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Abstract. In this paper, we consider the problem of k-out-of-n secret
sharing scheme, capable of identifying t cheaters. We design a very simple
k-out-of-n secret sharing scheme, which can identify up to t cheaters,
with probability at least 1 − ϵ, where 0 < ϵ < 1/2, provided t < k/2.
This is the maximum number of cheaters, which can be identified by any
k-out-of-n secret sharing scheme, capable of identifying t cheaters1. In
our scheme, the set of all possible ith share Vi satisfies the condition that
|Vi| = |S|/ϵ3n, where S denotes the set of all possible secrets. Moreover,
our scheme requires polynomial computation.

In EUROCRYPT 2011, Satoshi Obana presented two SSCI schemes,
which can identify up to t < k/2 cheaters. However, the schemes require

|Vi| ≈ (n·(t+1)·23t−1·|S|)
ϵ

and |Vi| ≈ ((n·t·23t)2·|S|)
ϵ2

respectively. Moreover,
both the schemes are computationally inefficient, as they require to per-
form exponential computation in general. So comparing our scheme with
the schemes of Obana, we find that not only our scheme is computation-
ally efficient, but in our scheme the share size is significantly smaller than
that of Obana. Thus our scheme solves one of the open problems left by
Obana, urging to design efficient SSCI scheme with t < k/2.

In CRYPT0 1995, Kurosawa, Obana and Ogata have shown that in any
SSCI scheme, |Vi| ≥ |S|−1

ϵ
+ 1. Though our proposed scheme does not

exactly matches this bound, we show that our scheme asymptotically
satisfies the above bound. To the best of our knowledge, our scheme is
the best SSCI scheme, capable of identifying the maximum number of
cheaters.
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1 Introduction

Consider the following problem: there exists a set of n parties, denoted by P =
{P1, . . . , Pn} and a special party called dealer, denoted by D. The dealer has
a secret, which he wants to share among the n parties in such a way, that the
following two conditions are satisfied:

1 In the rest of the paper, we call these schemes as Secret Sharing with Cheater
Identification (SSCI).



1. Correctness: Any set of k or more parties can reconstruct the secret by
pooling their shares.

2. Perfect Secrecy: Any set of k − 1 or less number of parties will have no
information about the secret (in information theoretic sense) by pooling
their shares.

The above problem is the well known k-out-of-n secret sharing (SS) problem,
which was first formulated by Shamir [Sha79] and independently by Blackley
[Bla79]. It is one of the fundamental problem in cryptography and has been
extensively studied over the past three decades. Any SS scheme consists of the
following two phases:

1. Sharing Phase: During this phase, D shares the secret among the n parties.
2. Reconstruction Phase: In this phase, a set of parties (of size at least k) pool

their shares to reconstruct the secret.

In the traditional SS schemes (like the one by Shamir [Sha79]), it is assumed
that the parties will submit correct shares during the reconstruction phase. How-
ever, this does not model the real life scenario because in practice, some of the
parties may produce incorrect shares, in order to ensure that the honest parties
reconstruct incorrect secret.

Preventing parties from producing incorrect shares is one of the hot research
topics in the area of secret sharing. Tompa and Woll [TW88] first presented an SS
scheme, which can detect cheaters, when invalid shares are produced during the
reconstruction phase. This work is followed by several other works (for example,
[Ara07,AO07,CDF+08,CPS02,OA06,OKS06]) where upper bound on the size of
the shares are derived and efficient schemes are presented. However, all these
schemes can only detect cheating, without identifying the exact identity of the
cheaters, who submitted incorrect shares.

