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New look at impossibility result on Dolev-Yao models with hashes  
 

István Vajda 
 

Abstract: Backes, Pfitzmann and Waidner showed in [7] that for protocols with 
hashes Dolev-Yao style models do not have cryptographically sound realization in the 
sense of BRSIM/UC in the standard model of cryptography. They proved that random 
oracle model provides a cryptographically sound realization. Canetti [9] introduced 
the notion of oracle hashing “towards realizing random oracles”. Based on these two 
approaches, we propose a random hash primitive, which already makes possible 
cryptographically sound realization in the sense of BRSIM/UC in the standard model 
of cryptography.   
 
 
1. Introduction  
 
The ideal hash function paradigm was introduced by Bellare and Rogaway in 1993 
([8]), where they argued that even though results which assume an ideal hash function 
do not provide provable security with respect to the standard model of computation, 
assuming an ideal hash function and doing proofs with respect to it provides much 
greater assurance benefit than purely ad hoc protocol design.  
 
In 2006, in paper [7] a related result was shown in reactive cryptographic environment 
stating the Dolev-Yao style abstract model cannot be realized securely in the standard 
model of cryptography:  

In the BRSIM model in the symbolic system the trusted host (TH) sends an 
abstract hash term to the simulator (SIM) upon which machine SIM has to present a 
real hash value to the adversary. The main result (Theorem 1) in [7] refers to 
simulation failure when stating that a Dolev-Yao type ideal hash function does not 
have cryptographically sound realization in the sense of BRSIM/UC in the standard 
model of cryptography. No deterministic hash function can serve as secure 
realization. They showed a way for sound realization in non-standard model where 
hash function is implemented by random oracle. It has also been shown in [7] that 
collision resistance is a necessary condition to avoid simulation failure.  
 
Ideal secrecy is a key notion in the definition of ideal hashing.  Ideal secrecy means 
that an adversary who obtains the hash of an otherwise unknown term cannot do 
better than comparing this hash with self-made hashes of guessed terms. Note, even 
the ideal secrecy property leaks some information about the message. If we “use” 
random oracle for realization, it is ensured information theoretically that information 
will not leak, in sense that the probability of such an event will be exponentially 
small.  
 
Canetti [9] introduced the notion of oracle hashing. He suggested the randomization 
of the hash value, such that different invocations on the same input result in different 
output, in order to restrict the possibility of gaining partial information about the 
hashed message by exhaustively (polynomial many times) searching the input 
domain.  
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Note, oracle hashing is not a function in the message input, dislike the random oracle 
which is a (public) random function. In our construction, we also cannot use a 
function, because we want to get rid of the third party assumption and a randomized 
function could not be evaluated independently by different participants.  
 
Following Canetti [9], pair H, V denotes the hashing and the verification algorithms, 
respectively. Algorithm H, given a security parameter k and input x, chooses a random 
value r in domain kR  and outputs a value h. Algorithm V, given k as well as input h 
and a guessed message, outputs a binary value. Let xI  denote the verification oracle. 
Using these notations oracle simulatability and oracle indistinguishability were 
defined as follows: 
 
Oracle simulatability [9]: For any polytime adversary B and any polynomial (.)p  
there exists a polytime adversary C, such that for any distribution ensemble  { }kX  for 
any polytime predicate (.)P  and for all large enough k: 

1
( )Pr( ( ( , )) ( )) Pr( () ( ))xI

p kB H x r P x C P x= − = <      (1) 

where R kr R∈ , and x is drawn from kX . 
 
Oracle indistinguishability [9]: For any polytime distinguisher D and any polynomial 

(.)p  there exists a polynomial-size family { }kL  of sets such that for all large enough 
k and for all , kx y L∉ : 

1
( )Pr( ( ( , )) 1) Pr( ( ( , )) 1) p kD H x r D H y r= − = <      (2) 

where R kr R∈ . 
 
Theorem 4 in [9] states that requirements (1) and (2) are equivalent.  
 
Property (1) can be considered as the definition of the ideal secrecy: the task of 
finding information on the message with a given hash value h gives no more 
information, besides the ability of exhaustive (polynomial many times) querying 
verification oracle xI .  
 
