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Abstract

In CRYPTO 1997, Canetti et al.put forward the intruiging notion of deniable encryption, which
(informally) allows a sender and/or receiver, having already performed some encrypted communication,
to produce ‘fake’ (but legitimate-looking) random coins that open the ciphertext to another message.
Deniability is a powerful notion for both practice and theory: apart from its inherent utility for resisting
coercion, a deniable scheme is also noncommitting (a useful property in constructing adaptively secure
protocols) and secure under selective-opening attacks on whichever parties can equivocate. To date,
however, known constructions have achieved only limited forms of deniability, requiring at least one party
to withhold its randomness, and in some cases using an interactive protocol or external parties.

In this work we construct bi-deniable public-key cryptosystems, in which both the sender and receiver
can simultaneously equivocate; we stress that the schemes are noninteractive and involve no third parties.
One of our systems is based generically on “simulatable encryption” as defined by Damgård and Nielsen
(CRYPTO 2000), while the other is lattice-based and builds upon the results of Gentry, Peikert and
Vaikuntanathan (STOC 2008) with techniques that may be of independent interest. Both schemes work
in the so-called “multi-distributional” model, in which the parties run alternative key-generation and
encryption algorithms for equivocable communication, but claim under coercion to have run the prescribed
algorithms. Although multi-distributional deniability has not attracted much attention, we argue that it is
meaningful and useful because it provides credible coercion resistance in certain settings, and suffices for
all of the related properties mentioned above.

Keywords. Deniable encryption, noncommitting encryption, simulatable encryption, lattice cryptography.

1 Introduction

Suppose that Eve has two children: Alice, who is away at college, and a young Bob, who still lives at home.
The siblings are planning a surprise party for Eve, so to keep their plans secret, they communicate using
public-key encryption. Eve, however, has taken note of their encrypted communications and grows suspicious.
Using her inherent parental authority, she demands that Alice and Bob reveal their secret decryption keys, as
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well as any of the encryption randomness they might have retained. Is there any way for Alice and Bob to
comply, without spoiling the surprise? The answer seems to be obviously no: using the secret keys, Eve can
simply decrypt their messages and learn about the party.

However, the above argument misses a subtle point: if Alice and Bob are able to produce alternative
keys and randomness that are consistent with their ciphertexts so far, then they might be able to fool Eve
into thinking that they are communicating about something else (or at least not alert her to the party). A
scheme that makes this possible is said to be deniable, a notion formally introduced by Canetti, Dwork, Naor,
and Ostrovsky [CDNO97]. (Deniability is related to, but different from Benaloh and Tuinstra’s notion of
uncoercible communication [BT94], in which a sender is able to undetectably indicate to a receiver than he is
being coerced to send a particular message.)

In practice, deniable encryption has been sought by users whose legitimate activities may not always be
protected from subpoenas or legal coercion, e.g., journalists and whistleblowers, or lawyers and activists in
repressive regimes. Indeed, several commercial and open-source storage encryption products claim limited
forms of deniability (see, for example, [Rub, Tru], and further references in [Wik10]), though without
formal definitions or supporting security proofs. More worryingly, these products only allow for denying
the existence of messages on a storage medium, not for equivocating those messages. This is insufficient
in a communications setting, where the mere exchange of messages between parties indicates that they are
communicating in some form.

Deniability is also a compelling property for theoretical reasons: in particular, deniable encryption
schemes are noncommitting (a fundamental concept in the design of adaptively secure protocols) [CFGN96,
DN00, CDSMW09], secure against selective-opening attacks [DNRS99, BHY09], and imply incoercible
multiparty computation [CG96]. We point out that deniable encryption is stronger than noncommitting
encryption, because equivocable ciphertexts actually decrypt to the intended messages, and users of the
system (not just a simulator) can themselves produce such ciphertexts.

Canetti et al. distinguish between two different models of deniability. The first is full deniability, in which
the parties always run the prescribed key-generation and encryption algorithms, and can equivocate their
messages later on if they so choose. The second model is called multi-distributional deniability, in which
there exist alternative “deniable” algorithms whose outputs can be equivocated, so that it appears as if the
prescribed algorithms had been used all along. Whether these models are useful in various settings has been
the subject of some debate over the years; we discuss these issues in Section 1.2 below. We also discuss some
recent developments and related work in Section 1.3.

Under standard assumptions, Canetti et al. construct a multi-distributional sender-deniable scheme (i.e.,
one that remains secure if only the sender is coerced), and give a fully sender-deniable scheme where the
coercer’s distinguishing advantage between a ‘real’ and ‘fake’ opening is an inverse polynomial that depends
on the public key size. They also construct a receiver-deniable scheme that requires an additional round of
interaction, and a sender- and receiver-deniable protocol that relies on third parties, at least one of whom
must remain uncoerced. In particular, up to this point there have not been any noninteractive schemes
offering receiver-deniability, nor any schemes (interactive or not) in which all the parties can be coerced
simultaneously, in either of the two models (full or multi-distributional deniability).

1.1 Our Contributions

Bideniable public-key encryption. Our main results are the first known bideniable (that is, simultaneously
sender- and receiver-deniable) public-key encryption schemes, in the multi-distributional model. We stress
that the schemes are noninteractive, require no third parties, and are immediately noncommitting and secure
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under selective-opening attacks.
We give two qualitatively different constructions. The first is built generically, using a combinatorial

construction with somewhat large overhead, from any “simulatable” encryption scheme in the sense of
Damgård and Nielsen [DN00]. This shows (perhaps surprisingly) that simulatability is sufficient not only for
noncommitting encryption, but for a form of deniability as well. The scheme is presented in Section 4.

Our second scheme is based on worst-case lattice problems via “learning with errors” [Reg05], and
builds upon the trapdoor function and identity-based encryption techniques of Gentry, Peikert, and Vaikun-
tanathan [GPV08]. In particular, it exploits a unique property of the GPV IBE, namely its negligible chance
of oblivious decryption error when the secret key vector and the error vector in the ciphertext are too highly
“aligned.” Our scheme relies on the ability of the receiver to resample a fresh secret key that is highly
correlated with the ciphertext error term. Proving that this secret key “looks real” relies on a symmetry
between correlated (discrete) Gaussians, which we believe may be of independent interest and application
in lattice cryptography. Interestingly, the deniable scheme is essentially identical to the GPV cryptosystem,
and it appears to be the first known cryptosystem that “naturally” supports receiver-deniability without any
substantial changes. It is also essentially as efficient for the receiver as the GPV system, but it is less efficient
for the sender because she must encrypt each bit separately (rather than amortizing). The details of the system
are described in Section 6.

In addition to our public-key schemes, we also define notions of deniability for the identity-based setting,
and show how our techniques immediately adapt to it as well. As we discuss below, multi-distributional
deniability (especially for the receiver) may be more palatable in this setting because the receiver does not
run a different key-generation algorithm (indeed, there is no such algorithm). We also remark that to be
meaningful, the identity-based setting inherently requires any solution to be noninteractive.

Plan-ahead bideniability with short keys. A simple information-theoretic argument reveals that in any
noninteractive receiver-deniable encryption scheme, the secret key must be at least as long as the message:
a fixed ciphertext can only decrypt to N different plaintexts if there are at least N distinct secret keys
for the public key (see also [Nie02] and the recent work [BNNO11]). We circumvent this constraint by
designing a scheme offering “plan-ahead” bideniability (a notion also introduced in [CDNO97]) that can
encrypt arbitrarily long messages using fixed-sized keys. In plan-ahead deniability, the sender must choose at
encryption time a bounded number of potential ‘fake’ messages, to which the parties may later equivocate.
This may be seen as the deniable analogue of “somewhat noncommitting encryption,” introduced by Garay,
Wichs and Zhou [GWZ09]. In many cases, this model would seem to be sufficient for coercion resistance,
since the sender can just include one “innocuous” message along with the real one.

Our plan-ahead scheme is a hybrid system that reduces the deniable encryption of an arbitrary-length
message to that of a short symmetric key. For example, when combined with the moderately good efficiency
of our GPV-style bideniable scheme, the overall system is potentially usable in practice. (Though as noted
above, our scheme is not able to amortize many bits into one ciphertext as the GPV scheme does, so our
bandwidth requirements are larger.)

Relations among notions. We clarify and study relations among the various types of deniability introduced
in [CDNO97]. Our main contribution is that any type of multi-distributional deniability suffices to obtain
the corresponding type of full deniability, with an inverse-polynomial distinguishing advantage related to
the size of the public key. This further reinforces the usefulness of multi-distributional deniability itself.
We also observe that for multi-distributional schemes, bideniability implies sender-deniability, but perhaps
surprisingly, it may not imply receiver-deniability alone. That is, bideniability relies on the sender to correctly
run the deniable encryption algorithm.
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1.2 Discussion

Is (multi-distributional) deniability useful? The ideal deniable encryption scheme would be noninter-
active and fully deniable for both parties. Unfortunately, it has been recently shown [BNNO11] that these
properties cannot all be achieved at once, even for receiver deniability alone (see related work below). So to
obtain a noninteractive scheme we must work in the multi-distributional model.

A common objection to multi-distributional deniability is that, since there are alternative deniable
algorithms (for encryption and key generation) that are strictly more powerful than the normal ones, why
would anyone ever run the normal algorithms? And given this situation, why would a coercer ever accept a
transcript corresponding to the normal algorithms? Whether this is a significant problem will depend on the
setting in which coercion happens, and what recourse the coercer has in response to the users’ claims.

For example, if there is a prescribed legal process (such as a subpoena or search warrant) by which
parties are forced to reveal their transcripts, then multi-distributional deniability may be sufficient to protect
the users. Even if the coercer asks for a transcript corresponding to the deniable algorithms, the users can
simply assert that they did not run those algorithms, and so cannot produce coins for them. The users’ claims
might also gain in credibility via “safety in numbers,” if a deployed implementation defaults to the normal
algorithms — which do make up an operational cryptosystem, after all — or by formally standardizing on
the normal algorithms within an organization. Since the coercer would only have reason to believe — but not
any actual evidence — that the deniable algorithms were used in a particular instance, imposing a sanction
seems fundamentally unjust, and might even be ruled out by the prescribed process. If, on the other hand,
the coercer is able to punish the users until they “tell him what he wants to hear,” then multi-distributional
deniability might not be enough to protect the users — but neither might full deniability! After all, in either
model the coercer has no reason to believe what the users have revealed. Anticipating potential punishment,
the users of a multi-distributional scheme might retain the coins of the deniable algorithms as a “backup plan,”
just in case they might later want to reveal a convincing proof for the true message (e.g., if the punishment
becomes too severe). But even a fully deniable scheme allows for a similar backup plan and proof of the
true message, by using “verifiably random” coins such as the digits of π or the output of a pseudorandom
generator.