Secret Sharing with Cheater Identification (SSCI) : Secret sharing schemes,
which can not only detect the cheaters, but can also identify the cheaters (who
submitted incorrect shares) is another interesting area of research. McElice and
Sarwate [MS81] were the first to point out cheater identification in secret shar-
ing schemes. They observed that the list of shares of a k-out-of-n Shamir secret
sharing scheme [Sha79] is nothing, but the components of a Reed-Solomon code
[MS78] with dimension k. So if k + 2t+ 1 shares are revealed during the recon-
struction phase, out of which at most t could be corrupted, then by applying the
standard Reed-Solomon decoding algorithm, we can identify the exact identity
of the t cheaters, who produced invalid shares. But this process requires the
availability of more than k shares during the reconstruction phase. The ques-
tion is whether we can do the cheater identification with the minimum number
of shares (namely k), which are required to reconstruct the secret. SSCI is the
answer to this question.

In the model of SSCI, there exists a set of n parties, denoted by P =
{P1, . . . , Pn} and a special party called the dealer, denoted by D. There exists
two different centralized adversaries, denoted by ALis and ACheat respectively.



The adversary ALis is a static, computationally unbounded passive adversary,
who can control any k − 1 out of the n parties. The parties under the control
of ALis will honestly follow the protocol, but at the same time will leak com-
plete information about their internal state and computation to ALis. On the
other hand, the adversary ACheat is a static, computationally unbounded active
adversary, who can control any t out of the n parties in Byzantine fashion. Thus
ACheat will not only have full information about the computation and com-
munication of the parties under its control, but ACheat can also dictate these
parties to behave in any arbitrary manner during the protocol. Moreover, it is
assumed that ALis does not co-operate with ACheat. This implies that ACheat

will not get any information about the computation and communication of the
parties, which may be under the control of ALis, but not under the control of
ACheat. Similarly, ALis will not get any information about the computation and
communication of the parties, which may be under the control of ACheat, but not
under the control of ALis. To illustrate this, consider P = {P1, . . . , P5} and let
t = 3 and k = 4. Then it may happen that ALis controls P1, P2 and P3, while
ACheat controls P3, P4 and P5. So ALis will only know the computation and
communication of the parties P1, P2 and P3, with no access to the computation
and communication of the parties P4 and P5. Similarly, ACheat will have access
to the computation and communication of the parties P3, P4 and P5, with no
access to the computation and communication of the parties P1 and P2.

Any SSCI scheme consists of the following two phases:

1. Sharing Phase: During this phase, D takes the secret S and generates n
shares for the secret, denoted by Sh1, . . . , Shn and assign Shi to party Pi.

2. Reconstruction Phase: During this phase, a set of m parties, where m ≥ k,
publicly produce their shares to reconstruct the secret. These m parties can
be any m parties out of the n parties.
(a) Then a cheating identification algorithm is publicly applied on the m

shares produced by the m parties to identify the invalid shares.
(b) Let L be the set of parties, who are identified to be the cheaters by the

cheater identification algorithm.
(c) If (m−|L|) ≥ k, then a publicly known reconstruction function, say Rec,

is applied on the shares produced by the parties not in L, to reconstruct
a secret Ŝ. Finally, Ŝ and L is the output of the reconstruction phase.

(d) If (m−|L|) < k, then ⊥ and L is the output of the reconstruction phase.

Any SSCI scheme should satisfy the following properties:

1. Perfect Secrecy: At the end of the sharing phase, the adversary ALis should
not get any information about the secret S (in information theoretic sense)
from the shares of the parties (at most k − 1) under its control.

2. Correctness: The following two conditions must be satisfied:
(a) During the reconstruction phase, if any party Pi is under the control of

ACheat and produces incorrect share Sh′
i ̸= Shi, then except with error

probability ϵ, Pi will be identified as a cheater and will be included in
the set L. Here 0 < ϵ < 1/2.



(b) During the reconstruction phase, if any Ŝ ̸= ⊥ is reconstructed, then
S = Ŝ, except with error probability ϵ, where 0 < ϵ < 1/2.

We next note down few important notes.

