
Strongly Secure One Round Authenticated Key Exchange
Protocol with Perfect Forward Security

Hai Huang

Zhejiang Sci-Tech University, People’s Republic of China
haihuang1005@gamil.com

Abstract. This paper investigates the two-pass authenticated key ex-
change protocol in the enhanced Canetti-Krawczyk (eCK) with perfect
forward security. Currently, there exist no authenticated key exchange
protocols which are provably secure in eCK model and meanwhile achieve
perfect forward security against active adversary in one round.
We propose a new two-pass authenticated key exchange protocol which
enjoys following desirable properties. First, our protocol is shown se-
cure in the eCK model under the gap Diffie-Hellman (GDH) assump-
tion. Moreover, our protocol does not use the NAXOS transformation,
the drawback of which will be discussed in the introduction. Second,
under the same assumption, we prove that our protocol achieves perfect
forward security against active adversary in one round.
To the best of our knowledge, our proposal is first two-pass (one round)
AKE protocol provably secure in the eCK model and achieving perfect
forward security against active adversary.

Keywords: Authenticated key exchange, eCK model, Perfect forward
security, Provably secure

1 Introduction

Key exchange (KE) protocol enables two parties, Alice (A) and Bob (B), to
establish a shared session key over an insecure channel. Later, the session key
can be used to ensure data confidentiality and integrity between A and B using
efficient symmetric encryptions and message authentication codes.

Since the classic Diffie-Hellman (DH) key exchange protocol is only secure
against a passive adversary, much of work has been dedicated to armor the DH
protocol against active, man-in-the-middle attacks. This is the goal of authen-
ticated key exchange (AKE) in which both parties are assured that no other
parties aside from their intended peers may learn the established session key.

The authenticated key exchange protocols have been established to be sur-
prisingly difficult to design. The traditional trial-and-error design method has
led to the situation that the protocols have been broken or the flaws in the pro-
tocols have taken many years to discover. In last years, attentions have been
focused on the development of rigorous security models for authenticated key
exchange.



Recently, LaMacchia, Lauter and Mityagin [9, 10] presented a new security
model for authenticated key exchange protocols, the enhanced Canetti-Krawczyk
(eCK) model in which the adversary’s ability is extended to the extent such that
it is allowed to reveal any static private key and ephemeral private key of parties
involved except for both static private key and ephemeral private key of one
of parties involved. To achieve eCK security, they introduce so called NAXOS
transformation which requires that the ephemeral public key X is computed
as X = gH(x,a) instead of X = gx, where x, a are ephemeral private key and
static private key respectively. However, it seems that NAXOS transformation
does not prevent the leakage of the ephemeral DH exponents. In some scenarios,
we do not guarantee that leakages on DH exponents cannot occur [14]. On the
other hand, constructing the authenticated key exchange protocol secure in eCK
model without NAXOS transformation has its advantages. For example, it can
reduce the risk of leakage of the static private key and use of the random oracle
[7].

An important property not captured by the two-pass AKE protocols secure
in eCK model is perfect forward security (PFS) against active adversary. Recall
that PFS guarantees that the leakages on the static private keys of both parties
involved do not compromise the previously established session keys by these
parties. However, as observed in [8], no two-pass AKE protocols with basic DH
message can achieve PFS, if the adversary is actively involved with the choice of
the DH values X,Y at a session. So the best the two-pass AKE protocols with
DH message can achieve is the weak form of perfect forward security (wPFS),
which guarantees security against the passive adversary.

Based on Okamoto-Tanaka’s work [4], Gennaro, Krawczyk and Rabin pro-
pose a two-pass AKE protocol called mOT [5]. While preserving the commu-
nication complexity of a basic DH (two messages with a single group element
per message), they prove that mOT protocol achieves PFS security against ac-
tive adversary under a non-standard knowledge of exponent assumption (KEA1)
[1]. However, mOT protocol does not resist the ephemeral key query attack, i.e,
mOT protocol is insecure in the eCK model. In fact, the design of two-pass AKE
protocol with PFS secure against the ephemeral key query attack is one of the
open problems in [5].

