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Abstract. We prove that if one can predict any of the bits of the input to an elliptic curve based
one-way function over a finite field, then we can invert the function. In particular, our result implies
that if one can predict any of the bits of the input to a classical pairing-based one-way function with
non-negligible advantage over a random guess then one can efficiently invert this function and thus,
solve the Fixed Argument Pairing Inversion problem (FAPI-1/FAPI-2). The latter has implications on
the security of various pairing-based schemes such as the identity-based encryption scheme of Boneh–
Franklin, Hess’ identity-based signature scheme, as well as Joux’s three-party one-round key agreement
protocol. Moreover, if one can solve FAPI-1 and FAPI-2 in polynomial time then one can solve the
Computational Diffie–Hellman problem (CDH) in polynomial time.
Our result implies that all the bits of the functions defined above are hard-to-compute assuming these
functions are one-way. The argument is based on a list-decoding technique via discrete Fourier trans-
forms due to Akavia–Goldwasser–Safra as well as an idea due to Boneh–Shparlinski.
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1 Introduction

One-way functions (OWF) are functions that are easy to compute but hard to invert. Yet, the definition of
a one-way function does not say much about the security of a particular predicate over the input of this
function. What if, for instance, the least significant bit is easy to compute? In this case, one might be able to
leak partial information if one hides the secret key using this one-way function. Hence, proving that partial
information is hard to predict is of primary interest.

In this paper, we study hardness of computing individual bits for one-way functions whose domains are
subgroups of points on elliptic curves. Before we ask any question about extracting bits from the input
of such functions, we need to specify a binary representation of the points of the subgroup. This amounts
to specifying a particular short Weierstrass equation (model) representing the isomorphism class of the
elliptic curve and then specifying a binary representation for the finite field to obtain a representation of
the coordinates of the points on this Weierstrass model. Since two distinct short Weierstrass equations could
represent the same isomorphism class, it is important to distinguish between elliptic curves (taken up to
isomorphism) and short Weierstrass equations.

From the point of view of the hardness of classical computational problems in cryptography (e.g., the
elliptic curve discrete logarithm problem or the Diffie–Hellman problem), it makes no difference which short
Weierstrass representation one chooses for a given isomorphism class since a solution of the problem on one
Weierstrass representation yields (via the isomorphism transformation) a solution on any other Weierstrass
representation for the same isomorphism class of elliptic curves. Yet, knowing that one can predict the least
significant bit of the input for a particular Weierstrass equation does not necessarily imply that one can
predict with the same advantage the least-significant bit on another short Weierstrass equation representing
the same curve.

Suppose that we are interested in defining a function whose domain is a particular subgroup of points
G ⊆ E(Fp) of Fp-points on the curve. By an efficiently computable elliptic curve based function from G to
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a set Y we mean a function f : G → Y that can be efficiently computed on any of the short Weierstrass
representations of G and that is independent of the short Weierstrass representation for E. In other words,
it is a function on the isomorphism class of E. Our main example for elliptic curve based functions will be
functions arising from classical elliptic curve cryptographic pairings: if ê : G × G → GT is a cryptographic
pairing and if Q ∈ G, then fQ : G → GT defined by fQ(P ) := e(P,Q) is an elliptic curve based function.
This function is conjectured to be one-way and is essential in Boneh and Franklin’s identity-based encryption
scheme (IBE) [5]. The one-wayness of fQ (a problem known as the Fixed Argument Pairing Inversion
2 (FAPI-2)) is also linked to the security of Joux’s three-party one-round key agreement protocol [23] and
to the identity-based signature scheme by Hess [19]. This problem and potential approaches to solve it is
studied in [10]. More generally, the hardness of fQ is linked to the hardness of the bilinear Diffie–Hellman
problem (BDH) [5].

In our main result (Theorem 1), we show that given an elliptic curve based function, if one can predict
(with non-negligible advantage over the point in G as well as the short Weierstrass equation for E) the kth
bit of the input to f then one can efficiently invert f . More precisely, we consider an elliptic curve based
function f : G → Y on a cyclic subgroup G ⊆ E(Fp) of points and we show that if there is an algorithm
that takes as input f(R) for some hidden element R ∈ G and a short Weierstrass model for E and predicts
the kth bit of the x-coordinate of R on that model, then we can invert f (here, the prediction algorithm is
imperfect and the only requirement is that it works with non-negligible advantage measured over a random
point R ∈ G as well as a random short Weierstrass equation representing E). The major consequence of our
result is that all the bits of the input to the pairing-based one-way function are hard-to-compute assuming
that FAPI-2 is hard. More generally, this result applies to any elliptic curve based one-way function. Our
proof uses methods developed by Akavia et al. [2] based on list-decoding via discrete Fourier transforms.
We introduce a new code, the elliptic curve multiplication code, similar to the multiplication code presented
in [2] but whose predicates are evaluated over different short Weierstrass equations. We show that, given
access to the kth bit of the x-coordinate of R, we have access to a noisy codeword that can be list-decoded
to recover R resulting in an inversion of the one-way function. We believe this code might be of independent
interest.

1.1 Previous Work

The first hard-to-compute predicate for a one-way function was found by Blum and Micali [4] for the discrete
logarithm (DL) one-way function over a finite field Fp. Subsequently, the question of constructing predicates
that are hard-to-compute from one-way functions was studied extensively. For instance, Håstad and Näslung
showed that every bit in the RSA [34] one-way function is hard-to-compute [17] using a result of Alexi, Chor,
Goldreich and Schnorr [3]. Similarly, for the DL one-way function, Håstad, Schrift and Shamir showed that
all the bits are hard-to-compute if the DL is taken modulo a Blum integer [18] following the work of Schrift
and Shamir [37]. By changing the way the bits are represented, Schnorr showed that almost all of the bits in
the DL function are hard-to-compute [36]. A similar hardness result (independent of the bit representation)
was proven in [17]. The last two results also hold for the elliptic curve discrete logarithm (ECDL). For the
elliptic curve Diffie–Hellman problem, the hardness of the LSB of the x- and y-coordinates has been studied
as well [6,22].

However, all these results apply to a specific one-way function and have to be significantly modified to
be used on another OWF (or sometimes cannot be modified at all). Thus, finding generic hard-to-compute
predicates that apply to more general collections of one-way functions is highly desirable [14,13].

In 2003, Akavia, Goldwasser and Safra presented a new method to prove that some predicates are hard-
to-compute for a one-way function [2]. Their work follows the work by Goldreich and Levin [14]. Using their
methodology, security results can be proven for entire classes of functions. Furthermore, it is elegant to use
and hides the cumbersome bit manipulations that appeared in the previous proofs. The method relies on the
construction of a code that encodes the preimages of the one-way function we try to invert. This means that
given a one way function f : X → Y and a predicate P (x) for x ∈ X , we construct a code CP that associates
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to x ∈ X a codeword CP
x ∈ CP . If we have access to a corrupted codeword w (which we can get through the

bit prediction oracle) and if there is a PPT algorithm that computes a list of all x ∈ X such that CP
x is close

to w (in the sense of Hamming distance), then the predicate P is hard-to-compute for f .

