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Abstract. On Nov 2007, NIST announced the SHA-3 competition to select a new
hash standard as a replacement of SHA-2. On Dec 2010, five submissions have been
selected as the final round candidates, including Skein, which have components based
on ARX. In this paper, a new related-key boomerang distinguishing attack is proposed
on 31-round Threefish-256 with a time complexity of about 2234. Our improved attack
is based on the efficient algorithms for calculating differentials of modular addition.
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1 Introduction
In cryptology, hash functions are designed to protect data integrity by producing an
fixed-length digest from an arbitrary-length message. Based on Wang et al.’s break-
through in hash cryptanalysis, the widely-used hash functions (MD5, SHA-1, etc.)
have been seriously attacked [13, 14, 15, 16]. If SHA-256 and SHA-512 were to be
broken, the industry do not have any generally-accepted hash functions. As a response
to this undesirable consequence, a public competition was hold by the National Insti-
tute of Standards and Technology (NIST) to collect the new designs for a secure and
applicable hash function. After two-round competitions, five algorithms [9] has been
selected as the final round candidates. One of the five proposals will be chosen as the
SHA-3 standard in 2012.

The hash function Skein [5], which was designed by Ferguson et al., has been se-
lected as the one of the five final-round candidates for the SHA-3 competition. The
design rationale of Skein combines speed, security and simplicity. Its conservative de-
sign provides a large security margin for the resistance of cryptanalysis. In the Skein
proposal, the compression function of Skein is constructed from a family of tweakable
block ciphers which is called Threefish. The family supports three different variants
called Threefish-256, 512 and 1024, which implies to Skein-256, 512 and 1024 re-
spectively. The algorithms within Threefish are fully based on addition, exclusive-or
(XOR) and constant rotation (which are called AXR operations) on 64-bit words.

In the literature [1, 11, 17, 6], many cryptanalyses have been proposed on the com-
pression function of Skein and the underlying block cipher Threefish. Table 1 sum-
marizes the published results on reduced-round variants of Skein-256 (or Threefish-
256). Aumasson et al. presented a related-key boomerang distinguishing attack on



34-round Threefish-512 with the old rotation constant [1]. Su et al. [11] proposed
a 24-round near-collision of Skein-256/512 compression functions by using linear-
differential analysis. Yu et al. [17] presented a semi-free start near-collision attack
on 32-round Skein-256 compression functions based on the rebound attack. While
Khovratovich et al. proposed a new distinguishing attack of 53-round skein-256 and
57-round Skein-512 by using the rotational rebound attack [6].

Table 1: Summary of the known results on Skein-256/Threefish-256. Where UBI-256
denotes the compression function of Skein-256.

Cipher Rounds Probability Method Attack Reference

Threefish-256 24 ? Related-key differential
distinguishing
Key recovery [5]

UBI-256 24 2−60 Linear differential Near-collision [11]
UBI-256 53 2−244 Rotational rebound Rotational collision [6]
UBI-256 32 2−105 Rebound attack Near-collision [17]

Threefish-256 31 2−234 Related-key boomerang distinguishing this paper

In this paper, we present an improved related-key boomerang attack on 31-round
Threefish-256. Our cryptanalysis is different from the cryptanalysis of [17], which is
only valid for the compression function of Skein-256 that Near-collision is obtained
by using Rebound attack. In particular, our attack analyze the related-key boomerang
property of the block cipher Threefish-256. The strategy behind our attack is to extend
local collisions to more round by using related-key and differential of addition. In
order to avoid fast increasing complexity of attack, we deal it with the boomerang
attack. Based on an efficient algorithm for computing differential of modular addition,
we obtain a related-key boomerang distinguishing attack of 31-round Threefish with a
time complexity of 2234.

The remainder of this paper is organized as follows. Section 2 describes prelim-
inaries for out attack. Section 3 first exploits two short related-key differentials, then
our improved related-key boomerang distinguishing attack of 31-round Threefish-256
is presented. Finally a conclusion is given in Section 4.

