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Abstract. We present a generic transformation that allows us to use a large class of pairing-based
signatures to construct schemes for signing group elements in a structure preserving way. As a
result of our transformation we obtain a new efficient signature scheme for signing a vector of group
elements that is based only on the well established decisional linear assumption (DLIN). Moreover,
the public keys and signatures of our scheme consist of group elements only, and a signature is
verified by evaluating a set of pairing-product equations. In combination with the Groth-Sahai proof
system, such a signature scheme is an ideal building block for many privacy-enhancing protocols.

To do this, we start by proposing a new stateful signature scheme for signing vectors of exponents
that is F-unforgeable under weak chosen message attacks. This signature scheme is of independent
interest as it is compatible with Groth-Sahai proofs and secure under a computational assumption
implied by DLIN. Then we give a general transformation for signing group elements based on sig-
natures (for signing exponents) with efficient non-interactive zero-knowledge proofs. This transform
also removes any dependence on state in the signature used to sign exponents. Finally, we obtain
our result by instantiating this transformation with the above signature scheme and Groth-Sahai
proofs.

1 Introduction

Computational assumptions are essential for cryptography, however, our goal as cryptographers
is to base our constructions on the weakest possible assumption. Sometimes we must make com-
promises for the sake of efficiency — if no efficient scheme is known based on weak assumptions,
in many cases it may be necessary to accept a stronger assumption in order to obtain a scheme
that is practical. But it is important to understand what these tradeoffs are, and to continue to
look for efficient constructions based on the weakest possible assumptions [Nao03]. In this work
we consider the problem of structure preserving signatures, and show that, contrary to what was
previously believed, it is possible to design schemes based on significantly weaker assumptions
with only a relatively small loss in efficiency.

Structure Preserving Signatures3. In most settings it is straightforward to sign elements of
any message space. We simply view the message as a binary string and apply a collision resistant
hash function to map it into the desired range (usually Zp or Zn) at which point it can be signed
using constructions based on number theoretic primitives. For most applications this works well
– it allows us to sign messages in any message space, and as an apparent added benefit the hash
function destroys all structure in the values that are being signed, which in many cases allows
us to require weaker properties of the number theoretic primitive.

However, in some applications there is also a disadvantage to eliminating the structure of the
message space. In particular, without this structure it seems to be much more difficult to build
efficient protocols for dealing with signatures on hidden messages, e.g. for proving knowledge
of a signature on a hidden message, or issuing a signature given only the commitment to the
message (as in blind signatures).

3 This term was introduced recently in [AHO10], but it nicely captures the idea behind a lot of earlier work as
well (as we will discuss).
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Such protocols are essential in numerous privacy-enhancing applications such as group signa-
tures [ACJT00], anonymous credentials [CL01,BCL04], compact e-cash [CHL05,CHL06,CLM07],
range proofs [CCS08], oblivious database access [CGH09], and others [CHK+06,TS06,CGH06].
All of these schemes make use of a form of privacy enhanced certification: instead of revealing
a certificate, which might include private information, one can prove knowledge of a certificate
with certain properties. One of the key elements in this approach is the ability to prove that
certain hidden values have been signed without revealing the signature nor all of the certified
values. This is generally done by committing to or encrypting the desired values, and then giving
a proof of knowledge of an opening to the commitments and a signature on these committed
values.

While such protocols are extremely useful, there are relatively few known efficient construc-
tions. Of course one could construct these protocols based on general commitment schemes and
proofs of knowledge. However, these general building blocks are extremely inefficient. A far more
practical approach is to consider particular languages for which we can generate efficient proofs
and efficient protocols using Σ-protocols [CDS94,Cra97,Dam02] or the recent proof system of
Groth and Sahai [GS08]. These protocols rely on the structure of the underlying groups to
generate efficient proofs for large classes of statements.

This is where hash functions cease to be useful as universal domain extenders for digital
signatures. If the original message must be first hashed and then signed, then a proof that a
committed message has been signed must not only prove knowledge of a valid signature on the
resulting hash, but must also prove that the pre-image of this value is contained in the given
commitment. For most modern hash functions it is completely unclear how to do this efficiently.

Consequently, the known efficient signature schemes used in the above applications, which
are sometimes referred to as CL-signatures [CL02], focus on signing elements of Zp or Zn, where
no hashing is necessary so that protocols can take advantage of the structure of the underlying
message space.

As described above, CL-signatures have been very useful in a wide variety of applications.
However, they do have significant limitations. First, the resulting proof systems must be either
interactive or in the random oracle model. This means, among other things, that it will be
impossible to give a proof of knowledge of a proof that a message has been signed. This is
unfortunate, since such an approach seems to be the key to allowing delegation in anonymous
scenarios [CG08,CL06,FP08]. Furthermore, in many cases we need to prove knowledge of a
signature on a public key, a ciphertext, a commitment, or another signature. This can be difficult
since these values are often group elements and thus not elements of the original message space.
An additional disadvantage is that the known efficient constructions of CL-signatures require
significantly stronger assumptions than traditional signature schemes.

Pairing Based Constructions Because of these limitations, there have been a number of
efforts in recent years to look for alternate constructions. Many of these efforts have focused
on constructions in bilinear groups because of their rich mathematical structure. In this setting
public keys, ciphertexts, and signatures are usually group elements, and so the ideal scheme
would be one whose message space is the elements of the bilinear group.

Recently there has been significant interest in the construction of efficient signature schemes
for signing group elements: Cathalo, Libert, and Yung [CLY09] presented a construction based
on the combination of the q-Hidden Strong Diffie-Hellman (q-HSDH), Flexible Diffie-Hellman
(FDH) and the Decisional Linear (DLIN) assumption, and in independent parallel work Abe,
Haralambiev and Ohkubo [AHO10] propose structure-preserving signature scheme based on
the new q-Simultaneous Flexible Pairing (q-SFP) assumption. 4 In a very recent work, Abe,

4 The works of [Fuc09] and [AHO10] have been combined in [AFG+10].



A Domain Transformation for Structure-Preserving Signatures on Group Elements 3

Groth, Haralambiev and Ohkubo [AGHO11] give a scheme in which signatures consist of only 3
group elements, whose security is based on an interactive assumption that can be justified in the
generic group model. There were also several earlier protocols which made use of adhoc structure-
preserving signature schemes that relied on very strong assumptions [AWSM07,ASM08,GH08].

However, all known efficient schemes are based on so-called “q-type” or interactive assump-
tions that are primarily justified based on the Generic Group model.5

Thus, we ask whether it is possible to construct structure preserving signatures for bilinear
group elements based on weaker assumptions. Ideally we would like to be able to base privacy-
protecting cryptography on the same assumptions as conventional pairing-based cryptography.

One partial result in this direction is the scheme by Groth [Gro06], which satisfies the stan-
dard notion of EUF-CMA security and is based on the decisional linear assumption(DLIN).
DLIN is one of the weakest assumptions used in the pairing-based setting, and is also one of
the assumptions underlying the Groth-Sahai proof system, so it seems a fairly natural choice.
However, while asymptotically efficient, a signature in Groth’s scheme requires as confirmed by
the author himself [Gro07] “thousands if not millions of group elements” per signature, so it is
mainly of theoretical interest.

We focus on achieving efficient constructions based on the DLIN assumption. We do pay
some price for our weaker assumptions; however we can show that the difference in efficiency is
not as great as was previously thought: protocols based on our primitives are within an order
of magnitude or two of the most efficiency of the efficient protocols mentioned above. Thus,
our work helps to explore the security/efficiency tradeoff in this setting. In cases where high
efficiency is critical it may be best to use one of the more efficent schemes and hope that the
q-type assumptions remain secure. On the other hand, in other cases where a slightly higher
time/space cost is acceptable, we provide the alternative option of a safer construction based on
a weaker assumption.

Our results. We show how to transform any signature for signing elements of Zp (with certain
additional properties) into a structure preserving signature scheme for signing bilinear group
elements. Signature schemes for signing elements of Zp seem to be simpler to construct, and there
are a number of constructions based on various assumptions [Wat05,BCKL08,BCKL09,Fuc09].
Thus, this already generates a range of structure preserving signatures schemes.

However, all of these possible underlying signature constructions are based on fairly strong
q-type assumptions, and thus they don’t help us to achieve our final goal. Instead, we construct
a new DLIN based signature scheme with the necessary properties based on the scheme of
Hohenberger and Waters (HW) [HW09a].

Combining this with our transformation yields our final result: a structure preserving sig-
nature scheme whose security is based on the DLIN assumption, which is among the weakest
assumptions used in the bilinear group setting.6

A significant advantage of our proposal is that we provide a general transform for building
signature schemes for signing group elements from any signature schemes for signing exponents
in Zp that support efficient non-interactive zero-knowledge proofs of signature possession. This
means that any progress in these areas, e.g., a new more efficient NIZK proof system for state-
ments about group elements, or a more efficient signature scheme for exponents based on weak
assumptions, will automatically result in improved signature schemes and proof protocols for
group elements based on those assumptions.

5 The parameter q influences the instance size of the assumption and depends on the number of signatures an
adversary is allowed to see.

6 Alternatively if we use a different instantiation of GS proofs, we can also prove our scheme secure based on the
SXDH assumption and an additional computational assumption that is implied by DLIN in the asymmetric
pairing setting.
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Our approach. Our solution makes use of pairwise independent hash functions and signatures
(for signing exponents) that have efficient zero-knowledge proofs of knowledge. Intuitively instead
of hashing messages and signing the hash, we certify a pairwise independent hash function
fz :M→ G where M = G`, and append the output of the hash S = fz(M) to the certificate.
Each hash-function is used exactly once. If we can guarantee that the adversary cannot learn
any useful knowledge from the certification process about fz, then the adversary’s probability
of guessing a correct S̃ for a message M̃ 6= M is bounded by 1/|G|.

For the certification of fz we make use of the signature scheme for exponents and its zero-
knowledge proof of knowledge protocol. Our transformation has the additional advantage that
even if this underlying scheme is stateful and only weakly secure, the result will be a struc-
ture preserving signature scheme which is stateless and secure under the standard EUF-CMA
definition.

Applications. Structure preserving signatures on group elements have found many crypto-
graphic applications [GH08,CLY09,Fuc09,AHO10,AFG+10]. A common element in all of these
constructions is the use of structure preserving signatures to sign cipher-texts, commitments,
and public keys; to preserve privacy the recipient of the signature only proves possession of
a signature, while keeping the signatures and the cipher-texts, commitments, and public keys
hidden.

For example, universally composable oblivious transfer [GH08] is obtained using an assisted
decryption technique in which the recipient proves that he is asking for the decryption of a
valid (signed) ciphertext. A universally composable blind signature scheme [Fis06] is obtained
by signing a commitment, and proving possession of a signature on a commitment that opens
to the blindly signed message. Signing public keys allows for an implementation of group signa-
tures that fulfills the strong security definitions of [BMW03] and supports the concurrent join
of new users [KY05]. Similar improvements carry over to P-signatures [BCKL08], anonymous
proxy signatures [FP08], and delegatable anonymous credentials [BCC+09]. For details on these
constructions we refer to [AFG+10] and to Appendix A.

2 Background

Our structure preserving signatures construction will make use of three main building blocks:
the Groth-Sahai pairing-based proof system [GS08], a pairwise independent hash function, and
a signature scheme for signing elements of Zp.