In the identity-based setting, multi-distributional deniability may be useful as well, especially for the
receiver. Here the receiver does not run a key-generation algorithm at all, but instead gets his secret key
from an authority who possesses a ‘master’ secret key for all users. Our model allows the receiver to ask
the authority for a fake (but real-looking) secret key that causes a particular ciphertext to decrypt to any
desired message. This could be useful if the authority is out of the coercer’s jurisdiction (e.g., if the receiver
is travelling in another country), or if it can argue that exposing its master secret key would harm the privacy
of too many other users.

In summary, the purpose of deniability is not at all to ‘convince’ the coercer that the surrendered transcripts
are real; indeed, it is common knowledge that they can easily be faked. Instead, the goal is to preempt
coercion in the first place by making it useless, since parties who “stick to their stories” can never be pinned
down to the real message. At the same time, neither form of deniability seems appropriate if a user might
eventually want to convincingly reveal the true plaintext, e.g., to sell her vote in an election. The main
significant difference we see between the two models relates not to security, but usability: multi-distributional
deniability requires the users to know in advance which messages they might want to equivocate, whereas
full deniability allows the user to decide afterward.

Why not erase? At first glance, erasures appear to provide a very simple way of achieving deniability: the
parties can just tell the coercer that they deliberately erased their coins (perhaps according to a published
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schedule), and therefore cannot surrender them. For sender deniability, this claim might be credible, since
there is no point in the sender keeping her ephemeral encryption coins. (And indeed, none of our results
preclude using erasures on the sender side.) For receiver deniability, erasures seem much less credible, since
the receiver must store some form of decryption key in order to decrypt messages, and at some point in
time this key can be subject to coercion. Certain regulatory regimes (e.g., in the financial sector) might also
mandate retention of all data for a certain time, for potential audit. The existence of deniable encryption means
that such requirements would still not necessarily guarantee compliance with the intent of the regulations.
In any case, we contend that there is a significant qualitative difference between deniable schemes that use
erasures, and those that do not. In the former, the coerced parties must resort to the claim that they no longer
have the desired evidence, even though they once did. In the latter, the parties can credibly claim to have
provided the coercer with all the evidence they have ever had, and yet still equivocate.

1.3 Other Related Work

Subsequent to the initial dissemination of this work in mid-2010, there has been additional work on deniable
encryption that complements our own. Dürmuth and Freeman [DF11b] announced an interactive, fully
sender-deniable encryption protocol (i.e., one with a single encryption protocol and negligible detection
advantage). However, following its publication Peikert and Waters found a complete break of the system’s
deniability property (and a corresponding flaw in the claimed security proof); see [DF11a] for details. In
particular, the problem of constructing a fully deniable encryption scheme remains an intriguing open question.
Bendlin et al. [BNNO11] recently showed that a noninteractive public-key scheme having key size σ can be
fully receiver-deniable (or bideniable) only with non-negligible Ω(1/σ) detection advantage. In particular,
their result implies that our use of the multi-distributional model is necessary to achieve a noninteractive
receiver-deniable scheme.

Deniability can be seen as a type of security that holds true even when secret information is revealed to
the adversary. In the case of break-ins, one relevant notion is “forward security” (see, e.g., [BM99, CHK03]),
which relies on secure erasures to update secret state over time. In the case of side-channel or memory attacks,
relevant notions include the “bounded retrieval model” and “leakage-resilient” cryptography, which limit the
amount of secret information the adversary may learn (see the recent survey [ADW09] and references therein).
In contrast, deniability ensures security in contexts where the adversary obtains the entire, unchanging secret
key and/or encryption randomness, but cannot tell whether those values came from the actual execution of
the system.

1.4 Organization

In Section 3 we motivate and formally define various types of deniable encryption, with a focus on multi-
distributional bideniability. In Section 4 we give a generic construction based on any simulatable encryption
scheme. In Section 5 we define a new abstraction called a “bitranslucent set,” which leads directly to a
bideniable encryption scheme. In Section 6 we give an instantiation of bitranslucent sets from lattices. In
Section 7 we show how to obtain plan-ahead bideniability with short keys.

2 Preliminaries

We denote the set of all binary strings by {0, 1}∗ and the set of all binary strings of length i by {0, 1}i. The
length of a string s is denoted by |s|. By s1‖s2 we denote an encoding of strings s1, s2 from which the two
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strings are unambiguously recoverable. (If the lengths of s1, s2 are known, then concatenation suffices.)
For i ∈ N we let [i] be the set {1, . . . , i}. A nonnegative function f : N → R is called negligible, written
f(n) = negl(n), if it vanishes faster than any inverse polynomial, i.e., f(n) = o(n−c) for every constant
c ≥ 0. A function g : N→ [0, 1] is called overwhelming if it is 1− negl(n).

The statistical distance between distributions X,Y with the same range is 1/2
∑

x |Pr [X = x ] −
Pr [ Y = x ] |. We say that X,Y are statistically indistinguishable if their statistical distance is negligi-
ble. We say that X,Y are computationally indistinguishable if for all efficient (PPT) distinguishers D,
|Pr [D(X) = 1 ]− Pr [D(Y ) = 1 ] | is negligible. Note that when X,Y are statistically indistinguishable,
the latter holds for all unbounded distinguishers.

For a finite (or compact) set S, x← S denotes that x is sampled according to the uniform distribution on
S. For a (possibly randomized) algorithm A, the expression z ← A(· · · ) denotes that A is executed on the
elided inputs and z is assigned its output. We write z ← A(· · · ; r) to make A’s random coins r explicit. All
algorithms we consider may be randomized unless indicated otherwise.

We say an algorithm A with input space X has invertible sampling [DN00] if there is an efficient
inverting algorithm, denoted IA, such that for all x ∈ X the outputs of the following two experiments are
indistinguishable (either computationally, or statistically):

y ← A(x; r)

Return (x, y, r)

y ← A(x; r)
r′ ← IA(x, y)
Return (x, y, r′)

In other words, given just an input-output pair of A, it is possible to efficiently generate appropriately
distributed randomness that “explains” it. It may also be the case that IA requires some “trapdoor” information
about x in order to do so. Namely, we say that A has trapdoor invertible sampling if we replace the second
line in the right-hand experiment above with “r′ ← IA(tdx, x, y),” where tdx is a trapdoor corresponding to
x (we think of x and tdx as being sampled jointly as the setup to both of the above experiments).

A public-key cryptosystem PKC with message spaceM consists of three algorithms: The key generation
algorithm Gen(1n; rR) outputs a public key pk, and the randomness rR is used as the associated secret
decryption key. (This convention is natural in the context of deniability, where we might even consider
coercing the receiver to reveal the random coins rR it used to generate its public key. This is without loss of
generality, since the stored “secret key,” whatever its form, can always be computed from rR.) The encryption
algorithm Enc(pk,m; rS) outputs a ciphertext c. The deterministic decryption algorithm Dec(pk, rR, c)
outputs a message m or ⊥. For correctness, we require the probability that m′ 6= m be negligible for all
messages m ∈ M, over the experiment pk ← Gen(1n; rR), c ← Enc(pk,m), m′ ← Dec(pk, rR, c). To
distinguish between the above notion and deniable encryption as defined in Section 3, we sometimes refer
to the former as normal encryption. We say that PKC is semantically secure (or IND-CPA-secure) if for
every m0,m1 ∈ M the distribution of (pk, c0) is computationally indistinguishable from (pk, c1) where
c0 ← Enc(pk,m0), c1 ← Enc(pk,m1), and in both distributions pk ← Gen(1n; rR).

We defer the relevant background on lattice-based cryptography to Section 6.

3 Bideniable Encryption

Here we formally define bideniable encryption and its security properties, along with some weaker vari-
ants. (We use “bideniable” as shorthand for “sender-and-receiver deniable” in the language of Canetti et
al. [CDNO97].) Following the definitions, we discuss further how our notion relates to the variants of
deniable encryption introduced in [CDNO97].
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As with normal encryption, bideniable encryption allows a sender in possession of the receiver’s public
key to communicate a message to the latter, confidentially. Additionally, if the parties are later coerced to
reveal all their secret data — namely, the coins used by the sender to encrypt her message and/or those used
by the receiver to generate her key — bideniable encryption allows them to do so as if any desired message
(possibly chosen as late as at the time of coercion) had been encrypted.

In a multi-distributional deniable encryption scheme, there are ‘normal’ key generation, encryption, and
decryption algorithms that can be run as usual — though the resulting communication may not be equivocable
later on. In addition, there are ‘deniable’ key generation and encryption algorithms that can be used for
equivocable communication. Associated with these deniable algorithms are ‘faking’ algorithms, which can
generate secret coins that open a deniably generated public key and ciphertext to any desired message, as if
the normal algorithms had been used to generate them. Note that the ability to generate fake random coins
for the parties yields the strongest definition, since such coins can be used to compute whatever locally stored
values (e.g., a secret key of some form) the coercer might expect. We now give a formal definition.

Definition 3.1 (Deniable encryption). A multi-distributional sender-, receiver-, or bi-deniable encryption
scheme DEN with message spaceM is made up of the following algorithms:

• The normal key-generation, encryption, and decryption algorithms Gen,Enc,Dec are defined as usual
for public-key encryption (see Section 2). These algorithms make up the induced normal scheme.

• The deniable key-generation algorithm DenGen(1n) outputs (pk, fk), where fk is the faking key.1

We also extend Dec to so that it can decrypt using fk in lieu of the usual receiver randomness rR.

• The deniable encryption algorithm DenEnc has the same interface as the normal encryption algorithm.

• The sender faking algorithm SendFake(pk, rS ,m
′,m), given a public key pk, original coins rS and

message m′ of DenEnc, and desired message m, outputs faked random coins r∗S for Enc.

• The receiver faking algorithm RecFake(pk, fk, c,m), given the public and faking keys pk and fk
(respectively), a ciphertext c, and a desired message m, outputs faked random coins r∗R for Gen.

We require the following properties:

1. Correctness. Any triplet (G,E,Dec), where G ∈ {Gen,DenGen} and E ∈ {Enc,DenEnc}, should
form a correct public-key encryption scheme.

2. Multi-distributional deniability. Let m,m′ ∈M be arbitrary messages, not necessarily different. The
appropriate experiment below, which represents equivocation (by the appropriate party/parties) of an
encrypted m′ as m, should be computationally indistinguishable from the following ‘honest opening’
experiment: let pk ← Gen(1n; rR), c ← Enc(pk,m; rS), and output pk, c, and whichever of rR, rS
are appropriate to the type of deniability under consideration.

