
New Receipt-Free E-Voting Scheme and
Self-Proving Mix Net as New Paradigm

Aram Jivanyan
Russian-Armenian University of Armenia

jivanyan@gmail.com and Gurgen Khachatryan
American University of Armenia

gurgenkh@aua.am

No Institute Given

Abstract. The contribution of this paper is twofold. First we present a
new simple electronic voting scheme having standard re-encryption mix
net back-end, which allows to cast a ballot and verify its correctness in
a new way. Then we extend the proposed scheme to represent a new
very efficient mix network construction. We called our mix network to
be self-proving mix, because it is shown how mix process correctness
can be verified without demanding from mix party a special proof. Our
proposed mix network allows to reveal all the cheating occurred during
a mix process at verification of decryption parties work.
Key words: E-voting, Mix Net, Receipt-Freeness, Self-Proving Mix.

1 Introduction

A number of end-to-end verifiable voting schemes have been introduced recently.
These schemes aim to allow voters to verify that their votes have casted as they
intended, and in addition allow anyone to verify that the tally has been computed
correctly. These goals must be achieved while maintaining voter privacy and pro-
viding receipt-freeness. But early research presumed that each voter would own
a trusted device to perform hard cryptographic operations on her behalf. Such
assumption does not model real-world voters. In 2004, Chaum [4] and Neff [27]
independently introduced mechanisms that enable an unaided human to cast an
encrypted ballot without trusting the voting machine. Then, Moran and Naor
[28] presented a scheme based on Neffs earlier technique, MarkPledge. However
they leaved an open unsolved problem in their paper, regarding to prevention
of covert channels in the ballot. Recently, Adida and Neff [29] proposed their
solution named as MarkPledge2, which solved the above mentioned problem.
MarkPledge2 was the first efficient, covert-channel-resistant, receipt-free ballot
casting scheme that can be used by humans without having trusted device for
performing hard cryptographic operations. In this paper we introduce another
electronic voting scheme based on novel approach, which also is receipt-free and
resistent to covert channels. The approach lying in the basis of our scheme is to
allow each voter encrypt his vote by his secret key. It means that voter can at

2

first choose several secret keys and demand the voting machine to encrypt all
of them with joint public key of election trustees. Having all secrets encrypted,
voter can randomly choose one secret key, which will be used for vote encryption.
Then all remained keys can be already opened and voter can demand the vot-
ing machine to get special proofs, that the keys were encrypted correctly. That
proves than can be checked out of voting booth. This approach allows to ensure
with high probability that the vote was casted as intended without needing to do
complex cryptographic operations at voting place. Vote encryption by secret key
must be a simple operation which can be verified by any voter who have minimal
computational ability. We use the most simplest encryption technique, namely
XOR-ing. The attractiveness of XOR is that the operation can be visualized to
make its verification possible by unaided humans, who have no computational
ability. This voting scheme has standard mix net back-end. Verifiable mixing has
substantial complexity for large scale elections. Although it is not impractical
with today’s hardware, however it is interesting to have faster verifiable mix
nets. After exposing our ballot casting scheme we than extend it to come to the
new mix network construction. Our mix network is neither decryption mix net,
nor re-encryption. It is a hybrid approach which main contribution is that mix
process can be verified without special verification process. The special proof
and verification of correct mixing is the most expensive step in mix process. The
elimination of that step yields to effective mix. It is shown the correctness of the
mix process be verified during the ballot decryption verification.

2 Background

Some basic information about a number of cryptographic primitives necessary
to understand the rest of the paper is provided here.

We start with a description of the ElGamal public-key cryptosystem [1], and
discuss some of its properties, which makes this cryptosystem very useful for
voting. Next we introduce mix networks.

2.1 ElGamal cryptosystem

Let P and Q be two large primes such that P = 2Q + 1. We denote by GQ
the subgroup of Z∗P of order Q. All the subsequent arithmetic operations are
performed in modulo P unless otherwise stated. Let g be a generator of GQ.
The private key is an element x ∈ ZQ, and the corresponding public key is
Y = gx. To encrypt a plaintext m ∈ GQ, a random element r ∈ ZQ is chosen
and the ciphertext is computed as Ey(m, r) = (gr,mY r) = (G,M), so the El-
Gamal ciphertext is a pair of elements of GQ. To The decryption Dx(G,M) of
an ElGamal ciphertext (G,M) can be computed by the owner of secret x in a
following way: Dx(G,M) = M/Gx = m.

ElGamal has a multiplicative homomorphic property. It means that given two
ElGamal ciphertexts(under the same public key Y) (G1,M1) = (gr1 ,m1Y

r1) and
(G2,M2) = (gr2 ,m2Y

r2) encrypting messagesm1 andm2 respectively, than their

3

product computed as (G1,M1) · (G2,M2) = (G1 · G2,M1 ·M2) = (gr1+r2 ,m1 ·
m2Y

r1+r2) is an encryption of m1 ·m2.
Given an ElGamal encryption of m under public key Y, (G,M) = (gr,mY r),

this ciphertext can be transformed into a different ciphertext by choosing r′ ∈ ZP
at random and computing (G′,M ′) = (G · gr′ ,M · Y r′) which decrypts to the
same m. Under the Decisional Diffie-Hellman assumption, a third party can
not determine whether the plaintexts of (G,M) and (G′,M ′) are the same,
i.e. ElGamal cryptosystem is semantically secure. This fact lies in the basis of
construction re-encryption mix networks.