2.1 The Groth-Sahai proof system.

Pairing-based cryptography has led to several cryptographic advancements. One of these ad-
vancements is the development of powerful and efficient non-interactive zero-knowledge proofs
in the common reference string model. The basic premise behind this approach is to hide the
values for the evaluation of the bilinear map in a commitment whose parameters are given as
part of the reference string. Using different commitment schemes, this idea was used to build
non-interactive proof systems under the sub-group hiding [GOS06b] and under the decisional
linear assumption [GOS06a].

These proof systems prove circuit satisfiability, and thus by the Cook-Levin theorem [Coo71]
allow one to prove membership for every language in NP. The size of the common reference
string and the proofs is relatively small, however transforming a statement into a Boolean circuit
causes a considerable overhead.

Groth and Sahai [GS08] extended this construction and gave proof systems under the sub-
group hiding, decisional linear, and external Diffie-Hellman assumptions that allow one to di-
rectly prove the pairing product equations common in pairing-based cryptography.
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While proofs for such equations can also be implemented using interactive proofs about
discrete logarithms, such proofs can only be made non-interactive in the random oracle model.
Moreover, Groth-Sahai proofs give us something that we do not know how to obtain with random
oracles: the randomizability property introduced by [BCC+09].

Groups with a bilinear map. Let G1, G2, and GT be groups of prime order p. A bilinear
map e : G1 × G2 → GT must satisfy the following properties: (a) Bilinearity : a map e is
bilinear if e(ax, by) = e(a, b)xy; (b) Non-degeneracy : for all generators g ∈ G1 and h ∈ G2,
e(g, h) generates GT ; (c) Efficiency : There exists a p.p.t. algorithm to generate the bilinear
group setup (p,G1,G2,GT , e, g, h) and an efficient algorithm to compute e(a, b) for any a ∈ G1,
b ∈ G2.

If there exist two efficiently computable homomorphisms that map elements of G1 to elements
of G2 and elements of G2 to elements of G1, we speak about a symmetric bilinear map and
simplify the notation to e : G×G→ GT .

DLIN and SXDH assumption. We recall the DLIN and SXDH assumption. In our analysis
we refer to, but do not make use of, a variety of other, much stronger assumptions. We summarize
these assumptions in the full version of this work.

Definition 1 (Decision Linear (DLIN) [BBS04]).
Given g, ga, gb, gac, gbd, Z ∈ G, for random exponents a, b, c, d ∈ Zp, decide whether Z = gc+d

or a random element in G. The Decision Linear assumption holds if all p.p.t. algorithms have
negligible (with respect to the bit length of p) advantage in solving the above problem.

Definition 2 (External Diffie-Hellman (XDH)).
The XDH assumption requires that the DDH assumption holds for a group with a bilinear map.
By necessity this can only be the case for an asymmetric bilinear map e : G1 × G2 → GT .
Moreover, w.l.o.g., say that DDH should hold for G1, there must not exist efficiently computable
homomorphisms that map elements of G1 to elements of G2.

If homomorphisms in both directions are excluded, and if DDH is also required to hold for G2,
the combined assumption is called Symmetric XDH (SXDH) assumption.

Groth-Sahai proofs. The Groth-Sahai proof system can generate non-interactive zero-knowledge
proofs of knowledge of values satisfying pairing product equations. We denote a proof π that
proves knowledge of secret values x1, . . . , xN that fulfill a pairing product equation with con-
stants {ai}i=1..N ∈ G, t ∈ GT and {γi,j}i=1..N,j=1..N by

π ← NIZKPK{(x1, . . . , xN ) :

N∏
i=1

e(ai, xi)

N∏
i=1

N∏
j=1

e(xi, xj)
γi,j = t} .

In a nutshell, Groth-Sahai proofs work by committing to all secret elements using either Lin-
ear [BBS04] or ElGamal [EG85] commitments (depending on the assumption used). The homo-
morphic properties of these commitments allow one to evaluate the pairing product equation in
the committed domain. In addition, a Groth-Sahai proof contains a constant number of group
elements that allow a verifier to check that the result of this computation corresponds to t. The
verification algorithm only consists of pairings between the group elements of the commitments
and these additional proof elements.

Linear and ElGamal commitments are extractable. Given a setup with an extraction trap-
door, we can extract the committed value xi from a proof, but not the opening openi.

Randomizing Groth-Sahai proofs. Both [BCC+09] and [FP09] observe that Groth-Sahai
proofs can be rerandomized. A rerandomized proof is indistinguishable from a freshly generated
proof of the same statement, even given all secret information about the original proof.
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Belenkiy et al. [BCC+09] formally define rerandomizable non-interactive proofs. The ran-
domization algorithm RandProof((C1, . . . ,C`), (open ′1, . . . , open ′`), π) takes a Groth-Sahai proof,
a list of commitments, and a list of opening updates as input. It outputs a proof π′ that looks
like a freshly generated proof for the same equations but for randomized commitments C1 �
Com(1, open ′1), . . . ,C`�Com(1, open ′`). For a commitment C = Com(x, open), C�Com(1, open ′) =
Com(x, open + open ′). Linear and ElGamal commitments with randomness 0 correspond to the
committed value itself. As a consequence, the pairing product equation constants {aq}q=1...Q ∈ G
can also be randomized and thus turned into commitments to secret values.

We give more details on Linear and ElGamal commitments, Groth-Sahai proofs, and ran-
domizing Groth-Sahai proofs in Appendix F.

2.2 Signatures for signing exponents

Our construction will also require a signatures scheme for signing elements of Z`p which is F -
unforgeable under a weak chosen message attack. Intuitively, F -unforgeability guarantees that
it is hard for the adversary to produce F (m) and a signature on m for an m that wasn’t signed;
this is important because when the message space is Zp , Groth-Sahai proofs only allow one to
efficiently prove knowledge of some function of the message (e.g. gm). We will see later that the
signature schemes for Zp will only be used to sign random message, thus security under weak
chosen message attacks will suffice. We now formally define these notions:

Definition 3 (Unforgeability under Weak Chosen Message Attacks [BB04,HW09b]).
In a weak chosen message attack, we require that the adversary submit all signature queries before
seeing the public key. A signature scheme is unforgeable under weak chosen message attacks if
for all A1, A2 there exists a negligible function ν such that

Pr[(m1, . . . ,mQ, state)← A1(1
k); (sk , pk)← SigKg(1k);σ(i) = Sign(sk ,mi) for i = 1, . . . , Q;

(σ̃, m̃)← A2(state, pk , σ(1), . . . , σ(Q)) :

m̃ /∈ {m1, . . . ,mQ} ∧ SigVerify(pk , m̃, σ̃) = accept] = ν(k) .

This definition is generalized to Weak CMA F -Unforgeability for some bijection F in the natural
way. Instead of m̃, A1 only has to output f̃ , such that F−1(f̃ ) /∈ {m1, . . . ,mQ}∧SigVerify(pk , F−1(f̃ ), σ̃) =
accept.

We present a new signature scheme satisfying this definition based on DLIN in Section 3.1,
and discuss some other possible instantiations in Section 3.4.

2.3 Pairwise independent hash functions.

The final ingredient will be a family of pairwise independent hash functions. This will be a family
of functions parameterized by a ”key” z. Intuitively, pairwise independence means that knowing
the result of a random hash function on any one input gives no information about the result of
that function on any other point. More formally:

Definition 4. A family of hash-functions {fz}z∈Z , where fz :M→ R is called pairwise inde-
pendent if ∀x 6= y ∈M and ∀a, b ∈ R, the probability

Pr[z ← Z : fz(x) = a ∧ fz(y) = b] =
1

|R|2
.
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We will need a pairwise independent family of hash-functions {fz}, where fz : M → G with
M = G` and z ∈ Z`+1

p . The function we propose is computed as

fz(M1, . . . ,M`) = gz0
∏
i=1..`

M zi
i

, where z = (z0, . . . , z`). We show that this function family is indeed pairwise independent:

Theorem 1. The above function family is pairwise independent.

Proof. Let us express the probability

Pr[z ← Z : fz(x) = a ∧ fz(y) = b] =
|{z0, . . . , z` | gz0

∏
i=1..` x

zi
i = a ∧ gz0

∏
i=1..` y

zi
i = b}

|Zp |`+1

We have to show that the numerator equals |Zp |`−1. This can be seen by looking at gz0
∏
i=1..` x

zi
i =

a and gz0
∏
i=1..` y

zi
i = b as independent linear equations over the variables z0, . . . , z` (indepen-

dence follows from x 6= y). As there are `+1 variables and 2 equations, the solution set has `−1
dimensions and thus has size |Zp |`−1. For a more formal proof see Appendix C.

3 A Signature Scheme for Signing Group Elements under Standard
Assumptions

Our main result is to show how to construct a signature scheme for signing group elements
based on an efficient zero-knowledge proof system and two basic building blocks. The first is a
signature scheme Sign·exp for signing `+ 1 exponents that has an efficient zero-knowledge proof
of knowledge (NIZKPK) of a signature on a committed message. The second building block is
a pairwise independent family of hash-functions {fz}, where fz : M → G with M = G` and
z ∈ Z`+1

p .
The basic idea is that, instead of hashing messages and signing the hash, we certify the key

z = (z0, . . . , z`) of a pairwise independent hash function and append the output of the hash
S = fz(M) to the certificate. Each hash-function key z is used exactly once so the hash value S
does not help an attacker to find the hash (under the same key) of any other message. Then, for
the certification of z we make use of the signature scheme for exponents and its zero-knowledge
proof of knowledge protocol. This allows us to guarantee that the adversary cannot learn any
useful knowledge from the certification process about z and thus even given many signatures,
he is not able to guess a hash value S′ for any message M ′ different from M .

The organization of this section is as follows: We first describe an instantiation of the first
building block that is based on a weak assumption in Section 3.1, then Section 3.2, we describe
the transform which we will use to construct a structure preserving signature scheme from these
two primitives.

3.1 A Signature Scheme with an Efficient NIPK under Standard Assumptions

We will base our exponent-signature scheme Sign·exp on the Hohenberger and Waters [HW09a]
stateful signature scheme which was proved secure under the CDH assumption. In that scheme,
each signature is indexed by a unique index s that is initialized to 0, and increased before each
signing. A signature with message m, secret key a, public bases u, v, d, w, z, and randomness
t, r consists of two group elements σ1 = (umvrd)a(wdlg(s)ezsh)t and σ2 = gt, and the two ex-
ponents r, s ∈ Zp . We adapt their scheme to obtain a stateful signature that is F-unforgeable
under weak chosen message attacks (Weak CMA F-unforgeable) under the Randomized Compu-
tational Diffie-Hellman (RCDH) assumption, a new assumption which is implied by the DLIN
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assumption. We also show how to reuse the state to sign multiple message blocks. Interestingly,
when we apply the transformation presented in Section 3.2, the result will be a fully secure,
stateless signature scheme for signing group elements.

Remark 1. Hohenberger and Waters pose the construction of a signature scheme with efficient
protocols [CL02] (also known as a CL-signature scheme) based on their signature scheme as an
interesting open problem. We give a partial answer by describing an efficient zero-knowledge
proof protocol for such a scheme that is more efficient than a similar protocol for the Wa-
ters [Wat05] signature scheme as, e.g., described by [FP09]: In that scheme the number of group
elements in the public key and the proof grows linearly with the number of bits in the message
while the cost of our scheme only depends on the bit-size of the state s (and the number of group
elements required to represent the message).