The method is used to prove the security of certain bits in RSA, in the Rabin cryptosystem [33], in the
DL problem and in the ECDL problem. More precisely, one can prove the security of the O (log logn) least
and most significant bits of these functions, where n is the size of the domain of the one-way function.

In 2009, Morillo and Ràfols [28] extended these results and were able to prove the security of all bits in
RSA, Rabin and DL for prime orders or RSA moduli using a careful analysis of the Fourier coefficients of
the function that maps an element of Z/nZ to the value of the kth bit of its corresponding representative in
[0, n− 1]. They also extended the result to the Paillier trapdoor permutation [32].

Finally, previous results exist on bit-security for pairing-based protocols [11,35,41] as well as for other bit
security results [15,16,29,30]. For instance, a version of the hidden number problem [6,7,8,9,20,26,31,39,40]
has been studied by Galbraith et al. in [11] shedding some light on the security of protocols such as Joux’s
three-party key-agreement protocol [23]. Yet, this is not directly related to FAPI-2.

Overview. The paper is organized as follows: in Section 2, we introduce basic definitions and present our
main theorem. In Section 3, we recall basic notions from discrete Fourier transforms on abelian groups used
to prove our theorem as well as two important properties from list-decoding, namely Fourier concentration
and recoverability. We also mention one of the key ingredients - an algorithm due to Akavia–Goldwasser–
Safra that efficiently recovers the heavy Fourier coefficients of a noisy codeword. In Section 4, we prove
our main theorem by introducing a new code that we call the elliptic curve multiplication code (ECMC)
and by showing that it satisfies the two properties by using techniques due to Boneh–Shparlinski as well
as Morillo and Ràfols. We explicitly present the full reduction algorithm by referring to the appendix for
various technical details. In Section 5, we show how our result applies to pairing-based one-way functions
and also discuss the implications.

2 Main Theorem

2.1 Preliminaries

Let p be a prime and let E be an elliptic curve over Fp. Throughout, we always represent the elements of Fp

via the binary representations of the integers {0, 1, . . . , p− 1}.

In order to discuss the individual bits of a point on E, we fix a short Weierstrass equation W : y2 =
x3 + ax + b, a, b ∈ Fp, 4a

3 + 27b2 6= 0 representing E. Let W(E) be the set of all such short Weierstrass
equations. Two short Weierstrass equations y2 = x3+ax+b and y2 = x3+a′x+b′ represent the same elliptic
curve E over Fp if and only if there exists an element λ ∈ F×

p such that a′ = λ4a and b′ = λ6b. Hence, the
set W(E) is in bijection with F×

p . For a point R ∈ E(Fp) and W ∈ W(E), the x- and y-coordinates of R on
the short Weierstrass model W are denoted by (RW )x and (RW )y, respectively. Once a short Weierstrass
equation W : y2 = x3 + ax + b is fixed, we denote the short Weierstrass equation y2 = x3 + λ4ax + λ6b by
Wλ. Given any point Q on W , the point Qλ = (λ2x, λ3y) is on Wλ for any λ ∈ F×

p .

Next, a function ν : N → R is called negligible if for every constant c ∈ R>0, there exists k0 ∈ N such that
|ν(k)| < k−c for all k > k0. A function ρ : N → R is non-negligible if there exists a constant c ∈ R>0 and a
k0 ∈ N such that |ρ(k)| > k−c for all k > k0.

Remark 1. Note that a function being non-negligible is a stronger requirement than a function not being
negligible.1 By the above definitions, every non-negligible function is not negligible. However, there are
functions that are not negligible, but are not non-negligible. For example, take any non-negligible function

1 Confusing the two notions seems to be a common mistake in the cryptographic literature.
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f : N → R and define the function

g(n) =

{
0 if n is even,

f(n) otherwise.

Obviously, g is neither negligible nor non-negligible.

Let X be a finite set and let D be a probability distribution on X . We write x ∈D X if the element x is
chosen according to the distribution D from X . We now recall some basic notions from cryptography:

Definition 1 (One-way function). A function f : X → Y is a one-way function (OWF) if the following
conditions hold:

– Given x ∈ X , one can compute f(x) in polynomial time in log |X |,
– For every probabilistic polynomial time (PPT) (in log |X |) algorithm A, there exists a negligible function

νA, such that
Pr[f(z) = y|y = f(x), z = A(y)] < νA(log |X |) ,

where the probability is taken over x ∈ X chosen uniformly at random. In other words, for every PPT
(in log |X |) algorithm A, the advantage to invert f is negligible.

Remark 2. When we are dealing with complexities, we consider sets in their bit representation as a computer
would do. For instance, in the above definition, we can see the function f as f : {0, 1}n → {0, 1}m for m,n ∈ N.
This means that, f is one-way if one can compute f(x) in poly(n) time and if there is no PPT algorithm
that can find a preimage in poly(n) time.

Definition 2 (Elliptic curve based OWF). A one-way function whose domain is a subgroup G ⊆ E(Fp)
is called elliptic curve based OWF if its output does not depend on the short Weierstrass equation representing
the isomorphism class2 of E.

Definition 3 (majg). Given a boolean function g : X → {a1, a2}, we define

majg := max
b∈{a1,a2}

Pr
x∈UX

[g(x) = b] .

In other words, majg is the probability of the most probable of the two outcomes. This notion is useful when
we deal with biased predicates.

Remark 3. For the rest of the paper, we will be using the majority values of the predicates Bk on Fp that
return the kth least significant bit. If x ∈ Fp is viewed as an element of [0, p − 1] then we will be using
δp(k) := majBk

for the probability of occurrence of the majority value.

Definition 4 (Efficiently computable predicate). A boolean predicate P : X → {0, 1} is efficiently
computable with respect to a one-way function f : X → Y if there exists a PPT (in log |X |) algorithm A that
can compute P (x) from f(x) with a non-negligible advantage over the majority value, i.e., such that

Pr
x∈UX

[A(f(x)) = P (x)] ≥ majP +
1

poly(log |X |)
,

for some polynomial that is independent of |X |.

Definition 5 (Hard-to-compute predicate). A boolean predicate P is hard-to-compute with respect to
a one-way function f if it is not efficiently computable.

Remark 4. Note that often, the term hard-core predicate is misused for hard-to-compute predicate. In this
paper, we never use the term hard-core predicate (which, to the best of our knowledge, means that every
algorithm that predicts P has negligible advantage over a random guessing; the latter is a strong definition
and is not suitable for computational purposes). The difference between hard-core and hard-to-compute
comes from the difference between a non-negligible function and a function that is not negligible as showed
before.
2 Here, by an isomorphism class of E we really mean the Fp-isomorphism class.
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2.2 Main Result on Hard-to-compute Bits

Throughout, we consider bits that take values in {±1} instead of {0, 1} where we substitute −1 for 1 and 1
for 0, i.e., the new value is (−1)b with b ∈ {0, 1}. For a prime field Fp, let Bk : Fp → {±1} be the predicate
returning the value of the kth bit of x ∈ Fp viewed as an integer in {0, 1, . . . , p− 1}. Suppose that E is an
elliptic curve over Fp and G ⊆ E(Fp) is a subgroup of prime order n of cryptographically meaningful size
(i.e., n = Θ(p)).