In [3] a mechanism is presented that permits a Prover to prove in zero-
knowledge way that, given a tuple (g, u, y, v), she knows the secret x satisfying
x = loggy = loguv. The proof is as follows:

– The Prover chooses s ∈ ZQ at random and computes the tuple (a, b) =
(gs, us).

– The Verifier gives a challenge c to prover.
– The Prover computes r = s+ cx and sends (a,b,r) to the Verifier.

We will denote CP (g, y, u, v) the tuple (a, b, r) sent by the Prover to the Verifier.
For verifying the proof the Verifier checks whether gr = ayc and ur = bvc. The
non-interactive variant of this protocol can be constructed by computing the
challenge c via Fiat-Shamir hash trick [2] - c = H(g, u, gs, us), where H is
a cryptographically secure hash function. Given a publicly known ciphertext
(G,M) encrypted under public key Y , the owner of private key x can verifiably
decrypt it by publishing the message m and CP (g,G, Y, Mm). A verifier that
succeeds in checking CP (g,G, Y, Mm) is convinced that (G,M) is an encryption
of m under public key Y .

2.2 Mix Networks

The concept of mix networks was first introduced by Chaum in [5]. Mix-net
is a cryptography construction that enables one or more mix servers to take a
sequence of encrypted input messages, re-encrypt or decrypt them, and output
them in an unrevealed, randomly permuted order. In theory, if there is one honest
mix server, the permutation links are kept secure. Mix networks can be divided
into re-encryption mix-net and decryption mix-net. Chaum proposed decryption
mix nets, where the inputs of mix network are ballots encrypted under each mix
server’s public key from the last mix server to the first. When decrypting, each
mix server will first decrypt the input ballots by using her own secret key, then
throws away the random value and outputs all the resulted messages in permuted
order. Re-encryption mix networks were proposed in [13]. In re-encryption mix
networks the original ballots are encrypted under the same ElGamal public key
Y , which corresponding private key is distributed among trustees in a threshold
scheme. In re-encryption mix-nets the re-encryption and decryption process are
separated. Each mix server first re-encrypt a list of ElGamal encrypted cipher-
texts {E1, E2, · · · , EN} and output the resulted ciphertexts in randomly permuted

4

order as another list of ElGamal encrypted ciphertexts {E ′1, E ′2, · · · , E ′N}, after
which next mix or decryption parties can perform. When re-encryption phases
finishes, the quorum of decryption parties jointly recover the ElGamal secret key
x and decrypt all the ballots. In Section 4 we introduce a novel mix net con-
struction, which is neither decryption mix net, nor re-encryption mix net. It is
a hybrid approach. It requires a fixed number of decryption servers, but allows
to have a flexible number of mix servers. All inputs of our mix net will have
K tuples of ElGamal ciphertexts, where K is the number of decryption servers,
and each decryption server owns one public/private key pair. Each ciphertext
within a tuple is encrypted under one decryption server’s public key via ElGa-
mal cryptosystem. We called this self-proving mix, because it is shown how mix
parties work can be automatically verified when decryption process is verified.
This self-proving property eliminates the need of complex verification steps of
mix process and results to efficient mix network.

3 Voting Scheme

We assume that voters vote at certified polling stations and there is one election
race with M candidates. As in most election schemes, we also include the notion
of ”bulletin board” BB as a shared memory where all authorized parties have
sequentially write access after authentication and any observer has a read access.
At any moment it must be accessible both for writing and reading via election
website. We identify the following players each with a fixed role he must play
during election process:

– Polling Stations: For simplicity we assume the existence of only one Polling
Station(PS) with one voting machine which can be malicious. We also as-
sume that PS coordinates all the electoral process to not burden our scheme
with additional players. When election begins, PS collects all votes and posts
them to BB. It is assumed that only legitimate voters will be allowed by PS to
vote and they will be able to vote only once. PS owns certified public/private
key pair for digitally sign each voter’s receipt given by voting machine.

– Decryption parties: There are K decryption parties D1,D2, ..., DK , who owns
the decryption keys(shares of decryption key) needed for ballots decryption.
Each decryption party can post to the BB.

– Mix parties: Mix party performs the mixing of encrypted votes. Any certified
participant can act as mix party and there can be as many mix parties as
needed. We will assume that at least one of these parties is honest.

– Voters: There are N voters V1, V2, ..., VN who cast a vote. Each of them is
able to read and compare small strings.

– Verifiers: A verifier can be everyone who is able to do more complex math-
ematical operations. Usually a verifier owns some trusted computer device

5

and can do cryptographic operations outside of PS. A verifier can read the
BB and any voter’s receipt to check the validity of signature on it, ensure
the correctness of vote encryption and also verify any proofs provided by
decryption parties. Verifier can complain in case he detects any error.

The election process consists of the following phases:

1. Set up: At this phase the PS initializes the BB, publishes the characteristics
of group where all public keys used during election are defined and the
description of a secure hash function H which is used at receipt preparation.
All decryption servers and Polling Station publish their certified public keys.
Also candidates names encoding is defined and announced to all parties.