Note 1. (A Note on the Correctness Conditions): Note that the two con-
ditions under Correctness are equivalent, in the sense that one implies the other.
This is because an incorrect secret Ŝ ̸= S is reconstructed if and only if a party
under the control of ACheat, is successfully able to produce an invalid share,
without being identified by the cheater identification algorithm. 2

Note 2. (A Note on the Rushing Adversary): Notice that we assume that
both ALis and ACheat are static and does not follow rushing strategy. Specifi-
cally, during the reconstruction phase, if some party Pi is under the control of
ACheat, then Pi does not wait for the honest parties to reveal their shares, and ac-
cordingly modify his share, before producing his share (possibly corrupted). This
is in contrast to the well known rushing strategy (see, for example [GIKR01]),
where the corrupted Pi would have first listened to the shares revealed by the
honest parties and accordingly, would have modified his share and then would
have produced his share (possibly corrupted). This is in accordance with all the
previous SSCI schemes, where rushing is not allowed. Thus, the share produced
by any cheater during the reconstruction phase will be completely independent
of the shares produced by the honest parties.

Interestingly, our scheme can be easily modified to deal with the rushing
strategy, provided one extra round of communication is allowed during the re-
construction phase. We will discuss more about this during the formal discussion
of our scheme. 2

Note 3. (Difference Between SSCI and Verifiable Secret Sharing (VSS)):
In any VSS scheme [CGMA85], it is assumed that D may also be corrupted and
he may distribute inconsistent shares. Moreover, during the reconstruction phase,
the corrupted parties may produce invalid shares. So during the sharing phase,
the parties have to interact with each other to ensure that D has distributed
consistent shares. And during the reconstruction phase, cheater identification
algorithm has to be applied to identify the cheaters.

On the other hand, in SSCI schemes, D is assumed to be honest and he will
distribute consistent shares to the parties. It is only during the reconstruction
phase that the parties may try to cheat by producing invalid shares. So SSCI has
weaker requirements than VSS. Nevertheless, SSCI is an important problem in
its own right and has been studied extensively in the literature (see the Existing
Literature in the sequel). 2

Parameters of any SSCI Scheme : Any SSCI scheme has the following
important parameters:

1. Secret Space S: It is the set of all possible secrets, from which D will select
an element to share, according to the underlying probability distribution of
S. Without loss of generality, we assume that D can select any element from



S as the secret, uniformly and randomly. This is in accordance with all the
previous SSCI schemes.

2. ith Share Space Vi: It is the set of all possible i
th share, which can occur dur-

ing any execution of the SSCI scheme. During the execution of the protocol,
any value from Vi can be assigned as the ith share to Pi. The choice of the
value depends upon the secret to be shared and the random coin tosses of
D.

3. Eavesdropping Threshold: It is the maximum number of parties k− 1 which
can be under the control of ALis during the sharing phase.

4. Cheating Threshold: It is the maximum number of parties t which can be
under the control of ACheat during the reconstruction phase.

5. Computational Complexity: It is the amount of computation, done through-
out the protocol. An SSCI scheme will be called efficient, if it performs
computation, which is polynomial in n, k and t.

Types of SSCI Schemes : In the literature, there are two types of SSCI
schemes:

1. Secret Sharing with Private Cheater Identification: In these schemes, during
the reconstruction phase, the cheater identification algorithm will take a
base share and a list of other shares and try to identify the cheaters. So the
base share becomes a basis for deciding whether a participant submitting a
share during the reconstruction phase is a cheater or not. Such schemes were
studied in [RBO89,Car95,OK00]

2. Secret Sharing with Public Cheater Identification: In these schemes, during
the reconstruction phase, the cheater identification algorithm is applied pub-
licly to a list of shares, which are revealed by a set of parties publicly. So
there is no concept of base share and each revealed share has equivalent
weightage in the cheater identification algorithm.

In this paper, our focus is on SSCI with public cheater identification. Exten-
sive research has been done in the past to establish bounds on |Vi| and study
the relationship between t and k. We now give a brief overview of the existing
literature on SSCI schemes.