1.1 Our Contributions

In this paper we investigates two-pass authenticated key exchange protocol with
perfect forward security. While there have already been some two-pass AKE pro-
tocols [9, 15, 6, 11, 7] provably secure in the eCK model, none of them achieve
perfect forward security against active adversary. Although it is possible to trans-
form a two-pass AKE protocol provably secure in eCK model into a three-pass
AKE protocol with perfect forward security against active adversary by adding
two messages [2, 8], the resulting protocol have a higher round-complexity.

This paper proposes a new two-pass (one round) authenticated key exchange
protocol in the eCK model with PFS property. The key ingredient of our protocol
is that instead of a single group element per message, we use two group elements



in each message. With this relaxation, our protocol enjoys following desirable
properties. First, without the NAXOS transformation our protocol is shown
secure in the eCK model under the gap Diffie-Hellman (GDH) assumption. There
are very few AKE protocols provably secure in the eCK model which do not
use NAXOS transformation. Second, under the same assumption, we prove
that our two-pass (one round) protocol achieves perfect forward security against
active adversary. The proof of mOT protocol for PFS active adversary needs
the non-standard KEA1 assumption and is comparatively more complicated.
While the mOT protocol achieves optimal communication complexity as the
basic Diffie-Hellman, i.e, a single group element per message, from a practical
point of view our protocol with two group element per message does not increase
communication overhead too much. Comparatively, the merit of our protocol
is that the security does not rely on the KEA1 assumption and the proof is
straightforward and hence simpler.

To the best of our knowledge, our proposal is first two-pass (one round) AKE
protocol which is provably secure in the eCK model and achieves perfect forward
security against active adversary.

1.2 Organization

The paper is organized as follows. Section 2 reviews the related building tech-
niques. Section 3 introduces a new two-pass AKE protocol with perfect forward
security. Section 4 gives the full security proof of our protocol in the eCK model.
Section 5 is dedicated to the proof of the PFS security of our protocol. Section
6 compares our protocol with several popular AKE protocols in term of effi-
ciency, security model and underlying hardness assumptions. Finally, concluding
remarks are made in section 7.

2 Preliminaries

In this section, we present several established tools needed in this paper.

2.1 Computational Diffie-Helleman (CDH) Assumption

Let the value κ be the security parameter. Let G = 〈g〉 be a cyclic group of
prime order q and g ∈ G be the generator. Define CDH(U, V ) := Uv where
U = gu, V = gv. For any probabilistic polynomial time (PPT) algorithm A,

Pr[A(G, g, U = gu, V = gv) =CDH(U, V )] ≤ ε(κ).

where u, v ∈ Zq and ε(κ) is negligible. The probability is taken over the coin
tosses of A, the choice of g and the random choices of u, v in Zq.



2.2 Gap Diffie-Helleman (GDH) assumption [13]

Let G = 〈g〉 be the cyclic group of order q, and DDH(.) be a decisional Diffie-
Helleman (DDH) oracle for G. Then, for any probabilistic polynomial time al-
gorithm A,

Pr[ADDH(.)(G, g, U = gu, V = gv) = CDH(U, V )] ≤ ε(k)

where u, v ∈ Zq, and where ε(k) is negligible. The DDH(.) denotes that A has
oracle access to DDH, which given a quadruple (g, U = gu, V = gv,W = gw) of
elements in G, outputs 1 if w = uv mod q and 0 otherwise. The probability is
taken over the coin tosses of A, the choice of g and the random choices of u, v
in Zq.

3 Strongly Secure One Round Authenticated Key
Exchange Protocol with Perfect Forward Security

In this section, we propose a new one round AKE protocol with perfect forward
security.

3.1 Protocol Setup.

Let the value κ be the security parameter. Let G = 〈g〉 be a cyclic group of
order q in which decisional Diffe-Helleman (DDH) problem can be efficiently
solved. Let g ∈ G be a generator and G∗ be the non-identity elements set of G.
Let h : {0, 1}∗ → G∗, H : {0, 1}∗ → {0, 1}κ be two hash functions. The party
Alice(Â)’s static private key is a and its static public key is A = ga. Similarly,
the party Bob(B̂)’s static private key is b and its static public key is B = gb.

3.2 Protocol Description.

The protocol runs between Alice and Bob. Its description is given in Figure 1.

1. Alice(Â) chooses an ephemeral private key x ∈ Zq at random, computes the
ephemeral public key X = gx and sends X, c1 = h(X)a to B̂.

2. Bob(B̂) chooses an ephemeral private key y ∈ Zq at random, computes the
ephemeral public key Y = gy and sends Y = gy, c2 = h(Y )b to Â.