Simplifying the Hohenberger and Waters scheme. Recall that in the HW scheme, sig-
natures include elements σ1 = (umvrd)a(wdlg(s)ezsh)t and σ2 = gt, and the two exponents
r, s ∈ Zp . When building a zero-knowledge proof of knowledge of signature possession, we must
prove that the signature is well formed, which in this case requires proving the correspondence
between dlg(s)e and s. This typically involves two steps: 1) proving that a commitment contains
the value 2dlg(s)e, and 2) proving that this value is bigger than s. The range proof technique
by [Bou00] for interactively proving the latter relation for large s uses hidden order groups and
is based on the Strong RSA assumption. To obtain a scheme that is based purely on CDH,
one has to use alternative range proof techniques, e.g. [BCDvdG87]. While such proofs can be
efficiently computed ([Bou00] estimates a proof size of 27.5 kB), we are primarily interested in
non-interactive proofs based on the Groth-Sahai proof system.

As pointed out in [HW09a], instead of signing lg(s) as part of σ1 one can also sign s using
a signature scheme that is already CMA secure under the CDH assumption, e.g. by employing
the Waters signature [Wat05]. 7 While this approach may be slightly circular, it gives us a
performance advantage, as the expected number of signatures is usually much smaller than the
size of the message space Zp . Moreover, as we will see, when many messages are signed with
related state (e.g. when we sign multiple message blocks at once), we need only sign a single
state value, thus resulting in greater advantage.

Finally, we will show that for our transformation we only require a weak signature scheme;
thus we can simplify the resulting signature scheme further by replacing the Chameleon hash
umvr with um itself.

Our construction. Let G be a symmetric bilinear group with pairing operation e : G×G→ GT .
Let g, ĝ be random generators for G. The resulting signature scheme is as follows:

SigKgexp(1k) outputs secret key sk = (a, skw) and a public key pk = (g, ĝ, ga, u, d, z, h, pkw).
(The initial value of s is 0.)

Signsexp(sk ,m). The stateful signature algorithm Sign increases the state s. To sign a message
m, it computes σ1 = (umd)a(zsh)t, σ2 = gt, and a Waters signature σ3 on s. The algorithm
outputs σ = (σ1, σ2, σ3, s).

SigVerifyexp(pk ,m, σ).The verification algorithm parses σ as (σ1, σ2, σ3, i) and checks that signa-
ture σ3 on i is valid. Then it uses the bilinear map to check that e(σ1, g) = e(umd, ga)e(σ2, z

ih).

7 The Waters signature operates bit-by-bit on it’s message, and directly proving knowledge of a valid Waters
signature has cost proportional to the bit-length of the message. Thus, proving correctness of our resulting
signature will thus have cost proportional to the bit-length of the maximum possible value of s rather than the
bit length of the message.
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Note: We write Signsexp(sk ,m) to indicate that we run the signing algorithm on state s. Nota-
tionally we assume a call-by-reference evaluation strategy, i.e. s might change it’s value during
the run of the algorithm and this new value will be automatically used in the next run of the
algorithm. In our transformation to a stateless scheme we will write Signs=0

exp (sk ,m) to indicate
that the state is reset to the initial state before the algorithm is run.

A new assumption implied by DLIN. For simplicity, we introduce a new assumption that
will allow us to prove the F-unforgeability of the above signature scheme. We show in Appendix B
that it is implied by the DLIN assumption.

Assumption 1 (Randomized Computational Diffie-Hellman (RCDH)) Let G be a group
of prime order p ∈ Θ(2k). For all p.p.t. adversaries A, the following probability is negligible in
k:

Pr[g, ĝ ← G; a, b← Zp ; (R1, R2, R3)← A(g, ĝ, ga, gb) :

∃r ∈ Zp such that R1 = gr, R2 = ĝr, R3 = gabr]

Theorem 2. In groups with a symmetric bilinear pairing RCDH is implied by DLIN. The proof
can be found in Appendix B.

Security of our construction. We show that this signature scheme is unforgeable under weak
chosen message attacks, and moreover, that it is F -unforgeable under such attacks for a simple
function F that maps exponents to group elements. (Recall that F -unforgeability means that it
is impossible produce F (m) and a forged signature on m. This allows us to prove a contradiction
even when we can extract only F (m) and not m as is the case when we use the Groth-Sahai
proof system.)

Theorem 3. Our (SigKgexp , Sign
s
exp , SigVerifyexp) signature scheme is unforgeable under weak

chosen message attacks under the CDH assumption. The proof is omitted. It follows very closely
the proof of F-unforgeability presented below.

We note that, as part of their result, Hohenberger and Waters [HW09b] give a generic
transformation from Weak CMA security to CMA security based on Chameleon hashes. We will
however show that Weak CMA F-unforgeable signatures are sufficient to obtain a CMA secure
signature scheme for signing group elements via our transform.

We now state and prove security of the above signature scheme:

Theorem 4. Let F (m) = (gm, ĝm). Our (SigKgexp , Sign
s
exp , SigVerifyexp) signature scheme is

Weak CMA F -unforgeable under the RCDH assumption.

Proof. A successful adversary A outputs a forgery σ̃ = (σ̃1, σ̃2, σ̃3, ĩ). If the signature on index
ĩ was never created, we break the signature scheme that is used to sign the index s. Thus we
concentrate on the case where the adversary reuses one of the s values from the signing queries
as ĩ . The first step in a reduction to RCDH will be to guess this ĩ . (Here we have at most a
polynomial loss in the tightness of the reduction.)

Setup: As we consider a weakly secure signature scheme, the game starts with the adversary
outputting polynomially many messages m1, . . . ,mQ, Q ≤ poly(k). The reduction chooses a
random index i∗, 1 ≤ i∗ ≤ Q. Given (g, ga, gb) as specified in the RCDH assumption, the
parameters are set up as follows. Choose random yd ∈ Zp and set u = gb, d = g−bmi∗gyd ,
then choose random xz, xh ∈ Zp , and set z = gbgxz , h = g−bi

∗
gxh . The reduction outputs

pk = (g, ga, u, d, z, h).

Sign: The adversary is now given signatures on messages m1, . . . ,mQ, Q ≤ poly(k), that are
computed as follows:
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For s = i∗, choose random t and form σ1 = (ga)yd(zsh)t, σ2 = gt. Note that this results in a cor-
rectly distributed signature as

(ga)yd(zsh)t =

((gab)mi∗−mi∗ )(ga)yd(zsh)t =

((gb)mi∗ (g−bmi∗gyd))a(zsh)t =(umi∗d)a(zsh)t .

For s 6= i∗ , choose a random value t′, and form σ1 = (ga)ydT xzs+xh(gb)t
′(s−i∗), σ2 = T for T =

gt
′
/(ga)(ms−mi∗ )/(s−i

∗). Let implicitly t = t′−a(ms−mi∗)/(s−i∗), then T = gt
′−a(ms−mi∗ )/(s−i∗) =

gt and

(ga)ydT xzs+xh(gb)t
′(s−i∗) =

(gyd)a(gxzsgxh)t(gb)t
′(s−i∗) =

(umsd)a(gxzsgxh)t(gb)t
′(s−i∗)(g−ab)(ms−mi∗ ) =

(umsd)a(gxzsgxh)t(gb(s−i
∗))t =

(umsd)a(g(b+xz)sg−bi
∗+xh)t =(umsd)a(zsh)t .

Response: Eventually the adversary responds with a forgery σ̃ = (σ̃1, σ̃2, σ̃3, ĩ), g
m̃ , ĝm̃ , such

that m̃ /∈ {m1, . . . ,mQ}. If ĩ 6= i∗ the reduction aborts. Otherwise it outputs gm̃/gmi∗ , ĝm̃/ĝmi∗

and σ̃1/g
ayd σ̃

(xz ĩ−xh)
2 as a RCDH triple.

Signing Multiple Message Blocks. For our transformation, we actually need to be able
to sign vector of exponents, i.e. we need our signature scheme Signexp to have message space
Znp for n > 1. We show how to use the above signature scheme to sign multiple messages
m1, . . . ,mn ∈ Zp at once.

There is also an efficiency advantage to batching several messages together: We note that
the Waters signature on the index s needs to be done only once. The indices of the individual
signatures will be set to n · (s− 1) + 1, . . . , n · (s− 1) + n.

Our multiple message block signature is as follows:

SigKgexp(1k) is unchanged.

Signsn·exp(sk ,m1, . . . ,mn). The signature algorithm increases the state s. To sign message m, it

then computes σ1,j = (umjd)a(zn(s−1)+jh)tj , and σ2,j = gtj , for j = 1..n and tj ← Zp . We
also add a Waters signature σ3 on s. The algorithm outputs σ = ({σ1,j , σ2,j}j=1..n, σ3, s).

SigVerifyn·exp(pk ,m1, . . . ,mn, σ).Parse σ as ({σ1,j , σ2,j}j=1..n, σ3, i). The verification algorithm
first checks that signature σ3 on i is valid. It uses the bilinear map to verify e(σ1,j , g) =
e(umjd, ga)e(σ2,j , z

n(i−1)+jh), for j = 1..n.

Unforgeability and F-unforgeability under weak CMA attacks can be shown via a straightforward
extension of the proof for the single message scheme. Note that the reduction now has to guess
values i∗ and j∗, where 1 ≤ i∗ ≤ Q and 1 ≤ j∗ ≤ n respectively. The RCDH challenge is
embedded into message block j∗ of signature query i∗.

Efficient Zero-knowledge Proof of Knowledge. Except for the value s, the signature σ =
({σ1,j , σ2,j}j=1..n, σ3, s) consists only of group elements. When employing the Groth-Sahai proof
system, the Waters signature σ3 is proved in a bit-by-bit fashion that allows us to extract
s (see [FP09] for further details). It is thus possible to give proofs of knowledge for the above
signature scheme using the pairing-product equation proofs in [GS08] in a straightforward way.
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3.2 A Transform for Signing Group Elements

Here we present our generic transformation. When instantiated using the signature scheme
described in the previous section the result will be a secure structure preserving signature under
DLIN. (We can also consider other instantiations; see Section 3.4 for discussion.)

Let Sign·exp = (SigKgn·exp ,Sign
s
n·exp ,SigVerifyn·exp) be a (potentially stateful) Weak CMA F -

unforgeable signature scheme on message space Z`+1
p for some bijection F . (Note that a stateless

signature scheme would suffice - the construction would then simply not use the state s.) Let
Setup,Prove,VerifyProof be an F -extractable non-interactive zero knowledge proof of knowledge
system. Let G be a cyclic group of order p, and let g be a generator. We construct a stateless
signature scheme with message space G` as follows:

SigKg(1k): Run SigKgn·exp(1k) to generate a key pair (pkexp , skexp). Generate the common ref-
erence string paramspk for a NIZKPK proof system. Output pk = (pkexp , paramspk ) and
sk = (skexp , paramspk ).8

Sign(sk ,M1, . . . ,M`): Parse sk = (skexp , paramspk ). Choose random elements z0, . . . , z` ← Zp.
Compute the signature σ′ ← Signs=0

n·exp(sk , z0, . . . , z`) and S = gz0
∏`
i=1M

zi
i . Finally, con-

struct a proof of knowledge of F (z0), . . . , F (z`) and the corresponding signature, i.e.:

π ∈ NIZKPK{(f0, . . . , f`, σ′) : {∃(z0, . . . , z`) s.t. for i ∈ 0, . . . `, fi = F (zi)∧

SigVerifyexp(pk , (z0, . . . , z`), σ
′) = 1 ∧ S = gz0

∏̀
i=1

M zi
i }}

Output σ = (S, π).