Indistinguishability property (2) will help us to eliminate the problem of simulation 
failure by machine SIM.   
 
Recall, wording “oracle” means that hash algorithm is run by a trusted third party: a 
participant sends message x for hashing, the oracle draws an appropriate random 
element r and outputs hash value ( , )H r x . We want to eliminate the third party 
assumption, making possible for participants to calculate hash value on their own. On 
this way, we add the following property to the definition of ideal hashing: only those 
participants will be able to verify a hash value in the knowledge of the corresponding 
message which participants are authorized to do so by the sender of the hash value. 
This way an adversary trying to guess the hashed value will see a virtual oracle 
hashing with its ideal secrecy property. This means that we introduce a weakened 
ideal hash primitive, where the access to the verification algorithm is controlled by the 
sender of the hash value.  
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The structure of the submission is the following. Section 2 summarizes our 
contributions. Section 3 gives a short discussion on the non-standard model of [7]. In 
Section 4 we introduce a hash primitive, where we define the ideal and real properties 
of the primitive as well as the corresponding commands in the symbolic and the real 
system. In this section we present also our main theorem with proof sketch about the 
cryptographically sound realization of this primitive in the sense of BRSIM/UC in the 
standard model of cryptography. In Section 5 we show a construction for the 
primitive. Conclusions are drawn in Section 6.  
 
 
2. Our contribution 
 
We discuss the impossibility result [7] and a corresponding pseudorandom oracle 
model.     
 
Our main result is the introduction of a new type of random hash primitive. The aim 
was to define a primitive which is collision free, provides the property of ideal 
secrecy, as well as a sender-controlled access to the verification algorithm. We define 
the ideal and real properties of the primitive as well as the corresponding additional 
commands in the symbolic and the real system extended by the new primitive.  
 
Considering realization within the standard model of cryptography, in general, we see 
that security guaranties in the computational settings usually allow that cryptographic 
primitives leak partial information about their inputs. Therefore we extend the BPW’s 
(Backes-Pfitzmann-Waidner) formalism with partial information.  
 
Proof sketch is shown for the statement that this new type of ideal hash mapping has 
cryptographically sound realization in the standard model of cryptography, where the 
proof is carried out in the blackbox reactive simulatability (BRSIM/UC) model 
defined in [10]. We propose construction for a hash primitive.  
 
 
 
 
3. Simulation in non-standard cryptographic model: random oracle 
 
Fig.1. shows the overview of the symbolic system with blackbox simulation, where 
usual notations of BPW’s approach are applied ([1-7]). Honest protocol machines 
are ,

iu iM u U∈ , where U  stands for the set of honest identifiers.  
User machine H communicates with protocol machines: initializes a new run and 
receives the output of the run. A secure protocol has to meet – formally defined - 
security requirement at the service layer between the user machine H and the honest 
protocol machines.     
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Fig. 1.: Overview of the symbolic system 
 
 
In this model, the adversary is allowed to initialize new protocol runs via user 
machine H. Trusted host TH is an important element of the symbolic system. Protocol 
machines and the adversary communicate with each other via machine TH. All 
cryptographic primitives are moved from protocol machines into TH and are available 
for participants by sending commands to TH. Machine TH contains also a database, 
which stores the history of all operations carried out by protocol machines in 
cooperation with TH. User machine H initializes new protocol runs by sending 
appropriate input to a protocol machine _ iM u  and at the end of the run the same 
machine will report the result to machine H, via the service interface.  
 
In paper [7], in the symbolic model the random oracle was included in machine SIM, 
in the real system it was a third party with public access. In our symbolic system the 
verification oracle xI  is part of the trusted host, the random hash primitive is included 
in SIM, while in the real system each participant (protocol machines and the 
adversarial machine) has its own random hash primitive.  
 
When in the symbolic system the trusted host sends an abstract hash term to the 
simulator (SIM), the simulator has to present a real hash value to the adversary. In 
case of successful simulation the simulated value must be indistinguishable from the 
true one in the view of the adversary. In case of usual hash functions simulation 
failure occurs with overwhelming probability if the adversary gets access also to the 
true hashed message (e.g. directly from the user (H)), because in this case the 
adversary is able to verify the correctness of the simulated hash value.  
 