Existing Literature on SSCI Schemes with Public Cheater Identifica-
tion : It is well known that SSCI scheme, capable of identifying up to t cheaters
is possible if and only if t < k/2 [KOO95,Oba11]. So any SSCI scheme where
k = 2t + 1 is said to have optimal cheating threshold. In [KOO95], it is shown
that in any SSCI scheme, the following lower bound must be satisfied:

|Vi| ≥
|S| − 1

ϵ
+ 1. (1)

So any SSCI scheme, where |Vi| exactly matches the above bound is said to
be optimal. We now summarize the properties of the best known existing SSCI
schemes in Table 1.



Table 1. Properties of the best known existing SSCI schemes with public cheater
identification

Reference t |Vi| Efficient/Inefficient

[KOO95] t < k/3 |Vi| = |S|/ϵt+2 Efficient

[Oba11] t < k/3 |Vi| = |S|/ϵ Efficient

[Oba11] t < k/2 |Vi| ≈ (n · (t+ 1) · 23t−1 · |S|)/ϵ Inefficient

[Oba11] t < k/2 |Vi| ≈ ((n · t · 23t)2 · |S|)/ϵ2 Inefficient a

a In [Oba11], two different (inefficient) schemes were presented with
t < k/2.

Our Results : From Table 1, we find that best known SSCI schemes with
optimal cheating threshold are due to [Oba11]. But both these schemes are in-
efficient. Moreover, the share size |Vi| of these schemes is no where near to the
lower bound, given in Eqn. 1. In [Oba11], it is left as an open problem to design
an efficient SSCI scheme with k = 2t + 1, with reduced share size |Vi|. In this
paper, we make a positive step towards this direction. Specifically, we design a
new SSCI scheme with k = 2t+1, whose properties are summarized in Table 2.

Table 2. Properties of our new SSCI scheme

t < k/2 |Vi| = |S|/ϵ3n Efficient

Comparing Table 2 with the last two rows of Table 1, we find that not
only our scheme is computationally efficient, but in our scheme the share size is
significantly smaller than that of Obana [Oba11]. Moreover, though our proposed
scheme does not exactly match the lower bound given in Eqn. 1, we show that
our scheme asymptotically satisfies the bound. To the best of our knowledge, our
scheme is the best SSCI scheme, capable of identifying the maximum number of
allowed cheaters.

Roadmap : In the next section, we discuss few notations and preliminaries. Our
new SSCI scheme is presented in Sec. 3. In Sec. 4, we show that our proposed
scheme asymptotically satisfies the lower bound given in Eqn. 1. In Sec. 5 we show
that how we can modify our scheme to deal with a rushing adversary (cheater).
We end the paper with a conclusion and directions for further research.

2 Preliminaries and Notations

We assume that the underlying network is a synchronous network and every
party knows the identity of every other party. Let GF (p) be a Galois field,
where p is a prime power, satisfying the conditions that p ≥ n and p = 1

ϵ . We



assume that all computation and communication in our scheme is performed
over GF (p). In our scheme, the error probability of ϵ comes from the fact that
in our scheme, a cheater will be successful, if he can correctly guess a random
value, selected uniformly and randomly by D from GF (p). And the cheater will
be able to do so with probability at most 1

ϵ (the formal details will appear in
our scheme). We are now ready to discuss our scheme, which we do in the next
section.

3 Our New SSCI Scheme

Let k = 2t + 1. Then we present a very simple and efficient SSCI scheme. Our
scheme allows D to shares a secret S = (s1, . . . , sℓ), consisting of ℓ elements,
selected uniformly and randomly2 from GF (p), where ℓ > 1. So |S| = pℓ. In
our scheme, the share Shi of each party Pi will consist of ℓ+ 3n elements from

GF (p). Thus |Vi| = pℓ+3n = |S|
ϵ3n , as p = 1/ϵ. We now discuss the high level idea

of the protocol.