Let R ∈ G be a hidden point, let Y be any set and let f : G → Y be a one-way function. Suppose that
we have an imperfect oracle Uk that takes as input a short Weierstrass equation W ∈ W(E) and the value
f(R) ∈ Y and predicts Bk((RW )x) with non-negligible advantage over the majority value δp(k) (here, the
advantage is taken over a random short Weierstrass equations W ∈ W(E) and over a random point R ∈ G).
Then, we show that we can efficiently invert f .

Before we state precisely the theorem, we rigorously define the advantage of the bit-prediction oracle Uk:

Definition 6 (Advantage). We say that Uk has advantage ǫ in predicting the predicate Bk of the x-
coordinate of the input R ∈ G of the one way function f if

Advx,kf (Uk) :=

∣∣∣∣∣∣
Pr

W∈UW(E)
R∈UG,z

[Uk(W, f(R); z) = Bk((RW )x)]− δp(k)

∣∣∣∣∣∣
> ǫ ,

where z is a random variable corresponding to the random coins used by the oracle Uk. Similarly, we define
the advantage Advy,kf (Uk) of predicting the kth bit of the y-coordinate of the input point R to f .

We are now ready to state the main theorem:

Theorem 1. Let k ≥ 0 be an integer and let ǫ ∈ (0, 1). Let E and G be as above (i.e., G is a subgroup of
prime order n = Θ(p)). Let Y be any set and let f : G → Y be an elliptic curve based one-way function on
E. Let Uk(W, v; z) be an algorithm that takes as input W ∈ W(E), v ∈ Y and outputs an element of {±1}

in time T . Assume that Advx,kf (Uk) > ǫ . Then, there exists an algorithm A that inverts f : G → Y in time

T · poly(log p, 1
ǫ ) for some polynomial that is independent of p, E, G, and ǫ.

Remark 5. One can see from the above theorem that if 1/ǫ = poly(log p) and if T = poly(log p) then one
can invert the function f efficiently (in time polynomial in log p). This means that either the kth bit of the
input to f is hard-to-compute or that the function is invertible.

Remark 6. Note that our result is on average as our argument exploits in an essential way the freedom to
change the short Weierstrass equation. This is why we assume that algorithm Uk works on a non-negligible
fraction of all the short Weierstrass equations W . Ideally, one wishes to fix a short Weierstrass equation W
and prove similar hardness result only on W . This last question appears to be very difficult and out of reach
with the current techniques that one has so far for showing hardness of bits (see also [6] for a similar remark
regarding hardness of computing the least significant bit for Diffie–Hellman secrets).

3 Hard–to–compute Predicates via List-decoding

3.1 Fourier Transforms

In order to describe the general method of Akavia–Goldwasser–Safra, we briefly recall some basic notions
related to Fourier transforms.

Let G be a finite abelian group. If f, g : G → C are functions then their inner product is defined as
〈f, g〉 := 1/|G|

∑
x∈G f(x)g(x). The ℓ2-norm on the space C(G) of all complex valued functions f : G → C

is then ‖f‖2 :=
√
〈f, f〉. A character of G is a homomorphism χ : G → C×, i.e., χ(x + y) = χ(x)χ(y) for
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all x, y ∈ G. The set of all characters of G forms a group Ĝ, the character group. The elements of Ĝ form
an orthonormal basis for the space C(G) (the Fourier basis). One can then describe a function f ∈ C(G)

via its Fourier expansion
∑

χ∈Ĝ〈f, χ〉χ. Equivalently, one can define the Fourier transform f̂ : Ĝ → C of f

by f̂(χ) = 〈f, χ〉. The coefficients f̂(χ) in the Fourier basis {χ}χ∈Ĝ are the Fourier coefficients of f . When

G = Z/nZ, the characters of G are defined by χα(x) := ωαx
n , for α ∈ Z/nZ and ωn := exp(2πi/n). The

weight of a Fourier coefficient f̂(χ) is |f̂(χ)|2. Using these definition, we can define heavy characters with
respect to a function f :

Definition 7 (Heavy characters). Given a function f : G → C and a threshold τ , we denote by Heavyτ (f)
the set of characters for which the weight of the corresponding Fourier coefficient of f is at least τ . In other
words,

Heavyτ (f) := {χ ∈ Ĝ : |f̂(χ)|2 ≥ τ} .

We will frequently approximate a function f ∈ C(G) using subsets Γ ⊂ Ĝ of characters via its restriction:

f|Γ :=
∑

χ∈Γ f̂(χ)χ.

3.2 Codes, Fourier Concentration and Recoverability

When working on an abelian group G, we consider binary codewords of length |G|. Every codeword corre-
sponding to an element x ∈ G will be represented by a function Cx : G → {±1}. If G = Z/nZ then Cx is
represented by (Cx(0), Cx(1), . . . , Cx(n−1)). We define now two properties of codes we will use in our proof.

Definition 8 (Concentration). Let ǫ > 0 be a real number. A function f : G → {±1} is called Fourier

ǫ-concentrated if there exists a set of characters Γ ⊆ Ĝ of size poly(log |G|, 1/ǫ) (for a polynomial that does
not depend on |G|, ǫ or the function f) such that ‖f − f|Γ ‖2 ≤ ǫ.

A code C = {Cx : G → {±1}} is ǫ-concentrated if each of its codewords Cx is Fourier ǫ-concentrated.
In other words, we can approximate with an error at most ǫ every codeword using a polynomial number (in

log |G| and 1/ǫ) of characters χ ∈ Ĝ. A function is called Fourier concentrated if it is ǫ-concentrated for
every ǫ > 0. A code is called Fourier concentrated if all of its codewords are Fourier concentrated.

Definition 9 (Recoverable code). A code C = {Cx : G → {±1}} is recoverable if there exists an algorithm

that takes as input a character χ ∈ Ĝ and a threshold τ and outputs (in time polynomial in log |G| and 1/τ)
the list {x ∈ G : χ ∈ Heavyτ (Cx)} of all codewords having χ as a τ-heavy coefficient.

Using the orthogonality of the characters χ ∈ Ĝ, one shows [2, Lem.1] that if a code C is concentrated,
then a word wx : G → C and a close codeword Cx have at least one heavy Fourier coefficient in common. We
show here a slight modification of this lemma.

Lemma 1 ([2, Lem.1]). Let f : Z/nZ → {±1} be a Fourier concentrated function and let g : Z/nZ → {±1}
such that

Pr
x∈Z/nZ

[f(x) = g(x)] ≥ majf +ǫ , (1)

for some ǫ > 0. Then there exists a threshold τ such that 1/τ is polynomial in 1/ǫ and logn, and ∃χ 6=
0, χ ∈ Heavyτ (f) ∩ Heavyτ (g) .