Sender-Deniable Receiver-Deniable Bi-Deniable
pk ← Gen(1n; rR)
c← DenEnc(pk,m′; rS)

r∗S ← SendFake(pk, rS ,m
′,m)

Return (pk, c, r∗S)

(pk, fk)← DenGen(1n)
c← Enc(pk,m′; rS)
r∗R ← RecFake(pk, fk, c,m)

Return (pk, c, r∗R)

(pk, fk)← DenGen(1n)
c← DenEnc(pk,m′; rS)
r∗R ← RecFake(pk, fk, c, b)
r∗S ← SendFake(pk, rS ,m

′,m)
Return (pk, c, r∗R, r

∗
S)

1Without loss of generality, we could replace fk with the randomness of DenGen, but since this randomness will never be
exposed to the adversary, we elect to define a distinguished faking key.
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Multi-distributional bideniability is a particularly strong theoretical notion. For example, it immediately
implies non-committing encryption as defined in [CFGN96] — but in addition, equivocable ciphertexts
actually decrypt to the intended messages, and can be produced by the regular users of the scheme, not just
by a simulator. Bideniability is also important in practice; in particular, each party’s security does not depend
upon the incoercibility of the other.

Note that we did not explicitly require DEN to satisfy the standard notion of indistinguishability under
chosen-plaintext attack; this is because it is implied by any of the above notions of deniability.

Proposition 3.2. Suppose that DEN satisfies any of sender-, receiver-, or bideniability. Then any triplet
(G,E,Dec), where G ∈ {Gen,DenGen} and E ∈ {Enc,DenEnc}, is semantically secure.

Proof. We give a proof for the induced normal scheme of a bideniable scheme; the proofs for the other cases
are similar. We need to show that (pk, c0) and (pk, c1) are indistinguishable, where pk ← Gen(1n; rR),
ci ← Enc(pk,mi) for any m0,m1 ∈ M. First, by taking m = m0 and m′ = m1, it follows by restricting
the outputs of the deniability experiments that (pk, c0) is indistinguishable from (pk′, c′1), where (pk′, fk)←
DenGen(1n), c′1 ← DenEnc(pk′,m1). Now by taking m = m′ = m1 and invoking deniability again, we
have that (pk′, c′1) is indistinguishable from (pk, c1).

While our focus is on multi-distributional bideniability, we also briefly examine interrelations among
the other types. We start with a basic question: for a particular deniable encryption scheme DEN, which
notions of deniability imply which others? (This question is also important in practice, since an encryption
scheme may not always be used in the ways it is intended.) First, we show that bideniablility implies sender
deniability.

Proposition 3.3. If DEN is bideniable, then DEN is sender-deniable.

Proof. By assumption, we know that the distributions (pk, c, rR, rS) and (pk, c, r∗R, r
∗
S) are computationally

indistinguishable, as produced by the two bideniability experiments. Clearly, the distributions (pk, c, rS) and
(pk, c, r∗S) are indistinguishable when produced by the same two experiments, where we can now omit the
generation of r∗R in the faking experiment. This modified bideniable faking experiment producing (pk, c, r∗S)
differs from the sender-deniable faking experiment only its use of DenGen instead of Gen. Because neither
experiment uses fk, all we need is for the pks output by DenGen and by Gen to be indistinguishable. But
this follows directly from bideniability, by restricting the outputs of the two experiments to just pk.

One might also expect bideniability to imply receiver-deniability. Perhaps surprisingly, at least in the
multi-distributional setting this appears not to be the case! For example, in our abstract scheme from Section 5,
the receiver can equivocate a normal ciphertext in one direction (from 1 to 0), but apparently not from 0 to 1.
In general, the problem is that to allow the receiver to equivocate a message, DenEnc may need to produce
special ciphertexts that Enc would never (or very rarely) output. In other words, the receiver’s ability to
equivocate a message may depend crucially the sender’s use of DenEnc.

In the reverse direction, it appears that a scheme that is both sender-deniable and (separately) receiver-
deniable still might not be bideniable. Indeed, the fake randomness produced by SendFake and RecFake
(which depend on the ciphertext c) might be obviously correlated in such a way that exposing both together
is easily detected, whereas exposing only one is safe. Constructing a concrete example along these lines to
demonstrate a formal separation remains an interesting problem.
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4 Bideniable Encryption from Simulatable Encryption

Here we give a bideniable public-key encryption scheme from any simulatable one, in the sense of Damgård
and Nielsen [DN00]. In particular, this shows that simulatable encryption suffices to realize not just a
noncommitting encryption scheme, but also a (multi-distributional) bideniable one.

Simulatable public-key encryption. We recall the notion of a simulatable public-key encryption scheme
from [DN00]. Intuitively, this is a scheme in which it is possible to ‘obliviously’ sample a public key without
knowing the secret key, and to ‘obliviously’ sample the encryption of a random message without knowing the
message.

Definition 4.1 (Simulatable PKE [DN00]). A simulatable public-key encryption scheme PKC-SIM with
message spaceM is made up of the following algorithms:

• The normal key-generation, encryption, and decryption algorithms Gen,Enc,Dec are defined as usual
for a public-key encryption scheme (see Section 2).

• The oblivious key-generation algorithm OGen(1n; rOGen) outputs a public key opk, and has invertible
sampling via algorithm IOGen.

• The oblivious encryption algorithm OEnc(pk) outputs a ciphertext oc, and has invertible sampling via
algorithm IOEnc.

We require that PKC-SIM is semantically (IND-CPA) secure, and in addition require the following properties:

1. Oblivious key generation. The distribution of pk, where pk ← Gen(1n; rR), should be computationally
indistinguishable from opk, where opk ← OGen(1n; rOGen).

2. Oblivious ciphertext generation. The output distributions of the following two experiments should be
computationally indistinguishable:

pk ← Gen(1n; rR)
m←M
c← Enc(pk,m)
Return (pk, rR, c)

pk ← Gen(1n; rR)

oc← OEnc(pk)
Return (pk, rR, oc)

Note that the above conditions are non-trivial in light of the the fact that OGen,OEnc are required to have
invertible sampling.

Simulatable encryption can be realized under a variety of standard computational assumptions such as
DDH and RSA [DN00], as well as worst-case lattice assumptions [DN00, GPV08] (though we later show a
more efficient bideniable encryption scheme based on the latter using an entirely different approach). We also
note that Choi et al. [CDSMW09] introduced a relaxation of simulatability called “trapdoor” simulatability
(and gave a construction based on factoring) and showed it yields noncommitting encryption, but this notion
will not be sufficient in our construction of bideniable encryption below (though our scheme draws on and
extends their techniques in other ways, as explained in more detail later).
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4.1 A “Coordinated” Scheme

Overview. To get at the technical core of our construction, we first present a coordinated scheme in
which the faked random coins r∗R for the receiver and r∗S for the sender are outputs of the same algorithm
FakeCoins(pk, fk, rS , b

′, b), the interpretation being that sender and receiver coordinate their faked coins
upon being coerced. We later describe how the coordination can be removed for our specific scheme. For
simplicity, we present a scheme that encrypts one-bit messages, but a scheme that encrypts poly(n)-bit
messages then follows generically by parallel repetition with independent keys.

We start with an informal description. For normal key generation, the receiver chooses a random size-n
subsetR ⊂ [5n] and generates 5n public keys pki (of the underlying simulatable encryption scheme), with
knowledge of the corresponding secret key ski for i ∈ R, and obliviously for i 6∈ R. For normal encryption
of a bit b, the sender chooses a random size-n subset S ⊂ [5n] and generates 5n ciphertexts ci as encryptions
of b under pki for i ∈ S, and oblivious encryptions (of random bits) under pki for i 6∈ S. To decrypt, the
receiver decrypts ci for i ∈ R and takes a majority vote, which will be correct with high probability due to
the expected significant overlap between the receiver’s setR and the sender’s set S.

For deniable key generation, the receiver generates the 5n public keys with knowledge of all of their
secret keys. For deniable encryption of a bit b′, the sender first chooses random pairwise disjoint size-n
subsets S0, S1, Y of [5n]. It then encrypts 0s, 1s, and b′s at positions in S0, S1, and Y (respectively), and
elsewhere encrypts random bits, obliviously. Correctness holds with high probability because the set Y causes
the majority encrypted bit to be b′.

For coordinated faking of a deniably encrypted bit b′ as a normally encrypted b, the sender simply
reveals the set S∗ = Sb and the randomness for the corresponding encryptions of b, claiming the remaining
ciphertexts were generated obliviously (as in normal encryption). How the receiver chooses R∗ is more
subtle, because a random subset of decryption keys will tend to reveal too many b′ plaintexts. Instead, it
choosesR∗ to have an appropriate random number of elements in common with Sb, and then chooses the
remainder of R∗ as random indices from [5n] \ (S0 ∪ S1 ∪ Y), which by construction all correspond to
obliviously generated ciphertexts. The receiver reveals the secret keys corresponding to the indices inR∗,
claiming the remaining keys were generated obliviously (as in normal key generation).

Comparison to the scheme of Choi et al. [CDSMW09] The high-level idea for our scheme, namely
running many parallel instances of an underlying simulatible encryption scheme such that in ‘normal’
operation the receiver “knows” the secret keys for only a random subset, and the sender “knows” the
plaintexts and associated encryption randomness for only an independent random subset (which encrypts
the actual message), was previously used by Choi et al. [CDSMW09] (generalizing the scheme of Damgård
and Nielsen [DN00]) to construct noncommitting encryption. In ‘non-normal’ operation (which in our case
means deniable, whereas for [CDSMW09] means simulated), the receiver knows all the secret keys and the
sender knows all the plaintexts and associated encryption randomness. The main difference is in how the
sender chooses the plaintexts in the latter case. In our scheme, it ‘plants’ two sets of 0s and 1s that it can later
open, as well as a ‘biasing’ set of the true message that is never opened. This still ensures correct decryption.
On the other hand, in the scheme of [CDSMW09] there is no ‘biasing’ set planted, and indeed this would not
ensure correct decryption since a different decryption rule than majority vote is used.

The scheme. Formally, let PKC-SIM be simulatable public-key encryption scheme as per Definition 4.1
with message space {0, 1}. In Figure 1, we define the scheme BI-DEN[PKC-SIM] with message space {0, 1}.
There and in what follows, for a set X we denote by P(X ) the set of all subsets (i.e., the power set) of X ,
and by Pi(X ) the set of all size-i subsets of X . Additionally, in algorithm FakeCoins we sample from what
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is known as the hypergeometric distribution. For nonnegative integers x, y,N ≥M , let PHGD(x;N,M, y)
denote the probability that exactly x values from [M ] are chosen after a total of y values are drawn uniformly
at random from [N ], without replacement. That is,

PHGD(x;N,M, y) :=

(
M
x

)
·
(
N−M
y−x

)(
N
y

) .

We denote by HGD(N,M, y) the hypergeometric distribution on [N ] with parameters M,y that assigns
to each x ∈ {0, . . . ,M} the probability PHGD(x;N,M, y). The expectation of a random variable with
distribution HGD(N,M, y) is easily seen to be y ·M/N . Below we will use parameters N,M, y that are
polynomial in the security parameter, so we can sample efficiently from the hypergeometric distribution
simply by running the sampling experiment. The scheme BI-DEN[PKC-SIM] with message space {0, 1} is
defined in Figure 1.

4.2 Correctness and Security

Theorem 4.2. Let PKC-SIM be a simulatable public-key encryption scheme. Then BI-DEN[PKC-SIM] is
correct.