3. Upon receiving X, c1, B̂ verifies X ∈ G∗ and checks if (g, h(X), A, c1) is a
valid Diffie-Hellman tuple. If so, B̂ computes sk = H((XA)y+b, sid), where
sid = (Â, B̂,X, c1, Y, c2). Then, B̂ keeps sk as the established session key..

4. Upon receiving Y, c2, Â verifies Y ∈ G∗ and checks if (g, h(Y ), B, c2) is a
valid Diffie-Hellman tuple. If so, Â computes sk = H((Y B)x+a, sid), where
sid = (Â, B̂,X, c1, Y, c2). Then, Â keeps sk as the established session key..



Â B̂

(A = ga) (B = gb)

x←R Zq, X = gx y ←R Zq, Y = gy

c1 = h(X)a c2 = h(Y )b

X, c1−−−−−−−−−→
Y, c2←−−−−−−−−

DDH(g, h(Y ), B, c2)
?
= 1 DDH(g, h(X), A, c1)

?
= 1

If it does not verify, then aborts If it does not verify, then aborts

sk = H((Y B)x+a) sk = H((XA)y+b)

where sid = (Â, B̂, X, c1, Y, c2) where sid = (Â, B̂, X, c1, Y, c2)

Fig. 1. Strongly Secure One Round Authenticated Key Exchange Protocol with Perfect
Forward Security

4 Security Proof

Theorem 1. Suppose that the GDH assumption for group G holds, h,H are
hash functions modeled as random oracles, then the proposed scheme in Fig. 1
is a secure authenticated key exchange protocol in the eCK model.

Proof. Assume that the adversary succeeds with non-negligible probability in
the environment described in Appendix A. Following the standard approach, we
use it to build an algorithm to solve GDH problem. The proof starts with the
fact: Since the input to the key derivation function H(·) includes all exchanged
information contained in sid and H is modeled as random oracle, we know that
two different sessions necessarily have two different session keys, and the only
way for the adversary to succeed is by computing the value GDH(XA,Y B),
which is called forging attack.

The rest of this section is mainly devoted to the analysis of the forging attack.
According to freshness definition, we consider separately two complementary
subcases below:

CASE 1: No honest party owns a matching session to the Test session.
CASE 2: The Test session has a matching session owned by another honest

party.

4.1 The Analysis of CASE 1

In this case, it suffices to discuss the following two subcases:
CASE 1.1: The adversary issues a StaticKeyReveal query on party Â and

EphemeralKeyReveal query on party B̂ communicating with party Â (neither



EphemeralKeyReveal query on the Test session nor StaticKeyReveal query on
party B̂ is allowed).

CASE 1.2: The adversary issues a EphemeralKeyReveal query on the Test
session and EphemeralKeyReveal query on party B̂ communicating with party
Â (neither StaticKeyReveal query on party Â nor StaticKeyReveal query on
party B̂ is allowed).

CASE 1.1: To show that the success probability of the adversary is negligible,
we will construct a GDH problem solver SIM that uses an adversary M who
succeeds with non-negligible probability in the attack.

Input to SIM. The input to the SIM is a GDH problem instance (U = gu, V =
gv), where u, v ∈ Zq and U, V ∈ G. The goal of SIM is to compute GDH(U, V ) =
guv.

Guessed Test session. SIM guesses the adversary M will select one party de-
noted by Â as the owner of the Test session and the other party denoted by B̂
as the peer. Further, SIM guesses the adversary M will select the session Πs

Â,B̂

as the Test session. Note that the probability that the Test session is chosen by
M is non-negligible. If this is not the case, SIM aborts.

Setup of SIM. SIM assigns static public key V for B̂, and random static pub-
lic/private key pairs for the remaining parties (including Â). This way, SIM
knows all static private keys of parties except for B̂.

Simulating the non-Test sessions. The adversary M can activate sessions be-
tween any two parties and insert its own messages into these sessions by either
generating or scheduling the messages. The simulator SIM needs to respond the
sessions on behalf of honest parties. Simulating the actions of any honest party
other than B̂ is simple as SIM knows their static private keys. Assume that
B̂ is a responder and Ĉ is the peer, and the messages it receives is of the form
X̃, c̃1 allegedly from Ĉ. Whenever B̂ is activated in a session, SIM first verifies
that X̃ ∈ G∗ and calls its DDH oracle to check if DDH(g, h(X̃), C, c̃1) ?= 1. If so,
SIM chooses an ephemeral private key ỹ ∈ Zq at random, computes ephemeral
public key Ỹ = gỹ, and sets h(Ỹ ) to be gr̃, where r̃ ∈ Zq. Then SIM sets the
values Ỹ , c̃2 = V r̃ as the outgoing messages.