The corresponding application scenario is when a participant commits to a message 
by sending its hash value, where the message is revealed only sometime later. If the 
simulator has to simulate a bitstring for the true hash value before knowing the 
message, then whatever it picks will most likely not match the message. The 
commitment problem based on hashing techniques is kept in mind during this paper 
(see constructions in Section 5).   
 
The impossibility result in [7] has an important practical benefit: it tells us that if we 
want to have a proof of a protocol with hashes in the random oracle model, then 
instead of usual cryptographic proofs (which are by hand proofs, practically, can be 
carried out only for small protocols) we can conduct the proof on the symbolic 
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version of the protocol where the hash functions are substituted by the Dolev-Yao 
style abstract model.  
 
Note also, the problem with the random oracle is not that it assumes exponential 
complexity, but the fact that we need a trusted third party to run the hash function. 
Indeed, this third party can be implemented with polynomial complexity, if we 
substitute the random function by a pseudorandom function (PRF) with appropriate 
dimensions (Fig.2.).  
 

Real 
system 

PRF D-Y 
model Sys_0r

 ≥

Random 
Oracle 

Real 
system 

Abstract 
system 

 ≥

 
 

Fig.2. Sound realization of Dolev-Yao style ideal hash function by a PRF  
(“≥ ”  signs  “as secure as” in the actual meaning: comp and ROM, respectively) 

   
Let ( , )f x y be a public deterministic function, where the random kernel and the 
message to be hashed are substituted into argument x and y, respectively. When a 
participant asks the third party for the hash of a message m for the first time, the third 
party chooses a fresh random string r as the kernel and outputs the following hash 
value:  
          

( , )h f r m=           (3) 
 
as well as it stores triplet { , , }m r h .  
 
Theorem 1: Abstract (Dolev-Yao style) hash functions can be realized securely by a 
third party with only polynomial complexity in BRSIM/UC  model.  
 
Proof: By definition, there does not exist any efficient algorithm which can 
distinguish a PRF from a random function. Therefore, there cannot be a 
distinguishable view at the service interface, because the proof system itself would 
provide a distinguishing algorithm.  □ 
 
We step further on this way. We will use efficient hash primitive, however, we want  
to eliminate the assumption of a third party.  In the next section we introduce such a 
hash primitive.  
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4. A random hash primitive in the standard model of cryptography 
 
 
4.1. Symbolic system 
 
We introduce a hash primitive (r_hash) with ideal collision freeness and ideal secrecy 
property as well as ideal sender-controlled verification property in the symbolic 
system. Subsequently we define the real properties of the primitive as well as the 
corresponding commands in the symbolic and real system.   

 
 
Definition 1:  The ideal properties of r_hash primitive are the following: 
 
i.) Ideal collision freeness: _ ( ) _ ( ')r hash m r hash m=  →  m= m′ for all m, m′. 
 
ii.) Ideal secrecy: If we have a new hash value h of message m and want to find 
information about the hashed message we cannot do better than forgetting about h and 
just relying on the verification oracle mI  by invoking it with guessed messages 
polynomial many times.  
 
iii.) Verification capability:  Only those users are able to verify (re-calculate) a hash 
value in the knowledge of the corresponding message, who are included in a set 
(Vset).  Vset is determined by the sender of the hash value.  
□ 
 
Attacking ideal secrecy means that the attacker wants to collect information about the 
message, with the aim to identify the message: in formal description, to get a handle 
to the corresponding entry in the database D of TH.  
 
Each entry in D has attributes: 
 

1 1 1
( , , arg, ,..., , ,..., , ,..., , , _ inf)

n m li i j j k kind type hnd hnd hhnd hhnd phnd phnd len p  
 
where new type of handlers,  hhnd (hit handler) and phnd (partial information 
handler) as well as an additional argument p_inf (partial information) is introduced 
(defined subsequently).  
 
Below we give the additional commands for communication with the trusted host 
(TH) in the symbolic system, as well as with the protocol machines in the real system. 
The command set is adapted from [7].  
 