We will use the following (lower and upper) Chernoff-like tail inequalities for the hypergeometric
distribution, which follow from [Chv79].

Lemma 4.3. Let X be distributed according to HGD(N,M, y). Then for any t ≥ 0,

Pr [X ≤ E[X]− ty = y(M/N − t) ] ≤ e−2t2y,

Pr [X ≥ E[X] + ty = y(M/N + t) ] ≤ e−2t2y.

Proof of Theorem 4.2. The proof follows directly by some straightforward (but tedious) applications of Cher-
noff bounds and Lemma 4.3. Fix any b ∈ {0, 1}. We first show correctness of BI-DEN.Dec for the normal
encryption algorithm BI-DEN.Enc, then later for the deniable encryption algorithm BI-DEN.DenEnc. In both
cases, we assume that the normal key-generation algorithm BI-DEN.Gen is used; using BI-DEN.DenGen
instead does not affect correctness because it produces an functionally identical keypair from the perspective
of BI-DEN.Dec. Additionally, by Condition 2 of Definition 4.1 it suffices to argue correctness in the case
where oblivious ciphertexts are formed by encrypting truly random bits.

In the correctness experiment, let I be the random variable taking the value |S ∩ R|, and D take the
number of i ∈ R \ S such that di = b (the message bit) as chosen by BI-DEN.Enc. Note that a decryption
error occurs only if I ≤ n/2 and D ≤ n/2 − I = (n − I)/2 − I/2. Let us also assume for the moment
that n/10 < I ≤ n/2, which we will justify below. Then, writing D as a sum of n − I indicator random
variables and applying a standard Chernoff bound, we have

Pr [D ≤ (n− I)/2− I/2 ] ≤ Pr
[
D ≤ (1− 1

9) · E[D]
]
≤ e−(n−I)/324 ≤ e−n/648.

where the first inequality uses n/10 < I and the last uses I ≤ n/2. To justify the assumption that n/10 < I
with high probability, note that I is distributed according to HGD(5n, n, n) with expectation n/5. Applying
the first part of Lemma 4.3 with t = 1/10 we get

Pr [ I ≤ n/10 ] ≤ e−n/50.
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BI-DEN.Gen(1n):
R ← Pn([5n])
For i = 1 to 5n do:

If i ∈ R then
pki ← Gen(1n; rR,i)

Else pki ← OGen(1n; rR,i)
pk ← pk1‖ . . . ‖pk5n

Return pk

BI-DEN.Enc(pk, b):
S ← Pn([5n])
For i = 1 to 5n do:

If i ∈ S then
ci ← Enc(pki, b; rS,i)

Else ci ← OEnc(pki; rS,i)
c← c1‖ . . . ‖c5n

Return c

BI-DEN.Dec((R, rR), c):
For all i ∈ R do:

di ← Dec(rR,i, ci)
If most di’s are 1 then

Return 1
Else return 0

BI-DEN.DenGen(1n):
R ← Pn([5n])
For i = 1 to 5n do:

pki ← Gen(1n; rR,i)
pk ← pk1‖ . . . ‖pk5n

r ← rR,1‖ . . . ‖rR,5n
Return (pk, (R, r))

BI-DEN.DenEnc(pk, b′):
S0 ← Pn([5n])
S1 ← Pn([5n] \ S0)
Y ← Pn([5n] \ (S0 ∪ S1))
For i = 1 to 5n do:

If i ∈ S0 then ci ← Enc(pki, 0; rS,i)
If i ∈ S1 then ci ← Enc(pki, 1; rS,i)
If i ∈ Y then ci ← Enc(pki, b

′; rS,i)
Else ci ← OEnc(pk; rS,i)

c← c1‖ . . . ‖c5n

Return c

BI-DEN.FakeCoins(pk, fk, rS , b′, b):
c← BI-DEN.Enc(pk, b′; rS)
z ← HGD(5n, n, n)
Z ← Pz(Sb)
Z ′ ← Pn−z([5n] \ (S0 ∪ S1 ∪ Y))
R∗ ← Z ∪Z ′
S∗ ← Sb
For i = 1 to 5n do:

If i ∈ S∗ then r∗S,i ← rS,i
Else r∗S,i ← IOEnc(pki, ci)

If i ∈ R∗ then r∗R,i ← rR,i
Else r∗R,i ← IOGen(pki)

r∗S ← r∗S,1‖ . . . ‖r∗S,5n ; r∗R ← r∗R,1‖ . . . ‖r∗R,5n
Return (r∗S , r

∗
R)

Figure 1: Algorithms of the “coordinated” bindeniable scheme BI-DEN[PKC-SIM].
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Thus, the overall probabililty of a decryption error is exponentially small in n.
To show correctness when the deniable encryption algorithm BI-DEN.DenEnc is used, we extend the

above argument slightly. Now, in the correctness experiment, let I be the random variable taking the value
|Sb ∩ Y ∩ R|, let B take the value |R ∩ S1−b|, and let D take the number of i ∈ R \ (Sb ∩ S1−b ∩ Y)
such that di = b. Similarly to before, decryption error occurs only if I ≤ n/2 and D ≤ n/2 − I =
(n− I −B)/2 +B/2− I/2. Let us also assume for the moment that 19n/50 < I ≤ n/2 and B < 11n/50,
which as before we will justify below. Then, writing D as a sum of n− I −B indicator random variables
and applying a standard Chernoff bound, we have

Pr [D ≤ (n− I −B)/2 +B/2− I/2 ] ≤ Pr
[
D ≤ (1− 3

4) · E[D]
]
≤ e−9(n−I−B)/64 ≤ e−9n/160

where the first inequality uses 19n/50 < I and B < 11n/50, and the last uses I ≤ n/2 and B < 11n/50.
To justify the assumption that 19/50n ≤ I with high probability, note that I is distributed according to
HGD(5n, 2n, n) with expectation 2n/5. Applying the first part of Lemma 4.3 with t = 1/50 we get

Pr [ I ≤ 19n/50 ] ≤ e−n/1225.

Similarly, to justify the assumption that B ≤ 11n/50 with high probability, we can apply the second part of
Lemma 4.3 with t = 1/50. Thus, the overall probabililty of a decryption error is exponentially small in n,
concluding the proof of correctness.

Theorem 4.4. Let PKC-SIM be a simulatable public-key encryption scheme. Then BI-DEN[PKC-SIM]
satisfies bideniability under chosen-plaintext attacks.

Proof of Theorem 4.4. The proof is via a sequence of hybrid experiments G0, G1, G2, G3, defined formally
in Figure 2. We give an intuitive overview of these hybrids as follows:

• Experiment G0 is exactly the left-hand experiment of Definition 3.1; that is, it corresponds to the
adversary’s view of an honest opening of an honest encryption of b. In particular, it chooses the sets
Sb,R ⊂ [5n] at random and generates the corresponding keypairs and ciphertexts accordingly. The
experiment also chooses sets S1−b and Y to be disjoint from each other and from Sb andR, but they
are never used in the experiment; they will come into play in later hybrids.

• Experiment G1 chooses Sb as before but choosesR in a different way, first choosing its intersection
with Sb at random to be appropriate (HGD-distributed) size, then choosing the rest of its elements at
random to be disjoint from Sb. After, it chooses S1−b and Y as before. The output of this experiment is
distributed identically to that of G0, by definition of the hypergeometric distribution.

• Experiment G2 chooses Sb as before, but changes the order in whichR, S1−b, and Y are chosen, such
that they are chosen as in the faking experiment when faking an encryption of b′ as one of b. Namely,
(after choosing Sb) it first chooses S1−b at random disjoint from Sb, then Y at random disjoint from Sb
and S1−b, and finallyR to have an intersection with Sb of appropriate size and the rest of its elements
to be disjoint from Sb,S1−b, and Y . The output of this experiment is distributed identically to that of
G1, as shown in Lemma 4.6.

• Finally, experiment G3 changes the way in which the keys and ciphertexts are generated, so that they
are generated as in the faking experiment when faking an encryption of b′ as one of b. Specifically,
it generates all keypairs as in the deniable key generation algorithm, and then ‘retroactively’ claims
that the public keys corresponding to the set [5n] \ R were generated obliviously (via algorithm IOGen)
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as in the receiver faking algorithm. Additionally, it forms ciphertexts corresponding to the sets Y
and S1−b not as oblivious ciphertexts, but according to the DenEnc algorithm on bit b′. Again, these
are ‘retroactively’ claimed to be oblivious ciphertexts. Using simulatability of PKC-SIM, the output
distribution of this experiment is computationally indistinguishable from that of G2, as shown in
Lemma 4.7.

The theorem follows.

Lemma 4.5. Experiments G0 and G1 have the same output distribution.

Proof. This follows directly from the definition of the hypergeometric distribution.

Lemma 4.6. Experiments G1 and G2 have the same output distribution.

Proof. This simply follows from the fact that Sb, Z ′, S1−b, and Y are all random pairwise disjoint subsets of
[5n] (of certain sizes), so it does not matter in what order they are chosen. (The latter can be shown using a
simple counting argument.)

Lemma 4.7. The output distributions of G2 and G3 are computationally indistinguishable if PKC-SIM is
simulatable.

Proof. For the proof, we expand the transition between G2 and G3 via a sequence of intermediate hybrids.
The idea is to have the hybrids change one-by-one how the keypairs whose indices lie outsideR are generated,
and then change one-by-one how the ciphertexts whose indices lie in S1−b or Y are generated. Namely, we
consider the sequence of hybrids (G2,K1, . . . ,K4n, C1, . . . , C2n = G3) defined as follows. For all j ∈ [4n],
hybrid Kj changes the generation of the jth keypair and its ‘claimed’ coins whose index (say ij) satisfies
ij ∈ [5n] \ R from

pkij ← OGen(1n; rR,ij ) ; r∗R,ij ← rR,ij

to
pkij ← Gen(1n; rR,ij ) ; r∗R,ij ← IOGen(pkij ).

Indistinguishability of the adjacent hybrids follows by a straightforward reduction using Property 1 of
Definition 4.1.

For all k ∈ [2n], hybrid Ck changes the generation of the kth ciphertext and its ‘claimed’ coins whose
index (say ik) satisfies ik ∈ S1−b ∪ Y , in a way depending on whether ik ∈ S1−b or ik ∈ Y . If ik ∈ S1−b
then the change is from

cik ← OEnc(pkik ; rS,ik) ; r∗S,ik ← rS,ik

to
cik ← Enc(pkik , 1− b; rS,ik) ; r∗S,ik ← IOEnc(pkik , cik).

