanalytic techniques for extracting secret information
from the physical leakage of a device as it executes a cryptographic algorithm. Various types of SCA techniques
exist. One of the most popularly studied is di�erential power analysis (DPA); it involves applying some type
of statistic (the distinguisher) to identify a correct hypothesis about (part of) the secret key from the set of
all possible hypotheses about this key. Popular choices of distinguishers are the Pearson correlation coe�cient
and the Distance-of-Means test. Mutual information (MI) measures the total dependency between two random
variables, and was �rst proposed for use as a distinguisher at CHES 2008 ([6]). A priori it was expected to
display certain advantages over other distinguishers, loosely summarized by three (informal) conjectures:

1. By comprehensively exploiting all of the information contained within trace measurements it could have
an e�ciency advantage over existing side-channel distinguishers such as correlation (which measures linear
dependencies only).

2. By capturing total dependency between the true device leakage and the modeled leakage it could prove
e�ective in scenarios where an accurate model for the data-dependent leakage of the device is not known,
thereby serving as a `generic' distinguisher.

3. By natural extension to multivariate statistics it might be adapted to the context of higher-order attacks
against (for example) protected implementations. Existing distinguishers operate on univariate data only
and therefore require trace data to be pre-processed, resulting in loss of information.

In practice MIA has largely disappointed with respect to all but the third of these expectations. However,
the literature has not been comprehensive in explaining why this might be. We must bear in mind that many
factors in�uence DPA outcomes: not only the choice of distinguisher, but also the target intermediate function,
the form of the data-dependent device leakage and how well this can be modeled, and the precision with which
the distinguishing vector can be estimated using the resources and capabilities available. It is often unclear
whether the observed underperformance of MIA is an inherent theoretical weakness of the distinguisher, a
result of sub-optimal estimation procedures, or simply a failure to identify scenarios (i.e. combinations of target



functions and power consumption patterns) where it o�ers a useful advantage: see Batina et al. [2] for an
overview of these issues.

In this paper we introduce a framework for assessing and comparing DPA attacks in any given scenario on
a theoretical basis, abstracting away from the problem of practical estimation. We use this to gain fresh insight
into the �ndings of the existing MIA literature and to clarify when and in what sense the a priori intuition
regarding MIA does hold. Moreover, we are able to identify and describe attack scenarios in which MIA is
theoretically successful whilst other distinguishers fail, or in which its theoretic advantage is large enough to
potentially translate to a practical advantage. Further, we demonstrate that the (standardised) MIA vector
exhibits the property of stochastic resonance as the noise levels in the power consumption vary. This feature,
which is not shared by correlation-based DPA, could potentially be exploited to enhance MIA attacks via noise
injection.

In what follows, we �rst give the relevant preliminary information on DPA attacks, including details of
particular distinguishers and a discussion of previous work in Sect. 2. In Sect. 3 we describe our methodology,
whilst Sect. 4 reports on our �ndings as they relate to various attack scenarios. We conclude in Sect. 5.

2 DPA Attacks

We consider a `standard DPA attack' scenario such as de�ned in [12]: The power consumption L of the target
device depends on some internal value (or state) fk∗(x): a function of some part of the plaintext x ∈ X , as
well as some part of the secret key k∗ ∈ K. Hence, we have that L = L ◦ fk∗(x) + ε, where L is some function
which describes the data-dependent component and ε comprises the remaining power consumption which can be
modeled as independent random noise. The attacker has N power measurements corresponding to encryptions
of N known plaintexts xi ∈ X , i = 1, . . . , N and wishes to recover the secret key k∗. The attacker can accurately
compute the internal values as they would be under each key hypothesis {fk(xi)}Ni=1, k ∈ K and uses whatever
information he possesses about the true leakage function L to construct a model M .

DPA exploits the fact that the modeled power traces corresponding to the correct key hypothesis should bear
more resemblance to the true power traces than do the modeled traces corresponding to incorrect hypotheses.
An attacker is thus concerned with quantifying and comparing the degree of similarity between the true and
modeled traces for each key hypothesis. A range of comparison tools � `distinguishers' � are available, of which
mutual information and Pearson's correlation coe�cient are popular examples. We introduce these formally
and examine them in more detail in the remaining parts of this section. We use the shorthands CDPA and MIA
to refer (respectively) to correlation-based and MI-based DPA attacks.

2.1 Reasoning about the Success and E�ciency of DPA Attacks

Previous work has made some progress towards providing meaningful and practically relevant de�nitions for
the `success' and `e�ciency' of DPA attacks. Standaert's work [19] put forward the notion of the success rate,
which we adopt for our purposes here: The theoretic attack distinguisher is D = {D(k)}k∈K = {D(L◦fk∗(X)+
ε,M ◦ fk(X))}k∈K, where the plaintext input X takes values in X according to some known distribution
(usually uniform). We say the attack is theoretically successful if D(k∗) > D(k)∀k 6= k∗. We say it is o-th order
theoretically successful if #{k ∈ K : D(k∗) ≤ D(k)} < o.

However, in practice D must be estimated. Suppose we have observations corresponding to the vector of
inputs x = {xi}ni=1, and write e = {ei}ni=1 to be the observed noise (i.e. drawn from the distribution of ε). Then

the size #K estimated vector is D̂N = {D̂N (k)}k∈K = {D̂N (L ◦ fk∗(x) + e,M ◦ fk(x))}k∈K. We then say the
attack is successful if D̂N (k∗) > D̂N (k) ∀k 6= k∗ and o-th order successful if #{k ∈ K : D̂N (k∗) ≤ D̂N (k)} < o.

Since we are particularly interested in the impact of L on attack outcomes, it is desirable to abstract away
from the impact of noise, as well as from the estimation process. We de�ne a distinguisher as ideally successful
if it is theoretically successful in a noise-free scenario.