Commands: The trusted host extended by _ ()r hash  accepts the following additional 
commands at every port ?uin : 
 
r_hashing: _ ( , )hnd hnd hndh r hash l vset← .  
Let : [ ].hnd

ul D hnd l type list ind= = ∧ = , : [ ].hnd
uvset D hnd vset type list ind= = ∧ = ,  

*: _ _ ( )length r hash len k=  and return ↓  if l =↓  or vset =↓  or max_ ( )length len k> .  
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Let : [ ' _ ' arg[1,2] ( , )].h D type r hash l vset ind= = ∧ = .If h ≠↓ then : 2 ( )hnd
uh ind hnd h=   

else set :hnd
uh curhnd= + +  and  

: ( : , : ' _ ', arg : ( , ), : , : )hnd
uD ind size type r hash l vset hnd h len length⇐ = + + = = = =  

 
preimage test: _ _ ( , , )hnd hnd hndb is hash of l vset h← .  
Let : [ ].hnd

ul D hnd l type list ind= = ∧ = , : [ ].hnd
uvset D hnd vset type list ind= = ∧ = , 

: [ ' _ '].hnd
uh D hnd h type r hash ind= = ∧ =  and return ↓  if l =↓  or vset =↓  or h =↓  .  

If [ ].arg[1,2] ( , )D h l vset=  return :b true=  else :b false= . If u Vset∉ and :b true=  set 
: 2 ( )hhnd

uh ind hhnd h=  else if u Vset∉ and :b false=  set : 2 ( )phnd
uh ind phnd h= , 

_ inf : ()p = .   
 
Execution of command _ _ ()is hash of  in the preimage test branches: the participant 
which sends the command to the trusted host: 
 
a.) is not in Vset:  

a1.) if by a guess the participant hits the preimage, it gets a hhandle (hit 
handle) to the hash entry, set by algorithm 2 ( )uind hhnd h , otherwise 
 
a2.) it will get a phandle (partial information handle) to the hash entry set by 
algorithm 2 ( )uind phnd h , 
 
where h is the index of the hash entry in the database of TH.  

 
b.) it is in Vset: no extra handles are set.  
 
Partial information is stored as data by the participant represented by blank argument 
(p_inf  is set to ( ).). This way partial information is taken into account in the symbolic 
model, by adding label to the hash entry, which specifies that the corresponding 
message is known, unknown or partially known by a participant without providing 
details about information.   
 
Using algorithm 2 uind phnd  trusted host TH determines a phandle for u to an entry 

[ ]D i  in its database:  
 
if [ ]. uD i phnd =↓ it sets [ ]. :u uD i phnd curphnd= + +  else let 2 ( ) :uind phnd i i= .  
            
Definition of algorithm 2 ( )uind hhnd h  is analogous.  
 
Similarly as in [7], the trusted host is parametrized with length functions, because 
length leaks to the adversary and because higher protocols may need to know the 
length of certain terms for honest participants.  

_ _ ( )r hash len k : output length of the real hash primitive, which is polynomial in 
security parameter k,  
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*_ _ ( ) : _ ( (' _ '), _ _ ( ))r hash len k list len len r hash r hash len k= , 
max_ ( )len k :  polynomial bound on the length of messages in the system.  
 
 
Local adversary commands for r_hash: 
Commands Generate unknown hash and Parameter retrieval, similar to the 
corresponding commands in [7].  
 
 
 
4.2. Real system 
 
In the real system each entry in database uD  of protocol machine u has attributes: 
 
(( , , ), , , _ arg)u u uhnd hhnd phnd word type add  
 
where the handler is a usual handler ( uhnd ), hit handler ( uhhnd ) or partial 
information handler  ( uphnd ), furthermore partial information is stored in add_arg 
(detailed subsequently).  
 
First we define the real r_hash algorithm. Next the commands follow for its use in the 
real system. Finally, we present the theorem which states that the real r_hash 
primitive is a cryptographically sound realization of the ideal primitive of Definition 
1.  
 
 
Definition 2:  Algorithm _ ( , )r hash m Vset  is defined as follows: 
 

*_ :{0,1}r hash xV →  r.v. over _ _ ( ){0,1}r hash len k   
 
is a random mapping over the message space, where V is the power set of U . It can 
be evaluated efficiently and has the following properties: 
 

i.) collision free 
ii.) random variables 1_ ( , )r hash m Vset  and 2_ ( , )r hash m Vset  are 

indistinguishable for any 1 2m m≠  and any Vset V∈ .    
 