2. Voting: At this phase PS authenticates each voter and checks if he/she has
not voted already. Then each voter votes using voting machine according
to the fixed protocol which will be described later and gets special receipt
signed by PS, after which his/her ballot will is posted to BB.

3. Vote mixing: Each mix party takes the encrypted ballots from the BB and
re-randomizes them and posts the resulted ballots in shuffled order again to
BB for next mix or decryption party to perform respective actions. Mix party
can also be required to provide an additional data for verification purposes.

4. Vote decryption: At this phase the encrypted ballots are opened by decryp-
tion parties. Each decryption server except performing his suited actions
also provides some additional data required for verification of its actions.
The output of this final phase will be an anonymous list of casted ballots
which should be already counted.

Next we present all the phases in more details.

3.1 Setup

At this phase Polling Station initializes the BB and publishes the parameters of
group, where all public keys used for elections are defined. These are two large
primes P and Q where P = 2Q+ 1. All public keys are defined over the Q order
subgroup GQ of Z∗P . PS publishes its public key. The Polling Station’s key pair
is (xPS , YPS). The decryption servers generate the election public key Y using
threshold ElGamal [21], such that each decryption party has a secret share xi. A
cryptographically secure hash function H definition used in election is specified.
For encoding candidates names we take l = dlog2Me where M is the number of
candidates. For simplicity we assume that M = 2l. Each candidate is uniquely
assigned a binary vector code C ∈ {0, 1}l and the candidate name-code pairs are
published. Each candidate code must be also conformed with one GQ element.
For that reason we take the first M prime numbers(included 1) and conform each
code to one prime in the way shown in Table 1:

6

00..000 1
00..001 2
00..010 3
00..011 5
00..100 7
....... ..
11..111 pM

Table 1: Keys encoding by prime numbers

3.2 Voting

We do not discuss here the authentication phase of voters and vote unicity checks
done by PS. Instead we detail how an authenticated and first time voting voter
Vi casts here vote Vi. Each Vi is given an electronic ballot with unique ID. Next
we detail voting phase steps:

BallotCastingProtocol︸ ︷︷ ︸
1. The voting machine prepares

(a) 3 random values r1, r2, rCP ∈ ZQ needed for vote encryption.

(b) Computes and displays(also prints on receipt) H1 = H(gr1‖gr2‖grCP),
where ‖ means concatenation.

Note that the random values are selected and the hash of their commitments
is printed on the receipt before any information is provided by voter.

2. The voter inputs 2 random l bit vectors after seeing H1 printed already on
the receipt. We denote the keys by key1 and key2. It is assumed that all
voters can provide a short random inputs of size l.

3. The Voting machine

(a) encrypts voter inputed keys key1 and key2 via ElGamal cryptosystem by
using the predefined random values r1, r2 : E1(key1, r1) = (G1,M1) =
(gr1 , p1 · Y r1), E2(key2, r2) = (G2,M2) = (gr2 , p2 · Y r2)
Here p1 and p2 stands as corresponding primes of key1 and key2 accord-
ing to Table 1.

(b) adds E1 and E2 to the ballot.

(c) computes H2 = H(M1‖M2) and prints it on the receipt.

7

4. After seeing H2 printed on the receipt the voter challenges one of the encryp-
tions by choosing a random index i ∈ [1, 2], and the voting machine prints
on the receipt the index i and the keyi and adds to the ballot the index i
and a non-interactive Chaum-Pedersen proof CP = (grCP , Y rCP , z) that Ei
is really a correct encryption of keyi.

5. Voter selects his candidate, whose l bit binary code C is publicly known and
visible on voting machine interface. C ∈ [0..00, 0..01, 0..10, ..., 1..11]

6. Voting machine

(a) computs R = keyi ⊕C and displays it, where i is the index not selected
by voter at previous step.

(b) adds R field on the ballot and also prints it on the voter receipt.

7. If the voter confirms his/her vote than voting machine signs both the ballot
and receipt by Polling Station’s private key and gives receipt to voter.

After voting the ballot of Vi looks like Vi={ID,R, i, CP, E1, E2, SPS(ID,R,
CP, E1, E2)}, where SPS(ID,R, CP, E1, E2) is the signature of Polling Station.
The receipt given to voter remains quite simple:Receipt = {ID,H1, H2, R, i, keyi,
SPS(ID,H1, H2, R , i, keyi)}. Assuming that we have 8 candidates, which means
all keys are 3 bit length, then a typical receipt is shown in Figure 1a.

(a) Joint key (b) Distinct keys(4 keys)

Fig. 1

Having the receipt the voter can check the validity and correctness of his vote
with help of verifier outside of Polling Station, but two checks must be done by
voter before he leaves PS:

8

1. Voter must verify the correctness of R field printed on receipt. As we have
already mentioned, the XOR operation used for computing R from voter
chosen candidate code and voter entered secret key, can be visualized by
methods presented in [24, 25], as it was firstly used by Chaum in [4] to
build one of the first encrypted voter receipt techniques. Note that not all
voters are required to verify the correctness of R. A malicious voting machine
will be discovered even when a small percent of voters do it. Note that if
we have a boolean vector X = (X1, X2, ...Xm), then the XOR of Xi can be
computed just as

⊕m
i=1Xi =

{
1 if the number of 1 in vector is odd
0 otherwise

So even without visualization techniques, a small percent of all voters will
have enough computational ability to do XOR on behalf. Moreover, there
can be some auditors able to compute XOR of small keys, who can from
time to time audit the voting machine.