Ideal success thus depends on the target intermediate function, the form of the data-dependent device
leakage L, the set X ′ ⊆ X of plaintexts being encrypted, and the choice of power model and distinguisher.
Theoretic success is further determined by the size and distribution of the noise ε whilst practical success
depends additionally on the choice of estimator for the distinguisher and the number of trace measurements
N . That is, given an attack which theoretically distinguishes the correct key (by a margin of a certain size), the



actual outcome will be determined by whether or not an attacker has adequate resources to estimate D̂ with
su�cient precision to detect a di�erence of that size.

2.2 Distinguishers for DPA Attacks

Standaert et al. [18] provide a good overview of the many distinguishers that have been employed in the
literature since DPA was �rst introduced in the late 1990s [9]. In this paper, we focus on mutual information
and compare it with one other distinguisher of interest: Pearson's correlation coe�cient.

In very recent work, Mangard et al. [12] have shown that in the scenario of standard DPA attacks, the three
most popular distinguishers, Pearson correlation, distance of means, and Bayes, are equally successful. They
also show that in this particular scenario, with additional assumptions about the distribution of leakages and
models, there is a mapping between correlation coe�cient and mutual information. We seek to be more general
and do not make assumptions about distributions of leakages and models in this work.

Mutual Information Mutual information measures, in bits, the total information shared between two random
variables X and Y . It is most intuitively expressed in terms of entropies via Shannon's formula: I(X;Y ) =
H(X)−H(X|Y ).1

Mutual information is a functional of probability distributions, and estimation is a much studied problem
with no simple answers ([4,8,13,17,20]). All estimators are biased, and further no `ideal' estimator exists � that
is to say, di�erent estimators perform di�erently depending on the underlying structure of the data.

The usual approach is to �rst estimate the underlying marginal and conditional densities and then to
substitute these into Shannon's formula via a `plug-in' estimator for discrete entropy. There are many di�erent
ways to estimate densities and the quality of the resulting estimator for MI is very sensitive to the methods
and parameters chosen. If we have a good understanding of the underlying distributions we can �t a parametric
model such as a Gaussian mixture (see Veyrat-Charvillon et al. [21])2. However, since MIA has been proposed
for use in scenarios where our usual assumptions do not hold we are generally more interested in nonparametric
methods, which are somewhat sensitive to user approach and known to incur an overhead in terms of estimation
costs. In practice, due to the large sample space and small datasets we usually estimate the densities via an m-
bin regularisation of the space. By an important data processing inequality3 this means we are always estimating
a lower bound on the mutual information � as the binning or mesh becomes �ner the estimate approaches the
true mutual information monotonically from below ([13]).

In security evaluations we often would like to be able to talk about the number of traces needed for an
attack to be successful. This requires knowing the sampling distribution for the distinguisher under reasonable
assumptions. Unfortunately, estimators for MI do not `behave nicely' as do other statistics (such as the cor-
relation coe�cient � see below); in fact, there are no universal rates of convergence ([13]), so that whatever
estimator we pick, we can always �nd a distribution for which the error vanishes arbitrarily slowly.

The relationship between the ideal MI and the theoretic MI in the presence of noise is complex (see,
for example, [10]). In particular, whilst I(X + ε;Y ) ≤ I(X;Y ) (X, ε independent), it is not the case that
I(X;Y )− I(X + ε;Y ) = I(X;Z)− I(X + ε;Z). Thus, the elements of the theoretic MIA vector are di�erentially
a�ected so that ideal outcomes do not directly generalise to theoretic outcomes in the presence of noise.

Pearson's Correlation Coe�cient Pearson's correlation coe�cient measures the total linear dependency

between two random variables X and Y . It is de�ned as ρX,Y = cov(X,Y )
σXσY

. It takes values from -1 to 1 and,
as with mutual information, is zero whenever X and Y are independent. However, the converse is not true;
namely, X and Y may be (non-linearly) dependent with a (linear) correlation of 0.

It is estimated via the sample correlation coe�cient: r =
∑n
i=1(Xi−X̄)(Yi−Ȳ )√∑n

i=1(Xi−X̄)2
√∑n

i=1(Yi−Ȳ )2
. This is a consistent

estimator for ρX,Y and, moreover, is asymptotically unbiased and e�cient if X and Y have a joint Normal

1 The original (but equivalent) de�nition is I(X;Y ) =
∑

y∈Y
∑

x∈X pX,Y (x, y) log2

(
pX,Y (x,y)

pX (x) pY (y)

)
, where pX,Y is the

joint probability density of X and Y and pX , pY are the marginal densities.
2 Under strong simplifying assumptions, estimating an MIA parametrically can be shown to be equivalent to conducting
a correlation attack ([12]).

3 I(S(X);T (Y )) ≤ I(X;Y ) for any random variables X and Y and any functions S and T on the range of X and Y .



distribution. Under the same assumptions, we can even approximate the sampling distribution which leads to
`nice' results such as the number of trace measurements required for attacks to be successful (see Chap. 6.4 of
[11]).

The relationship between the ideal correlation and the theoretic correlation in the presence of noise is

straightforward. In fact, as derived in Chap. 6.3 of [11], ρ(L+ ε,Mk) = ρ(L,Mk)√
1+

σ2ε
Var(L)

. Thus, the larger the noise,

the more diminished are the correlations. But � crucially � the denominator does not depend on the key
hypothesis; the theoretic distinguisher vector is thus scaled in such a way that the rankings and other relative
features are preserved. This does not at all imply that practical CDPA attacks are immune to noise: As the
sample variance of the estimator increases, the number of traces required to reach a su�cient level of precision
also increases (see Chap. 4 of [11])).