We specialize this hash primitive by introducing auxiliary function  
 

_ ( ) * _ _ ( )( , , ) :{0,1} {0,1} {0,1}rand len k r hash len kRhash r m Vset x xV →  
 
such that if we substitute random value into parameter r we get _ ( , )r hash m Vset . 
 
The verification algorithm ( , , )Ver m h id  is defined as follows: 
 

* _ _ ( ):{0,1} {0,1} {0,1, }r hash len kVer x xID → ↓  
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where the inputs are the following, in order: hash value (h), message (m), user 
identifier (id). The evaluation of the output is the following. First, algorithm  
 

_ ( , ) { , }r decrypt h id r→ ↓   
 
is called, which outputs ↓  if id Vset∉ , else it outputs r. 
 

()Ver outputs ↓ , if _ ()r decrypt  outputs ↓ . Otherwise, the output is 1 if 
( , , )h Rhash r m Vset= ,  else it is 0.  

□ 
 
In order to emphasize that a hash value is the hash of the message, we use also 
notation _ ( )Vsetr hash m  for _ ( , )r hash m Vset .  
 
Corollary of Theorem 4 of [9]:  Hash primitive by Definition 2 meets requirement of 
ideal (oracle) secrecy.  
Proof: Straightforward, according to the equivalence of requirements (1) and (2). □ 
 
 
Property iii.) in Definition 2. formalizes the limitation of the verification capability: 
when a user sends an _ ( )Vsetr hash m  hash value to a set (Vset) of users, any user 
within this set will be able to verify the hash value assumed it has access also to the 
corresponding message m. The actual value of the random parameter is available only 
to a set of users selected by the sender of the hash value. 
  
 
 
Constructors and destructors for r_hash 
 
r_hash constructor: * _ _ ( , )h make r hash l vset← . 
Let _ ( , )h r hash l vset←  and return * : (' _ ', )h r hash h= . 
 
Rhash constructor: * _ ( , , )H make Rhash r l vset← . 
Let ( , , )H Rhash r l vset←  and return * : (' ', )H Rhash H= . 
 

_ : _ ( *, )r decryption rnd r decryption h id←  
If id Vset∈ , return : _ ( , )r r decrypt h id=  else ↓ .  
 
 
The execution of command _ _ ()is hash of  is a little different in the real case 
compared to the ideal case:  it may happen that a participant (adversary) is able to 
show up a preimage of a hash value, by collecting an amount of partial information, 
which makes possible for him successful guessing, not just in case of a random hit.  
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In the real system when guessing a message self made hashes are compared to the 
targeted hash value.  
 
Partial information is stored as data by the participant represented in binary form (e.g. 
the corresponding predicate is represented). It is assumed that data corresponding to 
partial information is never transmitted (it is used to improve further guesses). Partial 
information is accumulated as a sequence of trials is carried out. The accumulation of 
information is represented by a list of predicates. This modeling leads to a formal 
accumulation algorithm _ _ infadd p  which appends the new predicate to the list 

_ infp placed in _ argadd . The input of this algorithm is ( , , )l vset h , the output is 
the lengthened list _ infp . 
  
 
Commands in the real system model 
 
Protocol machine uM  extended by _ ()r hash  accepts the following additional 
commands from user machine H at port ?uin : 
 
r_hashing: _ ( , )hnd hnd hndh r hash l vset←  
If [ ].hnd

uD l type list≠  or [ ].hnd
uD vset type list≠  return ↓ . Otherwise set 

[ ].hnd
ul D l word= ,  [ ].hnd

uvset D vset word=  and * _ _ ( , )h make r hash l vset← . If 
*| | max_ ( )h len k>  return ↓ , else *( , ) : ( , _ , ())hnd

uh D h r hash= .  
 
 
preimage test: _ _ ( , , )hnd hnd hndb is hash of l vset h←  
If [ ].hnd

uD l type list≠  or [ ].hnd
uD vset type list≠  or [ ]. ' _ 'hnd

uD h type r hash≠  return 
↓ .  
Otherwise, set : [ ].hnd

ul D l word= , : [ ].hnd
uvset D vset word= , : [ ].hnd

uh D h word= ,   

if u Vset∈ , : _ ( *, )r r decryption h id=  and * : _ ( , , )H make Rhash r l vset= .  If 
*h H=  set :b true=  else :b false= , 

if u Vset∉ , set * : _ _ ( , )h make r hash l vset= .  
       If *h h=  set :b true=  and  set : 2 ( )hhnd

uh ind hhnd h= .  