Note that we write Signs=0
n·exp to indicate that in case of a stateful signature we reset the state

to the initial state after each signing operation. We will see below that as the signature is
always used inside of a NIZKPK this does not impact security.

SigVerify(pk ,M1, . . . ,M`, σ): Parse pk = (pkexp , paramspk ) and σ = (S, π). Verify the proof π
w.r.t. paramspk and S,M1, . . . ,M`.

We now prove our main result:

Theorem 5. Given a (potentially stateful) Weak CMA F -unforgeable signature scheme (SigKgexp ,
Signsexp ,SigVerifyexp) and a secure NIZKPK proof system (Setup,Prove,VerifyProof), (SigKg, Sign,
SigVerify) is a stateless CMA unforgeable signature scheme.

Proof. We formally prove the security of the transformation using a sequence of games. Let pi(k)
be the probability that the adversary succeeds in Game i. We let Game 1 be the EUF-CMA
game for the signature scheme described above. We will show via a series of hybrid games that
this probability must be negligible.

Game 1: EUF-CMA. This is the original EUF-CMA game for the signature scheme described
above, i.e. signing queries are answered using Sign and the adversary succeeds if it can make
SigVerify accept for a message vector that was never signed before.
The adversary succeeds with probability p1(k).

Game 2: Implement state updates. This game proceeds just as the EUF-CMA game except
that Sign uses calls to Signsn·exp instead of calls to Signs=0

n·exp . This means that the state is no
longer reset. Let p2(k) be the probability that the adversary succeeds in this game.

8 Here we describe the signature as a stand alone primitive. If it is used as a building block in a bigger system,
one might want to reuse parts of the system setup. For instance, one might reuse existing group parameters.
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Lemma 1. ∆1(k) = |p2(k)−p1(k)| is negligible by computational witness indistinguishability
property of the proof system.

Proof. Note first that a proof system that is zero-knowledge is also witness indistinguishable.
Clearly, both the signatures generated by Signs=0

n·exp and by Signsn·exp correspond to valid
witnesses for the NIZKPK in the signing algorithm. We first construct a sequence of hybrid
games. In each hybrid an additional call to Signs=0

n·exp is replaced by Signsn·exp . Given an
adversary A that has a non-negligible success difference between any of these hybrids, we
can build an algorithm B that breaks the witness indistinguishability property of the proof
system. B computes two witnesses w0 and w1 that are based on Signs=0

n·exp and Signsn·exp
respectively. B outputs w0 and w1 to the witness indistinguishability challenge game and
uses the resulting proof π to respond to the ith signature query. Depending on the bit
flipped by the challenge game, A will interact with one of the two hybrids. If A succeeds in
producing a forgery, B outputs 1, otherwise 0. It follows that ∆1(k) is negligible ut

Game 3: reusing zi. This game will proceed just as Game 2 except that once the adversary
outputs his forgery, M̃, σ̃ = (S̃, π̃), we will extracts f̃0, . . . , f̃` from π̃, and compare them
against the values used to answer all of the adversary’s queries. The adversary succeeds in
this game if and only if the signature verifies, the message is new, and the tuple (f̃0, . . . , f̃`))
corresponds to (F (z0), . . . , F (z`)) for some tuple of values (z0, . . . , z`) used in a previous
query. Let p3(k) be the probability that the adversary succeeds in this game.

Lemma 2. ∆2(k) = |p3(k) − p2(k)| is negligible by the F-unforgeability of the signature
scheme.

Proof. The two games differ only in the event Bad that A outputs a forgery from which
values (f̃0, . . . , f̃`) can be extracted that do not correspond to previous signature queries. We
give a reduction to show that an attacker for which this event has non-negligible probability
can be used to construct an algorithm B that breaks the security of the underlying Weak
CMA F -unforgeable signature scheme.
Let Q correspond to the maximum number of signing queries made by A. B publishes Q
random vectors z1, . . . zQ with zi ∈ Z`+1

p to the Weak F-Unforgeability CMA challenger
and receives Q signatures in return. It sets up the proof system by providing extraction
parameters, and uses these signatures to answer the signing queries of A. If A is successful
in producing event Bad, B extracts σ̃′ and (z̃0, . . . z̃`) /∈ {z1, . . . ,zQ} from π̃ and outputs it
as a valid Weak CMA F -forgery. Consequently we conclude that ∆2(k) ≤ Pr[Bad]. ut

Game 4: check S. This game will proceed as in Game 2 except that once the adversary
outputs his forgery, M = (M1, . . . ,M`), σ = (S, π), we let Z be the set of all (z0, . . . , z`)
tuples used to answer the adversary’s queries. Then we consider all tuples in Z, and verify
whether S = gz0

∏`
j=1M

zj
j for one such tuple. The adversary succeeds if and only if the

signature verifies, the message is new, and this check succeeds (i.e. there is such a tuple).
Let p4(k) be the probability that the adversary succeeds in this game.

Lemma 3. p3(k) ≤ p4(k) + ∆3(k) for some negligible ∆3(k) by the soundness of the proof
system.

Proof. If S is computed correctly from the values (z0, . . . , z`) corresponding to the values
(F (z0), . . . , F (z`)) extracted from the proof, Game 4 will be successful in all cases in which
Game 3 is successful. An attacker A with a non-negligible ∆3(k) can thus be used to break
the soundness of the proof system, by outputting those proofs for which verification succeeds
but extraction fails to obtain valid (F (z0), . . . , F (z`)) corresponding to S,M . ut
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Game 5: simulate proofs. In this game, when the public parameters are generated, the chal-
lenger will run SimSetup to generate parameters paramspk , and trapdoor sim. When re-
sponding to signature queries, the challenger chooses random z0, . . . , z` and forms S as in
the real signing protocol, but generates the proof using SimProve. As above, we judge the
adversary’s success by verifying the proof and checking the S component of the signature
against the set Z of tuples (z0, . . . z`) used in previous queries. Let p5(k) be the probability
that the adversary succeeds in this game.

Lemma 4. ∆4(k) = |p5(k)− p4(k)| is negligible by the zero-knowledge property of the proof
system.

Proof. An attacker with non-negligible ∆4(k) can be used to break the zero-knowledge prop-
erty of the proof system. We use the standard definition of multi-theorem zero-knowledge.
Given an attacker A with non-negligible ∆4(k), we construct an algorithm B that can dis-
tinguish whether, when interacting with a multi-theorem zero-knowledge challenge game, it
is given real proofs or simulated proofs. B sets up the system using the parameters received
from the challenge game; to generate each signature, it chooses random z0, . . . , z`, gener-
ates S, σ as in the signing algorithm, and generate the zero-knowledge proof using an oracle
query. If A succeeds in producing S which does not correspond to any of the z0, . . . zi tuples
together with a proof π that verifies, then B outputs 1. ut

Lemma 5. p5(k) is negligible because S is computed by a pairwise-independent hash func-
tion.

Proof. Suppose we know S and M = (M1, . . . ,M`) for some unknown z = (z0, . . . , z`). Then
for any other S′, M ′ = (M ′1, . . . ,M

′
`) 6= M , the probability (taken over possible values of

z) that S′ = gz0
∏`
i=1M

′zi
i is 1/p by pairwise independence. Thus, for any tuple z0, . . . , z`

used by the signer, the probability of A producing a correct pair S′, M ′ for that tuple is at
most 1/p. Taking a union bound over all tuples used gives q/p where q is the total number
of queries made by A. This will be negligible since q is polynomial and p is exponential in k.

By the triangle inequality p1(k) ≤ ∆1(k) +∆2(k) +∆3(k) +∆4(k) + p5(k) is negligible. ut

3.3 Proving possession of a signature on group elements.

Note that if the initial signature scheme Sign·exp has a public key consisting only of elements
in G, then we get what Fuchsbauer [Fuc09] refers to as an automorphic signature, a signature
scheme that can sign its own verification key. If G is a group with a bilinear map, and if a
signature of Sign·exp consists of group elements and can be verified entirely via pairings, then we
can use the Groth-Sahai NIZKPK to get a signature composed entirely of group elements. This
in turn means that we will be able to efficiently generate a proof of knowledge of a signature
using another Groth-Sahai proof system instance with an independent reference string paramspf .

In a bit more detail: Here we will assume we are given a public key pk , a vector of messages
M = (M1, . . . ,M`), a signature σ = (πσ, S), and a commitment C = Com(M, open) with
associated opening information open. The goal is to generate a zero knowledge proof of knowledge
ππ of a signature under pk on the message contained in C. Such a proof is needed for many
privacy enhancing protocols, in particular those mentioned in Section A.

We note that for the proof of knowledge to be meaningful, we have to use an additional set of
Groth-Sahai parameters paramspf that are independent of the paramspk in pk . This is necessary,
because in order to argue unforgeability for the signature scheme, the trapdoors for paramspk
need to be unknown. Thus, if we want to be able to extract σ, we need to use a different set of
parameters with a different trapdoor.
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We consider two options for proving possession of a signature on group elements:

Generic proof of knowledge. In the first approach we treat the signature σ = (πσ, S) just
like any other signature that can be verified using bilinear maps. The downside to this approach
is that it will make the proof longer. We have to commit to each group element in the original
signature resulting in a proof of knowledge that is larger by at least a factor of 2 for the
instantiation based on XDH and 3 for the instantiation based on DLIN.

Using randomization. Alternatively, we can use the randomization properties of Groth-Sahai
proofs as defined by [BCC+09] to obtain a more efficient solution. Recall that the signature
consists of a group element S and a proof πσ. Instead of directly forming a proof of knowledge
of πσ and S, we will commit to S and M and randomize the proof πσ into a proof π′σ that hides
S and M in commitments.

However, we must be careful how we do this: we still want to guarantee that given the
proof ππ, we can extract a valid signature. Let paramspk be the Groth-Sahai parameters used
by πσ

9. Note that in order to argue unforgeability for the signature scheme, the trapdoors for
paramspk need to be unknown. Thus, in order to be able to extract S,M together with a valid
signature, we also commit to S and M using paramspf . The proof ππ guarantees that π′σ and
these commitments to S and M are consistent.

Finally, recall that the original signature contains a proof about M,S, rather than about
commitment to M,S. In order to allow us to transform the proof about commitments back into a
proof about M,S, we require that the proof ππ includes commitments to a few additional values
that allow us to undo parts of the randomization of π′σ. For this we make use of some convenient
features of Groth-Sahai proofs. Further details on this proof can be found in Appendix D.

Proofs that are only unforgeable. In many situations it is not necessary to be able to extract
signatures from proofs and it is sufficient to guarantee that an attacker cannot generate a proof
for a committed message that has never been signed, i.e. an attacker that produces a forged
proof can be used to break DLIN. To do this, we follow the above approach and simply omit
the additional values described in the last step. The proof would follow the proof of Theorem 4
and is omitted here.