High Level Idea of the Protocol : The first step that D would do is to
generate n Shamir shares [Sha79] for each sl ∈ S, for a k-out-of-n Shamir secret
sharing. Let Shal,i denote the i

th Shamir share of the lth secret sl, for l = 1, . . . , ℓ
and i = 1, . . . , n. Then D will give ℓ ith Shamir shares, namely Sha1,i, . . . , Shaℓ,i
to party Pi. Till now, D has done k-out-of-n Shamir secret sharing for each
sl ∈ S. However, this is not sufficient to get an SSCI scheme, as there is no way
by which we can identify a corrupted party, who may submit incorrect Shamir
share during the reconstruction phase. So D has to also give some authentication
information about the Shamir shares to the parties, which will enable the parties
to identify the cheaters (submitting incorrect Shamir shares) with very high
probability.

The authentication information about the shares is distributed by D, as
explained in Table 3. We explain the distribution, as done by D, with respect to
a pair of parties Pi, Pj ∈ P. A similar distribution will be done by D, for every
Pi, Pj ∈ P.

Now the distribution as done by D in Table 3 achieves the following proper-
ties:

1. If Pi is corrupted and under the control of ACheat and if Pj is honest, then
later, except with probability 1

p = ϵ, party Pi cannot produce an incorrect

p′i(x) ̸= pi(x), without being caught by the honest Pj . This is because Pi will
have no information about the authentication key keyi,j and the authenti-
cation value Authi,j held by the honest Pj . So the only way, a corrupted Pi

can cheat an honest Pj is by guessing the value of keyi,j , which he can do
with probability at most 1/p = ϵ. So the distribution will help to achieve the
Correctness property.

2 Our scheme will work even if there exists a probability distribution, associated with
S.



Table 3. Information distributed by D to a pair of parties Pi, Pj ∈ P.

Communication by D to Party Pi Communication by D to Party Pj

1. Polynomial pi(x) of degree-(ℓ − 1)
where pi(x) = Sha1,i+Sha2,i ·x+ . . .+
Shaℓ,i ·xℓ−1. This is same as giving the
ith Shamir share of each sl to Pi.

1. A random authentication key, denoted
by keyi,j , selected uniformly and ran-
domly from GF (p).

2. Authentication value of pi(x), namely
Authi,j = pi(keyi,j).

2. If Pi is honest and if Pj is under the control of ALis, then ALis will learn
keyi,j and the value Authi,j = pi(keyi,j). This will leak ”some information”
about the polynomial pi(x) (and hence about the ith Shamir share of each
sl) to ALis. And this will violate the perfect secrecy condition.

So from the above discussion, we find that by simply doing the distribution
of information as done in Table 3, we cannot get an SSCI scheme, as it will fail to
preserve the perfect secrecy property. To preserve the perfect secrecy property,
we add an extra step to the distribution, as done in Table 3. The final distribution
as done by D is shown in Table 4.

Table 4. Information finally distributed by D to a pair of parties Pi, Pj ∈ P in our
SSCI scheme.

Communication by D to Party Pi Communication by D to Party Pj

1. Polynomial pi(x) = Sha1,i+Sha2,i ·x+
. . .+ Shaℓ,i · xℓ−1.

2. A random masking key, denoted by
maski,j , selected uniformly and ran-
domly from GF (p).

1. A random authentication key, denoted
by keyi,j , selected uniformly and ran-
domly from GF (p).

2. Masked authentication value of pi(x),
namely Authi,j = pi(keyi,j) +maski,j .

Now it is easy to see that the distribution of information, as done in Table
4, will help to achieve perfect secrecy, as well as the correctness property. For
correctness, if Pi is corrupted and Pj is honest, then the probability that Pi

will be able to cheat Pj by producing incorrect Shamir shares (i.e., incorrect
polynomial pi(x)) is still 1/p = ϵ. This is because Pi will have to correctly guess
keyi,j . On the other hand, if Pi is honest, then even if Pj is under the control
of ALis, the adversary ALis will get no information about pi(x) after knowing
Authi,j . This is because ALis will have no information about the masking key
maski,j , which is held with honest Pi. Our SSCI scheme is formally given in Fig.
1. The protocol ShareGen is the protocol for the sharing phase, while protocol
ReConst is the protocol for the reconstruction phase.