       If *h h≠  set :b false=  and  set : 2 ( )phnd
uh ind phnd h= ,  

 _ inf : _ _ inf( , , )p add p l vset h= .  
 
 
 
Theorem 2: The symbolic system with ideal r-hash model (Definition 1.) is securely 
implemented in the real system with the real r-hash primitive (Definition 2.) in the 
sense of BRSIM/UC in the standard model of cryptography, assumed that honest 
users authorize only honest users to carry out verification.  
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Proof (Sketch): The proof technique in [7] can be applied to our case. Differences are 
the following:  
 
i.) simulation of real hash values from the abstract terms by the simulator, 
 
ii.) negligibility of the probability of Nonce-Coll event, which contains runs where 
collisions of random elements (in hash primitive) happened (at “word uniqueness”  
invariant in [7]), 
 
iii.) negligibility of the probability of Nonce_Guess event, which contains those runs 
in which the adversary guessed a random string that he had no information about 
(at “word secrecy” invariant in [7]). 
 
 
i.) The key question is the simulation of the real version of an abstract r_hash term 

ih sent by trusted host (TH) to the simulator (SIM).  In order to be successful, the 
simulator has to produce a simulated r_hash value 'h  the distribution of which is 
(computationally) indistinguishable from the distribution of the true r_hash value rh  
(in the view of the adversary).  
 
The idea is that instead of the true hash value ( )VsetH m , the simulator will 

produce | |(1 )m
VsetH , the hash of constant message | |1m . A polynomial adversary is not 

able to distinguish ( )VsetH m  and | |(1 )m
VsetH , assumed the adversary is not included in 

the corresponding Vset.  
 
 
ii.)  A run is put into the set Nonce_Coll, when a (one time) random element equals a 
previous value in an r_hash entry. Therefore probability of Nonce_Coll event is 
negligible by polynomial complexity of all elements of the system.   
 
 
iii.) If a successful guess of preimage happens, the result (guessed message) may be 
passed to the user machine (H) and such an event may make difference in the views of 
the two systems (symbolic and real). (Recall, the view of the user comprises the 
information flow through the service interface as well as the state of machine H.) 
 
The difference in the run of the real and symbolic system with respect to successful 
guess of preimage, is that in the real system successful guess of preimage may happen 
(in principle) also with use of accumulated partial information (event _Parc real ). 
The probability of the event when the views in the two system differ 
( _Viewdiff guess ) can be upper bounded by the following way: 
 

( _ ) ( _ ) ( _ ) ( _ )P Wievdiff guess P Hit ideal P Hit real P Parc real≤ + +   (4) 
 
By the Corollary if we consider the success of guessing any given partial information 
(characterized by a predicate) in the knowledge of the hash value we can consider 
equivalently the guessing of the same partial information by having access only to the 
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verification oracle xI  (i.e. by formula (1) the difference of success probabilities is 
negligible). From the size of the message domain (by uniform a priori distribution) 
and the assumed polynomial complexity bounds, it follows that hitting a preimage 
based on querying oracle xI  is exponentially small. Hence, considering upper bound 
(4) is negligibly small, because 
 

1 2 3( _ )P Wievdiff guess ε ε ε≤ + +  
 
where 1ε , 2ε  are exponentially small and 3ε  is negligible. 
□ 
 
Necessity of the assumption in Theorem 2: 
Here follows an informal argument to the necessity of the assumption in Theorem 2: 
The hashing algorithm must be random. If the participants do hash calculation on their 
own (i.e. without a trusted third party), then the random values used by the hashing 
algorithm must be transmitted together with the hash value, assumed the intended 
recipients have to be able to verify the hash value. If the adversary has also access to 
these random values, he can also carry out the verification, which may result in 
simulation failure. Therefore, the only way to reconcile all these requirements is to 
limit the verification capability to a set of honest users.    
 