We can show indistinguishability of Ck−1 and Ck (where for simplicity we define K4n = C0) by considering
another intermediate one, say C ′k, where the above is replaced by

cik ← Enc(pkik , d; rS,ik) ; r∗S,ik ← IOEnc(pkik , cik)

for an independent random bit d. Then Ck−1 and C ′k are indistinguishable by Property 2 of Definition 4.1, and
C ′k and Ck are indistinguishable by semantic security of PKC-SIM (which is required by Definition 4.1). In
the case that ik ∈ Y , then 1− b above is replaced with b′ and the argument is the same. Note that C2n = G3,
completing the proof.
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Experiment G0:
Sb ← Pn([5n])
R ← Pn([5n])
S1−b ← Pn([5n] \ (Sb ∪R))
Y ← Pn([5n] \ (Sb ∪ S1−b ∪R))
For i = 1 to 5n do:

If i ∈ R then pki ← Gen(1n; rR,i)
Else pki ← OGen(1n; rR,i)
If i ∈ Sb then ci ← Enc(pki, b; rS,i)
Else ci ← OEnc(pki; rS,i)

Return (pk, c, (R, rR), (Sb, rS))

Experiment G1:
Sb ← Pn([5n])

z ← HGD(5n, n, n)

Z ← Pz(Sb)
Z ′ ← Pn−z([5n] \ Sb)
R ← Z ∪ Z ′
S1−b ← Pn([5n] \ (Sb ∪R))
Y ← Pn([5n] \ (Sb ∪ S1−b ∪R))
For i = 1 to 5n do:

If i ∈ R then pki ← Gen(1n; rR,i)
Else pki ← OGen(1n; rR,i)
If i ∈ Sb then ci ← Enc(pki, b; rS,i)
Else ci ← OEnc(pki; rS,i)

Return (pk, c, (R, rR), (Sb, rS))

Experiment G2:
Sb ← Pn([5n])

S1−b ← Pn([5n] \ Sb)
Y ← Pn([5n] \ S1−b ∪ Sb)
z ← HGD(5n, n, n)

Z ← Pz(Sb)
Z ′ ← Pn−z([5n] \ (Sb ∪ S1−b ∪ Y))

R ← Z ∪ Z ′
For i = 1 to 5n do:

If i ∈ R then pki ← Gen(1n; rR,i)
Else pki ← OGen(1n; rR,i)
If i ∈ Sb then ci ← Enc(pki, b; rS,i)
Else ci ← OEnc(pki; rS,i)

Return (pk, c, (R, rR), (Sb, rS))

Experiment G2:
Sb ← Pn([5n])
S1−b ← Pn([5n] \ Sb)
Y ← Pn([5n] \ S1−b ∪ Sb)
z ← HGD(5n, n, n)
Z ← Pz(Sb)
Z ′ ← Pn−z([5n] \ (Sb ∪ S1−b ∪ Y))
R ← Z ∪ Z ′
For i = 1 to 5n do:

pki ← Gen(1n; rR,i)

If i ∈ R then r∗R,i ← rR,i

Else r∗R,i ← IOGen(pki)

If i ∈ Sb then
ci ← Enc(pki, b; rS,i)
r∗S,i ← rS,i

Else if i ∈ S1−b then
ci ← Enc(pki, 1− b; rS,i)
r∗S,i ← IOEnc(pki, ci)

Else if i ∈ Y then
ci ← Enc(pki, b

′; rS,i)

r∗S,i ← IOEnc(pki, ci)

Else
ci ← OEnc(pki; rS,i)
r∗S,i ← rS,i

Return (pk, c, (R, r∗R), (Sb, r∗S))

Figure 2: Hybrid experiments for showing bideniability of BI-DEN[PKC-SIM]. Shaded areas indicate the
only syntactic differences with the previous hybrid.
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4.3 Removing the Coordination

Removing the coordination from the scheme is based on the observation that, in the FakeCoins algorithm,
while the choice of the setR∗ depends on the choices of S0,S1,Y , the reverse is not true; namely the choice
of the set S∗ is independent of the choice ofR andR∗. Thus, the necessary communication from sender to
receiver can be done “in-band” via a separate instance of the given simulatable cryptosystem, by encrypting
(in the deniable case) the choices of S0,S1 and Y the sender may later use to equivocate. (Note that we
assume the encoding of these sets lies in the message space of the simulatable encryption scheme; the latter
can always be expanded by parallel repetition using independent public keys.) The normal key generation
and encryption algorithms simply generate an oblivious public key and ciphertext for this component of the
system.

More specifically, for the scheme without coordination, the modified key-generation, encryption, and
faking algorithms work as follows:

BI-DEN.DenGen′(1n):
(pk, (R, r))← BI-DEN.Gen(1n)
pk′ ← Gen(1n; r′R)
Return (pk‖pk′, (R, r‖r′R))

BI-DEN.DenEnc′(pk‖pk′, b):
c← BI-DEN.DenEnc(pk, b)
c′ ← Enc(pk′, 〈S0〉‖〈S1〉‖〈Y〉; r′S)
Return c‖c′

BI-DEN.SendFake(pk, rS , b′, b):
S∗ ← Sb
For i = 1 to 5n do:

If i ∈ S∗ then r∗S,i ← rS,i
Else r∗S,i ← IOEnc(pki, ci)

r′S ← IOEnc(pk
′, c′)

r∗S ← r∗S,1‖ . . . ‖r∗S,5n‖r′S
Return r∗S

BI-DEN.RecFake(pk, fk, c‖c′, b):
〈S0〉‖〈S1〉‖〈Y〉 ← Dec(r′R, c

′)
z ← HGD(5n, n, n)
Z ← Pz(Sb)
Z ′ ← Pn−z([5n] \ (S0 ∪ S1 ∪ Y))
R∗ ← Z ∪Z ′
For i = 1 to 5n do:

If i ∈ R∗ then r∗R,i ← rR,i
Else r∗R,i ← IOGen(pki)

r′R ← IOGen(pk′)
r∗R ← r∗R,1‖ . . . ‖r∗R,5n‖r′R
Return r∗R

Above, 〈X 〉 denotes the cannonical encoding of a set X as a bitstring. The normal key-generation,
encryption, and decryption algorithms of the modified scheme are defined in the corresponding manner.
Bideniability of the modified scheme follows straightfowardly in light of Theorem 4.4, under the same
assumption.

5 Bideniable Encryption from Bitranslucent Sets

Here we construct a bideniable encryption scheme based on a new primitive we call a bitranslucent set,
which extends the notion of a translucent set from [CDNO97]. Whereas translucent sets can be constructed
straightforwardly from any trapdoor permutation (and other specific assumptions) [CDNO97], bitranslucent
sets appear much more challenging to realize. In Section 6 we give a novel construction based on lattices.
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5.1 Bitranslucent Sets

Informally, a translucent set is a subset P of a universe U , which can be sampled efficiently using only public
information, and which is pseudorandom unless its associated secret key is known (in which case it is easily
distinguishable from uniform over the universe).

Here we strengthen the notion of a translucent set in two ways. The first, main strengthening essentially
preserves the pseudorandomness of P even if the secret key is revealed. Of course this is impossible as just
stated, because the secret key makes P ‘transparent’ by design. Instead, we introduce an algorithm that, given
a ‘faking’ key for the set system, and some c drawn from the pseudorandom set P , is able to resample a new,
‘good-looking’ secret key for which c appears uniformly random. We stress that such keys are necessarily
very rare, because a typical secret key should correctly recognize P with high probability. Nevertheless,
it can still be the case that for any c ∈ P , there are a few rare keys that misclassify c (without making it
apparent that they are doing so). A bitranslucent set scheme is able to use the faking key find such keys.

Looking ahead to our bideniable encryption scheme, bitranslucency will allow a coerced sender and
receiver both to plausibly claim that a value c ∈ P is actually uniform: the sender simply declares that c was
chosen uniformly from U (by claiming c itself as the random coins), and the receiver resamples a secret key
that also makes c appear uniform.

The second strengthening, which yields qualitative improvements in efficiency and may have independent
applications, allows for multiple translucent sets to share a single, fixed-size faking key. Essentially, this
makes the bitranslucent set ‘identity-based’ (although we do not refer to identities explicitly): each translucent
set has its own public and secret keys for generating and distinguishing P - and U -samples, and the master
faking key makes it possible to generate a good-looking secret key that equivocates a given P -sample as a
U -sample. Interestingly, this implies a bideniable encryption scheme in which the deniable key generator’s
faking key is a fixed size independent of the message length, despite the information-theoretic bound that
normal secret keys must exceed the message length.

Definition 5.1 (Bitranslucent Set Scheme (BTS)). A bitranslucent set scheme BTS is made up of the
following algorithms:

• The normal setup procedure Setup(1n; rSetup) outputs a public parameter pp.

We require that Setup has invertible sampling via an algorithm ISetup.

• The deniable setup procedure DenSetup(1n) outputs a public parameter pp and a faking key fk.

• The key generator Gen(pp; rR) outputs a public key pk, whose associated secret key is the random-
ness rR (without loss of generality).

We require that Gen has trapdoor invertible sampling via an algorithm IGen and trapdoor fk, where
(pp, fk)← DenSetup(1n).

• The P - and U -samplers SampleP(pp, pk; rS) and SampleU(pp, pk; rS) each output some c ∈ {0, 1}∗.
• The P -tester TestP(pp, rR, c) either accepts or rejects.

• The sender-coins faker FakeSCoins(pp, pk, rS) outputs some coins r∗S for the U -sampler.2

• The receiver-coins faker FakeRCoins(pp, fk, pk, c) outputs some coins r∗R for the key generator.

We require:
2In some realizations, including our own, FakeSCoins can directly compute coins r∗S given just a ciphertext c ←

SampleP(pp, pk; rS), not rS (or even pp, pk). We retain the more relaxed definition above for generality.
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1. (Correctness.) The following experiment should accept (respectively, reject) with overwhelming prob-
ability over all its randomness: let pp ← Setup(1n), pk ← Gen(pp; rR), c ← SampleP(pp, pk; rS)
(resp., c← SampleU(pp, pk; rS)), and output TestP(pp, rR, c).

We also require correctness for the faking algorithms: with overwhelming probability over all the
random choices, letting (pp, fk)← DenSetup(1n) and pk ← Gen(pp; rR), we should have

SampleU(pp, pk;FakeSCoins(pk, rS)) = SampleP(pp, pk; rS)

Gen(pp;FakeRCoins(pp, fk, pk,SampleP(pp, pk; rS))) = pk.

2. (Indistinguishable public parameters.) The public parameters pp as produced by the two setup
procedures pp← Setup(1n; rSetup) and (pp, fk)← DenSetup(1n) should be indistinguishable (either
statistically or computationally).

3. (Bideniability.) The following two experiments should be computationally indistinguishable:

(pp, fk)← DenSetup(1n)
pk ← Gen(pp; rR)
c← SampleU(pp, pk; rS)

Return (pp, rR, rS)

(pp, fk)← DenSetup(1n)
pk ← Gen(pp; rR)
c← SampleP(pp, pk; rS)
r∗R ← FakeRCoins(pp, fk, c)
r∗S ← FakeSCoins(pk, rS)
Return (pp, r∗R, r

∗
S)

Remark 5.2. For correctness, it suffices (and is more convenient) to require that when c← SampleU(pp, pk),
TestP(pp, rR, c) just rejects with probability at least (say) 1/2. The error probability can then be made
negligible by parallel repetition of Gen and SampleU, using the same public parameters pp.