We omit the proof since it is straightforward from the proof in [2].
In Section 4, we will apply this lemma in the following way: every preimage x ∈ G of the one-way

function we try to invert corresponds to a codeword Cx. First, we recover a noisy version wx of Cx by using
the prediction oracle. If the code is concentrated, the words wx and Cx share at least one heavy coefficient.
Thus, if we can compute this heavy coefficient in polynomial time and if the code is recoverable, then we
can recover x in polynomial time.

One recovers the heavy coefficient using the following theorem:
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Theorem 2 ([2, Thm.6]). There exists a randomized learning algorithm over Z/nZ that, given a function
w : Z/nZ → {±1}, 0 < τ and 0 < δ < 1, returns a list of O (1/τ) characters containing Heavyτ (w) with
probability at least 1− δ (here, the probability is taken over the random coins of the algorithm) and that has
running time 3

Õ

(
log(n) ln2

(1/δ)

τ5.5

)
.

For completeness, we recall the algorithm in Appendix A.

Remark 7. In the language of Akavia et al. [2, §2.3], Z/nZ is a learnable domain. It turns out that any finite
abelian group G is a learnable domain [1].

4 Proof of Theorem 1

We will reduce the proof of Theorem 1 to a list-decoding problem that will be solved using Akavia et al.’s
method. The first step is to properly define a code that reflects our input recovery problem. We explain in
Section 4.1 and Appendix B that the straightforward definition of such a code does not quite work since
the Fourier transforms of the codewords are difficult to analyze from the point of view of concentration
and recoverability. In order to overcome this difficulty, we use an idea motivated by the work of Boneh and
Shparlinski on the Hidden Number Problem that modifies the prediction oracle via extra randomization while
still keeping the non-negligible advantage. This leads us to the definition of the Elliptic Curve Multiplication
Code (ECMC) (Definition 10).

4.1 The Elliptic Curve Multiplication Code (ECMC)

Let Bk : Fp → {±1} be the binary predicate that returns 1 if the kth least significant bit of the argument is
0 and -1 otherwise. A natural way to associate a code to this predicate is to fix a (base) short Weierstrass
equation W ∈ W(E) and a hidden point R and define the codewords

CBk,W
R : Fp → {±1} , CBk,W

R (λ) = Bk(λ
2 · (RW )x) = Bk((RWλ

)x) .

The above definition is natural since the isomorphism class W(E) of short Weierstrass equations consists
precisely of the equations Wλ where λ ∈ F×

p . So, each codeword encodes the kth bit of all representations
of the point R ∈ G on the equations from W(E). In order to study how concentrated these codes are, one
needs precise estimates of the Fourier coefficients of these functions. Yet, the only tool we are aware of that
gives such estimates are standard estimates from analytic number theory on Gauss sums (see Appendix B).

Unfortunately, these are not sufficient to get any information about how concentrated the code is. If one
is able to replace the square term λ2 with a linear term in λ, one could obtain a much better control on the
code (see Appendix C). As mentioned above, we use an idea of Boneh and Shparlinski [6, §5] that modifies
the prediction oracle via further randomization while keeping the advantage non-negligible.

The idea works as follows: suppose that Uk is the prediction oracle from the statement of Theorem 1. Recall
that given a hidden point R ∈ G, the oracle returns an element of {±1} in such a way that Advx,kf (Uk) > ǫ.

If F2
p ⊂ Fp is the set of squares in Fp, let r : F2

p → Fp be a function satisfying r(λ)2 = λ that is chosen
uniformly at random among all such functions. The observation of Boneh and Shparlinski is that one can
define an auxiliary prediction oracle U ′

k using Uk as follows:

U ′
k(Wλ, f(R); z) =




Uk(Wr(λ), f(R); z) if λ ∈ F×

p is a square in F×
p

argmax
b∈{±1}

Pr
x∈UFp

[Bk(x) = b] otherwise .

3 A function is Õ (f(n)) if it is O
(
f(n) · log(f(n))k

)
for some k ∈ N.
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Hence, if λ is not a square, the oracle returns the most common value which is the best random strategy
to guess Bk. We now associate a code to the modified oracle U ′

k rather than to the original oracle Uk and
thus, arrive at the following definition (we include the more general case of binary predicates that are not
necessarily the predicates Bk):

Definition 10 (Elliptic curve multiplication code (ECMC)). Let E be an elliptic curve over Fp

and let P : Fp → {±1} be a binary predicate. Let G ⊂ E(Fp) be a cyclic subgroup. Given a (base) short
Weierstrass equation W : y2 = x3 + ax+ b representing E, the elliptic curve multiplication code is the code
CP,W = {CP,W

R : Fp → {±1}}R∈G defined by

CP,W
R (λ) = P (λ · (RW )x) ,

where RW denotes the tuple (x, y) representing the point R on W .

Remark 8. Reducing the quadratic term λ2 with λ is a big advantage since (as we will show in Section 4.2
and Appendix C), the Fourier transform of Bk(λ) is simpler to analyze for the purpose of studying heavy
coefficients than the Fourier transform of Bk(λ

2). This makes it easier to show that the code CBk,W is Fourier
concentrated and recoverable and, thus, apply the techniques of Akavia et al. to obtain a list-decoding
algorithm.

Lemma 2. Let W ∈ W(E) be a fixed (base) short Weierstrass equation and let Uk be the prediction algorithm
from the statement of Theorem 1. There exists a set S of points R ∈ G satisfying

|S| ≥
ǫ

4
(
1− δp(k)−

ǫ
4

) |G| (2)

such that for every R ∈ S, given fQ(R), we have access to a corrupted codeword wR,W such that

Pr
λ∈UFp

[wR,W (λ) = CBk,W
R (λ)] ≥ δp(k) +

ǫ

4
, ∀R ∈ S . (3)

Proof. Recall that our prediction algorithm Uk satisfies:

Pr
Wi,R;z

[Uk(Wi, f(R); z) = Bk((RWi
)x)] > δp(k) + ǫ . (4)

The latter is equivalent to

Pr
λ,R;z

[
Uk(Wλ, f(R); z) = Bk(λ

2 · (RW )x)
]
> δp(k) + ǫ . (5)

Given a hidden point R ∈ G, define wR,W as follows:

wR,W (λ) =




Uk(Wr(λ), f(R); z) if λ is a square

argmax
b∈{±1}

Pr
x∈UFp

[Bk(x) = b] otherwise,

where r : F2
p → Fp is chosen uniformly at random among all function r : F2

p → Fp satisfying r(λ)2 = λ and
where z is the random coin used by Uk. Using the randomness of r, we estimate

Pr
λ,R;z

[
wR,W (λ) = CBk,W

R (λ)
]
=

=
1

2
Pr

λ∈UF
2
p,

R;z

[
wR,W (λ) = CBk,W

R (λ)
]
+

1

2
Pr

λ/∈F
2
p,

R;z

[
wR,W (λ) = CBk,W

R (λ)
]

=
1

2
Pr

λ′∈UFp,
R;z

[
Uk(Wλ′ , f(R); z) = Bk(λ

′2 · (RW ))
]
+

1

2
δp(k)

>
1

2
(δp(k) + ǫ) +

1

2
δp(k) = δp(k) +

ǫ

2
. (6)
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Next, let S ⊆ G be the subset of all points R ∈ G that satisfy

Pr
λ;z

[wR,W (λ) = CBk,W
R (λ)] > δp(k) +

ǫ

4
.