 
5. Constructions 
 
The construction of oracle hashing (Canetti [9]) gave the initializing idea for our 
construction.  
 
Properties i-iii.) in Definition 2. are built into the primitive one by one: 
  
(i.) We start from a collision free hash function ( )h x .  
 
(ii.) We need a random function ( , )F r x , where x is the input and r is a random 
parameter, which function provides the indistingushability property in input x. 
 
(iii.) We  assume, function ( , )F r x  has the following parsing property:  
 

ˆ( , ) , ( , )F r x r F r x= ,         (5) 
 
where F̂ is one way in both inputs r and x. Random parameter r, appearing as the first 
term on the RHS of (5)  is protected in order to be revealed only for intended users 
(Vset).    
 
 
Constructions for ( , )F r x : 
 
Construction 1. For oracle hashing Canetti [9] gave the following construction over 
group G, where the DDH (Diffie-Hellman Decision) problem is hard: 
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( , ) , xF r x r r=            
 
where Rr G← . It was shown in [9] that this construction meets (equivalent) 
requirements (1) and (2).    
 
Construction 2. Consider the following construction over group G: 
 

( , ) , rF r x r p x=           
 
where Rr S← , {1,2,...,| |}S G= , furthermore p is a randomly chosen element from G, 
publicly known in the system. 
 
Proof of Construction 2:  
The concept of transforming a chosen pair of “inputs” into indistinguishable “outputs” 
is a well known concept in provable security of encryption transformations, which is 
called IND-CPA security. Construction 2. is based on ElGamal public key encryption 
transformation over G, which provides IND-CPA security. Recall, in ElGamal 
encryption transformation: 

( ), , ( ) ( , )z y y
pkpk g X sk z E m g X m= = = = ,  

where Rz S←  , Ry S←  and g is a generator of G. In Construction 2. we keep only 
the second part of the ciphertext with g X= , r y= , headed by r.  Note, we keep the 
indistinguishability property. The one way properties of the corresponding mapping 
ˆ ( , )F r x  also follow. □ 

 
 
Example (commitment problem): Participant u commits to message m by sending 
ˆ ( , ( ))F r h m . When later on message m is revealed for a set of participants given by 

Vset, participant u sends  
 

1
,{ ( ),..., ( )}

Vsetpk pkm E r E r          
 
where  

1,...., Vsetpk pk : public keys of users in Vset 
( )

ipkE r : is the encryption of “message” r, where ()pkE  is a trapdoor one way 
permutation.  
□ 
 
Construction for ( )VsetH m : 
 
Using the above notations: 
 

1
ˆ( , , ) ( , ( )),{ ( ),..., ( )}

Vsetpk pkH r m Vset F r h m E r E r=      (6) 
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Let ( )VsetH m  denote hash value when parameter r is drawn randomly in function 
( , , )H r m Vset .□ 

 
Theorem 3: Construction ( )VsetH m  by Definition 3. is a realization of hash primitive 

_ ( )Vsetr hash m  by Definition 2.   
 
Proof:  
i.) Collision freeness of ( )h x is retained by the encryption.  
ii.) Mapping ˆ ( , ( ))F r h m  provides indistinguishability in message m:  
We can not distinguish message pair , 'm m  if we cannot distinguish the corresponding 
pair of hash values ( ), ( ')h m h m . Indeed, if we could distinguish message pair , 'm m , 
then we could distinguish the pair of hash values  ( ), ( ')h m h m , because ( )h x  is 
assumed to be collision free.     
Furthermore 

1
( ),..., ( )

Vsetpk pkE r E r is a random vector independent of the message.    
iii.) Random nonce r can be revealed just by participant in Vset, because of the 
assumed property of encryption ()pkE , furthermore because mapping ˆ ( , )F r x  is 
assumed to be one way in input r. 
□ 
 
Construction (6) seems too complex compared to usual hash functions. It could be 
considered first of all as a theoretical construct, a provably secure construction for a 
commitment scenario (Example above), where commitment is made by sending only 
ˆ ( , ( ))F r h m  (Construction 1. or 2.), and the encryptions are sent only when the 

message is to be revealed.  
 