3 A Comprehensive Evaluation Framework

We compute and examine ideal/theoretic CDPA and MIA vectors for a broad spectrum of possible leakage
scenarios in unpro�led attacks where the true leakage L is unknown and modeled via the Hamming weight
(HW) or the raw value (ID) of the target function output. For CDPA, this is the same as assuming that the
leakage is proportional to the HW or ID of the target, whereas for MIA this is the same as allowing the leakage
to be di�erent for each distinct HW or ID value, without any restriction on the nature of that dependency
(for example, it needn't be a monotonic relationship). These vectors provide insight into the relative strengths
and weaknesses of the distinguishers. We are particularly interested in �nding scenarios where MIA has an
ideal/theoretic advantage over CDPA. To do this we need to formulate an appropriate notion of �advantage� �
we have thus �xed upon the following set of criteria:

1. Correct key ranking : The (possibly tied) position of the correct key when ranked by distinguisher value. If
this is greater than 1 then the attack is considered to have failed, and the size of the ranking is an indicator
of the extent to which it fails.

2. Success order : This is the number of key candidates equally ranked at position 1, provided the correct key
is among them. (If it is equal to the number of key hypotheses then the attack is considered to have failed �
it has revealed nothing).

3. Average distinguishing power : The number of standard deviations above (or below) the mean for the distin-
guisher value corresponding to the correct key. This matches the �DPA signal-to-noise ratio� described by
[7] and indicates how well the attack isolates the correct key from the incorrect keys, on average. It remains
meaningful for failed attacks, when it can be positive or negative.

4. Nearest-rival distinguishing power : The di�erence (in number of standard deviations) between the correct
key distinguisher and the distinguisher for the highest ranked incorrect key. This indicates the strength of
the correct key ranking. It can be zero for attacks with success orders greater than 1, or negative for failed
attacks, where it gives further indication of the extent of the failure.

By computing the above measures for uniformly drawn plaintextsX
unif.← X , we are able to compare theoretic

behaviour of attacks when provided with full information. We propose to explore the sensitivity of attacks to
restricted information by inspecting ideal/theoretic attack vectors for reduced subsets of the plaintext space.
These vectors depend not only on the size but also on the composition of the input set; we cannot perform the
computation exhaustively over the entire space of possible subsets (it is too large), but by repeated random
draws of increasing size we can estimate the average support size needed for attack success.

This approach is designed to provide some clues to the �how many traces?� problem for MIA. Recall that we
would like to compute the sample size required to translate a theoretically plausible attack into a practically
successful one, but not enough is known about the sampling distributions of the estimators to do this in general.
Instead, we look at the support size required to achieve ideal/theoretic success, which we argue at least provides
some insight into the relative limitations of attacks on small samples. We thus add the following measures:

5. Average minimum support : On average, the required support size of the input distribution for the attack
to achieve success (of the appropriate order).



6. Support required for x% success rate: The support size for which the rate of success (of the appropriate
order) is at least x per cent.

Our criteria are best viewed in conjunction with one another rather than in isolation, and trade-o�s between
them will interplay di�erently with practical considerations. For instance, a methodology which achieves only
oth-order success (where o > 1) might be preferable to one achieving 1st-order success if the distinguisher vector
can be estimated more precisely and/or e�ciently. Likewise, nearest-rival distinguishing power may be more
important than average minimum support in the presence of high noise.

In some parts of this study it is more desirable to measure the average behaviour of an attack in a class
of scenarios than to describe results under a speci�c scenario. This is relevant, for example, when considering
functions of su�cient arbitrariness that we cannot detail each case exhaustively. In such cases, as with the
analysis of restricted input support, we estimate average behaviour by using randomly sampled examples.

Ideal/Theoretic vs. Practical Attacks. Recall that we de�ne theoretic (as well as ideal, i.e. noise-free) attacks
to abstract away from the impact of the estimation process (and from noise). As such, theoretic outcomes
depend on the target intermediate function, the device leakage (including how much noise is present), the
set of plaintexts used as inputs, the attackers choice/knowledge about the power model, and the theoretical
distinguisher (which is in this case the estimand). Practical outcomes depend on an additional, crucial factor,
namely the estimator � the quality of which, and the sensitivity to the underlying population parameters
and noise, will ultimately determine whether an observed ideal/theoretical advantage is translated into a real
advantage in a practical attack.

Our framework extends the currently standard notion of the success rate (see Standaert et al. [19]) because we
want to evaluate ideal/theoretic attacks: results of ideal/theoretic attacks might rank keys equally (in contrast
to practical attacks where equal key rankings are highly unlikely due to the estimation process involved). Hence
the need to report both correct key ranking and success order. Further, we want to gain an insight into the
di�erent qualities of the distinguishers, which means we need more nuanced notions of success and of the amount
of data needed. Note that our approach separates the study of the quality of the estimands as distinguishers
from the study of the qualities of the estimators: this is new and allows us, as we will demonstrate in latter
parts of the paper, to gain insights into the strengths and weaknesses of di�erent distinguishers in practice.

4 Results

We now evaluate MIA and correlation distinguishers using the framework and considerations w.r.t. leakage
models as spelled out before. For the sake of clarity and conciseness, we �rst show one detailed example
(Hamming-weight device leakage, and DES algorithm), and then brie�y report outcomes for some other leak-
age models. The choice for our focus is motivated by previous practical work which has focused on DES
implementations [2], and the fact that DES is still used as predominant algorithm in the banking world. Note
though that our framework could be used in the same way in a di�erent context, and that the results of our
evaluation of MI as a distinguisher are not strongly dependent on our speci�c choice.

4.1 Hamming-Weight Leakage

We begin with an ideal evaluation of MIA relative to CDPA in the simplest and most popularly studied scenario:
the �rst S-Box in a DES implementation (short: DESS1) with a Hamming-weight (HW) leakage. As attacker
power models we consider HW and the identity (short: ID) power model. For the sake of simplicity we use
the following abbreviations: CDPA(HW) as short-hand for correlation-based DPA with a HW power model,
MIA(HW)/MIA(ID) as short-hand for MI-based DPA with a HW/ID power model, and MMIA for multivariate
MI-based DPA. Using the notation as introduced before we �rst evaluate

CDPA(HW) : {ρ(L(DESS1(x, k∗),M(DESS1(x, k))}k∈K, (1)

MIA(HW) : {I(L(DESS1(x, k∗);M(DESS1(x, k))}k∈K (2)

assuming that both the attacker's power model, as well as the device's power model is the Hamming weight,
i.e. L = M = HW .