Response to the static private key and session key queries (non-Test session).
SIM can respond the static private key queries on any party except for B̂.
Likewise, session key queries for these sessions owned by any party other than
B̂ can be easily responded by SIM as it knows the corresponding static private
keys and generates the ephemeral private keys itself. However, sessions in which
B̂ is a participant are problematic since SIM does not know B̂’s static private
key.

Again, assume that B̂ is a responder and the peer is Ĉ. Since SIM does
not knows B̂’s static private key , it can not generate the session key itself. To
respond the session key queries and keep the consistency of the random oracles
H, SIM calls DDH oracles to check if DDH(g, X̃C, Ỹ V, σ) ?= 1 where σ is the
first element int H.



Response to the ephemeral private key queries. SIM can respond the ephemeral
private key queries on any party including B̂ as in the simulation SIM chooses
the values for all the parties itself.
Simulating the Test session. When the adversary activates the Test session at Â,
SIM acts as follows. Without loss of generality, assume that Â is an initiator.
SIM computes c1 = h(U)a and sets the outgoing message to be U, c1. Upon
receiving the message Y, c2 allegedly from B̂, SIM first verifies that Y ∈ G∗ and
calls its DDH oracle to check if DDH(g, h(Y ), B, c2) ?= 1. If so, SIM waits for
the adversary’s next query, else it aborts.
Computing the forgery GDH(U, V ) = guv. The goal of SIM is to compute
GDH(U, V ) = guv. Below we show that whenever the adversary M succeeds
in the forging attack SIM can compute GDH(U, V ) = guv. Assume that the
outgoing message of the Test session is X = U, c1 and the incoming message is
Y, c2 allegedly from B̂. Indeed, to succeed in the forging attack it must be that
the adversary M queries the first element of the form (Y B)x+a = (Y V )u+a in H.
In order to compute Uv, the value Y must be eliminated (SIM knows the value
a). However, without knowing y, this elimination seems difficult. Fortunately, it
can be shown that the message Y cannot be generated by the adversary itself
except with negligible probability. In other words, if there is an adversary who
correctly generates a message Y, c2 itself with non-negligible probability, we can
construct a GDH problem solver SIM that uses the adversary. The action of
SIM is as follows: With the input U, V , setting the static private key of party B̂
to be U , SIM responds the adversary’s queries in the same way as SIM . Finally,
if the adversary generates a message Y, c2 itself, then SIM call its DDH oracle
to checks if DDH(g, h(Y ), B, c2) ?= 1, where h(Y ) = V . If so, SIM outputs c2
which equals GDH(U, V ) = guv.

Now we learn that Y must have been generated by SIM on behalf of party
B̂. Then Y can be easily eliminated from (Y B)x+a = (Y V )u+a as SIM knows
y. Denote the first element in H by σ. SIM proceeds as follows.

(σ/(Y V )a)/Uy = ((Y V )u+a/(Y V )a)/Uy = (Y V )u/Uy = Uv

This contradicts the GDH assumption.
CASE 1.2:

In this case, since the adversary can issue neither StaticKeyReveal query on
party Â nor staticKeyReveal query on party B̂, SIM sets the static public keys
of party Â and B̂ to be U and V respectively. Simulating the actions of any
honest parties other than Â and B̂ is simple as SIM knows their static private
keys. Whenever B̂ (or Â) is activated in a session, SIM acts like that of CASE
1.1 dealing with the queries on party B̂.
Computing the forgery GDH(U, V ) = guv. If the adversary succeeds in the forging
attack, i.e., the adversary M queries the first element of the form (Y B)x+a =
(Y V )x+u in H. Note that the value X,Y is generated by the SIM itself as
shown by SIM in CASE 1.1. Knowing x, y, the value GDH(U, V ) can be easily
determined as follows (denote the first element in H by σ).