We now prove the properties of our SSCI scheme.



Fig. 1. SSCI Scheme with k = 2t+ 1

Sharing Phase: Protocol ShareGen

Input: Secret S = (s1, . . . , sℓ), containing ℓ elements from GF (p).
Output: A list of n shares Sh1, . . . , Shn.
Computation by D:

1. For l = 1, . . . , ℓ, select a random degree-(k− 1) polynomial fl(x) over GF (p), such
that fl(0) = sl. Compute Shal,i = fl(i), for i = 1, . . . , n.

2. For i = 1, . . . , n, let pi(x) = Sha1,i+Sha2,i ·x+. . .+Shaℓ,i ·xℓ−1 be the polynomial
of degree-(ℓ − 1). Corresponding to the polynomial pi(x), select n random mask-
ing keys maski,1, . . . ,maski,n and n random authentication keys keyi,1, . . . , keyi,n
from GF (p). Compute Authi,j = pi(keyi,j) +maski,j , for j = 1, . . . , n.

3. For i = 1, . . . , n, assign party Pi the share Shi, where Shi consists of the following:
(a) Polynomial pi(x);
(b) The n masking keys maski,1, . . . ,maski,n;
(c) The n authentication keys key1,i, . . . , keyn,i and the corresponding n authen-

tication values Auth1,i, . . . , Authn,i.

Thus Shi = {pi(x), (maski,1, . . . ,maski,n), (key1,i, . . . , keyn,i), (Auth1,i, . . . , Authn,i)}.
Secret Reconstruction and Cheater Identification: Protocol ReConst

Input: A list of m shares, where m ≥ k. Let CORE be the set of m parties who have
produced their shares and let Sh′

i denote the share produced by Pi ∈ CORE. Moreover,
let Sh′

i = {p′i(x), (mask′
i,1, . . . ,mask′

i,n), (key
′
1,i, . . . , key

′
n,i), (Auth′

1,i, . . . , Auth′
n,i)}

for each Pi ∈ CORE. Furthermore, at most t out of these m shares can be corrupted.

Output: Either (⊥, L) or (Ŝ, L), where L is the list of cheaters.

1. For each Pi ∈ CORE, compute Supporti = {Pj ∈ CORE : Auth′
i,j = p′i(key

′
i,j) +

mask′
i,j}. If Supporti ≥ t+ 1, then consider p′i(x) as a valid polynomial.

2. If Supporti ≤ t for some Pi ∈ CORE then Pi is identified as a cheater and added
to a list of cheaters L, which is initially ∅.

3. If |L| > m− k then output (⊥, L).
4. If |L| ≤ m−k, then consider all the valid polynomials p′i(x), such that Pi ̸∈ L. Let

each such p′i(x) be of the form p′i(x) = Sha′
1,i + Sha′

2,i · x+ . . .+ Sha′
ℓ,i · xℓ−1.

5. For l = 1, . . . , ℓ, check using Lagrange interpolation, whether all the values Sha′
l,i’s,

where Pi ̸∈ L, lie on a unique degree-(k − 1) polynomial, say f ′
l (x).

(a) If ∃l ∈ {1, . . . , ℓ}, such that all the values Sha′
l,i’s, where Pi ̸∈ L, does not lie

on a unique degree-(k − 1) polynomial, then output (⊥, L).
(b) If for every l ∈ {1, . . . , ℓ}, all the values Sha′

l,i’s, where Pi ̸∈ L, lie on a unique

degree-(k − 1) polynomial, say f ′
l (x), then let Ŝ = (f ′

1(0), . . . , f
′
ℓ(0)). Output

(Ŝ, L).