2 Preliminaries
In this section, we first define the notations used throughout this paper, then we briefly
describe the related-key boomerang attack, the algorithm for computing differential of
addition. Finally we recall the specification of Threefish-256.

2.1 Notations
The notations used in our cryptanalysis are described as follows.

• +: addition modulo 264.

• ≪ and≫: cyclic left and right rotations respectively.

• � and�: shift to left and right respectively.

• ⊕, ∨, ∧ and ¬: “XOR”, “OR”, “AND” and “NOT”, respectively.

• K: the key of Threefish, while Ki is the i-th word of K. ski denotes the i-th round
subkey. Moreover, ski, j is the j-th word of ski.



• T : the tweak of Threefish, while Ti is the i-th word of tweak T .

• Ri: the i-th round of Threefish.

• ∆x: the XOR difference of x and x′, while ∆Ki denotes the XOR difference of
the i-th word of K and K

′
. ∆ski, j represents the XOR difference of the j-th word

of ski.

2.2 Related-key boomerang attack
The related-key attack was first introduced by Biham in [2]. The attack allows the
accesses to encrypt plaintexts and decrypt ciphertexts under multiple unknown keys,
but the relation between the unknown key is known to (or even chosen by) the ad-
versary. The boomerang attack was introduced by Wagner in [12]. By extending the
boomerang attack in the related-key model [3], Biham et al. proposed the related-key
boomerang attack. As shown in Figure 1, the related-key boomerang attack views a
cipher E as a decomposition into two sub-ciphers, such that E = Eα ◦ Eβ. In each of
two sub-ciphers, there exists a high probability related-key differential for constructing
a boomerang attack.
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Figure 1: A schematic of related-key boomerang attack

If the probability of the Eα differential (∆in
α ,∆

out
α ,∆

key
α ) is p and the probability of

the Eβ differential (∆in
β ,∆

out
β ,∆

key
β ) is q, it was proven that the probability of the corre-

sponding related-key boomerang attack is close to (p · q)2.

2.3 The algorithm for computing differential of addition
For modular additions, efficient algorithms for computing the probability of any dif-
ferential and finding optimal trails were analyzed in [7]. For S-function, a general



framework was presented in [8], which is used to calculate the probability that given
input differences lead to given output differences, as well as to count the number of
output differences with non-zero probability. Since the results of algorithm in [7] and
algorithm in [8] for computing the probability of integer addition are identical, the al-
gorithms in [7] are used to search the optimal differential trails of modular addition for
Threefish-256. The algorithms are described as follows.

Without losing the generality, the differential of addition modulo 2n often denotes
as a triplet of two input and one output differences such that (α, β 7→ γ), α, β, γ ∈ {0, 1}n.
The differential probability of modular addition is defined as follows.

DP+(α, β 7→ γ) B Pr[(x + y) ⊕ ((x ⊕ α) + (y ⊕ β)) = γ | x, y ∈ {0, 1}n]

the maximum differential probability of modular addition is defined in the following
equation.

DP+
max(α, β) B max

γ
(DP+(α, β 7→ γ))

Algorithm 2 was introduced by Lipmaa and Moriai in [7], which calculates DP+(α, β 7→
γ) in a log-time. Algorithm 3 was described in [7], which finds all output differences γ
that satisfies DP+(α, β 7→ γ) is equal to DP+

max(α, β).
Lipmaa and Moriai also presented the definition of several functions in [7], which

are used in Algorithm 2 and Algorithm 3. For any x, y and z , eq(x, y, z) = (¬x ⊕ y) ∧
(¬x ⊕ z) and xor(x, y, z) = x ⊕ y ⊕ z. For any n, let mask(n) = 2n − 1. The Hamming
weight function wh(x) =

∑n−1
i=0 xi. The all-one parity of an n-bit number x is another

n-bit number y = aop(x), and aop(x) is calculated by Algorithm 1. The common
alternation parity of two n-bit numbers x and y is a function C(x, y), such that

C(x, y) B aop(¬(x ⊕ y) ∧ (¬(x ⊕ y) � 1) ∧ (x ⊕ (x � 1))).