(σ/(Y B)x)/Uy = ((Y V )x+u/(Y V )x)/Uy = (Y V )u/Uy = Uv

This contradicts the GDH assumption.

4.2 The Analysis of CASE 2

Compared to that of CASE 1 the proof for this case is simpler as there is a session
matching to the Test session (i.e., the adversary neither generates the message
itself nor delivers the message from other sessions towards the Test session).
The simulations of party Â and B̂ are similar to that of CASE 1. Due to space
limitations, the details are left to the readers.

5 Further Security Properties

5.1 Resistance to reflection attacks.

In the security proof of section 4 we assume that party Â and B̂ are different. In
some scenarios, however, party Â wants to establish a session key with itself. For
example, Alice with mobile device wants to establishes a secure channel with her
office desktop computer where two devices uses the same certificate. An attack
that exploits the fact the two parties use the same identity is called reflection
attack in which the adversary simply copies party Â’s outgoing message and
sends back to Â. We now prove that our protocol is secure against such attacks
as follows.
Input to SIM. The input to the SIM is a GDH problem instance (U = gu, V =
gv), where u, v ∈ Zq and U, V ∈ G. The goal of SIM is to compute GDH(U, V ) =
guv.

SIM sets the static public key of party Â to be U . The simulation of party Â
(initiator or responder) is similar to that of CASE 1.2 where SIM knows neither
of the static private keys of two parties. Further, we assume that the outgoing
message of the Test session is of the form X, c1 and incoming message is of the
form Ỹ , c̃2. 1 As shown by SIM in CASE 1.1, however, the message Ỹ , c̃2 can not
be generated by the adversary itself except with negligible probability. In other
words, it must be that SIM generates the value Ỹ , c̃2. By applying the similar
argument in CASE 1.2 where SIM knows neither of the static private keys of Â
and B̂, knowing the values x, ỹ we can transform an adversary into an algorithm
which given U computes Uu. Further, such algorithm can be used to solve the
general GDH problem as observed by Maurer and Wolf [12] as said in [8].

1 If the adversary simply copies X, c1 and send back to Â, i.e., X = Ỹ and c1 = c̃2,
this kind of attack is called reflection attack.



5.2 Proof of PFS Property

In the section, under the same GDH assumption, we prove that our protocol en-
joys perfect forward security (PFS) against the active adversary. Our proof does
not use any additional assumption, e.g. KEA1 assumption and is thus compar-
atively straightforward. To show that the success probability of the adversary
M is negligible, we will construct a GDH problem solver SIM that uses an
adversary M who succeeds with non-negligible probability in the attack.
Input to SIM. The input to the SIM is a GDH problem instance (U = gu, V =
gv), where u, v ∈ Zq and U, V ∈ G. The goal of SIM is to compute GDH(U, V ) =
guv.
Guessed Test session. SIM guesses the adversary M will select one party de-
noted by Â as the owner of the Test session and the another party denoted by B̂
as the peer. Further, SIM guesses the adversary M will select the session Πs

Â,B̂

as Test session. Note that the probability that the Test session is chosen by M
is non-negligible. If this is not the case, SIM aborts.
Setup of SIM. According to the definition of PFS game, the adversary M can
issue StaticKeyReveal query on neither party Â nor party B̂ before the Test
session is complete. However, M is allowed to reveal the static private keys of
party Â and B̂ after the Test session is complete. To deal with StaticKeyReveal
query, SIM assigns random static public/private key pairs for all the parties
(including Â and B̂) itself. This way, SIM knows all the static private keys of
parties.
Simulating the non-Test sessions. Simulating the actions of any honest party
other than B̂ is simple as SIM knows their static private keys. On the other
hand, to solve the GDH problem, the GDH instance U, V must be embedded
into the outgoing and incoming messages of Test session. As the adversary is an
active attacker in the PFS game, i.e, the incoming message of the Test session
may be generated or scheduled from other sessions of party B̂, the simulation of
party B̂ is slightly different. Assume that B̂ is a responder and Ĉ is the peer, and
the messages B̂ receives is of the form X̃, c̃1 allegedly from Ĉ. Whenever B̂ is
activated in a session, SIM first verifies that X̃ ∈ G∗ and calls its DDH oracle
to check if DDH(g, h(X̃), C, c̃1) ?= 1. If so, SIM chooses t̃i ∈ Zq at random,
computes ephemeral public key Ỹ = V t̃i , and sets the values Ỹ , c̃2 = h(Ỹ )b as
the outgoing messages 2.
Response to the static private key and session key queries (non-Test session).
SIM can respond these queries since it knows the static private keys of all the
parties.
Response to the ephemeral private key queries. Since the definition of PFS stipu-
lates that the adversary is not allowed to make any EphemeralKeyReveal query,
if these happen, SIM aborts.
Simulating the Test session. When the adversary activates the Test session at Â,
SIM acts as follows. Without loss of generality, assume that Â is an initiator.
SIM computes c1 = h(U)a and sets the outgoing message to be U, c1. Upon