The definition is designed to allow for the use of many public keys pki and associated secret keys rR,i
under the same public parameter pp. This lets the sender and receiver exchange multiple bits more efficiently,
and have shorter keys/randomness, than if the entire system were parallelized. In addition, in deniable mode,
the receiver can perform all its secret-key operations (for multiple public keys pki) using just the single faking
key fk, without keeping any of the random strings rR,i that were used to generate the pki, by just resampling
rR,i as needed using IGen(fk, pp, pki). This trivially allows the receiver to decrypt, and to open P -samples
and U -samples ‘honestly’ (without equivocation), in deniable mode.

Note that in the bideniability property above, both experiments use the deniable setup algorithm DenSetup,
rather than using the normal setup in the left-hand experiment. However, the choice of setup in the left
experiment is essentially arbitrary, and the definition would be equivalent if we replaced the first line of
the left-hand experiment with a normal setup pp← Setup(1n; rSetup). This is because the faking key fk is
never used, the public parameters are indistinguishable, and Setup has invertible sampling. We chose the
presentation above because it yields a more modular proof that one can securely equivocate many independent
public key/ciphertext pairs (pki, ci) under a single public parameter pp: first, the bideniability property allows
us to replace each pair of calls to the faking algorithms, one by one, with their normal counterparts. Then,
finally, the deniable setup can be replaced with a normal setup, as just described.

5.2 Construction of Deniable Encryption

Canetti et al. [CDNO97] described a simple encoding trick to construct a multi-distributional sender-deniable
encryption scheme from a translucent set: the normal encryption algorithm encodes a 0 message as “UU”
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whereas the deniable encryption algorithm encodes it as “PP ;” both algorithms encode 1 as “UP .” Thus, the
sender can always open a deniably generated ciphertext as any message bit, by equivocating zero or more P s
as Us.

The same encoding lets us construct a multi-distributional bideniable encryption scheme from a bi-
translucent set, since now the sender and receiver are both able to produce ‘fake’ coins that simultaneously
equivocate a P as a U . Using the security properties of BTS, the proof of the following theorem (which we
given in the full version) is routine.

Theorem 5.3. Existence of a bitranslucent set scheme implies existence of a bideniable encryption scheme,
secure under chosen-plaintext attacks.

Canetti et al. [CDNO97] also construct a fully sender-deniable scheme from a translucent set, where the
‘fake’ coins can be distinguished with an inverse-polynomial probability related to the public key size. The
basic idea is that to encrypt a bit b, the encryption algorithm Enc creates an `-bit sharing b =

⊕
i∈[`] bi and

encodes each bi = 0 as a U -sample and each bi = 1 as a P -sample (all under distinct public keys). To fake,
SendFake chooses a random i such that bi = 1 (which exists with overwhelming probability) and ‘flips’ it by
equivocating the corresponding P -sample in the ciphertext as a U -sample.

For full bideniability, an analogous construction from a bitranslucent set also works, with just one subtlety:
the sender and receiver need to equivocate the same share of the message bit. This is trivially achieved in a
model in which the sender and receiver can ‘coordinate’ their fake coins, as described in Section 4. Since it is
enough for the sender to decide which share should be flipped, the coordination can be removed by using
simulatable public-key encryption, also in exactly the manner described in Section 4.

6 Lattice-Based Bitranslucent Set

In this section we construct a bideniable translucent set scheme based on lattice problems.

6.1 Overview

Here we describe the main ideas behind our construction. To start, it will help to consider a basic mechanism
for a (sender-deniable) translucent set. The public key is the description of a lattice Λ, and the secret key is a
short lattice vector z ∈ Λ. (A lattice is a periodic “grid” of points — formally, a discrete additive subgroup —
in Rm.) A P -sample is a point very close to the dual lattice Λ∗, while a U -sample is a uniformly random
point in a certain large region. (The dual lattice Λ∗ is the set of points v ∈ span(Λ) for which 〈z,v〉 ∈ Z for
every z ∈ Λ.) With knowledge of z, it is possible to distinguish these two types of points c by computing the
inner product 〈z, c〉: when c is close to some v ∈ Λ∗, the inner product 〈z, c〉 ≈ 〈z,v〉 ∈ Z is close to an
integer. On the other hand, when c is uniform, the inner product is uniformly random modulo Z. Moreover,
distinguishing between P -samples and U -samples (given only the public information) is essentially the
decision-LWE problem, when the lattice Λ is defined appropriately in relation to the LWE instance. All of
this is so far very similar to the structure of lattice-based encryption going back to the seminal scheme of
Ajtai and Dwork [AD97], but in that system, the public key uniquely defines a secret key while the ciphertext
does not uniquely define the encryption randomness. By contrast, here we have essentially described the
‘dual’ cryptosystem of Gentry, Peikert, and Vaikuntanathan [GPV08], where there are many short vectors in
Λ and hence many valid secret keys, and the ciphertext uniquely specifies the encryption randomness.

To construct a bitranslucent set, we exploit and build upon additional techniques from [GPV08]. The
faking key for the scheme is a short basis T of Λ (constructed using techniques from [Ajt99, AP09]). As
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shown in [GPV08], such a basis acts as a ‘master trapdoor’ that allows for efficiently sampling secret keys
under a Gaussian-like distribution, and for efficiently extracting the short offset vector x from a P -sample
c = v + x, where v ∈ Λ∗.

Using the above facts, our receiver faking algorithm works as follows: given the short basis T and a
P -sample c = v + x that needs to be ‘faked’ as a U -sample, the algorithm first extracts x, and then samples
a secret key z∗ ∈ Λ that is highly correlated with x. By this we mean that z∗ comes from a Gaussian
distribution (over Λ) centered at u · x, for some random and large enough correlation coefficient u ∈ R.
Modulo Z, the inner product 〈z∗, c〉 ≈ 〈z∗,x〉 ≈ u · ‖x‖2, because z∗ ∈ Λ is short. When u is chosen
from a wide enough Gaussian distribution, this inner product is uniform (modulo Z), hence c “looks like” a
U -sample when tested with the fake secret key z∗. The natural question at this point is, why should it be
secure to release a z∗ that is so correlated with the secret offset vector x? That is, why do z∗ and c ‘look
like’ an honestly generated secret key and U -sample, respectively? The first key point is that as Gaussian
random variables, the correlation between x and z∗ is essentially symmetric. That is, we can consider an
alternative experiment in which z∗ is chosen first (according to the normal key generation algorithm), and
then x is chosen from a Gaussian centered at v ·z∗ (for some appropriate random v ∈ R). In both experiments,
the pair (z∗,x) is jointly distributed as a nonspherical Gaussian, with the same covariance. This allows
us to switch from the faking experiment to one in which the ‘faked’ secret key z∗ is generated normally,
followed by c = v + x where v ∈ Λ∗ and x is centered at v · z∗. The second key point is that when x is
correlated with z∗ as described above, it may be written as the sum of two terms: the component v · z∗,
and an independent (spherical) Gaussian component g. Under the LWE assumption, we can switch from
c = (v + g) + v · z∗ to c′ = u + v · z∗, where u is uniformly random. Of course, the latter quantity c′ is
truly uniform and independent of the (normally generated) secret key z∗. This coincides exactly with the
generation and subsequent honest opening of a normal secret key and U -sample, as desired.

6.2 Background

We briefly recall standard concepts, notation, and results for lattice-based cryptography, as developed in prior
works such as [Ajt96, MR04, Reg05, GPV08].

6.2.1 Gaussians

The Gaussian function ρ : R→ (0, 1] is defined as ρ(x) = exp(−πx2); for any r > 0, the scaled function
ρr(x) = ρ(x/r). For any positive integer n, this extends naturally to the product function ρnr : R→ (0, 1],
defined as ρr(x) =

∏
i∈[n] ρr(xi) = exp(−π‖x/r‖2). The Gaussian probability distribution Dn

r over Rn

has (normalized) distribution function r−n · ρnr .
For any unit vector u ∈ Rn, the inner product 〈u, Dn

r 〉 is distributed as D1
r . For any real t > 1, the

Gaussian tail bound says that Prx←D1
r
[|x| > t ·r] < exp(−πt2); in particular, this quantity is negl(n) for any

t = ω(
√

log n). The sum x + y of two independent Gaussian-distributed variables x← Dn
r1 and y← Dn

r2
has Gaussian distribution Dn√

r2
1+r2

2

.

6.2.2 Lattices

A (full-rank) m-dimensional lattice Λ is a discrete additive subgroup of Rm, which is generated as the set of
all integer linear combinations of some m linearly independent basis vectors. (Throughout this paper, the
lattice dimension m is always bounded by a polynomial in the main security parameter n.) The dual lattice
Λ∗ = {x ∈ Rm : 〈x,v〉 ∈ Z,∀ v ∈ Λ}. We are primarily interested in a certain family of integer lattices,
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i.e., subgroups of Zm, whose importance in cryptography was first established by Ajtai [Ajt96]. A lattice in
this family is specified by a “parity check” matrix A ∈ Zn×mq for the main security parameter n and some
positive integer modulus q, as follows:

Λ⊥(A) =
{
x ∈ Zm : Ax = 0 ∈ Znq

}
⊆ Zm.

It is easy to check that the dual of this lattice is

(Λ⊥(A))∗ = Zm + {(Ats)/q : s ∈ Znq }.

We need the following two lemmas on generating a short “trapdoor” basis for Λ⊥(A), and decoding on
its dual under Gaussian error.

Proposition 6.1 ([AP09]). There is a fixed constant C > 0 and a probabilistic polynomial-time algorithm
GenBasis(1n, 1m, q) that, for m ≥ Cn lg q, outputs A ∈ Zn×mq and T ∈ Zm×m satisfying: A’s distribution
is statistically indistinguishable from U(Zn×mq ); T is a basis of Λ⊥(A); and ‖T̃‖ ≤ L̃ = O(

√
n log q).

Proposition 6.2 ([GPV08]). There is a deterministic polynomial-time algorithm Invert(A,T,b) that, given
any A ∈ Zn×mq , basis T ∈ Zm×m of Λ⊥(A) with ‖T̃‖ · ω(

√
log n) ≤ 1/β for some β > 0, and

b = (Ats)/q + x for arbitrary s ∈ Znq and random x ← Dm
β , outputs x with overwhelming probability

(over the choice of x).

6.2.3 Gaussians on Lattices

For a lattice Λ ⊂ Rm and an arbitrary c ∈ Rm, the discrete Gaussian probability distribution DΛ+c,r assigns
probability proportional to ρmr (x) to each x ∈ Λ + c (and zero elsewhere).