Algorithm 1 Log-time algorithm for aop(x)
Input: x ∈ {0, 1}n;
Output: aop(x);

1: x[1] = x ∧ (x � 1);
2: for i← 2 to log2n − 1 do x[i]← x[i − 1] ∧ (x[i − 1] � 2i−1);
3: y[1]← x ∧ ¬x[1];
4: for i← 2 to log2n do y[i]← y[i − 1] ∨ ((y[i − 1] � 2i−1) ∧ x[i − 1]);
5: return y[log2n];

Algorithm 2 Log-time algorithm for DP+

Input: (α, β 7→ γ);
Output: DP+(α, β 7→ γ);

1: if eq(α � 1, β � 1, γ � 1) ∧ ((xor(α, β, γ) ⊕ (β � 1))) , 0 then return 0;
2: return 2−wh(¬eq(α,β,γ)∧mask(n−1));

2.4 A brief description of Threefish-256
Threefish-256 works on 64-bit words using exclusive-OR, addition modulo 264 and
cyclic shift. A 256-bit plaintext is parsed as four words v0,0, . . . , v0,3, and encrypted
through Nr = 72 rounds. Round d is from 1 up to 72, the encryption procedure of
Threefish-256 operates as follows :



Algorithm 3 Algorithm that finds all γ, DP+(α, β, 7→ γ) = DP+
max(α, β)

Input: (α, β);
Output: All (α, β)-optimal output differences γ;

1: γ0 ← α0 ⊕ β0;
2: p← C(α, β);
3: for i← 1 to n − 1 do

if αi−1 = βi−1 = γi−1 then γi ← αi ⊕ βi ⊕ αi−1
else if i = n − 1 or αi , βi or pi = 1 then γi ← {0, 1}
else γi ← αi;

4: return γ

1. If d ≡ 1 mod 4, add a subkey by setting ed,i = vd−1,i + kd/4,i, i = 0, . . . , 3. else,
ed,i = vd−1,i, i = 0, . . . , 3.

2. ( fd,2i, fd,2i+1)← MIXd,i(ed,2i, ed,2i+1), for i = 0, 1. Mix function is defined by

MIXd,i(x, y) B (x + y, (x + y) ⊕ (y � RC(d−1) mod 8,i))

where RC(d−1) mod 8,i is a rotation constant in row (d − 1) mod 8 column i of the
rotation constant table that can be found in [5].

3. Permute the state words :

vd,0 = fd,0, vd,1 = fd,3, vd,2 = fd,2, vd,3 = fd,1

After 72 rounds, the ciphertext is

(v72,0 + k19,0, . . . , v72,3 + k19,3)

The set of subkeys is derived from the master key K = (K0,K1,K2,K3) and tweak
T = (T0,T1) as follows.

sks,0 = K(s+0) mod 5

sks,1 = K(s+1) mod 5 + Ts mod 3

sks,2 = K(s+2) mod 5 + T(s+1) mod 3

sks,3 = K(s+3) mod 5 + s

where K4 = b264/3c ⊕ K0 ⊕ K1 ⊕ K2 ⊕ K3, T2 = T0 ⊕ T1 and s is the value of the s-th
round.

3 The proposed attack
In this section, we describe how to build a related-key boomerang of Threefish-256 .
Eα is viewed as the sub-cipher of the first 17 rounds of Threefish-256, and Eβ is viewed
as the sub-cipher of the following 14 rounds (18 to 31) of Threefish-256. We obtain a
related-key differential of Eα with a probability 2−99 and a related-key differential of
Eβ with a probability 2−18. Thus the boomerang distinguishing attack that makes use
of Eα and Eβ has a probability 2−234. The details of the attack will be depicted in the
following subsections.



3.1 The subkeys differential
Following the key schedule of Threefish-256, one can get all subkeys from an encryp-
tion key. Table 2 illustrates an overview of eight subkeys, which will be used in the
first 32-round Threefish-256. The number i denotes the round constant. The subkeys
differential of Eα and Eβ are searched for the related-keys boomerang distinguishing
attack.