As for a possible implementation, the number of extra operations, the trapdoor one 
way permutations depends on the size of Vset (we could imagine a typical size of one 
or two, where in the latter case it is sent also to a third party). Applying ElGamal 
encryption provides the advantage of homogenious arithmetic (i.e. working over the 
same group G). If RSA encryption is applied, we have be careful with the selection of 
public keys if  3Vset ≥  to avoid the well know problem of small exponenst.  
 
   
 
6. Conlusion 
Hash functions are important cryptographic primitives when one way and/or collision 
free transformation is needed. The usual approach of deterministic hash functions fails 
to provide a provably secure realization of ideal properties formalized in the 
corresponding Dolev-Yao model. By result [7] random oracles provide 
cryptographically sound realization in the sense of BRSIM/UC in non-standard model 
of cryptography. Here follows that we have to modify the expectations against ideal 
hashing if we want cryptographically sound realization in the standard model of 
cryptography. In this paper, we proposed a weaker ideal hash primitive to obtain 
cryptographically sound realization in the standard model of cryptography, where the 
weakening means restricted access to efficient verification by participants.  
 



 15

References 
 
[1] M. Backes, B. Pfitzmann, and M. Waidner. A universally composable 
cryptographic library. IACR Cryptology ePrint Archive, Report 2003/015, 
http://eprint.iacr.org/, January 2003. 
 
[2] M. Backes and C. Jacobi. Cryptographically sound and machine-assisted 
verification of security protocols. In Proc. 20th Annual Symposium on Theoretical 
Aspects of Computer Science (STACS), volume 2607 of Lecture Notes in Computer 
Science, pages 675–686. Springer, 2003. 
 
[3]  M. Backes and B. Pfitzmann. A cryptographically sound security proof of the 
Needham-Schroeder_Lowe public-key protocol. Journal on Selected Areas in 
Communications, 22(10):2075–2086, 2004. 
 
[4]  M. Backes and B. Pfitzmann. A General Composition Theorem for Secure 
Reactive Systems. Theory of Cryptograpy Conference (TCC 2004), LNCS 2951, pp. 
336-354, 2004. 
 
[5] M. Backes and B. Pfitzmann. Cryptographic key secrecy of the strengthened 
Yahalom protocol via a symbolic security proof. Research Report 3601, IBM 
Research, 2005. 
 
[6]  M. Backes, I. Cervesato, A.D. Jaggard, A. Scedrov and J-K. Tsay. . A 
cryptographically sound security proof for Basic and Public key Kerberos. Computer 
Security – ESORICS 2006, LNCS, Volume 4189/2006, 362-383.  
 
[7] M. Backes, B. Pfitzmann, and M. Waidner. Limits of the Reactive 
Simulatability/UC of Dolev-Yao Models for Hashes. Cryptology ePrint Archive: 
Report 2006/068. also in Workshop on Formal and Computational Cryptography 
(FCC 2006) (2006)  
 
[8] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for 
designing efficient protocols.  First Annual Conference on Computer and 
Communications Security,  pages 62-73, Fairfax, 1993. ACM. 
 
[9] R.Canetti. Towards Realizing Random Oracles: Hash Functions That Hide All 
partial Information. Advance in Cryptology – CRYPTO ’97, LNCS 1294., pp.455-469, 
1997. 
 
[10] B. Pfitzmann and M. Waidner. Composition and integrity preservation of secure 
reactive systems. In Proc. 7th ACM CCS, pages 245–254, 2000. 
 
[11]  I.Vajda.  Cryptographically Sound Security Proof for On-Demand Source 
Routing Protocol EndairA.  Cryptology ePrint Archive Report 2011/103. 
http://eprint.iacr.org/2011/103.pdf 
 
[12]  I.Vajda.  Framework for Security Proofs for Reactive Routing Protocols in 
Multi-Hop Wireless Networks. Cryptology ePrint Archive Report 2011/237. 
http://eprint.iacr.org/2011/237.pdf 