Points in this set satisfy (3). We now show that the set S satisfies (2). Using (6), we arrive at

δp(k) +
ǫ

2
<

1

|G|

∑

R∈G

Pr
λ;z

[
wR,W (λ) = CBk,W

R (λ)
]

=
1

|G|


∑

R∈S

Pr
λ;z

[
wR,W (λ) = CBk,W

R (λ)
]
+
∑

R∈G\S

Pr
λ;z

[
wR,W (λ) = CBk,W

R (λ)
]



<
1

|G|

(∣∣S
∣∣+
∣∣G\S

∣∣
(
δp(k) +

ǫ

4

))
=

|S|

|G|

(
1− δp(k)−

ǫ

4

)
+
(
δp(k) +

ǫ

4

)
.

Since δp(k) 6= 1, we obtain (2). ⊓⊔

Remark 9. If 1/ǫ = poly(log p) then the above lemma tells us that the kth bit is predictable with non-
negligible advantage over a random guess for a polynomial fraction of all the points R ∈ G.

In the next section, we explain in more detail the two major properties of the ECMC associated to the
kth bit predicates, namely, Fourier concentration and recoverability. This is done via the methods developed
in [28].

4.2 Fourier Concentration of ECMC

In order to gain more control on the size of the Fourier coefficients B̂k(α), and thus, be able to pick the heavy

ones, we use another idea of Morillo and Ràfols: since p is odd, we can assume that α ∈

[
−
p− 1

2
,
p− 1

2

]
.

Consider the following two cases for α:

– When α ≥ 0, we consider δα,k := 2kα− (p− 1)/2 mod p and let λα,k ∈ [0, 2k−1− 1] be the unique integer
for which 2kα = (p− 1)/2 + δα,k + pλα,k .

– When α < 0, we consider δα,k = 2kα+(p+1)/2 mod p and let λα,k ∈ [0, 2k−1− 1] be the unique integer
for which 2kα = −(p+ 1)/2 + δα,k + pλα,k .

For both of the cases, there are unique integers µα,k ∈ [0, r] and rα,k ∈ [0, 2k−1] such that ap
(
α2k − (p− 1)/2

)
=

µα,k2
k + rα,k , where ap(x) = min(x mod p, p − x mod p) for y mod p being taken in [0, p − 1]. From

here, one characterizes (see Appendix C for the details) the asymptotic behavior of |B̂k(α)| by |B̂k(α)|
2 <

O
(
1/(λ2

α,kµ
2
α,k)

)
.

The idea of having the above representation (λα,k, µα,k) is that it is very convenient for picking the heavy
Fourier coefficients: one simply has to pick the coefficients α for which (λα,k, µα,k) is in a box [0, 1/τ ]×[0, 1/τ ]
for τ = poly(log p).

4.3 Recoverability of ECMC and End of Proof

Fix a short Weierstrass equation W ∈ W(E). According to Lemma 2, there exists a subset S ⊂ G of size
determined by (2) and the property that for any R′ ∈ S, we have access to a corrupted codeword wR′,W

satisfying (3). The problem is that our hidden point R ∈ G need not be in S. In order to remedy this, we
repeat the following procedure: we pick a random multiple s ∈ [1, n− 1] and set R′ = sR. Note that when
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s is invertible modulo n, knowing R′ is equivalent to knowing R. Thus, if s is chosen uniformly at random,
we have 1/ poly(log p)-chance of obtaining R′ in the set S.

Suppose for the moment that R′ happens to be in S. One can then use Lemma 1 to deduce that there
exists 0 < τ < 1 for which 1/τ is polynomial in log p and 1/ǫ such that the noisy codeword wW,R′ and

the actual codeword CBk,W
R′ share a τ -heavy Fourier coefficient. Then, we apply the learning algorithm of

Akavia et al. (Theorem 2) to efficiently compute all τ -heavy Fourier characters χβ for the noisy codeword
wR′,W . We then run the recovery algorithm (Algorithm 1) for each of these τ -heavy Fourier coefficients to
decode the hidden R′ and thus, obtain the possible R’s by computing s−1R′. Assuming that wR′,W is Fourier
concentrated, we only have to run this algorithm poly(log p) times, so we get a polynomial time (in log p and
1/ǫ) recovery procedure for R′.

Notice that we have no way of knowing whether R′ ∈ S unless we try to recover the point via the above
recovery procedure. Yet, by using a random choice of s ∈ [1, n− 1] and repeating the procedure poly(log p)
times, weobtain (with high probability) a point R′ in the set S guaranteed by Lemma 2 and thus, prove
Theorem 1.

The method used in our proof is close to the list-decoding method of Akavia et al. [2, Lem. 5] and

was successfully used by Morillo and Ràfols [28, §6]. The reason it works is that the codeword CBk,W
R is

τ -concentrated in ΓR,W = {χβ : β ≡ α · (RW )x mod p, χα ∈ Γ} where Γ is the set of additive characters
χα : Fp → C× where (λα,k, µα,k) is in a small square of size O (1/τ) and lower-right corner at (0, 0), i.e.,
Γ = {χα : λα,k = O (1/τ), µα,k = O (1/τ)}. Here, we will take τ such that 1/τ = poly(log p).

Algorithm 1 The recovery algorithm

Input: An additive character χβ of Fp, a threshold parameter τ with 1/τ ∈ poly(log p) and z ∈ Y such that z = f(R)
for a hidden point R.

Output: The hidden point R ∈ G such that f(R) = z.
1: Calculate Γ ← {α ∈ Fp : λα,k = O (1/τ ), µα,k = O (1/τ )}.
2: for α ∈ Γ\{0} do

3: Compute x← βα−1 mod p
4: if y ∈ Fp exists so that R = (x, y) ∈W (Fp) and f(R) = z then

5: return R
6: end if

7: end for

8: return false.

The above algorithm works in time polynomial in log p because 1) the algorithm from Theorem 2 works
in polynomial time (in log p); 2) the set S from Lemma 2 is a polynomial fraction of all points in G and
hence, a randomly chosen multiple will be recoverable with probability 1/ poly(log p) (so, we need on average
poly(log p) trials to exit the repeat loop). This completes the proof of Theorem 1.