Lemma 1 (Secrecy). The scheme in Fig. 1 provides perfect secrecy. That is,
any listening adversary ALis controlling any k − 1 parties during the sharing
phase, will get no information about the secret S.



Proof: Without loss of generality, let the listening adversary ALis controls
the first k − 1 parties, namely P1, . . . , Pk−1 during the sharing phase. So the
adversary will know the polynomials p1(x), . . . , pk−1(x) and hence the Shamir
shares Shal,i, for l = 1, . . . , ℓ and i = 1, . . . , k − 1. However, from these shares,
the adversary will not get any information about s1, . . . , sℓ, due to the properties
of k-out-of-n Shamir secret sharing scheme [Sha79]. The listening adversary will
also know the values Authk,i, . . . , Authn,i, for i = 1, . . . , k − 1. But this will not
reveal any information about the polynomials pk(x), . . . , pn(x), as the adversary
will not know the corresponding masking keys maskk,i, . . . ,maskn,i. So during
the sharing phase, the listening adversary will only know k − 1 points on each
f l(x), for l = 1, . . . , ℓ. The secrecy of S = (s1, . . . , sℓ) now follows from the
properties of k-out-of-n Shamir secret sharing scheme [Sha79]. 2

Lemma 2 (Correctness). The scheme in Fig. 1 satisfies correctness condition.
That is, during the reconstruction phase, if any Pi ∈ CORE is under the control
of ACheat and produces p′i(x) ̸= pi(x), then except with error probability ϵ, Pi

will be identified as a cheater and will be included in the list L.

Proof: Without loss of generality, let CORE consists of the first m parties,
namely P1, . . . , Pm, where m ≥ k. Moreover, let P1, . . . , Pt be the under the
control of ACheat. Now suppose that P1 submits p′1(x) ̸= p1(x) and P1 is not
identified as a cheater. This implies that Support1 ≥ t + 1. In the worst case,
P1, . . . , Pt may be present in Support1, as all of them are under the control of
ACheat. But Support1 ≥ t+1 implies that there exists at least one honest party
in CORE, say Pj , such that Pj ∈ Support1. This is possible only if p′1(key

′
1,j)+

mask′1,j = Auth′
1,j . Now notice that ACheat will have no information about the

authentication key key′1,j = key1,j and the corresponding authentication value
Auth′

1,j = Auth1,j , as they are with the honest party Pj . Moreover, Auth′
1,j =

Auth1,j = p1(key1,j) + mask1,j . So the probability that P1 can ensure that
p1(key1,j) + mask1,j = p′1(key1,j) + mask′1,j , even if p′1(x) ̸= p1(x) is same as
the probability that P1 correctly guesses key1,j . But the probability that P1

correctly guesses key1,j is 1
p = ϵ, as key1,j is uniformly and randomly selected

from GF (p). 2

Lemma 3 (Share Size). In our SSCI scheme, |Vi| = |S|
ϵ3n .

Proof: During the sharing phase, each party gets a polynomial of degree-(ℓ −
1), consisting of ℓ coefficients, n masking keys, n authentication keys and n

authentication values from GF (p). So |Vi| = pℓ+3n = pℓ · p3n = |S| · p3n = |S|
ϵ3n .

This is because the secret S consists of ℓ elements from GF (p) and hence the
secret space S has the cardinality |S| = pℓ. Moreover, p = 1

ϵ . 2

We now finally state the following theorem.

Theorem 1. Let k = 2t + 1, p = 1/ϵ and |S| = pℓ, where ℓ > 1. Then there
exists an efficient SSCI scheme, which can identify up to t cheaters, such that

|Vi| = |S|
ϵ3n .