2. Voter must check that the code printed on the receipt among with its index
match the one he marked to be opened.

If these two checks are successfully accepted by voter it guaranties that any
other possible cheating done against ballot validness will be discovered with
very high probability by verifier outside of Polling Station via more complicated
consistency checks. These checks are as follows:

– Check of signatures validity on receipt and ballot.
– Check of H1 and H2 validness: There are 2 ElGamal ciphertexts and 1

Chaum-Pedersen proof. Verifier must concatenate together first components
of both ciphertexts and Chaum-Pedersen proof in fixed order as it was done
by voting machine, and compute hash of the resulted message by H. The
result must be equal to H1 printed on the voter receipt. At the same way
the hash of the concatenation of second parts of ElGamal ciphertexts must
be computed, which must be equal to H2. The first check ensures that all
predefined random values are used for keys encryption and Chaum-Pedersen
proofs, the second check ensures that ciphertexts are not modified after voter
has chosen the key subject to disclosure.

– Check of Chaum-Pedersen Proof: There is one pair like [keyi,i] printed
on the receipt. The verifier must take the i-th ciphertext of ballot Ei =
(gri , pi · Y ri) where i ∈ [1, 2], and verify with the Chaum-Pedersen proof
that (g, Y, gri , pi · Y ri/pkeyi) is DDH tuple. Here pkeyi is the corresponding
prime of key1 from Table 1.

As one of two keys randomly chosen by voter is opened after both 2 keys
have been encrypted and a Chaum-Pedersen proof is provided ensuring its cor-
rect encryption, than any cheating done during voter’s keys encryption will be
discovered by the third check with 1/2 probability for each ballot. We assume
that 1/2 soundness is sufficient for large scale elections, where a lot of ballots

9

will be verified. Note that the probability can be increased by requiring to voter
enter for example 4 keys and then reveal 3 of them.

The first step in our protocol has significant importance. The random values
used for keys encryption and Chaum-Pedersen proofs can be used by malicious
computer to covertly encode some information about ballot. When voting ma-
chine knows the secrets he needs to encrypt, it can chose random values in a
special way so that the last few bits of ciphertexts could reveal the secret. To
prevent the possibility of covertly leaking any information it is required that vot-
ing machine has to pre-generate all random values and provides a proof that he
indeed used the chosen values. That is why computer first computes and shows
to voter the H1 and prints it on the receipt after which all other information
is provided by voter. Having the H1 and also the Chaum-Pedersen proofs for
half of encrypted keys any verifier can check and be sure that computer indeed
have used the predefined random values and so ciphertexts do not reveal any
information related to voter preference. This steps make our voting scheme re-
sistent to covert channels. Receipt-freeness comes naturally once we have covert-
channel resistance and show that our scheme is coercion-resistant. Let us detail
the coercion-resistance strategy of voter. The Voter’s only interactions with the
voting machine are:

1. Selection of 2 secret keys.
2. Selection of random index from [1,2].
3. Selection of a candidate code.

Coercer can instructs the voter to input special keys key′1 and key′2 and choose
candidate C ′. The R code, which the coercer is expected to see is R = C ′ ⊕
key′1 ⊕ key′2. Coercer can also say to voter which key he must open. Let us
assume that he want the voter to open first key. Thus, the Voter’s coercion-
resistance strategy is very simple: He input keys key′1 and key2 and choose his
preferred candidate, which code is C. The voter’s entered key2 is computed in
such way, that the resulted R will be exactly what the coercer expects to see. It
means key2 = key′2 ⊕ C ⊕ C ′.

3.3 Vote mixing and decryption

When the voting phase finishes and all votes are collected, the BB contains bal-
lots set composed of N votes where for each i ∈ [1, ..., N] Vi = (ID,R, i, CP, E1, E2,
SPS(ID,R, CP, E1, E2)). Before mix process begins the set of casted ballots,
which are published on BB, is taken and everything is erased from ballots except
the R field and Ei ciphertext. If i = 1 then i = 2 and vice versa. Then a series of
t mix operations is performed, which results to an anonymous ballot set. Each
mix operation re-encrypts and shuffles all ballots. Note that the R field of bal-
lots is not remasked during re-encryption and somebody can argue that it will
uncover certain ballot after shuffling. But as R takes value from small M = 2l

length range, where M << N , each ballot after shuffling will be hidden among

10

N/M ballots. For large scale elections this ensures enough privacy. For example
if there are 64000 voters and the race consists of 8 candidates, then each vote
will be hidden among 8000 ballots.

Each mix party is also required to provide an additional data to prove that
he acted correctly. It means that no ballot was modified or deleted and replaced
by another one during ballots re-encryption process. Most of existing verification
protocols can be used here as well as the fastest and most secure protocols due to
Neff [8] and Furukawa-Sako [9] to provide such proofs. In the next section we will
extend our protocol in such way that it will yield to novel type mix construction
with lower computational complexity in verifiable mixing.