5 Application To Pairing-based One-way Functions

5.1 Pairing-based One-way Functions

We define now a pairing-based one-way function. For an prime n, let E[n] be the subgroup of points of E
of order n (the points in E[n] are defined over the algebraic closure Fp of Fp). Let k be the smallest integer
for which n | pk − 1 (also known as the embedding degree) and let µn be the subgroup of order n of F×

pk . Let

e : E[n]×E[n] → µn be a bilinear pairing, e.g., the Tate or the Weil pairing. Let G := 〈S〉 for an S ∈ E(Fp).
To avoid having e(R,Q) = 1 for all R,Q ∈ G, we need to suitably twist e and define what we refer to as a
cryptographic pairing:
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Algorithm 2 Elliptic curve-based OWF inversion algorithm

Input: An elliptic curve E/Fp, a subgroup G ⊂ E of prime order n = Θ(p), an element z = f(R) ∈ Y for a hidden
point R ∈ G and access to a (noisy) prediction oracle Uk for Bk((RW )x) for W ∈ W(E).

Output: An input point R ∈ G such that f(R) = z.
1: Fix a (base) short Weierstrass equation W ∈ W(E).
2: Choose τ such that 1/τ = poly(log p)
3: Choose a random function r : F2

p → Fp.
4: repeat

5: Choose a random s ∈ [1, n− 1] and set R′ ← sR
6: Apply the algorithm of Theorem 2 to compute Heavyτ (wR′,W ) for the function (noisy codeword) wR′,W from

Lemma 2 defined via r and Uk.
7: for χβ ∈ Heavyτ (wR′,W ) do

8: Run Algorithm 1 with z′ ← zs to try to recover R′

9: if Algorithm 1 does not fail then

10: break

11: end if

12: end for

13: until R′ is recovered
14: return R← s−1R′

Definition 11 (Cryptographic pairing). Let ξ : E → E be a non-trivial endomorphism defined over
an extension field of Fp (ξ is often referred to as a distortion map). We define the cryptographic pairing
ê : G×G → µn as

ê(R,Q) = e(R, ξ(Q)) , R,Q ∈ G .

Here, if G is a cyclic subgroup and if R,Q ∈ G then e(R,Q) will be trivial since e is bilinear and alternating.
The role of the endomorphism ξ is to distort Q in such a way that e(R, ξ(Q)) 6= 1.

A typical example of a cryptographic pairing (see [5]) is a twisted version of the Weil pairing. More
precisely, let p ≡ 2 mod 3 and q > 3 be two primes such that q divides p− 1 and let E be the elliptic curve
over Fp defined by y2 = x3 +1. Let G be the cyclic group generated by a random S ∈ E(Fp) of order q. The
distortion map is defined as ξ(Qx, Qy) = (ζQx, Qy), for ζ ∈ Fp2 , ζ /∈ Fp such that ζ2 + ζ + 1 = 0 (such a ζ
exists as long as X2 +X + 1 has a zero in Fp[X ] which is equivalent to p ≡ 2 mod 3). One could think of
ζ as distorting one of the points so that it is mapped to a point that is outside of the group G and that is
defined over a non-trivial extension of Fp.

Definition 12 (Pairing-based one-way function). Let E be an elliptic curve over Fp with Weierstrass
equation y2 = x3 + ax2 + b and let G ⊆ E[n] be a cyclic subgroup. Let Q ∈ G be a fixed generator and let
ê : G×G → µn be a cryptographic bilinear pairing. We define a function fQ : G → µn by fQ(R) := ê(R,Q),
for Q ∈ G. The preimage R will often be referred to as a hidden point.

The function fQ(R) is believed to be one-way [10,23,5].
Obviously, we can apply Theorem 1 to fQ:

Corollary 1. Let k ≥ 0 be an integer and let ǫ ∈ (0, 1). Let E, G and Q be as above (i.e., G is cyclic of order
n = Θ(p) and Q ∈ G is a generator). Let Uk = Uk(W, v; z) be an algorithm that takes as input W ∈ W(E),

v ∈ µn and outputs an element of {±1} in time T . Assume that Advx,kfQ
(Uk) > ǫ . Then there exists an

algorithm A that inverts fQ : G → µn in time T · poly(log p, 1
ǫ ) for some polynomial that is independent of

p, E, G, ǫ and Q.

5.2 Consequences of our Result

Corollary 1 implies that either every bit of the input of fQ is hard-to-compute or that fQ can be inverted
efficiently, i.e., FAPI-2 is easy. The hardness of FAPI-2 has been related to various problems [10,24,23].
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Definition 13 (BDH). Let ê : G × G → GT be a bilinear pairing, let S be a generator of G and let n be
the order of G. The Bilinear Diffie–Hellman problem (BDH) is the following problem: given 〈S, aS, bS, cS〉,
a, b, c ∈ Z/nZ, compute ê(S, S)abc.

The following relations hold. The hardness of BDH implies the hardness of the computational Diffie-Hellman
problem (CDH) in both G and GT , which imply the hardness of FAPI-2. Recall that CDH in G consists in
computing abS given 〈aS, bS, S〉. The hardness of FAPI-2 implies also the hardness of the discrete logarithm
in GT . Hence, our result implies that if we assume that CDH is hard in both groups, every bit of the input
of fQ is hard-to-compute. Many cryptographic schemes relies on the hardness of BDH or FAPI-2. We show
what implications an easy FAPI-2 would have.

Boneh–Franklin’s Identity-based Encryption Scheme. The security of this well-known scheme [5] relies on the
hardness of BDH. If FAPI-2 is easy, then an adversary can recover the secret key of any user of the system.
Recall that in IBE, the secret key is computed as dID := sQID, where QID is a point dependent on the
identity of the owner of the key and s is the master key. Two points are also public parameters of the scheme:
P , which is a generator of G and Ppub := sP . Hence, ê(Ppub, QID) = ê(sQID, P ) = ê(dID, P ) and using an
inversion algorithm to invert fP , one can recover the secret key of the user associated with ID. Note that
if the algorithm is imperfect, one can easily add some randomness by trying to invert ê(Ppub, QID)r for a
random r instead.

Hess’ Identity-based Signature Scheme. In a similar fashion, it was shown in [10] that one can forge signatures
in Hess’ identity-based signature scheme [19] if FAPI-2 is easy. In this scheme, let s be the master key, U ,
V := sU be parameters and h,H hash functions. A signature of a message m consists in a pair (u, v) where
v := h(m, r), r := ê(R,U)k for a random k, a random R and where u := vSID + kR, with SID = sH(ID).
The signature is verified if r = ê(u, U) · ê(H(ID),−V )v. To forge a signature, an adversary selects a random
r and selects v = h(m, r). Then, using the algorithm for fU he inverts rê(H(ID), V )v = ê(u, U).

Joux’s Tripartite Protocol. In this scheme [23], three parties, A, B and C, pick two elements Q,R ∈ G such
that ê(Q,R) 6= 1 and broadcast respectively (aQ, aR), (bQ, bR) and (cQ, cR) in one round after which every
party can compute the shared secret key ê(Q,R)abc (here, a, b and c are random secrets selected by A, B
and C, respectively). Using an algorithm for fR on ê(aQ, bR), one can recover abQ. The shared secret key is
then ê(abQ, cR).