This is a scenario in which we expect CDPA(HW) to perform well: the use of the true power model enables
perfect prediction of the data-dependent leakage under the correct key hypothesis, whilst the choice of the
S-Box as target ensures that the alternative hypotheses will each give rise to substantially di�erent predictions
(see [15]).

Figure 1 shows the ideal distinguisher values for a CDPA(HW) and an MIA(HW) attack. Since the target
function has the Equal Images under di�erent Subkeys (EIS) property and the plaintexts are assumed uniformly
distributed, attack outcomes are key independent ([12]): the correct hypothesis yields the same distinguisher
value under any key, and only the arrangement of the remaining vector entries changes.

It is evident that both attacks are �rst-order successful by a clear margin, but that MIA(HW) has a
substantial ideal advantage, with a nearest-rival distinguishability score of 5.61 compared with just 2.14 for
CDPA(HW). This simple result con�rms that it must instead be a combination of the impact of noise and the
relative e�ciency of estimating the correlation coe�cient which enables CDPA to consistently outperform MIA
in practical attacks with a good power model.
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Fig. 1: Ideal distinguishing vectors using the HW power model against the output of the �rst DES S-Box.

As a partial insight into the quantity of data needed we next look at the minimum input support size required
for the distinguishers to approach their full ideal potential. The space of possible plaintext combinations is too
large to explore exhaustively, so we look at the average behaviour of the attacks in repeated random draws
from the plaintext space.
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Fig. 2: Ideal success as the input support size increases, for a DES implementation leaking the Hamming weight.

Figure 2 displays the ideal success rate of each type of attack, as the support size of the input distribution
increases. It is immediately clear that CDPA is able to identify the correct key from a far smaller support than
MIA. In fact it requires just 6 inputs on average, and reaches 100% success with just 12, compared with an
average of 8 and threshold of 14 for MIA. Note as well that even once a high ideal success rate is achieved, it
may be that a broader support is required before MIA regains the distinguishing advantage it displays with
respect to the full distribution.



We next investigate the enhancement of MIA via the incorporation of an additional data point in a multi-
variate attack on AddRoundKey and the �rst S-Box jointly. Figure 3 plots the ideal outcome. First observe that
the distinguisher is greater in size (by a factor of about two) than that of the single point attack � that is, we are
capturing a larger amount of information. However, the increase applies across the range of key hypotheses so
does not automatically raise the distinguishing power. In fact the true key is less strongly distinguished than in
the attack against the S-Box alone: the nearest-rival distinguishability is reduced from 5.61 to 3.66. Moreover,
the attack requires a larger input support � 13 on average compared with 8 for MIA(HW).
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Fig. 3: Ideal MIA vector against the DES AddRoundKey and the �rst S-Box jointly.

Table 1 summarises outcomes for a wider selection of attacks, including MIA(ID) � the proposed `generic'
attack of [6].

MIA(ID) : {I(L(DESS1(x, k∗);M(DESS1(x, k))}k∈K
= {I(HW(DESS1(x, k∗); ID(DESS1(x, k))}k∈K (3)

Unsurprisingly, in this �rst example where the leakage is proportional to the HW, MIA(ID) displays a
disadvantage relative to MIA(HW). The generic capabilities of MIA will be of more relevance in leakage scenarios
where the attacker is not able to correctly model the true leakage.

The attacks against AddRoundKey well illustrate the role of the target function: distinguishing power is
greatly reduced in the case that incorrect key hypotheses give rise to outputs closely resembling the correct
key outputs. Greater precision (and therefore a greater number of measured traces) will be required in order
to detect a di�erence of this size in a practical attack, and moreover in the case of MIA there will remain an
ambiguity between the true key k∗ and its bitwise complement k̄∗.

Table 1: Ideal strength of CDPA and MIA attacks against DES with Hamming weight leakage.
DES AddRoundKey DES S-Box Multivariate (DES)

DES with a HW leakage CDPA MIA CDPA MIA MIA MMIA
(HW) (HW) (HW) (HW) (ID) (HW)

Correct key ranking (order) 1 (1) 1 (2) 1 (1) 1 (1) 1 (1) 1 (1)
Average distinguishing power 2.45 4.48 3.61 6.59 6.35 6.04
Nearest-rival distinguishing power 0.82 0.00 2.14 5.61 5.08 3.66
Average minimum support 6 9 6 8 16 13
Support required for 90% success rate 8 11 8 11 19 15
Support required for100% success rate 11 15 12 14 22 21

Stochastic Resonance We conclude this section by brie�y considering the impact of (Gaussian) noise on
theoretic outcomes. Figure 4 con�rms that (standardised) MIA outcomes are a�ected by the level of noise,
and that the relationships are not monotonic: in each case there seems to be an optimal SNR at which the



distinguishing power reaches a maximum, after which it diminishes to that of the ideal (as depicted by the
dashed lines). Such a phenomenon is called stochastic resonance [3], and can (in principle) occur in any nonlinear
measurement system. Perhaps surprisingly, the required support sizes for both MIA(HW) and MIA(ID) match
the ideal requirements and remain constant � though in general, such measures could also be subject to similar
e�ects.

Recall, from Sect. 2.2, that by the properties of correlation, (standardised) CDPA outcomes are una�ected
by the level of noise. Hence the opportunity to enhance MIA (at least theoretically) via noise injection is not
available in the context of CDPA.
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Fig. 4: The e�ect of Gaussian noise on HW and ID attacks against HW leakage of the �rst DES S-Box.