4 Self-Proving Mix Net Design

The intuition behind verification of mix network process directly comes after the
re-encryption mix net construction and is as follows: each server must prove, that
his received and outputted sets are the same. If each server succeeds to do this,
then it follows that the final set would correspond to the preliminary set. Note
that while proving this, mix server must keep his permutation secret. This fact
complicates the situation and makes the verification proofs not trivial. The veri-
fication techniques which provides the full spectrum of privacy, requires number
of modular exponentiations linear proportional to the number of inputs. Our
e-voting scheme allows to show a different approach to mix process verification.
The underlying idea of our suggested mechanism is as follows: instead of each
re-encryption server proving that he has operated correctly, which has seemed
to be the only way to reveal any cheating done by mix servers, the decryption
servers reveal and expose any cheating done by mix servers if they are some.
In our scheme malicious mix party can falsify the votes in two different ways.
First he can change votes in targeted way by deleting votes and inserting others
which belongs to his preferred candidate. Second he can change votes in ”blind”
way without knowing whom the changed votes will go. This is a realistic attack,
which aims to disfigure election results. We design our scheme in such way, that
targeted attacks are revealed immediately after malicious mix party performs.
For discovering ”blind” attacks done by mix parties we need to add one extra
element to each ballot we called ”check” element. The ”check” element allows
to discover at the end of mix process all ballots which were ”blindly” falsified.
If any such problematic ballot is encountered, the mistake is traced by asking
each mix party to reveal how it shuffled and re-encrypted that faulty ballot.
The cheating parties are removed and the process must be restarted. For sim-
plifying an exposition, we will assume that there are the same number mix and
decryption parties. We require each decryption party to follow one mix party as
is shown in Figure 2.

Before exposing the new mix net construction, we need to extend presented
voting protocol. One of the key things lying in the basis of our mix net is the
requirement of each decryption server to have its own public/private key pair
instead of common key’s share. If there are K decryption servers, than we denote

11

Fig. 2: Combined ReEncryption-Decryption Mix.

by Yj the j-th server’s public key. The voting protocol is modified as is shown
bellow:

ExtentedBallotCastingProtocol︸ ︷︷ ︸
1. The voting machine prepares

(a) 3K+2 random values r1
1, r

2
1, ..., r

1
K , r

2
K , rCP1 , ..., rCPK , r0, rP ∈ ZQ

needed for the vote encryption.

(b) Computes and displays(also prints on receipt) H1 =H(gr1‖gr2 ...‖gr3K+2),
where we indexed random values sequentially to simplify exposition.

2. The voter inputs 2K random l bit vectors after seeing H1 printed already on
the receipt. We denote the keys by [key1

1, key2
1], · · · , [key1

K, key
2
K].

3. The Voting machine

(a) encrypts voter inputed first two keys key1
1 and key2

1 via first decryption
server’s public key Y1 by using random values r1

1 and r2
1: E1

1 (key1
1, r

1
1) =

(G1
1,M

1
1) = (gr1

1 , p1
1 · Y

r1
1

1), E2
1 (key2

1, r
2
1) = (G2

1,M
2
1) = (gr2

1 , p2
1 · Y

r2
1

1).
Here and afterward pji stands for keyji ’s corresponding prime number
taken from Table 1. In the same way the second pair of keys are en-
crypted via second decryption server’s public key Y2 and so on.

(b) adds all 2K ElGamal ciphertexts (E1
1 , E2

1 , · · · , E1
K , E2

K) to the ballot.

(c) computes H2 = H(M1
1 ‖M2

1 ‖ · · · ‖M1
K‖M2

K) and prints it on the receipt.

12

4. After seeing H2 printed on the receipt the voter randomly selects one key
from each key pair [key1

j , key
2
j] by selecting K indexes ij ∈ [1, 2] for j ∈

[1, · · · ,K].

5. The voting machine prints on the receipt all K indexes ij with the keyijj
and also adds to the ballot the indexes and K Chaum-Pedersen proofs
CPj = (grCPj , Y

rCPj
j , zj) proof that E ijj is really a correct encryption of

the keyijj .

6. Voter selects his candidate, whose l bit binary code C is publicly known and
visible on the voting machine interface. C ∈ [0..00, 0..01, 0..10, · · · , 1..11]

7. Voting machine

(a) computs R =
⊕K

j=1 key
ij
j ⊕C and displays it, where ij is the index from

pair j not selected by voter at step 4.

(b) adds R field on the ballot and also prints it on the voter receipt.

(c) computes one extra pair E0 = (G0,M0) = (gr0 , pR · (pi11 · p
i2
2 · · · · ·p

iK
K)2·

·Y r0
K · · ·Y

r0
2 Y r0

1) and adds it with aspecial zero-knowledge proof P to the
ballot. The computation of P is described in Appendix A.

8. If the voter confirms his/her vote than voting machine signs both the bal-
lot and receipt by Polling Station’s private key and gives receipt to the voter.

The checks any voter must do after voting are very similar to the 3 checks
described before and are intuitively clear. In case K=4 the receipt given to the
voter will look as is shown in Figure 1b. When election phase finishes, then all
the ballots are taken from BB and all information is erased from them except
the R fields, ”check element” E0 and the K ciphertexts, which are not selected
by voters to be opened. So the entire set of ballots to be shuffled can be viewed
as N × (K + 2) matrix as it is shown in Table 2.

E1
1 E1

2 ... E1
K E1

0 R1

E2
1 E2

2 ... E2
K E2

0 R2

...
...