2 The value V must be embedded into each session of party B̂.



receiving the message Y, c2 allegedly from B̂, SIM first verifies that Y ∈ G∗ and
calls its DDH oracle to check if DDH(g, h(Y ), B, c2) ?= 1. If so, SIM waits for
the adversary’s next query, else it aborts.
Computing the forgery GDH(U, V ) = guv. The goal of SIM is to compute
GDH(U, V ) = guv. Below we show that whenever the adversary M succeeds
in the forging attack SIM can compute GDH(U, V ) = guv. Assume that the
outgoing message of the Test session is U, c1 and the incoming message is Y, c2
allegedly from B̂. As shown by SIM in CASE 1.1, the message Y, c2 can not
be generated by the adversary itself except with negligible probability. Thus, it
must be that the message Y, c2 have been scheduled by the adversary from other
sessions of party B̂. That is to say, the value Y, c2 has been generated by SIM
itself with the form Y = V ti and c2 = h(Y )b. Denote the first element in H by
σ. With value ti, SIM proceeds as follows.

σ = (σ/(Y B)a)/U b = ((Y B)u+a/(Y B)a)/U b = (Y B)u/U b = Y u

Then,

(σ)ti
−1

= (Y u)ti
−1

= (V tiu)ti
−1

= Uv

This contradicts the GDH assumption.

6 Comparison of Protocols

In Table 1 we compare our protocol with several popular AKE protocols in term
of efficiency, security model and underlying hardness assumptions. For simplicity,
we do not take into account subgroup validation and speedup trick that may be
applicable. The “E” denote the exponentiation in G and “EN” denote the expo-
nentiation in the RSA group. The CKHMQV denotes modified Canetti-Krawczyk
security [3] which captures CK model, KCI, wPFS and ephemeral key query.
CKHMQV-C captures CKHMQV model, PFS. The KEA1 stands for Knowledge of
Exponent Assumption [1]. RSA and GDH stand respectively for RSA and gap
Diffie-Hellman assumptions.

Protocol
Efficiency Security

Computation Round Model Assumption

NAXOS [9, 10] 4E 1 eCK GDH

CMQV [15] 3E 1 eCK GDH

HMQV [8] 3E 1 CKHMQV GDH,KEA1

HMQV-C [8] 3E 3 CKHMQV-C GDH

mOT[5] 2EN 1 CK,PFS RSA,KEA1

Our scheme 3E+1DDH 1 eCK,PFS GDH
Table 1. Comparison of Protocols



Compared with the NAXOS, CMQV and HMQV protocols, all of which only
achieve weak perfect forward security (wPFS), the main advantage of our scheme
is that it achieves perfect forward security (PFS). On the other hand, to be secure
in the eCK model the former two protocols use the NAXOS transformation while
our scheme does not. Compared with HMQV-C protocol which achieves perfect
forward security (PFS), our scheme has lower round complexity (within one
round). While mOT protocol achieves perfect forward security (PFS) within
one round, it does not resist the ephemeral key query, i.e, mOT is insecure in
eCK model. Compared to it, our scheme is provably secure in eCK model and
meanwhile achieves perfect forward security (PFS).

7 Conclusions and Open Problem

Although there have already been some two-pass AKE protocols provably secure
in the eCK model, none of them achieve perfect forward security against active
adversary. On the other hand, while mOT protocol achieves PFS security against
active adversary within one round, it is not secure against the ephemeral key
query attack, i.e, insecure in the eCK model.

This paper proposes a new two-pass (one round) authenticated key exchange
protocol in eCK model with PFS property. Our protocol provably enjoys follow-
ing desirable properties. First , without the NAXOS transformation our protocol
is shown secure in the eCK model under the gap Diffie-Hellman (GDH) assump-
tion. Second, under the same assumption, we prove that our two-pass (one round)
protocol achieves perfect forward security against active adversary.