4.2 Hamming-Distance Leakage

Whilst the Hamming weight model is very popular in the literature, Hamming distance leakage can be widely
observed in practical devices using CMOS logic. Broadly speaking there are three scenarios which may be
encountered. Firstly, the previous state is known to the attacker, in which case the attacks are equivalent
to Hamming weight attacks. Secondly, the previous state is unknown to the attacker but �xed. Thirdly, the
previous state is unknown to the attacker and can vary. The latter two scenarios are the focus of the following
discussion.

Constant Reference State Now let us suppose, as in [5], that the reference state is a constant but unknown
machine word R. The device no longer leaks L(fk∗(X)) but rather L(R⊕ fk∗(X)).

First observe that no attack against a linear target function such as AddRoundKey can achieve �rst order
success, because the `true key' values are perfectly replicated under an incorrect key hypothesis, namely k∗⊕R.
The power consumption for a plaintext X will be proportional to HD((k∗ ⊕ X), R) = HW((k∗ ⊕ X) ⊕ R) =
HW((k∗ ⊕ R) ⊕ X), so that when our hypothesis is k = k∗ ⊕ R we get maximum correlation/MI (for both
HW and ID models) and in fact the theoretical distinguishing vector is identical to that of a successful attack
against HW leakage with a key of k∗ ⊕R.

Targeting the S-Box avoids this predicament thanks to the high nonlinearity of the S-Box. In particular,
there is no R′ such that S-Box(k∗ ⊕X)⊕R = S-Box((k∗ ⊕R′)⊕X) ∀X ∈ X so no incorrect key will produce
the correct predictions. It remains to be seen whether the resemblance between the imperfect predictions (with
naive power models) and the true power consumption remains strong enough for the correct key and weak
enough for the alternative hypotheses for any sort of attack to be successful.

Ideal CDPA(HW) succeeds precisely in those scenarios where the HW of the reference is 1 (or 0) and fails
whenever it is 2 (see Table 2). Further, were we to use the absolute value of the correlation to distinguish
(denoting this strategy as |CDPA(HW)|) the resulting ideal attack would succeed whenever the HW of the
reference state is 3 or 4. MIA(HW) and MIA(ID) both succeed in all scenarios, but observe that the true key
MI under an ID power model is una�ected by the introduction of an unknown reference state whilst the same
quantity under a HW power model is substantially diminished.

Table 3 (see appendix) provides more detail on DES attack outcomes, summarised by the HW of the
least signi�cant 4 bits of the constant reference state. This grouping of scenarios is justi�ed by the observed



homogeneity of our measures within each category. We have already seen that ideal |CDPA(HW)| does not
succeed when the HW is 2, and are now able to con�rm that its theoretic strength is substantially reduced
when the HW is 1 or 3. MIA(HW) gains a considerable advantage both in terms of the ideal distinguishing
power with full information (nearest-rival scores are in the range of 3.6 to 4.5 for MIA(HW) but just 0.5-2.7 for
|CDPA(HW)|) and also in terms of the minimum input support required for success (on average, 14 to 15 for
MIA(HW) compared with 17 to 18 for |CDPA(HW)|). In fact, for some reference states |CDPA(HW)| requires
almost the entire plaintext set to determine the correct key (see Figure 5).

We can take advantage of the non-injectivity of the DES S-Box to launch generic MIA(ID) attacks. These
turn out to be virtually una�ected by reference state so that nearest-rival distinguishing power is always around
5 for MIA(ID) and average support requirement around 16. This means that when R ∈ {0000(2), 1111(2)} (i.e.
L is the HW function) the generic attacks are less e�ective than the equivalent methods combined with a
HW power model, but in all other reference state scenarios they gain an advantage. The consistency and ideal
strength of these attacks might be su�cient to translate into a practical advantage�a possibility which we will
investigate in a latter section.
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Fig. 5: Ideal success as the input support size increases, for a DES implementation leaking the Hamming distance from
constant reference state ending in 0100.

We have thus shown that MIA applied with little consideration for or knowledge about the true leakage can
be e�ective even when that leakage actually depends on an unknown reference state. CDPA, applied equally
blindly, is far less likely to yield a successful attack. However, Brier et al. ([5]) showed how to adapt it in order
to determine R as an unknown of the problem in addition to fk∗(X) ⊕ R, which together reveals the secret
key k∗. Whilst this two-stage process does require a greater number of searches than a standard CDPA(HW)
attack, it could yet turn out to be more e�cient than MIA; not only does MIA require more traces for precise
estimation, but MIA with an ID power model can be computationally costly.

A Note on DRP logic. We observe an important and useful parallel between HD leakage and the expected
behaviour of DPA-resistant dual-rail precharge (DRP) logic. In fact, an imperfect realisation of the logic style
can be shown to exhibit data-dependent power consumption of a similar form to the HD from a constant
reference state, enabling us to clarify its vulnerability to the `generic' MIA(ID) attack described by Gierlichs
et al. in [6].

DRP logic attempts to eradicate the data-dependency of the power consumption by making it equal in each
clock cycle. This is achieved insofar as the capacitances of the complementary output wires in each logic gate
can be balanced, a di�cult feat in practice ([14]). Suppose the ith bit of an m-bit word x is carried by a DRP

Table 2: Rank and correct key distinguisher values for constant reference states in a DES implementation.
HW of CDPA(HW) |CDPA(HW)| MIA(HW) MIA(ID)
ref. state D(0) Rank D(0) Rank D(0) Rank D(0) Rank

0 1.000 1 1.000 1 2.031 1 2.031 1

1 0.500 1 0.500 1 1.250 1 2.031 1

2 0.000 33-38 0.000 64 1.061 1 2.031 1

3 -0.500 64 0.500 1 1.250 1 2.031 1

4 -1.000 64 1.000 1 2.031 1 2.031 1



logic gate driving two di�erential outputs with imperfectly balanced capacities (αi, βi), so that αi = βi + γi.
The power consumption of such a circuit can be shown to be equivalent to leakage scenarios with which we are
more familiar, enabling us to comment on theoretical attack capabilities.