For a lattice Λ and a real ε > 0, the smoothing parameter ηε(Λ) > 0 is a fundamental lattice quantity
governing the behavior of Gaussians over Λ (see [MR04] for the precise definition, which we will not need).
We recall several important properties of the smoothing parameter and discrete Gaussians.

Proposition 6.3. Let Λ ⊂ Rm be a lattice, let T be any basis of Λ, and let c ∈ Rm be arbitrary.

• [GPV08, Theorem 3.1]: For any ω(
√

log n) function, there is a negligible ε = negl(n) such that
ηε(Λ) ≤ ‖T̃‖ · ω(

√
log n).

• [MR04, Lemma 4.1]: If r ≥ ηε(Λ) for some ε = negl(n), then each coset Λ + c is equally likely (up
to 1± negl(n) multiplicative error) under Dm

r .

• [MR04, Lemma 4.4]: If r ≥ ηε(Λ) for some ε = negl(n), then Prx←DΛ+c,r
[‖x‖ > r

√
m] ≤ negl(n).

• [GPV08, Theorem 4.1]: there is a PPT algorithm SampleD(T, c, r) that, given arbitrary c ∈ Rm and
r ≥ ‖T̃‖ · ω(

√
log n), generates a sample from DΛ+c,r (up to negl(n) statistical distance).

We will also need the following lemma on ‘convolutions’ of continuous and discrete Gaussians.

Lemma 6.4 ([Pei10, Special case of Theorem 3.1]). Let Λ ⊂ Rm be a lattice and let r ≥ ηε(Λ) for some
ε = negl(n). The output z of the experiment y ← Dm

r , z ← y + DΛ−y,r has distribution DΛ,r
√

2, up to
negl(n) statistical distance. Moreover, the conditional distribution of y given z = z̄ ∈ Λ is z̄/2 +Dm

r/
√

2
, up

to negl(n) statistical distance.
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6.2.4 Learning with Errors

Let T = R/Z be the additive group on the real interval [0, 1) with modulo 1 addition. For positive integers
n and q ≥ 2, a vector s ∈ Znq , and a probability distribution φ on R, define As,φ to be the distribution on
Znq × T obtained by choosing a vector a ∈ Znq uniformly at random, choosing an error term x ∈ R according
to φ, and outputting (a, b = 〈a, s〉/q + x), where the addition is performed in T.

The decision-LWEq,φ assumption says that for a uniformly random (secret) s ∈ Znq , the distribution
As,φ is pseudorandom (i.e., indistinguishable from U(Znq × T)) given any desired number of samples. We
write decision-LWEq,α to abbreviate the common special case where φ = Dα is a Gaussian. It is known
that for certain choices of the parameters, solving decision-LWE is as hard as solving certain problems on
n-dimensional lattices in the worst case [Reg05, Pei09].

The extended-LWE assumption. We prove the security of our BTS construction under what we call the
extended-LWEq,β,r assumption, defined here. For certain choices of the error rates α and β (and parameter
r), the standard-LWEq,α assumption actually implies the extended-LWEq,β,r assumption, so our results
hold under an appropriate version of standard LWE. However, the ratio of β to α is quite loose (slightly
super-polynomial), and so basing security on standard LWE alone involves a rather strong assumption. The
advantages of using extended-LWE in our setting are twofold: first, it abstracts away a technical issue that is
secondary to our main proof techniques; and second, it allows us to prove security using a much larger noise
rate (and thus potentially weaker assumption) than if the proof had been based directly on standard-LWE.
While we do not know of a formal reduction between standard- and extended-LWE when the ratio of β to α
is only poly(n), it seems reasonable that extended-LWE could be substantially harder than standard-LWE
when β � α. It is also plausible that a connection to worst-case lattice problems (for small polynomial
approximation factors) could be shown for extended-LWE; we leave this as an open problem.

The extended-LWE assumption is parameterized by q and β as before (we restrict to φ = Dβ for
simplicity), as well as some r = ω(

√
log n). It says that the following two games, each consisting of two

stages, are computationally indistinguishable.
The first game is defined as follows. In the first stage, the distinguisher is given any desired number m of

independent samples (ai, bi = 〈ai, s〉/q + xi) drawn from As,β , for uniformly random secret s ∈ Znq . Group
these samples as (A,b = (Ats)/q + x) in the natural way. Then in the second stage, the distinguisher is
given a small ‘hint’ about the error vector x in the form of a single sample (z ∈ Zm, 〈z,x〉 + x′ mod 1),
where z← DZm,r and x′ ← Dβ . Because the distinguisher can compute 〈z,b〉 on its own, the second phase
may equivalently seen as providing z and, for u = Az ∈ Znq , the value

b′ = 〈u, s〉/q + x′ = 〈z,b− x〉+ x′ ∈ T.

The second game is defined similarly: in the first stage, the distinguisher is given m independent samples
(ai, bi) drawn from the uniform distribution U(Znq × T), and with each sample we also draw an xi ← Dβ .
Then in the second stage, the distinguisher is given a single sample (z, b′) ∈ Zm × T, where z← DZm,r and
b′ = 〈z,b− x〉+ x′ ∈ T for x′ ← Dβ . (Note that the second stage should not simply choose b′ uniformly,
because the assumption would in fact be false: a distinguisher could just test whether b′ ≈ 〈z,b〉, which
holds with high probability in the first game, but not when b′ is uniform.)

Observe that if α = negl(n) is any negligible function and any β = 1/ poly(n), r = poly(n), then the
standard-LWEq,α assumption implies the extended-LWE assumption via a straightforward reduction, because
the Dβ noise term in the second stage statistically conceals the inner product 〈z,x〉, which has negligible
magnitude. Therefore, the reduction can simulate the second stage on its own. (A similar idea has been used
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in several other recent works on leakage resilience [GKPV10, ADN+10].) We also remark that we could let
the noise rate in the second stage be different (e.g., larger) than that of the first stage, and our construction
and proof are easily adapted.

6.3 BTS Construction

We now construct a bitranslucent set scheme based on the extended-LWE problem. Our scheme involves a
number of parameters, which are implicitly functions of the main security parameter n:

• the modulus q, number of samples m, and error parameter β ∈ (0, 1) relate to the underlying LWE
problem (note that security is actually based on extended-LWE with error rate β′ = β/

√
2; see below);

• the poly(n)-bounded Gaussian parameter r = L̃ · ω(
√

log n) is used for choosing the (real and fake)
secret keys, where L̃ is the quality bound of GenBasis from Proposition 6.1;

• the correlation parameter κ is used in FakeRCoins.

We first describe the scheme, then account for all the constraints that the parameters should satisfy. For
convenience, we define the scheme using real numbers and continuous error terms, which can be approximated
arbitrarily well using sufficient precision. Alternatively, we can use the ‘convolution theorem’ from [Pei10]
to discretize the continuous error terms to become discrete Gaussians, and slightly adjust the receiver faking
algorithms to ‘smooth out’ this discretization. Because this would further complicate the already heavy
analysis, we opt for the simpler approach of using continuous Gaussians.

• Setup(1n; rSetup): using randomness rSetup, output pp = A← Zn×mq .

(Note that there is trivial sampling algorithm ISetup(A) that outputs random r∗Setup consistent with A.)

• DenSetup(1n): generate (A,T)← GenBasis(1n, 1m, q), and output pp = A and fk = T.

• Gen(A; rR): using randomness rR, choose z ← DZm,r
√

2 (via SampleD({ei}i∈[m],0, r
√

2)), and
output pk = u = Az ∈ Znq . Observe that Āz̄ = 0 ∈ Znq , where Ā = [A | u] and z̄ = (z,−1) ∈
Zm+1. Below we identify the randomness rR with z.

(The trapdoor sampling algorithm IGen(T,u) just outputs z← SampleD(T, ẑ, r
√

2), where ẑ ∈ Zm
is any solution to Aẑ = u.)

• SampleP(A,u; rS): Let Ā = [A | u] ∈ Zn×(m+1)
q . Using randomness rS , choose s ← Znq and

x̄← Dm+1
β , and output c̄ = (Āts)/q + x̄ ∈ Tm+1. Below we identify rS with (s, x̄).

• SampleU(A,u; rS): using randomness rS , output a uniformly random c̄← Tm+1.

• TestP(A, z̄, c̄): if 〈z̄, c̄〉 ∈ T is closer to 0 (modulo 1) than to 1
2 , accept; otherwise, reject.

• FakeSCoins(A,u, (s, x̄)): simply output c̄ = SampleP(A,u; (s, x̄)) ∈ Tm+1 as the random coins
that would cause SampleU to output c̄.3

• FakeRCoins(A,T,u, c̄): let z← IGen(T,u) be a properly distributed secret key for u. Then:

1. Parse c̄ as (c, cm+1) ∈ Tm × T, and let x = Invert(A,T, c).

3Note that FakeSCoins really only needs the ciphertext c̄, not the randomness (s, x̄) or pp = A, pk = u used to generate c̄.

23



2. Choose a ‘correlation coefficient’ u← Dκ(r/β)2 , and choose y← ux +Dm√
r2−(βu)2

.

(In Lemma 6.6 we prove that (βu)2 < r2 almost always, so y’s distribution is well-defined.)

3. Output z∗ ← y +DΛ+z−y,r, chosen using SampleD(T, z− y, r), where Λ = Λ⊥(A).

We now discuss the constraints on all the parameters of the scheme. The parameter κ controls the amount
of correlation in FakeRCoins, and should satisfy the following bounds:

ω(
√

log n)

mr2
≤ κ ≤ β

r · ω(
√

log n)
. (6.1)

The lower bound (used in Claim 6.12) ensures a large enough correlation between the faked z∗ and the error
term in a P -sample c̄, so that c̄ appears uniform when tested with z∗. The upper bound (used in Lemma 6.6)
ensures that r > |βu| with overwhelming probability (over the choice of u), so that the ‘leftover’ Gaussian
distribution in the choice of y by FakeRCoins is well-defined.

We also have the following sufficient conditions for the (inverse) error parameter β:

r
√

2(m+ 1) · ω(
√

log n) ≤ 1/β ≤ rm

ω(log n)
. (6.2)

The lower bound (used in Lemma 6.6) ensures that TestP accepts a P -sample with high probability, and
because r ≥ L̃ · ω(

√
log n) it also suffices for the correctness of Invert. The upper bound is needed to make

the above bounds on κ satisfiable. Note that there is an Ω̃(
√
m) multiplicative gap between the upper and

lower bounds, so they are satisfiable for large enough m.
We base the security of our BTS on the extended-LWEq,β′,r

√
2 assumption for an error rate β′ = β/

√
2.

With this choice, we set 1/β according to its lower bound, let q ∈ [n, 2n]/β′, and letm = Θ(n log q) = Õ(n)
be large enough to apply Proposition 6.1. The inverse noise parameter in our assumption is therefore
1/β′ = Õ(n).

6.4 Correctness and Security

Theorem 6.5. Under the extended-LWEq,β′,r
√

2 assumption for β′ = β/
√

2, the above algorithms form a
secure bitranslucent set scheme according to Definition 5.1.