Proof: The proof follows from the previous three lemmas. 2



4 Asymptotic Optimality of Our Scheme

We now show that our scheme (presented in the last section), asymptotically sat-
isfies the lower bound of Kurosawa et al. [KOO95], as given in Eqn. 1. According
to the lower bound,

|Vi| ≥
|S| − 1

ϵ
+ 1,

which implies that
log |Vi| ≥ log (|S| − 1)− log ϵ,

and which further implies that log |Vi| = Ω(log |S|).
Now in our scheme, |Vi| = |S|

ϵ3n . Thus, log |Vi| = log |S| − 3n log ϵ. In our
scheme, |S| = pℓ and so log |S| = ℓ · log p. So for sufficiently large value of ℓ
(for example, ℓ = n), in our scheme log |Vi| = O(log |S|). Thus, our scheme
asymptotically satisfies the lower bound. So we can state the following theorem.

Theorem 2 (Asymptotic Optimality). Our SSCI scheme asymptotically sat-
isfies the lower bound

|Vi| ≥
|S| − 1

ϵ
+ 1.

Proof: Follows from the above discussion. 2

5 SSCI Scheme against Rushing Cheater

The SSCI scheme presented in Sec. 3 will fail to achieve its properties against a
rushing ACheat. Recall that a rushing adversary [GIKR01] is an adversary, who
first wait to listen all the messages sent by the honest parties, before sending his
own messages in any protocol. If ACheat is rushing, then she can foil our scheme
as follows: During the reconstruction phase, ACheat will first wait for all the
honest parties (at least t+1) in CORE to submit their complete shares (which
includes the authentication keys and authentication values corresponding to the
pi(x) polynomials of all the n parties). Now ACheat will know the authentication
keys and the corresponding authentication values, held by the honest parties in
CORE, corresponding to the pi(x) polynomials of the parties under the control
of ACheat. So now, the parties under the control of ACheat can produce any
p′i(x) ̸= pi(x), which matches the authentication values, held by the honest
parties in CORE. This will ensure that even if a corrupted party Pi ∈ CORE
produces incorrect p′i(x) ̸= pi(x), still all the honest parties in CORE are present
in Supporti and hence Pi is not identified as a cheater. More specifically, Lemma
2 will not hold if ACheat is rushing.

To deal with the above problem, we modify the reconstruction phase as
follows: the reconstruction phase will now consists of two rounds, where instead
of producing the shares in a single round (as done in our scheme), the parties will
submit the shares in parts in two consecutive rounds. During the first round, the
parties will only submit their pi(x) polynomial. And during the second round,
the parties will submit the remaining portion of their share, namely the masking



keys, authentication keys and the authentication values. It is now easy to see
that by doing so, we can tolerate even a rushing ACheat. This is because the
parties under the control of ACheat will have to produce their pi(x) polynomial
during the first round itself. And while producing these polynomials (possibly
changed), ACheat will have no information about the authentication keys and the
authentication values, as held by the honest parties in CORE, corresponding to
the polynomials of the parties under the control of ACheat. This is because now
the authentication keys and authentication values will be revealed only during
the second round, once the polynomials are revealed by all the parties in CORE.
Now by incorporating this modification, our SSCI scheme will work even against
a rushing ACheat.

6 Conclusion and Directions for Further Research

In this paper, we have solved one of the open problems, raised in [Oba11]. Specif-
ically, we have designed a very simple and computationally efficient SSCI scheme
with public cheater identification, which can identify the maximum number of
allowed cheaters. Moreover, the share size in our scheme is significantly smaller
than that of [Oba11]. Furthermore, we have shown that our scheme asymptot-
ically matches the lower bound on the share size of SSCI schemes, as given in
[KOO95]. It is an interesting open question to see whether we can design efficient
SSCI scheme, which can identify the maximum number of allowed cheaters, such
that the share size of the scheme exactly matches the lower bound of [KOO95].

Acknowledgement: The author would like to thank Prof. Kaoru Kurosawa for
answering several questions related to secret sharing with cheater identification
schemes.
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