Let us initially consider the simpli�ed case that both capacitances are the same throughout the circuit:
βi = β, αi = β + γ, ∀i ∈ {0, . . . ,m− 1}. Then the data-dependent leakage is proportional to:

HW(x)α+ HW(x̄)β = HW(x)(β + γ) + HW(x̄)β

= (HW(x) + HW(x̄))β + HW(x)γ

= mβ + HW(x)γ

The constant m is absorbed into the non-data-dependent component and we thus obtain the result that the
leakage is proportional to the Hamming weight. Both CDPA(HW) and MIA(HW) will be theoretically capable
of returning the correct key; practical success will depend on ability and resources to estimate the distinguishing
vectors with su�cient precision, in which case CDPA(HW) is likely to have an advantage, as we have already
seen.

Now suppose that the capacitances are the same throughout the circuit but that the order changes, i.e. so
that some gates have capacitances (α, β) and others (β, α), where α = β+γ. We can express this by introducing
R = (r0, . . . , rm−1) ∈ {0, 1}m such that gate i is (β, α) if ri = 1 and (α, β) otherwise. Then the data-dependent
leakage is:

HW(x⊕R)α+ HW(x⊕ R̄)β = HW(x⊕R)(β + γ) + HW(x⊕ R̄)β

= (HW(x⊕R) + HW(x⊕ R̄))β + HW(x⊕R)γ

= mβ + HW(x⊕R)γ

That is, the data-dependent leakage is proportional to the Hamming distance from R, which equates to the
scenario of a more conventional logic style (such as CMOS) consuming power proportional to the number of
transitions from a constant, unknown reference state. We have already shown that MIA(ID) remains ideally
successful against such leakage, whilst CDPA(HW) is (depending on the state) either unsuccessful or greatly
reduced in distinguishing power. This con�rms that DRP logic gives rise to leakage scenarios under which
�rst-order MIA(ID) could be useful, in particular, shedding light on the experimental result of [6].

In the most general case, the size of the capacitances and not just the direction of the di�erences may
vary over the circuit. Suppose the gates corresponding to bits i = 1, . . . ,m have capacitances (αi, βi) such
that αi = βi + γi where γi can be positive or negative. Letting x = (x1, . . . , xm) and α = (α1, . . . , αm), β =
(β1, . . . , βm), γ = (γ1, . . . , γm) we get a leakage function of x ·α+(x⊕1) ·β = (x+x⊕1) ·β+x ·γ = 1 ·β+x ·γ,
so that the data-dependent power consumption is proportional to a weighted combination of the bits of x,
where the weights can take negative values. Further investigation is needed to establish the expected behaviour
of our distinguishers as the relative weights become increasingly disproportionate.

Data-Dependent Reference State We next investigate ideal performance against Hamming distance leakage
allowing for R to take two or more di�erent values depending on the plaintext, unknown to the attacker, but
restricting it to be constant in repeated runs. In practice this could happen due to an incorrect implementation
of a masking scheme.

In the (commonly studied) case of an 8-bit micro-controller, the reference states (or masks) take values in
{0, 1}8 = {0, . . . , 255}. Since our attacks on DES S-Box target 6-bit key portions, our plaintext inputs are drawn
from {0, 1}6 = {0, . . . , 63} � there could be up to 64 di�erent input-dependent reference states. The number
of possible ways that r reference states could be associated with the 64 input values is given by the Stirling
number of the second kind:

{
64
r

}
= 1

r!

∑r
j=0(−1)r−j

(
r
j

)
j64, so it is no longer possible to exhaustively explore

every scenario. Instead, we calculate the success rates in 1,000 random experiments for increasing numbers
of di�erent reference states, randomly assigned to approximately equal-sized subsets of the input space (see
Table 4). 4 We �nd that MIA is much better able to succeed than |CDPA|, particularly when provided with an

4 When the reference state is constant, only the 4 bits which are replaced by the S-Box output contribute to the data-
dependent leakage whilst the contribution of the remaining bits is absorbed into the static component of the power
consumption. However, when the state depends on the data in the manner described here, the contribution of the
remaining bits does need to be taken into consideration as it becomes part of the data-dependent power consumption.



ID power model � although even then it does not achieve 100% success for attacks with more than 2 di�erent
states and for more than 6 states success rates drop to below 50%. The success of |CDPA(HW)| degrades
rapidly; for attacks with about 20 di�erent states it is no better than a random guess, whilst MIA(ID) and
even MIA(HW) appear to retain some advantage over guessing.

Thus, when very little is known about the leakage an attacker may well be able to recover a great deal of
information just by applying a `blind' MIA � though even ideal success will be partially determined by chance,
and the number of traces required for adequate estimation may be prohibitive. Such an approach may not be
the best way of exploiting the available data: where resources permit, it may prove more e�ective or e�cient
to re�ne a CDPA based approach (or similar), investing greater e�ort in understanding the leakage to begin
with � perhaps through pro�ling.

4.3 Theoretical vs. Practical Success

We now return to a scenario which was identi�ed as a candidate for MIA to hold an advantage over CDPA
in practice: Hamming-distance leakage from a reference state unknown to the attacker (taken to be 0100(2)

for the purposes of our example). We wish to investigate whether the observed ideal advantages generalise
(theoretically) in the presence of noise and hence whether they can be translated into practical advantages.
Figure 6 shows the impact of Gaussian noise on theoretic attack e�ectiveness, both in terms of nearest-rival
distinguishability and in terms of the minimum support size required for �rst-order success. MIA(HW) distin-
guishability is not very robust to the addition of noise, even falling below that of CDPA(HW). Moreover, there
is a hefty penalty in terms of required support size. By contrast, MIA(ID) distinguishability is more robust
and even exhibits some evidence of stochastic resonance type behaviour, whilst required support size remains
constant in the tested range.
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Fig. 6: Nearest-rival distinguishability and required support size of theoretic attacks against Hamming distance leakage
(with a reference state of 0100) for varying levels of Gaussian noise.