. . .
...

...
...

...
...

. . .
...

...
...

EN
1 EN

2 ... EN
K EN

0 RN

Table 2: Encrypted Ballots

13

The first decryption server can decrypt only the first ciphertext within each
ballot, or the first column in the Table 2. The second decryption server can
decrypt only the second column and so on. All ciphertexts within ballot must
be decrypted to reveal the vote. Note that if all decryption servers collude, they
can reveal votes before mix process started and thus break the privacy of ballots.
For that reason we require that at least one decryption server to be honest and
not cooperate with others before mix process begins. Note that this is as natural
requirement as it is for the standard mix nets to require at least one mix party
to be honest and not reveal its secret permutation. We require each decryption
party to compute in a verifiable way some ”fingerprint” which uniquely iden-
tifies the keys set encrypted under its public key. The taken ”fingerprint” can
be used after decryption of already re-encrypted messages to check whether the
re-encryption processing of the ciphertexts was performed correctly or not. The
”fingerprint” reveals some kinds of possible attack resulted to the modification
of entire keys set. This is the case when malicious mix party replace some ballots
with his preferred ones. As we said already, the mix can cheat also in ”blind”
way just by swapping some fields between ballots. Note that this cheating does
not modify the entire set of ciphertexts within a column. We show next how our
special ”check element” will detect such kinds of cheating by detecting at the
end of mix process all ballots which have been subjected to ”blind” attacks.
Remember that all keys were transformed to corresponding prime numbers for
encryption. Unique factorization in Z implies that if we compute the product of
all encrypted primes, than the resulted quantity can be viewed as a ”fingerprint”
for that keys set. Homomorphic property of ElGamal allows each decryption
server to compute in a verifiable way and publish the product without revealing
keys. For each column the ”fingerprint” is computed in the following way: All bal-
lots are divided into ∆ = dN/αe groups where each group size is α = blogpMP c.
It can be done by sorting all ballots by R fields and taking the first ∆ ballots
as the first group, next ∆ ballots as the second group and so on. Such dividing
ensures that within each group the product of all keys(primes) computed using
homomorphic property of ElGamal will not overflow modulo P . The ∆ groups
are denoted as S1, S2, ..., S∆. Each decryption party Di i ∈ [1, · · · ,K] computes
F i1, F

i
2, · · · , F i∆ in a homomorphic way

F i1 = Dxi(
∏
l∈S1

Gl1,
∏
l∈S1

M l
1) = (g

∑
l∈S1

rli , (
∏
l∈S1

pl1) · Y
∑
l∈S1

rli
i) =∏

l∈S1
pl1

F i2 = Dxi(
∏
l∈S2

Gl1,
∏
l∈S2

M l
1) = (g

∑
l∈S1

rli , (
∏
l∈S2

pl1) · Y
∑
l∈S2

rli
i) =∏

l∈S2
pl1

...
F i∆ = Dxi(

∏
l∈S∆ G

l
1,
∏
l∈S∆M

l
1) = (g

∑
l∈S∆

rli , (
∏
l∈S∆ p

l
1) · Y

∑
l∈S∆

rli
i) =∏

l∈S∆ p
l
1

The correctness of this quantities can be checked by computing the product
of ElGamal ciphertexts within each group S and asking decryption server to de-

14

crypt the product and also provide a zero-knowledge proof of correct decryption.
Thus ith decryption server’s published ”fingerprint” will be Fi =

∏∆
s=1 F

i
s .

After computation of all ”fingerprints” the mix process begins as it is shown
in Figure 2. First mix party takes all ballots, re-encrypts all ciphertexts within
each ballot including the ”check” element and outputs the obtained result in
permuted order to the first decryption party. Then decryption party should :

1. Decrypt N ElGamal ciphertexts.
2. Prove the correct decryption of those N ciphertexts.
3. Transform each decrypted prime to corresponding binary key and XOR the

key with R field for each ballot.
4. Reconstruct N ”check” elements .

When decryption party decrypts all ciphertexts and provides a proof of cor-
rect decryption, then anyone can check whether the product of all the revealed
messages(primes) is equal to the preprinted ”fingerprint”. The non-equality will
mean that mix party replaced some of the ballots. The malicious mix party must
be removed and the mix must be restarted by another mix party. For showing
how reconstruction of ”check” element is done, let us assume that for the first
ballot the revealed prime is p1 and the ”check” element is (gr0 , pR · (p1p2 · · ·
pK)2Y r0

K · · ·Y
r0
2 Y r0

1). For reconstruction of ”check” element decryption party
first computes Y r01 = (gr0)x1 and provides a proof of correct computation. Then
the reconstructed element will be
(gr0 , pR·(p1p2 · · · pK)2Y r0

K · · ·Y
r0
2 Y r0

1 /p1·Y r01)=(gr0 , pRp1·(p2 · · · pK)2Y r0
K · · ·Y

r0
2).

For performing all 4 steps the decryption party is required to do 1 exponenti-
ation for each decryption plus 2 exponentiations for generating each proof plus 1
exponentiation for reconstructing the ”check” element. The correct computation
of Y r01 can be proved by using the commitments already obtained for proving
correct decryption. Thereby, the overall amount of modular exponentiations will
be 4N for each decryption party.