To the best of our knowledge, our proposal is the first two-pass (one round)
AKE protocol which is provably secure in the eCK model and achieves perfect
forward security against active adversary. Finally, while our work takes provably
secure AKE protocol further, our protocol needs two group element per message.
The design of the AKE protocol provably secure in the eCK model without
NAXOS transformation and achieving PFS in one round (a single group element
per message) remains an open problem.

References

1. M. Bellare and A. Palacio. The knowledge-of-exponent assumptions and 3-round
zero-knowledge protocols. In M. K. Franklin, editor, CRYPTO, volume 3152 of
Lecture Notes in Computer Science, pages 273–289. Springer, 2004.

2. M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated key exchange secure
against dictionary attacks. In EUROCRYPT, pages 139–155, 2000.

3. R. Canetti and H. Krawczyk. Analysis of key-exchange protocols and their use for
building secure channels. In B. Pfitzmann, editor, EUROCRYPT, volume 2045 of
Lecture Notes in Computer Science, pages 453–474. Springer, 2001.

4. E.Okamoto and K.Tanaka. Key distribution systems based on identification in-
formation. In IEEE Journal on Selected Areas in Communications, volume 7(4),
pages 481–485, 1989.



5. R. Gennaro, H. Krawczyk, and T. Rabin. Okamoto-tanaka revisited: Fully authen-
ticated diffie-hellman with minimal overhead. In J. Zhou and M. Yung, editors,
ACNS, volume 6123 of Lecture Notes in Computer Science, pages 309–328, 2010.

6. H. Huang and Z. Cao. Strongly secure authenticated key exchange protocol based
on computational diffie-hellman problem. In Cryptology ePrint Archive, Report
2008/500, 2008.

7. M. Kim, A. Fujioka, and B. Ustaoglu. Strongly secure authenticated key exchange
without naxos’ approach. In T. Takagi and M. Mambo, editors, IWSEC, volume
5824 of Lecture Notes in Computer Science, pages 174–191. Springer, 2009.

8. H. Krawczyk. HMQV: A high-performance secure Diffie-Hellman protocol. In
V. Shoup, editor, CRYPTO, volume 3621 of Lecture Notes in Computer Science,
pages 546–566. Springer, 2005.

9. B. LaMacchia, K. Lauter, and A. Mityagin. Stronger security of authen-
ticated key exchange. Cryptology ePrint Archive, Report 2006/073, 2006.
http://eprint.iacr.org.

10. B. A. LaMacchia, K. Lauter, and A. Mityagin. Stronger security of authenticated
key exchange. In W. Susilo, J. K. Liu, and Y. Mu, editors, ProvSec, volume 4784
of Lecture Notes in Computer Science, pages 1–16. Springer, 2007.

11. J. Lee and C. S. Park. An efficient authenticated key exchange protocol with a
tight security reduction. In Cryptology ePrint Archive, Report 2008/345, 2008.,
2008.

12. U. M. Maurer and S. Wolf. Diffie-hellman oracles. volume 1109 of Lecture Notes
in Computer Science, pages 268–282. Springer, 1996.

13. T. Okamoto and D. Pointcheval. The gap-problems: A new class of problems for
the security of cryptographic schemes. In K. Kim, editor, Public Key Cryptography,
volume 1992 of Lecture Notes in Computer Science, pages 104–118. Springer, 2001.

14. A. P. Sarr, P. Elbaz-Vincent, and J.-C. Bajard. A new security model for authenti-
cated key agreement. In J. A. Garay and R. D. Prisco, editors, SCN, volume 6280
of Lecture Notes in Computer Science, pages 219–234. Springer, 2010.

15. B. Ustaoglu. Obtaining a secure and efficient key agreement protocol from (H)MQV
and NAXOS. Des. Codes Cryptography, 46(3):329–342, 2008.

A. Security Model

In this section, we review the eCK security model for authenticated key exchange
protocols. For the details of the original eCK model, see [9, 10].
Participants. We model the protocol participants as a finite set U of fixed
size with each IDi being a probabilistic polynomial time (PPT) Turing ma-
chine. Each protocol participant IDi ∈ U may execute a polynomial number of
protocol instances in parallel. We will refer to s-th instance of participant IDi

communicating with peer IDj as Πs
IDi,IDj

(i, j ∈ N) (a session or an instance).
Adversary Model. The adversary M is modeled as a PPT Turing machine
and has full control of the communication network and may eavesdrop, delay,
replay, alter and insert messages at will. We model the adversary’s capability by
providing it with oracle queries.