Our simulated attacks use histogram-based estimators where bin counts are chosen equal to the cardinality
of the power model domain, according to the heuristic which has emerged from the literature ([2]). In a pure-
signal scenario (see the dashed lines in Figure 7) the 5-bin estimator for MIA(HW) requires fewer traces than
CDPA(HW) to identify the correct key, but the introduction of even the smallest amount of noise incurs a
burden so that across the tested range it is substantially less e�cient. By contrast, the 16-bin estimator for
MIA(ID) approaches the e�ciency achieved in the pure-signal scenario as the SNR increases, and moreover
substantially outperforms CDPA(HW) once the SNR is at least 1. We have thus con�rmed that�in this instance
at least�ideal MIA advantages can be translated into practical advantages.

4.4 `Highly Nonlinear' Leakage Functions

We tested our distinguishers against some more unusual candidate leakage functions. Motivated by previous
work from Akkar et al. [1], we turn our attention to functions which are non-linear or have non-linear compo-
nents. Table 5 (given in the appendix) summarises the ideal capabilities of the attacks against a selection of
such examples. The results give rise to the following observations: The di�erently weighted linear leakage (which
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Fig. 7: Average number of traces required for key recovery in simulated practical attacks against Hamming-distance
leakage (with a reference state of 0100(2)), for varying levels of Gaussian noise.

is still linear) is not su�ciently dissimilar to the HW for CDPA(HW) to fail; moreover, despite an apparent
increase in the distinguishing advantage of MIA(HW), there is also a rise in the comparative cost in terms of
input support required. The addition of a quadratic term in the leakage does not render it su�ciently non-
linear to confound CDPA(HW) or increase the advantage to MIA(HW/ID). CDPA is unsuccessful against the
symmetric and highly non-linear leakages; MIA(HW) remains successful against all tested examples, although
with some loss of distinguishing power and some cost in terms of the input support required. MIA(ID) is also
successful in all tested scenarios and, moreover, in attacks against the more unusual leakages it exhibits an
advantage over MIA(HW), in terms both of the overall distinguishing power and of the input support required.

5 Conclusions

In this paper we have presented a framework for evaluating and comparing DPA methodologies on a like-for-
like, ideal/theoretic basis. Our outcome measures allow for a nuanced assessment of the relative strengths and
weaknesses of particular distinguishers as employed under di�erent leakage scenarios. We have thus been able
to compare MIA and CDPA as abstracted away from the confounding problem of estimation, gaining valuable
insight into the empirical results of existing literature which tends to focus on practical instantiations of the
attacks. We have identi�ed scenarios in which MIA o�ers a substantial theoretic advantage over CDPA, and
demonstrated that such theoretic advantages can be translated into practical advantages. Particular candidate
scenarios for MIA to be useful arise when the leakage takes the form of the Hamming distance from an unknown
reference state or in implementations using dual-rail precharge logic � and, in fact, we are able to demonstrate
a relationship between these two cases. The generic capabilities of MIA are found to be an advantage as
the HW model degrades relative to the true leakage, but multivariate extensions do not exhibit much if any
advantage over univariate attacks in the �rst-order `unprotected' setting. Lastly, we observe for the �rst time (to
our knowledge) the noise-sensitivity of the (standardised) MIA distinguishing vector, which exhibits an e�ect
which can be likened to stochastic resonance and which could possibly be exploited in certain noisy scenarios to
enhance the distinguishing power of MIA attacks. This is a question for further research. Another open problem
� which persistently arises in the context of MIA � is that of �nding estimators which most e�ectively translate
theoretical advantages into practical ones.
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A Tables

A.1 Constant Reference State



Table 3: Theoretical strength of CDPA and MIA attacks against DES with Hamming distance leakage from a constant
reference state.

4 LSBs of reference state |CDPA| MIA MIA

(HW) (HW) (ID)

Hamming weight 0
Correct key ranking 1 1 1
Average distinguishing power 5.14 6.59 6.35
Nearest-rival distinguishing power 3.56 5.61 5.08
Average minimum support 6 8 16
Support required for 90% success rate 8 11 19
Support required for 100% success rate 12 14 22

Hamming weight 1
Correct key ranking 1 1 1
Average distinguishing power 2.56-4.94 5.48-5.97 5.81-6.46
Nearest-rival distinguishing power 0.53-2.65 3.60-4.47 4.57-5.20
Average minimum support 20-34 14-15 16-17
Support required for 90% success rate 33-53 20-22 19-20
Support required for 100% success rate 44-61 28-32 21-24

Hamming weight 2
Correct key ranking 54-63 1 1
Average distinguishing power -1.94-0.00 5.06-5.53 5.98-6.43
Nearest-rival distinguishing power -5.62-0.00 3.05-3.16 4.49-5.42
Average minimum support - 17-18 16-16
Support required for 90% success rate - 26-29 19-20
Support required for 100% success rate - 33-36 22

Hamming weight 3
Correct key ranking 1 1 1
Average distinguishing power 2.56-4.94 5.48-5.97 5.81-6.46
Nearest-rival distinguishing power 0.53-2.65 3.60-4.47 4.57-5.20
Average minimum support 20-34 14-15 16-17
Support required for 90% success rate 33-53 20-22 19-20
Support required for 100% success rate 44-61 28-32 21-24

Hamming weight 4
Correct key ranking 1 1 1
Average distinguishing power 5.14 6.59 6.35
Nearest-rival distinguishing power 3.56 5.61 5.08
Average minimum support 6 8 16
Support required for 90% success rate 8 11 19
Support required for 100% success rate 12 14 22