3.4 Other Instantiations

Many other instantiations of the signature scheme (SigKgn·exp , Signn·exp , SigVerifyn·exp) already
exist in the literature. Some are based on fairly weak assumptions, while others trade off
stronger assumption for better efficiency. For instance one could use Waters or Naccache signa-
tures [Wat05,Nac07], however this doesn’t seem to improve much over the scheme presented in
Section 3.1 when used in our transformation: because of bit-by-bit proofs such an approach is
less efficient and the resulting signature will still rely on DLIN or SXDH. (These signatures are
based on CDH which is implied by the DLIN or SXDH assumptions used for the Groth-Sahai
proofs.) Alternatively one could make use of the F -unforgeable multi-block P-signature scheme
in [BCKL09] that is secure under the q-BB-HSDH and q-TDH assumptions. This would result
in a more efficient, but arguably less secure instantiation. A third instantiation can be obtained
by using automorphic signatures on message vectors [Fuc09] 10. Such a construction would be
secure under the DHSDH and HDL assumptions, and would again be more efficient at the cost
of stronger assumptions. (Note that contrary to the automorphic signatures in [Fuc09] we would
no longer be restricted to signing only Diffie-Hellman pairs.)

9 Here we assume that the parameters paramspk used in πσ are given in a CRS (rather than being generated by
the signer).

10 The automorphic signatures construction in [Fuc09] requires that all messages in the vector be of the form
(g̃m, h̃m). We can easily use this as the Signexp in our transform by signing ((g̃z0 , h̃z0), . . . , (g̃zn , h̃zn)).
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Instantiation stateless signature proof of signature possession unforgeable proof

DLIN 100 + 24`+ 9x 183 + 111`+ 9x 129 + 57`+ 9x
q-BB-HSDH + q-TDH + DLIN 79 + 7` 162 + 96` 108 + 42`
RCDH + SXDH 77 + 18`+ 6x 124 + 70`+ 6x 92 + 38`+ 6x
q-BB-HSDH + q-TDH + SXDH 61 + 6` 108 + 58` 76 + 26`

Table 1. Estimated size in group elements of a signature and a proof for different versions of our transform: ` is
the number of group elements signed and N = 2x is an upper bound on the number of signatures generated per
key pair.

3.5 Performance Analysis

For the performance analysis we instantiate our signatures and proofs with two signature schemes
– the scheme based on RCDH described in Section 3.1 and one based on q-BB-HSDH and q-TDH
described in [BCKL09]. We instantiate the Groth-Sahai proofs under DLIN and SXDH. Here `
is the number of signatures, and 2x is the maximum number of signatures issued. Table 1 gives
estimates for the size of a signature and a proof of signature possession (expressed in number of
group elements). More details concerning the performance analysis can be found in Appendix E.
Both the proof of signature possession and the merely unforgeable proof are based on proof
randomization.

We note that while our signatures and proofs are still somewhat expensive, they are still
within the realm of feasibility (and not much more expensive than the signature scheme used in
[BCKL09] for example). The efficiency of our signatures is within an order of magnitude of those
in [Fuc09] and [CLY09] which rely on stronger assumptions and satisfy weaker definitions. The
recent scheme of [AFG+10] does achieve constant sized signatures (again based on a stronger
q-type assumption) which are significantly more efficient than ours. However, we note that when
we consider a zero knowledge proof of knowledge of a signature on a committed message (as we
would in many of the applications we discuss), the proof will still need to contain commitments
to each element of the signature, additional commitments to each of the messages, and proofs
that each these commitments is correct. The resulting efficiency will again be within an order
of magnitude of the proofs we present here.

4 Conclusion and Open Problems

We construct a reasonably efficient signature scheme for signing group elements based on DLIN,
one of the weakest decisional assumptions in the pairing setting (and the weakest one that was
used to construct Groth-Sahai proofs). We show that such a signature scheme is an important
building block for numerous cryptographic protocols. As our construction does not make use of
“q-type” assumptions, it can be used for instantiations of protocols under weaker assumptions
for which as of now only instantiations in the random oracle or generic group model were known.

Thus, we see a tradeoff between efficiency and security, and we argue that in many cases
sacrificing an order of magnitude in efficiency for a significantly weaker (and non q-type) and
more standard assumption may be a reasonable exchange. Furthermore, this result can be seen
as evidence that schemes based on relatively weak assumptions can be practical, and as support
for the argument that, while they are very important developments, we need not necessarily be
satisfied with schemes based on the generic group model, but rather that we should continue
looking for schemes which are both efficient and based on weak assumptions.
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[CLY09] Julien Cathalo, Benôıt Libert, and Moti Yung. Group encryption: Non-interactive realization in
the standard model. In Mitsuru Matsui, editor, ASIACRYPT, volume 5912 of Lecture Notes in
Computer Science, pages 179–196. Springer, 2009.

[Coo71] Stephen A. Cook. The complexity of theorem-proving procedures. In STOC ’71: Proceedings of the
third annual ACM symposium on Theory of computing, pages 151–158, New York, NY, USA, 1971.
ACM.

[Cra97] Ronald Cramer. Modular Design of Secure yet Practical Cryptographic Protocols. PhD thesis,
University of Amsterdam, Amsterdam, 1997.

[Dam02] Ivan Damg̊ard. On σ-protocols. Available at http://www.daimi.au.dk/~ivan/Sigma.ps, 2002.
[Dwo06] Cynthia Dwork, editor. Advances in Cryptology - CRYPTO 2006, 26th Annual International Cryp-

tology Conference, Santa Barbara, California, USA, August 20-24, 2006, Proceedings, volume 4117
of Lecture Notes in Computer Science. Springer, 2006.

[EG85] Taher El Gamal. A public key cryptosystem and a signature scheme based on discrete logarithms.
In Proceedings of CRYPTO 84 on Advances in cryptology, pages 10–18, New York, NY, USA, 1985.
Springer-Verlag New York, Inc.

[Fis06] Marc Fischlin. Round-optimal composable blind signatures in the common reference string model.
In Dwork [Dwo06], pages 60–77.

[FP08] Georg Fuchsbauer and David Pointcheval. Anonymous proxy signatures. In Rafail Ostrovsky,
Roberto De Prisco, and Ivan Visconti, editors, SCN, volume 5229 of Lecture Notes in Computer
Science, pages 201–217. Springer, 2008.

[FP09] Georg Fuchsbauer and David Pointcheval. Proofs on encrypted values in bilinear groups and an
application to anonymity of signatures. In Hovav Shacham and Brent Waters, editors, Pairing,
volume 5671 of Lecture Notes in Computer Science, pages 132–149. Springer, 2009.

[Fuc09] Georg Fuchsbauer. Automorphic signatures in bilinear groups. Cryptology ePrint Archive, Report
2009/320, 2009. http://eprint.iacr.org/.

[GH08] Matthew Green and Susan Hohenberger. Universally composable adaptive oblivious transfer. In
ASIACRYPT ’08: Proceedings of the 14th International Conference on the Theory and Application
of Cryptology and Information Security, pages 179–197, Berlin, Heidelberg, 2008. Springer-Verlag.

[GH10] Matthew Green and Susan Hohenberger. Practical adaptive oblivious transfer from a simple as-
sumption. Cryptology ePrint Archive, Report 2010/109, 2010. http://eprint.iacr.org/.

[GOS06a] Jens Groth, Rafail Ostrovsky, and Amit Sahai. Non-interactive Zaps and new techniques for NIZK.
In Dwork [Dwo06], pages 97–111.

[GOS06b] Jens Groth, Rafail Ostrovsky, and Amit Sahai. Perfect non-interactive zero knowledge for NP. In
EUROCRYPT, pages 339–358, 2006.

[Gro06] Jens Groth. Simulation-sound nizk proofs for a practical language and constant size group signatures.
In Xuejia Lai and Kefei Chen, editors, ASIACRYPT, volume 4284 of Lecture Notes in Computer
Science, pages 444–459. Springer, 2006.



18 Melissa Chase and Markulf Kohlweiss

[Gro07] Jens Groth. Fully anonymous group signatures without random oracles. Cryptology ePrint Archive,
Report 2007/186, 2007. http://eprint.iacr.org/.

[GS08] Jens Groth and Amit Sahai. Efficient non-interactive proof systems for bilinear groups. In Nigel
Smart, editor, EUROCRYPT 2008, 2008.

[Hal09] Shai Halevi, editor. Advances in Cryptology - CRYPTO 2009, 29th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 16-20, 2009. Proceedings, volume 5677 of Lecture
Notes in Computer Science. Springer, 2009.

[HW09a] Susan Hohenberger and Brent Waters. Realizing hash-and-sign signatures under standard assump-
tions. In Antoine Joux, editor, EUROCRYPT, volume 5479 of Lecture Notes in Computer Science,
pages 333–350. Springer, 2009.

[HW09b] Susan Hohenberger and Brent Waters. Short and stateless signatures from the rsa assumption. In
Halevi [Hal09], pages 654–670.

[KY05] Aggelos Kiayias and Moti Yung. Group signatures with efficient concurrent join. In Ronald Cramer,
editor, EUROCRYPT, volume 3494 of Lecture Notes in Computer Science, pages 198–214. Springer,
2005.

[Nac07] D. Naccache. Secure and practical identity-based encryption. Information Security, IET, 1(2):59–64,
2007.

[Nao03] Moni Naor. On cryptographic assumptions and challenges. In Dan Boneh, editor, CRYPTO, volume
2729 of Lecture Notes in Computer Science, pages 96–109. Springer, 2003.

[TS06] Isamu Teranishi and Kazue Sako. k-times anonymous authentication with a constant proving cost.
In Public Key Cryptography, pages 525–542, 2006.

[Wat05] B. Waters. Efficient identity-based encryption without random oracles. Advances in Cryptology-
Eurocrypt 2005: 24th Annual International Conference on the Theory And Applications of Crypto-
graphic Techniques, Aarhus, Denmark, May 22-26, 2005, Proceedings, 2005.

A Applications

We present four useful applications for our signature scheme related to the construction of
privacy-protecting cryptographic protocols. The advantages are twofold: (1) we arrive at con-
structions that are based on weaker assumptions and (2) the ability to sign group elements can
simplify the construction, e.g., in the oblivious transfer protocol or in the case of two round
issuing protocols for P-signatures and delegatable anonymous credentials. The applications to
automorphic signatures and P-signatures are the most generic, as these schemes can themselves
be used to construct even more privacy-protecting protocols.

A.1 Universal Composable Adaptive OT under XDH and DLIN assumption.

A 1-out-of-n oblivious transfer (OT) scheme allows a sender who possesses multiple messages
m1, . . . ,mN to interact with a receiver that can select the index 0 ≤ i ≤ N in such a way that
the receiver can only learn mi and the sender learns nothing about i. In an adaptive OT, the
receiver can adaptively retrieve multiple messages.

Green and Hohenberger [GH08] give a construction for universally composable adaptive
oblivious transfer (OT) and prove the security of their construction under the XDH, DLIN, and
q-Hidden LRSW assumptions. Their adaptive OT protocol consists of a commit phase in which
the receiver obtains encryptions C1, . . . , CN of messages m1, . . . ,mN that he can request in the
later transfer phases. The OT uses an assisted decryption approach, in which the sender assists
the receiver in the decryption of blinded ciphertexts. To make sure that the receiver only asks for
the decryption of single ciphertexts, and not for instance for a combination of ciphertexts, the
ciphertexts need to be signed. Green and Hohenberger use the signature scheme CLSign based
on the q-Hidden LRSW assumption to sign individual group elements. To guarantee that group
elements from different ciphertexts are not mixed, they also need to sign the product of two
group elements using the signature scheme BBSign based on the co-CDH assumption.
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Expressed more formally using the notation of [GH08, §4], at the core of the oblivious transfer
request generated by the receiver is the following non-interactive witness indistinguishable Groth-
Sahai proof:

π = NIWIPK{(c1, c2, t1, t2, sig1, sig2, sig3) : e(c1, h̃)e(t1, ũ1) = e(d1, h̃) ∧ e(c2, h̃)e(t2, ũ2) = e(d2, h̃)∧
CLVerifyvk1

(c1, sig1) = 1 ∧ CLVerifyvk2
(c2, sig2) = 1 ∧ BBVerifyvk3

(c1c2, sig3) = 1}

At this step the receiver proves that for some encryption Ci parsed as (c1, . . . , c5, sig1, sig2, sig3),
the ciphertext components c1 and c2 are correctly blinded in d1 and d2.