6 Conclusions

In conclusion, we proved that all the bits of elliptic curve based one-way functions are hard-to-compute. In
particular, we proved that all the bits of the pairing-based one-way function are hard-to-compute assuming
that CDH is hard. We proved our result for the x-coordinate of the point but the result can trivially be
extended to the y-coordinate. In [2], the hardness result is proven for every segment predicate and not
only for some particular bits. Intuitively, a segment predicate over Z/nZ is a predicate that splits Z/nZ in
poly(logn) segments, or a multiplicative shift of it. Our work can be easily extended to prove the hardness of
these predicates using the same ECMC code. There is another important aspect of bit security for the specific
pairing-based one-way function to be studied: instead of considering a prediction oracle that works on an
isomorphism class, we consider an imperfect oracle on an ordinary isogeny class of elliptic curves (i.e., elliptic
curves with the same number of points) as was done in [22] for the least significant bits of the Diffie–Hellman
secrets for elliptic curves. Note that using techniques based on isogeny graphs and rapid mixing of random
walks [21], one can obtain a very strong conclusion for almost every isogeny class: namely, assuming that the
oracle works with non-negligible advantage on a non-negligible fraction of all short Weierstrass equations in
this class then one can solve FAPI-2 for every curve in this class. Proving such a result is the subject of a
forthcoming paper.
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A Computing the Heavy Fourier Characters of a Noisy Codeword

Here, we recall one of the key ingredients used in our paper: an algorithm that, given access to a noisy
codeword w : Z/nZ → {±1} obtained using the prediction oracle, recovers all τ -heavy characters for a given
τ > 0.

The naïve approach to this algorithm is to compute the Fourier transform of w and leave the heavy
Fourier characters. Yet, this approach runs in time O (n logn) which is exponential in logn. We will de-
scribe a polynomial time algorithm due to Akavia–Goldwasser–Safra [2] (see also the Significant Fourier
Transform (SFT) algorithm in [1]). This algorithm builds upon an algorithm of Goldreich–Levin [14] and
extensions of Mansour [27] and Gilbert et al. [12] to more general functions and abelian groups.

A.1 Main Idea

The SFT algorithm is based on a binary search-type procedure that keeps a list of intervals with the property
that every τ -heavy Fourier coefficient is in that list and that the list is not very large. At each step, we split
each of the intervals in the list into two halves and decide whether or not to keep each half by applying
a special procedure called a distinguishing procedure. If the half-interval passes the distinguishing test, it
is added to the new list; otherwise it is discarded. One repeats this procedure logn times until the list
of intervals contains only singletons. In the ideal case, we would like to test whether a subinterval has a
τ -heavy character. Yet, not much is known on how to perform such a test efficiently. Fortunately, a weaker,
but sufficient for our purposes distinguishing procedure has been proposed by Akavia–Goldwasser–Safra (see
[2, §7] and [1, §3] for the technical details).
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The main idea behind the distinguishing procedure is the following: given an interval J ⊆ [0, n− 1], one
wishes to estimate a weighted sum of the type

est(J) =
∑

α∈Z/nZ

cα|ŵ(α)|
2,

where, for α ∈ Z/nZ, cα > 0 is close to 1 for α ∈ J and close to 0 for α /∈ J . To compute this weighted

sum, we use an idea from Fourier analysis: suppose that h is a filter function that satisfies ĥ(α)2 = cα. Since

ĥ ⋆ w(α) = ĥ(α)ŵ(α), where h ⋆ w(x) =
∑

y h(y)w(x − y) is the convolution operator, we have est(J) =

‖ĥ ⋆ w‖22 = ‖h ⋆ w‖22, the latter being a consequence of Parseval’s identity. One is thus left with estimating
‖h ⋆ w‖22: in order to do this, one writes

‖h ⋆ w‖22 = Ex∈Z/nZ

[
Ey∈Z/nZ [h(y)w(x − y)]

]
.

Thus, one can estimate this L2-norm by averaging over random x’s and y’s in Z/nZ. When running the
distinguishing procedure on a interval Ja,b = [a, b], we will consider h(y) := χ−⌊ a+b

2
⌋(y). It is easy to check

that h(y) verifies the desired properties.

Remark 10. The first question to address is what the lower bound on est(J) should be so that we discard
only intervals that do not have a τ -heavy character. It is clear that as long as est(J) < τ then J cannot
contain a τ -heavy character and thus, should be discarded. One also does not want too many intervals in
the final list. One can show (again, using Parseval’s identity) that the number of intervals that are kept is
polynomial in ‖w‖22/τ .

A.2 The SFT Algorithm

The distinguishing algorithm proposed by Akavia–Goldwasser–Safra (see [2, Alg.7.2.4] and [1, §3]) makes all
the steps outlined above explicit. For completeness, we provide the precise pseudo-code of the distinguishing
procedure (Algorithm 4) as well as the full SFT algorithm (Algorithm 3).

Algorithm 3 Heavy characters

Input: A noisy codeword w : Z/nZ→ C, τ > 0 and 0 < δ < 1.
Output: A list L of characters such that |L| = O (1/τ ) and Heavyτ (w) ⊆ L with probability 1− δ over the random

choices made by the algorithm.
1: Coll0 = {[0, n− 1]}; ∀ℓ = 1, . . . , log2 n− 1, Collℓ = ∅
2: for ℓ = 0, . . . , log2 n− 1 do

3: for Ja,b = [a, b] ∈ Collℓ do

4: Run the distinguishing procedure on
[
a, a+b

2
− 1

]

5: If the decision is yes, Collℓ+1 ← Collℓ+1 ∪[a,
a+b

2
− 1]

6: Run the distinguishing procedure on
[
a+b

2
, b
]

7: If the decision is yes, Collℓ+1 ← Collℓ+1 ∪[
a+b

2
, b]

8: end for

9: end for

10: return {α : [α, α] ∈ Coll⌊log2 n⌋}.

B The Fourier Transform of LSB(λ2 mod p)

Let LSB be the predicate associated to the least significant bit (only for this section, it will take values in
{0, 1} coinciding with the values of LSB). We explain how one could analyze directly the code

C(λ) = LSB((RWλ
)x) = LSB(λ2 · (RWλ

)x)
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Algorithm 4 Distinguishing procedure

Input: A noisy codeword w : Z/nZ→ C and an interval Ja,b = [a, b] with b− a = n/2ℓ.
Output: yes or no determining whether Ja,b should be kept or discarded (all intervals containing τ -heavy Fourier

coefficients should be kept)
1: Let ǫ← δτ 1.5/ log n
2: Let m2 ← Θ(ln(1/ǫ)/τ 2) and m1 ← Θ(ln(m2/ǫ)/τ

2)
3: Select x1, . . . , xm2

at random from Z/nZ
4: for r = 1, . . . ,m2 do

5: Choose y1, . . . , ym1
∈U {0, . . . , ℓ− 1} (independently and uniformly at random)

6: end for

7: Compute est(Ja,b)←
1

m2

∑m2

r=1
1

m1

∑m1

s=1
χ
−⌊a+b

2
⌋
(ys)w(xr − ys)

8: If est(Ja,b) ≥ τ/8 return yes; otherwise, return no

via Fourier transforms and why the concentration of this code is more difficult to establish than the ECMC
(analyzed in Appendix C). The argument below was suggested to us by Shparlinski [38].