There are following 3 type of attacks against the integrity of elections, which
can be done by malicious mix parties:

1. Target attack: Attacker can replace the ballot row with his specified one.
2. ”Blind” attack 1: Attacker can replace some of ciphertexts within any vector

including ”check” element.
3. ”Blind” attack 2: Attacker can just swap any fields (ciphertexts, R, ”check”

elements) among two ballots.

As we have already said, the precomputed ”fingerprints” allows to detect target
attacks done by mix parties. The ”blind” attacks can be detected at the end of
mix process, when the candidate code will be recomputed and also the ”check”
value will be revealed. Note that after mix finishes all ballots will contain two val-
ues (C1, C2), where C1 will be already the chosen candidate code reconstructed
as
⊕K

i=1 keyi⊕R and C2 will be the ”check” value - C2 = pR
∏K
i=1 pi . Factoriza-

tion of C2 will reveal primes pR, p1, p2, ..., pK from which the original R field and

15

voter’s keys (key1, key2, ..., keyK) can be constructed. If C1 =
⊕K

i=1 keyi ⊕ R
equation holds, it will mean that no ”blind” cheating was done against that bal-
lot. If the equation will not hold, it means that any of mix parties changed the
ballot by replacing some ciphertexts or R field or ”check” element. The malicious
mix parties can be discovered by tracing all the problematic ballots by asking
each mix party to reveal how it shuffled and re-encrypted the faulty ballots.

In table 3 we compare our mix net with the fastest secure mix network [8].

Scheme Re- Proof and Prelimi- Decrypt
encrypt verification nary work

Polynomial scheme [8] 2N 8N(2K-1) 0 (2+4K)N
Self-proving mixing(this paper) (K+2)N 0 ≈ (N/α)K 4KN

Table 3: Cost per server(for a total of K server) of mixing N items with different
mix schemes,measured in number of exponentiations.

The cost of re-encryption is higher in our scheme than in others, but we dramat-
ically save in the mix proof and verification steps, actually we do not perform
such steps at all. Furthermore, the re-encryption exponentiations can be pre-
computed. Our mixing scheme can take advantage of the speed-up techniques
proposed in [19] for multiple exponentiations with respect to a fixed base. These
techniques, based on addition chains, significantly reduce the cost of one expo-
nentiation. This amounts to a very significant speed-up. Note that our scheme
is not robust against decryption server failure, because all of them must be at
place to decrypt voter keys. To achieve fault tolerance, each decryption server
is required to distribute the shares of its secret key in a verifiable way [30] to
the other decryption servers before mixing begins. In case any server refuses to
properly decrypt, a quorum of remaining honest decryption servers could recover
this servers secret key and perform decryption in its place.

5 Conclusion

In this paper a new ballot casting scheme is proposed where each voter encrypts
his vote with his secret keys and shares the keys between trustees so that the vote
can be decrypted where all keys are available. This scheme provides ballot casting
assurance to the voter, who has minimal computational ability. The scheme
presented in this paper is one of the few existing e-voting schemes providing
ballot-casting assurance to unaided voter. Our scheme yielded us to novel mix
construction, which seems very attractive because of its efficiency. It is briefly
shown that proposed mix network guaranties the integrity of elections, but the
full analysis of presented mix network is beyond the scope of this paper. We

16

suppose that presented approaches of ballot casting and mix verification methods
have great potential and must be developed further. For example it is interesting
what another symmetric encryption method can be used instead of XOR, which
can improve the usability of the scheme.

References

1. Taher El Gamal. A public key cryptosystem and a signature scheme based on dis-
crete Logarithms. In George R. Blakley and David Chaum, editors, Advances in
Cryptology - CRYPTO ’84, volume 196 of LNCS, pages 10-18, 1984

2. Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to iden-
tification and signature problems. In Andrew M. Odlyzko, editor, Advances in
Cryptology-CRYPTO ’86, volume 263 of LNCS, pages 186-194, 1986.

3. D. Chaum and T. Pedersen. Wallet databases with observers. In Proc. of Crypto’92,
pp. 89-105.Springer-Verlag, 1993. LNCS 740.

4. D. Chaum. Secret Ballot Receipts and Transparent Integrity Better and less-costly
electronic voting at polling places. http://vreceipt.com/article.pdf, 2004.

5. D. Chaum. Untraceable electronic mail, return addresses, and digital pseudonyms.
In Communications of the ACM, 24(2):84-88, 1981.

6. Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612-613,
1979.

7. D. Boneh, P. Golle. Almost Entirely Correct Mixing With Application to Voting.
8. A. Neff. A verifiable secret shuffle and its application to E-Voting. In Proc. of ACM

CCS’01, pp. 116-125. ACM Press, 2001.
9. J. Furukawa and K. Sako. An efficient scheme for proving a shuffle. In Proc. of

Crypto ’01, pp. 368-387. Springer-Verlag, 2001. LNCS 2139.
10. P. Golle, S. Zhong, D. Boneh, M. Jakobsson, A. Juels; Optimsitic mixing for exit-

polls, in Y. Zheng, ed., ’Advances in Cryptology (Asiacrypt 2002)’, Vol. 2501 of
LNCS, Springer-Verlag

11. M. Jakobsson, A. Juels and R. Rivest. Making mix nets robust for electronic voting
by randomized partial checking. In Proc. of USENIX’02.