By applying our construction, their protocol can be significantly simplified: instead of the
three signatures (on the two ciphertext components and their product), it suffices to compute a
single signature on two group elements.

π = NIWIPK{(c1, c2, t1, t2, sig) : e(c1, h̃)e(t1, ũ1) = e(d1, h̃) ∧ e(c2, h̃)e(t2, ũ2) = e(d2, h̃)∧
SigVerify(vk , (c1, c2), sig) = 1}

Using our new proposal for a Weak CMA F-unforgeable signature scheme and Groth-Sahai proofs
with a DLIN based setup, gives rise to the first universally composable adaptive oblivious transfer
scheme based purely on the DLIN assumption, presumably the weakest possible assumption if
one wants to use the Groth-Sahai proof system.

Independently from our work [GH10] Green and Hohenberger proposed another oblivious
transfer scheme that makes use of the signature scheme of Hohenberger and Waters [HW09a].
However, their scheme has to make use of a different encryption scheme and is not UC-secure.

A.2 Automorphic Signatures in Bilinear Group

Fuchsbauer [Fuc09] introduced automorphic signatures in bilinear groups, which have to satisfy
the following properties: the verification keys lie in the message space, messages and signatures
consist of group elements only, and verification is done by evaluating a set of pairing-product
equations. Clearly, our transformation, when instantiated with the signature scheme from Sec-
tion 3.1 and the Groth-Sahai proof system, results in an automorphic signature. As such it is
also suitable for the applications mentioned in [Fuc09]: fully-secure group signatures and anony-
mous proxy signatures. Note that in addition to removing any restrictions on the message space,
our construction can be based on much weaker assumptions, if one is willing to trade off some
performance for better security.

A.3 CL and P-signatures

CL-signatures consist of two protocols, (a) an issuing protocol for obtaining a signature on
messages that are hidden from the signer in commitments C , and (b) a proof protocol for proving
possession of a signature on messages that are hidden from the verifier in fresh commitments
C ′. To overcome a weakness of CL-signatures, namely that their proof protocol makes use of Σ-
protocols and thus requires a random oracle to obtain a non-interactive zero-knowledge proof,
Belenkiy et al. [BCKL08] introduce P-signatures, signatures with an efficient non-interactive
Proof of knowledge.

Existing CL and P-signature schemes only allow one to sign elements of Zp or Zn. Moreover
they are based on much strong assumptions that appear to be stronger than the assumptions
required by the commitment scheme: for CL-signatures all known constructions are either based
on the strong RSA assumptions or on different “q-type” Diffie-Hellman assumptions. (A well
known example of the latter type of assumption is q-SDH [BB04].) For P-signatures [BCKL08]
known constructions are based on even stronger assumptions, such as for instance q-BB-HSDH.
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The signature schemes and proof techniques of Section 3 can be used to build a P-signature
scheme (and thus also a CL-signature scheme) for signing group elements that is based on
the DLIN assumption (the same assumption underlying the commitment scheme). The issuing
protocol for signing group elements is a two round protocol, in which the user first commits to the
group element that should be signed using a DLIN commitment C . The commitment parameters
can be based on the paramspf of the proof system. Note that such a commitment consists of
three group elements C1,C2,C3. The signature on a committed message is a signature on these
three group elements. When proving possession of a signature on the message now committed
to in a new DLIN commitment C ′, the NIZKPK of Section 3.3 needs to be extended with a
proof that C ′ commits to the same message as the (now secret, because part of the proof of
knowledge) commitment C = (C1,C2,C3):

π′ ∈ NIZKPK{(σ,C1, C2, C3,M) : {SigVerify(pk , (C1,C2,C3), σ) = 1∧(
∃open1, open2 : (C1,C2,C3) = Com(M, open1) ∧ C ′ = Com(M, open2)

)
}

This approach can be extended to P-signatures that allow one to sign multiple group elements.
Although the details of the construction are beyond the scope of this paper, it should be evi-

dent that these protocols are a useful tool both for reproving many privacy enhancing protocols
under weaker assumptions and for building new privacy-enhancing protocols.

A note on the issuing of signatures.
As our signature scheme allows to sign group elements, for many applications such as group

signatures and the delegatable anonymous credential scheme described below, the interactive
issuing of signatures on exponents hidden in commitments is no longer needed. Instead, one can
simply sign the public key of the user or a commitment to the users secret key, i.e., a pseudonym.
Thus, we get a simple two round issuing protocol.

As pointed out by Kiayias and Yung [KY05] for the case of group signature joins, two-move
signature issuing protocols with a simple “single message and signature response” interaction
between the prospective user and the issuer are the most desirable as they can improve the
security of many schemes with respect to concurrent attacks and enable issuing over the Inter-
net (where servers are multi-thread machines). Kiayias and Yung also point out the following
application scenario for adding users via a proxy. A security officer of a company can send a
file with all registration requests in his company, get back their certificates, and distribute them
back to company employees. As described for P-signatures, if one wants to sign group elements
without revealing them to the issuer, one can hide them in a commitment and obtain a signature
on the commitment.

A.4 Delegatable anonymous credentials

Belenkiy et al. [BCC+09] give an efficient construction for delegatable anonymous credentials.
Credentials are delegated similarly to public key certificates that form a certification hierarchy:
the owner of a certificate can extend the certification chain by creating a certificate for the
next level. In a delegatable anonymous credential system, parties only know each other under
unlinkable pseudonyms, and can receive, delegate, and show credentials anonymously using
different pseudonyms.

The original construction of delegatable credentials uses a complex signature scheme based
on the q-BB-HSDH and q-BB-CDH assumption. They cannot make use of existing P-signatures
as this signature scheme requires an additional property called certification security, i.e. it needs
to remain secure, even if the attacker can learn signatures on the secret key of honest users.
Using signatures for signing group elements, one can sign the pseudonym of a user directly, and
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thus avoid this problem. Note that in order to change the pseudonym between obtain and issue
transactions, one needs to prove that the hidden pseudonym Nym = (C1, C2, C3), whose three
components are signed using our signature scheme, and the pseudonym Nym ′ that is revealed
to the communication partner commit to the same gskU value. This can be done as described in
Section A.3 for commitments C and C ′.

Note that using a group element signature based on the construction in Section 3.1, one
obtains a delegatable anonymous credential scheme secure under the DLIN assumption. If we
use the straightforward technique for proving knowledge of a signature (just treat the signature
and it’s verification as a witness that can be verified via pairing product equation), then ran-
domization can be applied directly, exactly as in the [BCC+09] construction. This can also be
done using the more efficient randomization based proof of knowledge, however the process is
significantly more complex, so we leave the details as a topic for future work.

B The RCDH assumption

In section 3.1 we introduced a new assumption call Randomized CDH (RCDH). However, we
can show that this assumption is implied by the DLIN assumption.

The assumptions is as follows:

Assumption 2 (Randomized Computational Diffie-Hellman) Let G be a group of prime
order p ∈ Θ(2k). For all p.p.t. adversaries A, the following probability is negligible in k:

Pr[g, ĝ ← G; a, b← Zp ;R1, R2, R3,← A(g, ĝ, ga, gb) : ∃r ∈ Zp such that R1 = gr, R2 = ĝr, R3 = gabr]

Theorem 6. RCDH is implied by DLIN.

Proof. Suppose we are given groups G,GT , and a DLIN instance g, f,R, h, S, T where R =
f r, S = hs, for random f, h ∈ G and random r, s ∈ Zp, and we must determine whether T = gr+s

or T = gt for random t. We assume that there exists an adversary A who succeeds in the RCDH
game with non-negligible probability. Then we proceed as follows:

First we choose random γ, δ ← Zp and run A on input f, gγ , gδ, R. We receive Z1, Z2, Z3, and
with non-negligible probability these values will be such that there exists z such that Z1 = fz,

Z2 = gγz, Z3 = gδrz. From these we will compute Z ′1 = Z1, Z
′
2 = Z

1/γ
2 , and Z ′3 = Z

1/δ
3 , which, if

the adversary’s output was correct, will be fz, gz, grz.

Next we choose random α, β ← Zp and run A on input h, (Z ′3)
α, (Z ′2)

β, S. We receive
Y1, Y2, Y3, and with non-negligible probability these values will be such that there exists y such

that Y1 = hy, Y2 = (Z ′3)
αy, Y3 = (Z ′2)

βsy. From these we will compute Y ′1 = Y1, Y
′
2 = Y

1/α
2 , and

Y ′3 = Y
1/β
3 , which, if the adversary’s output was correct in both runs, will be hy, grzy, gszy.

Next we choose random ρ1, ρ2, ρ3, ρ4 ← Zp and run A on input gρ1 , hρ2 , (Y ′1)ρ3 , Z ′2
ρ4 . We

receive X1, X2, X3, and with non-negligible probability these values will be such that there exists
x such that X1 = gρ1x, X2 = hρ2x, X3 = gabρ3ρ4/ρ

2
1 , where Y ′1 = ga and Z ′2 = gb . From these we

will compute X ′1 = (X1)
1/ρ1 , X ′2 = X

1/ρ2
2 , and X ′3 = X

ρ21/(ρ3ρ4)
3 , which, if the adversary’s output

was correct in all 3 runs, will be gx, hx, hxzy.

Finally, we compute e(X ′3, T ) and e(Y ′2Y
′
3 , X

′
2). If the adversary’s responses are correct, this

corresponds to computing e(hxzy, T ) and e(gzy(r+s), hx). If the resulting values are equal, we
will output 1, otherwise we output random b ← {0, 1}. Thus, if the adversary succeeds in all 3
queries with non-negligible probability, we will distinguish with non-negligible advantage. Since
the queries involve random independent instances of RCDH, this will be true as long as the
adversary succeeds in the RCDH game with non-negligible advantage.
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C Pairwise independence of fz.

The family of hash-functions {fz}, where fz : G` → G is computed as fz(M1, . . . ,M`) =
gz0
∏
i=1..`M

zi
i with z = (z0, . . . , z`) ∈ Zn+1

p is pairwise independent.

Proof. We first rewrite the probability of the definition in the following form

Pr[z ← Z : fz(x) = a ∧ fz(y) = b] = Pr[z ← Z : fz(x) = a] · Pr[z ← Z : fz(y) = b | fz(x) = a]

We consider the two probabilities of the product separately:

1. One can see that Pr[z ← Z : fz(x) = a] = 1/|G|. The values z ∈ Zn+1
p are chosen uniformly,

while x ∈ G` and a ∈ G are fixed, so gz0
∏
i=1..` x

zi
i is uniformly distributed as well.