Table 2: The first eight subkeys of the Threefish-256 key schedule
word 0 word 1 word 2 word 3

sk0 K0 K1 + T0 K2 + T1 K3 + 0
sk1 K1 K2 + T1 K3 + T2 K4 + 1
sk2 K2 K3 + T2 K4 + T0 K0 + 2
sk3 K3 K4 + T0 K0 + T1 K1 + 3
sk4 K4 K0 + T1 K1 + T2 K2 + 4
sk5 K0 K1 + T2 K2 + T0 K3 + 5
sk6 K1 K2 + T0 K3 + T1 K4 + 6
sk7 K2 K3 + T1 K4 + T2 K0 + 7
sk8 K3 K4 + T2 K0 + T0 K1 + 8

• Subkeys differential of Eα. For a pair of key and tweak, their difference patterns
are chosen for the related-key differential of Eα as follows.

((K0,K1,K2,K3), (T0,T1)) , ((K
′
0,K

′
1,K

′
2,K

′
3), (T

′
0,T

′
1)).

Hence the difference in the sk2 is eliminated, which implies

K2 = K
′
2, K3 + T2 = K

′
3 + T

′
2, K4 + T0 = K

′
4 + T

′
0, K0 + 2 = K

′
0 + 2.

Let the difference δ = 0x8000000000000000, where the most significant bit is
isolated. One set difference of key/tweak pair can be represented as follows.

K2 ⊕ K
′
2 = 0, K0 ⊕ K

′
0 = 0, K1 ⊕ K

′
1 = 0,

K3 ⊕ K
′
3 = δ, T0 ⊕ T

′
0 = δ,T1 ⊕ T

′
1 = 0.

Under condition ∆
key
α = ((∆K0 ∆K1 ∆K2 ∆K3), (∆T0 ∆T1)) = ((0 0 0 δ), (δ 0)),

∆sk1 = (0, 0, 0, δ). The difference of the i-th subkeys(0 ≤ i ≤ 4) are shown in
Table 3.

Table 3: Subkey’s differences of the Threefish-256 key
subkeys differential of Eα

∆sk0 (0, δ, 0, δ)
∆sk1 (0, 0, 0, δ)
∆sk2 (0, 0, 0, 0)
∆sk3 (δ, 0, 0, 0)
∆sk4 (δ, 0, δ, 0)

subkeys differential of Eβ
∆sk5 (0, 0, 0, δ)
∆sk6 (0, 0, 0, 0)
∆sk7 (δ, 0, 0, 0)
∆sk8 (δ, 0, δ, 0)



• Subkeys differential of Eβ. A difference of key/tweak pair is chosen for the
related-key differential of Eβ such that ∆sk6 = (0, 0, 0, 0). this implies

K1 = K
′
1, K2 + T0 = K

′
2 + T

′
0, K3 + T1 = K

′
3 + T

′
1, K4 + 6 = K

′
4 + 6.

One can set ∆
key
β = ((∆K0 ∆K1 ∆K2 ∆K3), (∆T0 ∆T1)) = ((0 0 δ δ), (δ δ)) to

obtain ∆sk6 = (0, 0, 0, 0). In this case, ∆sk5 = (0, 0, 0, δ). The difference of the
i-th subkeys(5 ≤ i ≤ 8) are given in Table 3.

3.2 The Eα differential
In this section, we search the related-key differential of Eα. Firstly, we assign the
output difference of R4 to ∆sk1 = (0, 0, 0, δ), then we compute the backward related-key
differential from R4 to R1. Secondly, we investigate the forward related-key differential
from R13 to R17.

• Trail of R1 to R4. In order to reach the output difference of R4 (0, 0, 0, δ), we
need to reverse the difference of R4 to the input difference sk0. In Figure 2, the
numbers connected with the arrows are the Hamming weight of the differences.
∆sk1 is assigned to the output difference of R4. The input difference of sk0 is
calculated from ∆sk1 in backward. The input difference of round 4 is described
as follows.