12. D. Wikstrom. Four practical attacks for ”optimistic mixing for exit-polls”, Tech-
nical Report T2003-04, Swedish Institute of Computer Science.

13. C. Park, K. Itoh and K. Kurosawa. Efficient anonymous channel and all/nothing
election Scheme. In Proc. of Eurocrypt 93, pp. 248-259. Springer-Verlag, 1993. LNCS
765.

14. W. Ogata, K. Kurosawa, K. Sako and K. Takatani. Fault tolerant anonymous
channel. In Proc. of ICICS 97, pp. 440-444, 1997. LNCS 1334.

15. K. Sako and J. Kilian. Receipt-free mix-type voting scheme. In Proc. of Eurocrypt
95. Springer-Verlag, 1995. LNCS 921.

16. M. Abe. Universally verifiable mix-net with verification work independent of the
number of mix-servers. In Proc. of Eurocrypt 98, pp. 437-447. Springer-Verlag, 1998.
LNCS 1403.

17. Tal Moran and Moni Naor. Receipt-free universally-verifiable voting with everlast-
ing privacy. In Advances in Cryptology CRYPTO 2006, volume 4117 of Lecture
Notes in Computer Science, pages 373392, August 2006

18. M. Jakobsson and A. Juels. Millimix: mixing in small batches. DIMACS Technical
Report 99-33.

19. M. Jakobsson. Flash mixing. In Proc. of PODC 99, pp. 83-89. ACM, 1999.

17

20. B. Adida and C. A. Neff. Efficient receipt-free ballot casting resistant to covert
channels. In EVT/WOTE, 2009.

21. T. Pedersen. A Threshold cryptosystem without a trusted party. In Proc. of Eu-
rocrypt91,pp. 522-526, 1991.

22. Y. Tsiounis and M. Yung. On the security of ElGamal based encryption. In Proc.
of PKC 98

23. M. Stadler, Publicly verifiable secret sharing. Proc. Eurocrypt ’96, pp. 190-199.
24. Moni Naor and Adi Shamir. Visual cryptography. In EUROCRYPT, pages 112,

1994.
25. Stefan Droste. New results on visual cryptography. In Neal Koblitz, editor,

CRYPTO, volume 1109 of Lecture Notes in Computer Science, pages 401415.
Springer, 1996.

26. Quang Viet Duong and Kaoru Kurosawa. Almost ideal contrast visual cryptogra-
phy with reversing. In Tatsuaki Okamoto, editor, CT-RSA, volume 2964 of Lecture
Notes in Computer Science, pages 353365. Springer, 2004.

27. C. Andrew Neff. Practical High Certainty Intent Verification for Encrypted Votes.
28. Tal Moran and Moni Naor. Receipt-free universally-verifiable voting with everlast-

ing privacy. In Cynthia Dwork(Editor), CRYPTO 2006, volume 4117 of Lecture
Notes in Computer Science, pages 373392.

29. Ben Adida and Andrew Ne. Ecient receipt-free ballot casting resistant to covert
channel. In EVT’09, 2009.

30. M. Stadler, Publicly verifiable secret sharing. Proc. Eurocrypt ’96, pp. 190-199.

A Proof of ”Check” Element’s Correct Computation

When casting the ballot will contain 2K ElGamal ciphertexts. The messages un-
der K of them are opened, and that ciphertexts are also augmented with Chaum-
Pedersen proofs of correct encryption. Lets denote the remaining K ciphertexts
by (G1,M1), (G2,M1), · · · , (GK ,MK) where (Gi,Mi) = (gri , piY rii). There is
also one special element (G0,M0) we called ”check” element, which in case of
being correctly formed, must be equal to (gr0 , pR(p1p2 · · · pK)2Y r01 Y r02 · · ·Y

r0
K).

Lets see how voting machine can provide zero-knowledge proof that (G0,M0) is
correctly formed without revealing p1, p2, · · · , pK , but just using the ciphertexts
(G1,M1), (G2,M1), · · · , (GK ,MK). At first P generates random value s and pro-
vides to verifier 2 values (gs, Y S1 Y

S
2 · · ·Y SK) = (Gs,Ms). Then a challenge c is

given to P. Acquiring the challenge P computes and gives to V the following K
values

z1 = c(2r1 − r0) + s
z2 = c(2r2 − r0) + s

...
zK = c(2rK − r0) + s

V computes the following quantity - A =

pR ·
K∏
i=1

(Mi)2)

M0
.

If M0 is formed as it should be, then we will have the following equality A =

18

Y
(2r1 − r0)
1 Y

(2r2 − r0)
2 · · ·Y (2rK − r0)

K . The verifier needs to check the follow-
ing equations to be sure that the Voting machine didn’t cheat while forming
(G0,M0) or providing the values z1, z2, · · · , zK .

A ·Ms =
∏K
i=1 Y

zi
i

gz1 = G2c
1 ·Gs

gz2 = G2c
2 ·Gs

...
gzK = G2c

K ·Gs

Fiat-Shamir hash trick is used to generate challenge c in non-interactive way
- c = H(g‖Y1Y2 · · ·YK‖gs‖Y S1 Y S2 · · ·Y SK). Note that the verification of the proof
requires 3K exponentations, but the generation of the proof by Voting Machine
requires only 2 exponentiations.