2. In Pr[z ← Z : fz(y) = b | fz(x) = a] the event fz(y) = b is considered only under
the condition fz(x) = a. When spelling out z as z0, . . . , zn and Fz(x) as well as Fz(y)
as gz0

∏
i=1..` x

zi
i and gz0

∏
i=1..` y

zi
i respectively, one can replace gz0 in gz0

∏
i=1..` y

zi
i by

a∏
i=1..` x

zi
i

.

Pr[z ← Z : fz(y) = b | fz(x) = a]

= Pr[z0, . . . , zn ← Zn+1
p :

a∏
i=1..` x

zi
i

∏
i=1..`

yzii = b | gz0 =
a∏

i=1..` x
zi
i

]

= Pr[z0, . . . , zn ← Zn+1
p :

∏
i=1..`

(yi/xi)
zi = b/a | gz0 =

a∏
i=1..` x

zi
i

]

As z0 is picked uniformly at random, the event gz0 = a∏
i=1..` x

zi
i

is completely irrelevant to∏
i=1..`(yi/xi)

zi = b/a. Consequently Pr[z0, . . . , zn ← Zn+1
p :

∏
i=1..`(yi/xi)

zi = b/a | gz0 =
a∏

i=1..` x
zi
i

] = Pr[z1, . . . , zn ← Znp :
∏
i=1..`(yi/xi)

zi = b/a]

To prove our claim we need to show that Pr[z1, . . . , zn ← Znp :
∏
i=1..`(yi/xi)

zi = b/a] =
1/|G|. As x 6= y, there is at least one pair xj 6= yj , and yj/xj 6= 1.
As zj is chosen uniformly at random,

∏
i=1..`(yi/xi)

zi is also uniformly distributed, no matter
how the other yi and xi are chosen, and thus Pr[z1, . . . , zn ← Znp :

∏
i=1..`(yi/xi)

zi = b/a] =
1/|G|.

D Details for Proof of Possession of a Signature on Group Elements Based
on Randomization

More formally, the proof ππ is computed as follows: (Here we describe the proof for a single
message, but the generalization to signatures on many messages is straightforward.)

As described above, the prover gets as input pk ,M, σ = (S, πσ), C = Com(paramspf ,M, open),
open where VerifyProof(pk ,M, σ) = 1, and wishes to generate a proof of knowledge ππ of a valid
message and signature corresponding to pk and C.

1. Note that the proof πσ is formed under parameters paramspk and includes M and S as con-
stants. The prover will choose random openings openM and openS and randomize the proof
πσ to obtain a random-looking proof pi′σ for commitments C ′M = Com(paramspk ,M, openM )
and C ′S = Com(paramspk , S, openS). When instantiated with Groth-Sahai proofs under the
DLIN assumption11, this means choosing random values rM1, rM2, rM3 and rS1, rS2, rS3 and
computing C ′M = M

∏
urMi
i and C ′S = S

∏
urSii , where u1, u2, u3 are defined in the parame-

ters paramspk .

11 This approach also works for SXDH, but we focus on DLIN here for simplicity.
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2. The prover will generate commitments under paramspf to M,S, openM , openS . More specif-
ically, he will form commitments CM = Com(paramspf ,M), CS = Com(paramspf , S), and
for i = 1 . . . 3: CopenMi = Com(paramspf , g

rMi), CopenSi = Com(paramspf , g
rSi). It will then

use three12 proofs πCM1, πCM2, πCM3 to show that C ′M is correct according to these new
commitments, and corresponding proofs πCS1, πCS2, πCS3.

3. The prover will use paramspf to generate a zero knowledge proof πM that CM and C commit
to the same value.

4. Finally, the prover must also include the information necessary for undoing the randomization
used to obtain C ′M and C ′S . Note that the Groth-Sahai proof in πσ that directly affects S
will be a zero knowledge proof that some internal commitment DS = Com(paramspk , S).
This proof will be of the form ψ1, ψ2, ψ3 such that e(DS/S,D0) =

∏
e(ui, ψi) where D0 is

a known commitment to 0. The randomization process, as described above, will compute
C ′S = S

∏
urSii . It will also compute updated proof values ψ′i = DrSi

0 ψi. If we keep track
of these values DrSi

0 , we can convert this proof back into a proof for S. Thus, we will also
include commitments to these values, and proofs that they are correctly formed with respect
to D0 and CopenSi. Similarly, we must include commitments to update values for M . Call
the resulting lists of commitments C̄updateS and C̄updateM and the associated proofs π̄updateS
and π̄updateM . (Note that each of these lists will have 9 values, since we have 3 values rSi
and D0 is composed of 3 elements. Similarly for the lists for M .)

5. The final proof will be (i) the randomized commitments and proofs C ′S , C
′
M , π

′ under pa-
rameters paramspk , (ii) the commitments CM , CS , {CopenSi}, {CopenMi} under parameters
paramspf and associated proofs πCM1, πCM2, πCM3, πCS1, πCS2, πCS3, (iii) zero knowledge
proof πM under parameters paramspf , and (iv) commitments C̄updateM , C̄updateS under paramspf
and associated proofs π̄updateM , π̄updateS .

Theorem 7. The above construction yields a zero knowledge proof of knowledge of a signature
on the given commitment.

Proof. (sketch) The proof of knowledge property is fairly straightforward. Given a proof ππ, we
extract M from CM and S from CS , and extract the update values for both. We use the latter
values to undo the randomization applied to the proof πσ; call the result π̂σ. Then by the perfect
soundness of the Groth-Sahai proof system, σ = (π̂σ, S) will be a valid signature for message M .

The proof of zero knowledge proceeds as follows: We define a simulator which, given pk and
C, proceeds as follows: Choose random M ′ and S′. Generate commitments C ′M and C ′S under
paramspk to these values and use the zero knowledge simulator to produce a simulated proof
πsigma under paramspk that these commitments are correct. Then generated commitments CM
and CS , {CopenSi}, {CopenMi}, and C̄updateM , C̄updateS , and associated proofs πCM1, πCM2, πCM3,
πCS1, πCS2, πCS3, π̄updateM , π̄updateS honestly according toM ′, S′. Finally, use the zero knowledge
simulator to generate the proof πM . We can argue that the result will be indistinguishable from
the real proof by the perfect zero knowledge, witness indistinguishability and randomizability
properties of Groth-Sahai proofs.

E Efficiency

We analyze the efficiency of our group element signature scheme when implemented with GS
proofs. Essentially, a signature will consist of:

– The value S

12 Recall that in the DLIN instantiation of the Groth-Sahai proof system, each ui is a tuple of 3 group elements,
and multiplication is component-wise, so we must show that each component of C′M is correct.
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– A GS commitment to S
– A zero knowledge proof that this commitment is correct.
– A GS commitment to the public key for Signexp .
– A zero knowledge proof that the public key is correct
– Commitments to F (z0), . . . , F (z`)
– A GS proof that these values are well formed.
– Commitments to σ the signature on z0, . . . z`.
– A GS proof of correctness for σ w.r.t committed zi’s and public key.
– A GS proof of correctness for the committed S w.r.t. the committed zi’s.

For a given scheme Signexp :

– Let nf be the number of group elements in F (m).
– Let pf be the number of group elements in the proof of correctness for each value F (z0).
– Let vf be the number of pairings for verification of this proof.
– Let n` be the number of group elements in a signature on `+ 1 values.
– Let p` be the number of group elements in the proof of correctness for the signature on `+ 1

values.
– Let v` be the number of pairings for verification of this proof.
– Let npk be the number of elements in the public key.

For a given instantiation of Groth-Sahai proofs:

– Let clin be the cost of linear pairing product proof
– Let cmult be the cost of multi-exponentiation proof
– Let cquadeq be the cost of quadratic equation proof
– Let cC be the cost of commitment
– Let cpair be the cost of product pairing equation proof
– Let czk be the cost of zk proof

Then, our signature will need:

– the element S
– 1 + npk + (`+ 1)nf + n` commitments ((1 + npk + (`+ 1)nf + n`) ∗ cC elements.
– One proof of correctness for the signature (p` elements).
– `+ 1 proofs of correctness for all F (zi) values. ((`+ 1) ∗ pf )
– One multi-exponentiation proof (to prove correctness of S) cmult elements
– 1 + npk zero knowledge proofs for opening of a commitment (1 + npk ) ∗ czk elements.
– One zero knowledge setup commitment and proof. csetup elements.

Verification will require

– verifying `+ 1 proofs of correctness for all F (zi) values: (vf ∗ (`+ 1) pairings in vf ∗ (`+ 1)
equations

– verifying one multi-exponentiation proof with ` + 2 variables (to prove correctness of S)
vmult(`+ 2) pairings in one equation.

– verifying 1 + npk zero knowledge proofs for opening of a commitment (1 + npk )vzk pairings
in (1 + npk ) equations.

– verifying one zero knowledge setup commitment and proof. vsetup pairings in 1 equation.

To transform this into a proof by the first method we get one commitment for each group element
in the signature and one for each message, and one pairing product equation for each pairing
product required by signature verification. That yields a total of vf∗(`+1)+1+(1+npk )+1 pairing
product proofs, and 1+(1+npk +(`+1)nf+n`∗cC)+p`+(`+1)∗pf+cmult +(1+npk )∗czk +csetup
commitments. The total number of pairings is increased by a factor of at most vpair (1). To
transform this into a proof by the randomization method, we do the following:
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– Include the signature, but randomize the proof to put M and S in commitments: this will
add ((`+ 1) ∗ cC − 1) to the size of the signature.

– add commitments under paramspf to M,S, openM , openS : (`+ 1) + (`+ 1)cC commitments
for a total of (`+ 1)(1 + cC ) ∗ cC elements.

– add proofs πCM1, πCM2, πCM3 and πCS1, πCS2, πCS3: cC (`+1) linear pairing product proofs
for a total of cC (`+ 1)clin elements.

– add one zero knowledge proof of equality for each CM , C, for a total of ` ∗ Czk + Csetup

elements.

– add commitments to update values for S and M, one for each value in each pairing product
proof: (`+ 1) ∗ cpair commitments for a total of (`+ 1) ∗ cpair ∗ cC elements.

– add corresponding proofs: (`+1)∗cpair linear proofs for a total of (`+1)∗cpair ∗clin elements.

F Summary of Groth-Sahai Proofs.

F.1 Linear and ElGamal commitments

Groth-Sahai commitments [GS08] are commitments that behave advantageously when used to-
gether with a bilinear map. To commit to a group element x of a prime order group G1 of size
p, the committing party computes a vector of I group elements. We use multiplicative notation,
thus two vectors can be multiplied, and individual vectors are scaled using component-wise ex-
ponentiation with an element in Zp . In a first step x is mapped to a vector through an injective
function µ. This can for instance be done by mapping the group element to one component of
the vector, and setting all other components to the neutral element 1. Let I be the dimension of
the vector space V1. In order to hide the committed element x, the resulting vector is combined
with a random linear combination of vectors ui ∈ V1, 1 ≤ i ≤ I.

To commit to an element x ∈ G1, choose random opening open = (r1, . . . , rI) ← ZIp , and

compute C = µ1(x) ·
∏I
i=1 u

ri
i . Elements y ∈ G2 are committed to in the same way using

µ2 and v1, . . . , vJ ∈ V2, and an opening vector open ∈ RJ . For simplicity we assume that
GSCommit(paramsPK ,m, open) first determines whether m ∈ G1 or m ∈ G2 and then follows
the appropriate instructions. The same commitment scheme can be used to commit to a value
m ∈ Zp using a group element h as the base.