∆v4,1 = (∆sk1,0 ⊕ ∆sk1,3)≫ 5
∆v4,0 = ∆v4,1 ⊕ ∆sk1,0

∆v4,3 = (∆sk1,2 ⊕ ∆sk1,1)≫ 37
∆v4,2 = ∆v4,3 ⊕ ∆sk1,2.

∆vi, j is the input difference of the j-th word of the i-th round, while the corre-
sponding rotation constants (5 and 37) are used in the R4 of Threefish-256. The
input difference of Eα (∆v0,0,∆v0,1,∆v0,2,∆v0,3) with the effect of sk0 is com-
puted in the following equations.

∆v0,0 = ∆sk0,0 ⊕ ∆v1,0

∆v0,1 = ∆sk0,1 ⊕ ∆v1,1

∆v0,2 = ∆sk0,2 ⊕ ∆v1,2

∆v0,3 = ∆sk0,3 ⊕ ∆v1,3

The first 4-round related-key differential of Eα is listed in Table 4.

• Trail of R5 to R12. The sk1 adds difference (0, 0, 0, δ) to the output difference of
R4 so that its difference is vanished. The state of difference remains (0, 0, 0, 0)
until the sk3 is added. After the effect of sk3, the value of the output difference is
(δ, 0, 0, 0). Figure 3 illustrates the trail.

• Trail of R13 to R17. In this step, the related-key differential from R13 to R17
is calculated by equation 1 (13 ≤ i ≤ 17) when the input difference of R13 is
(δ, 0, 0, 0).

∆vi+1,0 = Algorithm 3(∆vi,0,∆vi,1)
∆vi+1,2 = Algorithm 3(∆vi,2,∆vi,3)
∆vi+1,1 = ∆vi+1,2 ⊕ (∆vi,3 ≪ RC(i−1) mod 8,1)
∆vi+1,3 = ∆vi+1,0 ⊕ (∆vi,1 ≪ RC(i−1) mod 8,0)

(1)
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Figure 2: Backward differential from R4 to R1. The numerals are the number of bit 1
of corresponding difference.

Table 4: Differential trail of Eα (Differences are described in hexadecimal basis)

.

round input difference Pr
sk0 0500900A50210840 8100100210210800 0040040086044204 8040000084004204 2−34

1 0500900A50210840 0100100210210800 0040040086044204 0040000084004204 2−21

2 0400800840000040 0000800040000040 0000040002040000 0000040002000000 2−8

3 0400000800000000 0000000800000000 0000000000040000 0000000000040000 2−3

4 0400000000000000 0400000000000000 0000000000000000 0000000000000000 2−1

sk1 0000000000000000 0000000000000000 0000000000000000 8000000000000000 1
5-12 0000000000000000 0000000000000000 0000000000000000 0000000000000000 1
13 8000000000000000 0000000000000000 0000000000000000 0000000000000000 1
14 8000000000000000 0000000000000000 0000000000000000 8000000000000000 1
15 8000000000000000 8000000000000800 8000000000000000 8000000000000000 2−1

16 0000000000000800 0000000000200000 0000000000000000 0200000000000820 2−5

sk4 0000000000200800 0200082002000820 0200000000000820 0020000000200800 2−14

17 8000000000200800 0200082002000820 8200000000000820 0020000000200800 2−12

- 8200082002200020 8220002008200000 8220000000200020 800808A0002800A0 -
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Figure 3: Forward differential from R5 to R12(including sk1 to sk3). The numerals are
the number of bit 1 of corresponding difference.