– EphemeralKeyReveal(Πs
IDi,IDj

) The adversary obtains the ephemeral
private key of Πs

IDi,IDj
. These queries are motivated by practical scenarios,



such as if session-specific secret information is stored in insecure memory on
device or if the random number generator of the party is corrupted.

– SessionKeyReveal(Πs
IDi,IDj

) The adversary obtains the session key for a
session s of IDi, provided that the session holds a session key.

– StaticKeyReveal(IDi) The adversary obtains the static private key of
IDi.

– EstablishParty(IDi) The query models that the adversary can arbitrarily
register a legal user on behalf of the party IDi. In this way the adversary gets
the party IDi’s static private key and totally controls the party IDi. Parties
against whom the adversary does not issue this query are called honest.

– Send(Πs
IDi,IDj

,m) The adversary sends the message m to the session s
executed by IDi communicating with IDj and gets a response according to
the protocol specification.

– Test(Πs
IDi,IDj

) Only one query of this form is allowed for the adversary. Pro-
vided that the session key is defined, the adversary M can execute this query
at any time. Then depending on a randomly chosen bit b, with probability
1/2 the session key and with probability 1/2 a uniformly chosen random
value ζ ∈ {0, 1}κ is returned.

Definition 1 (Matching Session). Let Πs
IDi,IDj

be a completed session with
identifier (IDi, IDj , out, in, role), where IDi is the owner of the session, IDj

is the peer, and out is IDi’s outgoing message, in is IDj’s outgoing message,
and role is the IDi’s role in the session (initiator or responder). The session
Πt
IDj ,IDi

is called the matching session of Πs
IDi,IDj

, if the identifier of Πt
IDj ,IDi

is (IDj , IDi, out, in, role), where out = in, in = out, role 6= role.

Definition 2 (Freshness for AKE Protocols). Let instance Πs
IDi,IDj

be a
completed session, which was executed by an honest party IDi with another hon-
est party IDj. We define Πs

IDi,IDj
to be fresh if none of the following three

conditions hold:

– The adversary M reveals the session key of Πs
IDi,IDj

or of its matching
session (if latter exists).

– IDj is engaged in session Πt
IDj ,IDi

matching to Πs
IDi,IDj

and M issues
either:
• both StaticKeyReveal(IDi) and EphemeralKeyReveal(Πs

IDi,IDj
) queries;

or
• both StaticKeyReveal(IDj) and EphemeralKeyReveal(Πt

IDj ,IDi
) queries.

– No sessions matching to Πs
IDi,IDj

exist and M issues either:
• both StaticKeyReveal(IDi) and EphemeralKeyReveal(Πs

IDi,IDj
) queries;

or
• StaticKeyReveal(IDj) queries.

Definition 3 (AKE Security). As a function of the security parameter k, we
define the advantage AdvAKEM,Σ (k) of the PPT adversary M in attacking protocol
Σ as



AdvAKEM,Σ (k)
def
= |SuccAKEM,Σ (k)− 1

2 |

Here SuccAKEM,Σ is the probability that the adversary queries Test oracle to a fresh
instance Πs

IDi,IDj
, outputs a bit b̂ such that b̂ = b, where the bit b is used by the

Test oracle.
We call the authenticated key exchange protocol Σ to be AKE secure if for

any PPT adversary M the function is negligible.

An important property not captured in the eCK model is perfect forward
security (PFS) which guarantees that the session key can not be learned by
the adversary even if the static private keys of the parties are subsequently
revealed. The freshness definition 2 above only captures weak perfect forward
security (wPFS), which assume that the adversary is not actively involved with
the choice of the messages at a session. Below, we give the definition of perfect
forwards security against active adversary.
Perfect Forward Security. An authenticated key exchange protocol is said to
be secure with PFS if Definition 3 holds even when the adversary is allowed to
reveal the static private keys of two parties after the Test session is complete.
Note that in this case the adversary is allowed to make all oracle queries above
except for EphemeralKeyReveal query.