If the subspace generated by the vectors ui and the range of µ share only the 1 vector,
the commitment scheme is perfectly binding. Clearly, this requires that the vectors ui are not
all linearly independent. For the commitment scheme to be strongly computationally hiding, the
vectors ui generated by ComSetup need to be computationally indistinguishable from the linearly
independent vectors output by HidingSetup. A random combination of linearly independent
vectors ui, 1 ≤ i ≤ I generates the whole of V1 and hides the value x perfectly.

The property that makes GS commitments so useful for the construction of non-interactive
proofs [GS08], is that they allow for the evaluation of a bilinear map e : G1 × G2 → GT on
committed elements in the committed domain. Given a commitment to a and a commitment
to b it is possible to compute a vector of elements in GT using a map E : V1 × V2 → VT , that
acts as a commitment to the value e(a, b). Intuitively, if the subspace generated by the vectors
E(ui, vj) is orthogonal to E(µ1(G1), µ2(G2)), then the resulting commitment scheme is perfectly
binding. Moreover the commitment is strongly computationally hiding if the commitments to a
and b are strongly computationally hiding.

We instantiate this approach with commitment schemes that are perfectly binding and
strongly computationally hiding under the SXDH and DLIN assumption (see Section B). We
also show that based on appropriate parameters and trapdoor information the resulting com-
mitments have the extraction property for GSCommit.



26 Melissa Chase and Markulf Kohlweiss

ElGamal commitments (SXDH instantiation). In the SXDH setting, one commits to elements
in G1 as follows (committing to elements in G2 is similar):

Let vector space V1 = G1 ×G1. The parameters are generated by choosing random s, z and
computing u1 = (g, gz) and u2 = (gs, gsz). The public parameters are u1, u2. If extraction is
necessary, the trapdoor will be s, z.

One commits to x ∈ G1 by choosing random r1, r2 ∈ Zp and computing (1, x)ur11 u
r2
2 . The

commitment is opened by revealing x, r1, r2. Given the trapdoor s, z, it is possible to extract
x from a commitment (c1, c2) by computing c2/c

z
1. The commitment is perfectly binding and

extractable.

The commitment scheme is strongly computationally hiding. Perfectly hiding parameters are
generated by choosing random s, z, w ∈ Zp and computing u1 = (g, gz) and u2 = (gs, gw).
The public parameters are u1, u2. Note that these public parameters will be indistinguishable
from those described above under the SXDH assumption and that under these parameters the
commitment scheme is perfectly hiding.

Under this setup the commitment scheme is a chameleon commitment. We can form com-
mitments for which we can use the trapdoor s, z, w to open the commitment to any value for
which we know the discrete logarithm. We compute such a commitment by choosing random
c1, c2 ∈ Zp and computing (gc1 , gc2). To open this commitment to any value gφ, we need only
find a solution (r1, r2) to the equations c1 = r1 + sr2 and c2 = φ+ zr1 + wr2.

Linear commitments (DLIN instantiation). In the DLIN setting one commits to elements in
G1 as follows (committing to elements in G2 is similar):

Let vector space V1 = G1 × G1 × G1. The parameters are generated by choosing random
a, b, z, s and computing u1 = (ga, 1, g) and u2 = (1, gb, g), and u3 = (gaz, gbs, gz+s). The public
parameters are u1, u2, u3. If extraction is necessary, the extraction trapdoor will be a, b, z, s.

One commits to x ∈ G1 by choosing random r1, r2, r3 ∈ Zp and computing (1, 1, x)ur11 u
r2
2 u

r3
3 .

Opening would reveal x, r1, r2, r3. In this case, given the trapdoor a, b, s, z, we will be able to

extract x from a commitment (c1, c2, c3) by computing c3/(c
1/a
1 c

1/b
2 ). The commitment is perfectly

binding and extractable.

The commitment scheme is strongly computationally hiding. Perfectly hiding parameters are
generated by choosing random a, b, s, z, w ∈ Zp and computing u1 = (ga, 1, g) and u2 = (1, gb, g)
and u3 = (gaz, gbs, gw). The public parameters will be u1, u2, and u3. Note that these public
parameters will be indistinguishable from those described above under the DLIN assumption
and that the resulting commitment scheme is perfectly hiding.

Under this setup the commitment scheme is a chameleon commitment. We can form commit-
ments for which we can use the chameleon trapdoor a, b, s, z to open to any value for which we
know the discrete logarithm. We compute such a commitment by choosing random c1, c2, c3 ∈ Zp
and computing (gc1 , gc2 , gc3). To open this commitment to any value gφ, we need only find a
solution (r1, r2, r3) to the equations c1 = ar1+azr3, c2 = br2+bsr3 and c3 = φ+r1+r2+(z+s)r3.

F.2 Computing a GS Proof

Let paramsBM = (p,G1,G2,GT , e, g, h) be the setup for pairing groups of prime order p, with
pairing e : G1 ×G2 → GT , and g, h generators of G1,G2 respectively.13

The GS proof instance consists of the coefficients of the pairing product equation:

{aq}q=1...Q ∈ G1, {bq}q=1...Q ∈ G2, t ∈ GT ,

{αq,m}q=1...Q,m=1...M , {βq,n}q=1...Q,n=1...N ∈ Zp .

13 There is also an instantiation for composite order groups, but we will not consider it here.
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The prover knows a set of values {xm}Mm=1, {zn}Nn=1 that satisfy the pairing product equation

Q∏
q=1

e(aq

M∏
m=1

x
αq,m
m , bq

N∏
n=1

z
βq,n
n ) = t .

As the first step in creating the proof, the prover prepares commitments {Cm}m=1...M and
{Dn}n=1...N for all values xm, zn in G1 and G2 respectively. Alternatively, it is possible to reuse
commitments from the proof instance. Thus, the instance, known to the prover and verifier, is the
pairing product equation (e.g., its coefficients) and a number of commitments while the witness,
known only to the prover, consists of the secret values and the openings of these commitments.

We now describe how to construct the proof. Let V1, V2 be the vector spaces underlying two
GS commitment schemes for committing to elements in G1 and G2, and let E : V1 × V2 → VT
be a bilinear map that evaluates the bilinear map e in the committed domain. Also let µ1, µ2, µT
be efficiently computable embeddings that map elements of G1,G2,GT into V1,V2,VT , respec-
tively. Note that by the properties of E, E(µ1(a), µ2(b)) = µT (e(a, b)). The public parameters
paramsPK contain a common reference string with elements u1, . . . , uI ∈ V1, v1, . . . , vJ ∈ V2

and values ηh,i,j , 1 ≤ i ≤ I, 1 ≤ j ≤ J , and 1 ≤ h ≤ H as defined by Groth and Sahai [GS08].

Groth and Sahai show how to efficiently compute proofs {πi}Ii=1, {ψj}Jj=1 that prove that
values in Cm and Dn satisfy a pairing product equation. To verify such a proof the verifier

computes, for all 1 ≤ q ≤ Q, Ĉq ← µ1(aq) ·
∏M
m=1C

αq,m
m and D̂q ← µ2(bq) ·

∏N
n=1D

βq,n
n . Then

the verifier checks that

Q∏
q=1

E(Ĉq, D̂q) = µT (t) ·
I∏
i=1

E(ui, πi) ·
J∏
j=1

E(ψj , vj) .

The soundness of the proof system follows from the fact that under the perfectly binding pa-
rameters, the vectors ui and vj can be seen as commitments to 1. Then, by the properties of the

bilinear map E,
∏I
i=1E(ui, πi) ·

∏J
j=1E(ψj , vj) is a commitment to the 1 element of GT , and

based on the homomorphic property of the commitment schemes,
∏Q
q=1E(Ĉq, D̂q) necessarily is

a commitment to t ∈ GT .

Witness indistinguishability is more difficult to argue, but follows from the fact that under
the perfectly hiding parameters, the proofs {πi}Ii=1, {ψj}Jj=1 are random vectors of V1 and

V2, that are only restricted by the constraint that
∏Q
q=1E(Ĉq, D̂q) = µT (t) ·

∏I
i=1E(ui, πi) ·∏J

j=1E(ψj , vj). As commitments are perfectly hiding, all proofs are drawn acording to the
same distribution, no matter which witness was used by the prover. For further details we refer
to [GS08].

F.3 Randomizable Non-Interactive Proofs

We consider a proof system with an additional algorithm RandProof. The basic idea is that
RandProof takes a proof π for instance y in relation R, and produces a randomized proof of the
same statement. The resulting proof must be indistinguishable from a new proof of the same
statement. We allow the adversary to choose the instance y, the proof π that is used as input
for RandProof, and the witness w that is used to form a new proof of the same statement. More
formally:

Definition 5. We say that Setup,Prove,VerifyProof,RandProof constitute a randomizable proof
system if the following property holds. For all p.p.t. A1,A2 there exists a negligible function ν
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such that:

Pr[params ← Setup(1k); (y, w, π, state)← A1(params);

π0 ← Prove(params, y, w);π1 ← RandProof(params, y, π);

b← {0, 1}; b′ ← A2(state, πb) :

RL(y, w) ∧ VerifyProof(params, y, π) = 1 ∧ b = b′]− 1

2
= ν(k) .

Randomization is perfect if ν(k) = 0.

Remark 2. Note that the existence of RandProof implies witness indistinguishability. However,
randomization is a much stronger property. We will create an algorithm RandProof for the
Groth-Sahai proof system; this is the only proof system that we know is randomizable.

Instantiating a randomizable proof system.

Lemma 6. Groth-Sahai proofs are randomizable.

Proof. RandProof gets as input an instance with the aq, bq, t, αq,m, βq,n values as well as the proof

[(π1, . . . , πI , ψ1, . . . , ψJ), Π] .

Π contains the internal commitments C1, . . . , CM and D1, . . . , DN .
The algorithm first chooses randomization exponents (r1,1, . . . , rM,I) and (s1,1, . . . , sN,J) at

random from Zp . It then rerandomizes the commitments Cm and Dn to C ′m = Cm ·
∏I
i=1 u

rm,i
i

and D′n = Dn ·
∏J
j=1 v

sn,j
j . Then it computes ŝq,i =

∑M
m=1 rm,i · αq,m, ẑq,j =

∑N
n=1 sm,j · βq,m,

Ĉq ← µ1(aq) ·
∏M
m=1C

αq,m
m , and D̂′q ← µ2(bq) ·

∏N
n=1D

′βq,n
n . Next, the prover sets

π′i ← πi ·
Q∏
q=1

(D̂′q)
ŝq,i and ψ′j ← ψj ·

Q∏
q=1

(Ĉq)
ẑq,j .

These π′i and ψ′j will satisfy the verification equation for the new commitments.
Now the prover must make a certain technical step to fully randomize the proof. Intuitively,

for every set of commitments, there are many proofs (π1, . . . , πI , ψ1, . . . , ψJ) that can satisfy the
verification equation. Given one such proof, we can randomly choose another: the prover chooses
ti,j , th ← R, and multiplies each

πi := πi ·
J∏
j=1

v
ti,j
j and each ψj := ψj ·

I∏
i=1

u
∑H
h=1 thηh,i,j

i

I∏
i=1

u
ti,j
i .

See [GS08] for a detailed explanation of this operation.
The algorithm outputs the new proof [(π′1, . . . , π

′
I , ψ

′
1, . . . , ψ

′
J), Π ′] where Π ′ contains the

internal commitments C ′1, . . . , C
′
M and D′1, . . . , D

′
N .