Table 5: Differential trail of Eβ (Differences are described in hexadecimal basis.
round input difference Pr

18 0400800840000040 0000800040000040 0000040002040000 0000040002000000 2−8

19 0400000800000000 0000000800000000 0000000000040000 0000000000040000 2−3

20 0400000000000000 0400000000000000 0000000000000000 0000000000000000 2−1

sk5 0000000000000000 0000000000000000 0000000000000000 8000000000000000 1
21-28 0000000000000000 0000000000000000 0000000000000000 0000000000000000 1

29 8000000000000000 0000000000000000 0000000000000000 0000000000000000 1
30 8000000000000000 0000000000000000 0000000000000000 8000000000000000 1
31 8000000000000000 8000000000000800 8000000000000000 8000000000000000 2−1

sk8 0000000000000800 0000000000200000 0000000000000000 0200000000000820 2−5

- 8000000000000800 0000000000200000 8000000000000000 0200000000000820 -

Figure 4 illustrates the trail, while its patterns are also given in Table 4.

3.3 The Eβ Differential
Similar to the method of searching the differential of Eα, the differential of Eβ is com-
puted as follows.

• Trail of R18 to R20. In order to reach difference (0, 0, 0, δ) in the output of R20,
the input difference of R18 is computed in backward. The 3-round differential is
shown in Table 5.

• Trail of R21 to R28. Since sk5 adds the output difference of R20 (0, 0, 0, δ), the dif-
ference will be vanished until the sk7 is added. The difference becomes (δ, 0, 0, 0)
because the effect of sk7.

• Trail of R29 to R31. In this step, we use the equation 1 (29 ≤ i ≤ 31) to calculate
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the differential from R29 to R32. The input difference of R29 is (δ, 0, 0, 0). Also
the patterns of the trail is shown in Table 5.

Based on the related-key differential of Eα and Eβ, the value of there differences in
Figure 1 are derived as follows.

∆in
α = 0500900A50210840810010021021080000400400860442048040000084004204

∆out
α = 820008200220002082200020082000008220000000200020800808A0002800A0

∆in
β = 0400800840000040000080004000004000000400020400000000040002000000

∆out
β = 8000000000000800000000000020000080000000000000000200000000000820

Therefore we obtain a differential (∆in
α ,∆

out
α ,∆

key
α ) of Eα with the probability 2−99

and a differential (∆in
β ,∆

out
β ,∆

key
β ) of Eβ with the probability 2−18.

3.4 The related-key boomerang distinguishing attack and the Com-
plexity of Computation

The related-key boomerang distinguishing attack of 31-round Threefish-256 that ex-
ploits (∆in

α ,∆
out
α ,∆

key
α ) of Eα and (∆in

β ,∆
out
β ,∆

key
β ) of Eβ has a probability 2−234. The

distinguisher works as follows:

1. Chooses a random message P and calculates Q = P ⊕ ∆in
α .

2. Encrypts P and Q, obtain C = Ek(P) and D = Ek⊕∆
key
α

(Q).

3. Sets C
′
= C ⊕ ∆out

β and D
′
= D ⊕ ∆out

β .

4. Decrypts C
′

and D
′
, obtains P

′
= E−1

k⊕∆
key
β

(C
′
) and Q

′
= E−1

k⊕∆
key
α ⊕∆

key
β

(D
′
).

5. Checks if P
′ ⊕ Q

′
= ∆in

α .

For an ideal cipher, the probability of P
′ ⊕ Q

′
= ∆in

α is expected to be 2−256. On the
other hand, the final equation is expected to hold with probability (2−99×2−18)2 = 2−234

in the related-key boomerang distinguisher, which is apparently lower than exhaustive
search. Therefore, an adversary can distinguish between 31-round Threefish-256 and
an ideal cipher by implementing our improved boomerang attack.

4 Conclusion
In this paper, we have proposed a new related-key boomerang distinguishing attack on
a reduced-round variant of Threefish-256. By combining two short differentials that we
have found, our boomerang attack can be used to distinguish 31-round Threefish with
the time complexity of 2234. Since Threefish is the primitive of the Skein, our analysis
will be useful to further cryptanalyses of Skein for the SHA-3 competition.



References
[1] Jean-Philippe Aumasson, Çagdas Çalik, Willi Meier, Onur Özen, Raphael C.-W.
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