A.2 Data-Dependent Reference State

Table 4: Ideal attacks against the �rst DES S-Box in the presence of data-dependent reference states: Success rates for
increasing numbers of di�erent reference states of length 8-bits (standard deviation in brackets).

|CDPA| MIA MIA

# states (HW) (HW) (ID)

1 state 0.61 1.00 1.00
(0.49) (0.00) (0.00)

2 states 0.29 0.80 1.00
(0.45) (0.40) (0.00)

3 states 0.19 0.69 0.95
(0.39) (0.46) (0.22)

4 states 0.14 0.61 0.81
(0.35) (0.49) (0.40)

5 states 0.11 0.52 0.66
(0.32) (0.50) (0.47)

6 states 0.09 0.42 0.53
(0.29) (0.49) (0.50)

7 states 0.07 0.33 0.43
(0.26) (0.47) (0.49)

8 states 0.06 0.29 0.29
(0.23) (0.45) (0.46)

9 states 0.07 0.23 0.25
(0.25) (0.42) (0.43)

10 states 0.06 0.24 0.25
(0.23) (0.43) (0.43)

11 states 0.06 0.24 0.25
(0.23) (0.43) (0.43)

12 states 0.04 0.16 0.14
(0.20) (0.36) (0.35)

13 states 0.05 0.23 0.24
(0.21) (0.42) (0.43)

14 states 0.04 0.18 0.14
(0.18) (0.38) (0.35)

15 states 0.03 0.12 0.10
(0.18) (0.32) (0.30)

16 states 0.03 0.08 0.09
(0.17) (0.27) (0.29)

17 states 0.04 0.19 0.17
(0.19) (0.39) (0.38)

18 states 0.02 0.13 0.12
(0.15) (0.34) (0.32)

19 states 0.03 0.08 0.08
(0.18) (0.27) (0.27)

20 states 0.02 0.07 0.05
(0.14) (0.26) (0.23)

A.3 Highly Nonlinear Leakage Functions

To study the behavior of MIA and CDPA for di�erent leakage functions we chose, motivated by previous work
from Akkar et al. [1], examples of leakage functions ranging for being linear to non-linear.

The �rst class of functions we consider are weighted (linear) sums of the bits. These obviously have a
nonlinearity measure of 0. When the coe�cients are restricted to be positive the resulting functions are strongly
correlated with common power model choices HW and ID. These are scenarios where we expect CDPA to
perform well. However, allowing for negative coe�cients results in average correlations close to zero whilst MI
appears una�ected. Allowing for adjacent quadratic, cubic and �nally fourth order interactions (see [1]) does
introduce a nonlinear component, but this is outweighed by the linear relationship even when there are no
explicit linear terms (that is, when a1 = 0). Moreover there is no evidence of a detrimental impact on the
power model correlations.

We next consider some examples of functions which we describe as symmetric in that L(v(10)) = L(2m(10) −
v(10)). These have a nonlinearity measure of 1 � that is, they have no linear component � and as such have
zero correlation with the power models, ensuring the failure of CDPA. On the other hand, since they are by
no means independent, the mutual information with both models is not zero, so there remains a potential for



MIA to be a viable attack alternative. Such leakage assumptions are hard to justify in terms of circuit logic,
but can result from simple pre-processing of power traces. Such pre-processing is often part of performing DPA
attacks, [16] is a good example of such work.

Table 5: Strength of ideal attacks against the �rst DES S-Box, under di�erent leakage scenarios.

Attacks against the �rst DES S-Box CDPA MIA MIA

(HW) (HW) (ID)

HW leakage
Correct key ranking (order) 1 1 1
Average distinguishing power 3.61 6.59 6.35
Nearest-rival distinguishing power 2.14 5.61 5.08
Average minimum support 6 8 16
Support required for 90% success rate 8 11 19
Support required for 100% success rate 12 14 22

ID leakage
Correct key ranking (order) 1 1 1
Average distinguishing power 4.32 6.35 6.92
Nearest-rival distinguishing power 2.65 5.08 5.81
Average minimum support 8 16 13
Support required for 90% success rate 13 24 15
Support required for 100% success rate 20 32 18

LSB leakage
Correct key ranking (order) 1 1 1
Average distinguishing power 2.07 3.02 5.54
Nearest-rival distinguishing power 0.39 0.39 3.91
Average minimum support 31 36 21
Support required for 90% success rate 62 62 25
Support required for 100% success rate 64 64 34

b1 + 5b2 + b3 + 5b4 leakage
Correct key ranking (order) 1 1 1
Average distinguishing power 3.38 6.64 6.82
Nearest-rival distinguishing power 1.79 5.57 5.62
Average minimum support 8 11 14
Support required for 90% success rate 13 15 16
Support required for 100% success rate 21 18 19

HW + 10b2b3 leakage
Correct key ranking (order) 1 1 1
Average distinguishing power 3.62 6.54 6.78
Nearest-rival distinguishing power 1.75 5.31 5.60
Average minimum support 9 9 15
Support required for 90% success rate 17 12 18
Support required for 100% success rate 33 14 22

HW of demeaned abs. value leakage
Correct key ranking (order) 29 1 1
Average distinguishing power -0.00 5.81 6.17
Nearest-rival distinguishing power -2.85 3.80 4.81
Average minimum support � 18 16
Support required for 90% success rate � 33 19
Support required for 100% success rate � 46 22

HW of de-meaned square leakage
Correct key ranking (order) 36 1 1
Average distinguishing power 0.00 4.68 6.63
Nearest-rival distinguishing power -2.52 2.51 5.71
Average minimum support � 22 15
Support required for 90% success rate � 37 18
Support required for 100% success rate � 48 22

Re�ected HW leakage
Correct key ranking (order) 29 1 1
Average distinguishing power -0.00 5.81 6.17
Nearest-rival distinguishing power -2.85 3.80 4.81
Average minimum support � 18 16
Support required for 90% success rate � 33 19
Support required for 100% success rate � 46 22
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