Let p = 2m+ 1, let ωp(x) := exp(2πix/p) and let u = (RW )x ∈ Fp. Observe that for any 0 ≤ k ≤ m

p−1∑

a=0

ωp(a(2k + 1− λ2)) =

{
p if λ2 ≡ 2k + 1 mod p

0 otherwise .

We thus have

C(λ) =
1

p

m−1∑

k=0

p−1∑

a=0

ωp(a(2k + 1− λ2)) . (7)

The Fourier transform is then Ĉ(α) =

p−1∑

λ=0

ωp(λα)C(λ), so by (7) we have

Ĉ(α) =
1

p

p−1∑

a=0

p−1∑

λ=0

ωp(λα − λ2au)

m−1∑

k=0

ωp(a(2k + 1)) .

Since

∣∣∣∣∣

p−1∑

λ=0

ωp(λα− λ2au)

∣∣∣∣∣ = p1/2 (the latter is a Gauss sum), we have

|Ĉ(α)| ≤ p−1/2

p−1∑

a=0

∣∣∣∣∣
m−1∑

k=0

ωp(a(2k + 1))

∣∣∣∣∣ .

The double sum is known to be O (p log p), so we have |Ĉ(α)| = O
(
p1/2 log p

)
. Unfortunately, the latter is

only an upper bound and is not enough to prove concentration and moreover, to find an efficient way to
detect the heavy coefficients (as we did for the linearized version in Appendix C).

C The Fourier Transform of Bk(λu mod p)

Let ωp = exp (2πi/p) and let Bk : Fp → {±1} be the predicate corresponding to the kth least significant bit
(i.e., Bk(x) = (−1)b, where b ∈ {0, 1} is the kth bit of x considered as an element of [0, p− 1]). Without loss
of generality, we assume that (RW )x 6= 0.
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C.1 Fourier Concentration of C
P,W

R and of P

Recall that the elliptic curve multiplication code is CBk,W
R (λ) = Bk(λ · (RW )x) for any λ ∈ F×

p . We extend

the function CBk,W
R to Fp by CBk,W

R (0) = −1. Hence, we will do Fourier analysis on the additive group Fp

of order p.
Note that if the function CP,W

R is ǫ-concentrated in Γ = {χα} where the α’s are elements of Fp ≃ Z/pZ
then P is ǫ-concentrated in the set ΓW,R = {χβ : β ≡ α · (RW )x mod p}. Thus, the question of Fourier-
concentration for the ECMC reduces to the question of the Fourier-concentration of Bk itself. We thus need
to analyze the Fourier coefficients of Bk : Fp → {±1}.

Bk is Fourier Concentrated. One way to analyze Bk is to note that it is block-alternating, that is, that
it looks like

k = 0 : 1 −1 1 −1 1 −1 1 −1 . . .
k = 1 : 1 1 −1 −1 1 1 −1 −1 . . .
k = 2 : 1 1 1 1 −1 −1 −1 −1 . . .

...

One can then try to compute and estimate the Fourier coefficients of the function represented by each row
and then try to analyze the large coefficients.

Morillo and Ràfols [28] significantly simplify this computation by noticing that if the argument x was
simple an integer (not an integer modp) then Bk(x)+Bk(x+2k) is identically zero and hence, is a constant
function. This fails mod p, but it does not fail too much, so one still has good control over the coefficients.
More precisely, let

g(x) =
Bk(x) +Bk(x+ 2k)

2
. (8)

First, observe that the Fourier transform of Bk(x) is easily related to the one of g(x) by the simple identity

ĝ(α) =
ω2kα
p + 1

2
B̂k(α), α ∈ Z/pZ . (9)

Next, write p = 2k+1r ±m for a unique 0 ≤ m < 2k and r ∈ Z. The Fourier transform ĝ is easy to compute
by considering the following two cases:

Case 1: p = 2k+1r −m. In this case,

g(x) =

{
1 if x ∈ [2k+1(r − 1) + 2k −m, 2k+1(r − 1) + 2k − 1],

0 else,
(10)

so one computes

ĝ(α) =





1
pω

−α(2k+1(r−1)+2k−m)
p

ω−αm
p −1

ω−α
p −1

if α 6= 0,

m
p otherwise.

(11)

Case 2: p = 2k+1r +m. Here,

g(x) =

{
1 if x ∈ [2k+1r, 2k+1r +m− 1],

0 else,
(12)

and in this case,

ĝ(α) =





1
pω

−α(2k+1r)
p

ω−αm
p −1

ω−α
p −1

if α 6= 0,

m
p otherwise.

(13)
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In the two cases, one obtains (using (9))

|B̂k(α)|
2 =

1

p2

sin2
(

mαπ
p

)

sin2
(

απ
p

)
cos2

(
2kαπ

p

) . (14)

Remark 11. It is possible to arrive at this formula directly from analyzing the rows without introducing the
function g(x), but one has to be extra careful when calculating the Fourier transform — especially with the
last incomplete block of 2k digits.

Equation (14) allows Morillo and Ràfols to obtain a precise asymptotic bound for |B̂k(α)|. Recall from
Section 4.2 that ap(x) = min(x mod p, p−x mod p), where y mod p is taken in [0, p−1]. Since for x ∈ [−π, π]

we have x2 −
x4

3
≤ sin2 x ≤ x2, one gets

π2

(
1−

π2

12

)
ap(β)

2 ≤ p2 sin2
(
βπ

p

)
≤ π2ap(β)

2 . (15)

It is now easy to deduce that

(
1

π2
−

1

12

)
ap(mα)2

ap(α)2ap(2kα− p
2 )

2
≤
∣∣∣B̂k(α)

∣∣∣
2

≤
1

π2(1− π2

12 )
2

ap(mα)2

ap(α)2ap(2kα− p
2 )

2
.

In order to gain more control on the size of the Fourier coefficients B̂k(α), and thus, be able to pick the

heavy once, we use another idea of Morillo and Ràfols: since p is odd, we can assume that α ∈

[
−
p− 1

2
,
p− 1

2

]

and let λα,k and µα,k be as in Section 4.2.
One can now give a lower bound for the desired denominator

ap(α)
2ap

(
2kα−

p− 1

2

)
≥ λ2

α,k · µ2
α,k · r2 · 22k+2 ·

1

4
. (16)

From here, one characterizes the asymptotic behavior of |B̂k(α)| by

|B̂k(α)|
2 < O

(
1

λ2
α,kµ

2
α,k

)
. (17)

The upshot of having the above representation is that it is very convenient for picking the heavy Fourier
coefficients: one simply has to pick (λα,k, µα,k) in the box [0, 1/τ ] × [0, 1/τ ] for some 0 < τ < 1 satisfying
1/τ = poly(log p) and then one can easily show that the function fu(λ) = Bk(λu mod p) is τ -concentrated
for every u ∈ F×

p .
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