Proof. Lemma 6.6 below demonstrates Property 1 (correctness). Property 2 (statistical indistinguishability of
the public parameters A generated by Setup and DenSetup) follows directly by Proposition 6.1. Property 3
(bideniability) is proved in Lemma 6.7 below.

Lemma 6.6. For parameters satisfying the above constraints, BTS is well-defined and correct, i.e., it satisfies
Property 1 of Definition 5.1.

Proof. It is apparent that FakeSCoins and FakeRCoins produce correct outputs. To ensure that FakeRCoins
is well-defined, it suffices show that (βu)2 < r2/2 with overwhelming probability when u← Dκ(r/β)2 . By
the Gaussian tail bound and the hypothesis that κr/β ≤ 1/ω(

√
log n),

|βu| < κr2 · ω(
√

log n)/(β
√

2) ≤ r/
√

2

with overwhelming probability (where ω(
√

log n) denotes the same function in both places).
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Experiment H0:
(A,T)← GenBasis(1n, 1m, q)
x← Dm

β

y← ux +Dm√
r2−(βu)2

for u← Dκ(r/β)2

z← DZm,r; u = Az
z∗ ← y +DΛ+z−y,r
c = (Ats)/q + x ∈ Tm for s← Znq
cm+1 ← 〈u, s〉/q +Dβ ∈ T
Return (A, c̄, z∗)

Experiment H1:
A← Zn×mq

x, y: as in H0

z∗ ← y +DZm−y,r
u = Az∗

c, cm+1: as in H0

Return (A, c̄, z∗)

Experiment H2:
A← Zn×mq

y← Dm
r

x← Dm√
β2−(rv)2

+ vy

for v ← Dκ

z∗, u, c, cm+1:
as in H1

Return (A, c̄, z∗)

Experiment H3:
A, v: as in H2

z∗ ← DZm,r
√

2, u = Az∗

y← z∗/2 +Dm
r/
√

2

x(1) ← Dm
β′ , x

(2) ← Dm√
β2−β′2−(rv)2

c = (Ats)/q + x(1) + x(2) + vy ∈ Tm
for s← Znq

cm+1 ← 〈u, s〉/q +Dβ′ ∈ T
Return (A, c̄, z∗)

Experiment H4:
A, v, z∗, u,
y, x(1), x(2):
as in H3

b← U(Tm)

c = b + x(2) + vy ∈ Tm
cm+1 ←
〈z∗,b− x(1)〉+Dβ ∈ T

Return (A, c̄, z∗)

Experiment H5:
A, z∗, u:

as in H4

c← U(Tm)

cm+1 ← U(T)
Return (A, c̄, z∗)

Figure 3: Hybrid experiments for showing bideniability of BTS.

We now show that TestP is correct. First suppose that c̄ is generated by SampleU(A,u), i.e., it is uniform
in Tm+1. Then because z̄ = (z,−1) has −1 as its final coordinate, the inner product 〈z̄, c̄〉 ∈ T is uniformly
random. Thus TestP rejects with probability 1/2 (which can be amplified via repetition, as described in
Remark 5.2).

Now suppose that c̄ is generated by SampleP(A,u), i.e., c̄ = (Āts)/q + x̄ mod 1 for Ā = [A | u],
s← Znq , and x̄← Dm+1

β . Observe that

〈z̄, c̄〉 = (Āz̄)ts/q + 〈z̄, x̄〉 = 〈z̄, x̄〉 mod 1,

because Āz̄ = 0 mod q. So 〈z̄, c̄〉 is distributed as Dβ‖z̄‖. By Proposition 6.3, ‖z̄‖ ≤ r
√

2(m+ 1) with
overwhelming probability, hence by the Gaussian tail bound and the hypothesis that 1/β ≥ r

√
2(m+ 1) ·

ω(
√

log n), we conclude that |〈z̄, x̄〉| < 1/2 with overwhelming probability, and TestP accepts.

Lemma 6.7. Under the extended-LWEq,β′,r
√

2 assumption, BTS is bideniable, i.e., it satisfies Property 3 of
Definition 5.1.

Proof. First, notice that because SampleU simply outputs its random coins as a uniformly random c̄ ∈ Tm,
we can use c̄ itself as the coins. Similarly, for the receiver’s (fake) coins we may simply use z̄ or z̄∗.

We prove bideniability using a sequence of experiments Hi, which are defined precisely in Figure 3. Here
we describe their main properties and the relations between adjacent hybrids.
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• Experiment H0 is statistically close to the view of the adversary in the right-hand ‘faking’ experiment
in the definition of bideniability. We have rearranged the order of some operations to better coincide
with the next experiment. We have also used the fact that Invert successfully recovers x from c with
overwhelming probability over all the randomness in the experiment.

• In Experiment H1, we no longer generate a trapdoor basis T with A for sampling the faked secret key
z∗. Instead, we directly choose z∗ (from Zm) and then define u to match it. (The ciphertext components
c, cm+1 are constructed in the same way, however.) In Claim 6.8, we show that experiments H0 and
H1 are statistically indistinguishable.

• In Experiment H2, we choose x and y in a different order, with x now depending on y instead of the
other way around. In Claim 6.9, we show that the joint distribution of (x,y) remains exactly the same
(statistically), because in both cases it is a certain linear transformation of a spherical Gaussian (i.e.,
has the same covariance). Therefore, experiments H1 and H2 are statistically identical.

• In Experiment H3, we choose z∗ and y in a different order, with y now depending on z∗ instead of
the other way around. By Lemma 6.4, the joint distributions of (y, z∗) in H2 and H3 are statistically
indistinguishable. In preparation for the next experiment, we also break the error term Dm√

β2−(rv)2

from H2 into two terms x(1) and x(2) whose sum has the same distribution. Claim 6.10 formally proves
that H2 and H3 are statistically indistinguishable.

• In Experiment H4, we replace the (Ats)/q + x(1) component of c with a uniformly random b← Tm,
and replace the 〈u, s〉/q +Dβ′ component of cm+1 with 〈z∗,b− x(1)〉+Dβ′ . (Note that cm+1 also
has some ‘leftover’ Gaussian error, because β′ < β.) Under the extended-LWEq,β′ assumption, this
change cannot be detected by any efficient adversary, i.e., experiments H3 and H4 are computationally
indistinguishable. The (straightforward) reduction is described in Claim 6.11.

• In Experiment H5, we rewrite c itself as uniformly random over Tm, and focus on the 〈z∗, vy〉 =
v〈z∗,y〉 term that moves to cm+1 when rewriting b = c− x(2) − vy in H4. In Claim 6.12, we show
that 〈z∗,y〉 = Ω(mr2) with overwhelming probability. Recalling that κ = ω(

√
logn)
mr2 , it follows that

for almost all choices of z∗ and y (treated as fixed), the quantity v〈z∗,y〉 is distributed as Dω(
√

logn)

solely over the random choice of v ← Dκ. It is therefore statistically close to uniform modulo 1 (and
independent of the other variables in the adversary’s view), by Proposition 6.3. We conclude that
experiments H4 and H5 are statistically indistinguishable.

Finally, observe that experiment H5 is exactly the ‘honest opening’ experiment in the definition of
bideniability. This completes the proof.

We now precisely state and prove the claims supporting the proof of Lemma 6.7.

Claim 6.8. Experiments H0 and H1 are statistically indistinguishable.

Proof. In both experiments, y and c̄ have the same distribution (respectively), and for fixed A, the value u is
statistically close to uniform over the subgroup of Zm generated by the columns of A, by Proposition 6.3.
Now for analyzing both experiments, we condition on the choice of u, and let z ∈ Zm denote any solution
to Az = u. In H0, the vector z∗ − y is distributed as DΛ+z−y,r by construction. In H1, the vector z∗ − y
is first chosen according to a discrete Gaussian (of parameter r) over Zm − y, but then conditioning on the
value of u restricts its support to Λ + z− y. Therefore, given Ā, the conditional distribution of z∗ − y is
DΛ+z−y,r, as desired.
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Claim 6.9. Experiments H1 and H2 are statistically identical.

Proof. We first point out that in H2, the distribution D√
β2−(rv)2 is well-defined with overwhelming proba-

bility over the choice of v, by the Gaussian tail bound. (The proof that β2 − (rv)2 > β2/2 = β′ is virtually
identical to the one in the proof of Lemma 6.6.)

The only difference between the two experiments is in the choice of x and y. We show that the joint
distributions of (x,y) are identical in both.

By construction, in both experiments the coordinates xi of x are entirely independent and identically
distributed, as are the coordinates yi of y. Therefore, it suffices to show that the joint distributions of
(x, y) = (xi, yi) for an arbitrary i ∈ [m] are identical. We do so for any fixed u ∈ R and v = u

(r/β)2 for
which s2 := r2 − (βu)2 > 0; equivalently, for t2 := (β/r)2 · s2 = β2 − (rv)2 > 0. Because u and v related
in this way are equally likely in H1 and H2 (respectively), and s2 > 0 with overwhelming probability over
the choice of u, the claim follows by averaging over the choice of u, v.

In experiment H1, we may write the distribution of (x, y) as T1 ·D2
1, where T1 =

( β 0
βu s

)
. In experiment

H2, the distribution of (x, y) is T2 ·D2
1, where T2 =

(
t vr
0 r

)
. Observe that

T1T
t
1 =

(
β2 β2u
β2u (βu)2 + s2

)
=

(
t2 + (rv)2 r2v

r2v r2

)
= T2T

t
2.

It follows that (T−1
2 T1)(T−1

2 T1)t = I, i.e., T1 = T2Q for some orthogonal matrix Q. Because the spherical
Gaussian D2

1 is invariant under orthogonal (rigid) transformations, T1 ·D2
1 = T2Q ·D2

1 = T2 ·D2
1.

Claim 6.10. Experiments H2 and H3 are statistically indistinguishable.

Proof. The main difference between H2 and H3 is in the choice of y and z∗: in the former experiment, z∗

depends on y and in the latter, y depends on z∗. By Lemma 6.4 with r ≥ ‖T̃‖ ·ω(
√

log n) ≥ ηε(Λ⊥(A)) for
some negligible ε, the joint distributions of (y, z∗) in the two experiments are statistically indistinguishable.

In preparation for the next hybrid, we have also broken the error term D√
β2−(rv)2 in x into the sum

of two independent terms Dm
β′ , D√β2−β′2−(rv)2 , whose sum has the desired distribution. (Also recall that

β2 − (rv)2 > β′2 with overwhelming probability over the choice of v, so both terms are well-defined.)

Claim 6.11. Under the extended-LWEq,β′ assumption, H3 and H4 are computationally indistinguishable.

Proof. The reduction is via a straightforward simulation. The simulator plays one of the two games from the
extended-LWE assumption, and emulates either H3 or H4 as follows:

• In the first stage of the game, draw m samples (ai, bi) ∈ Znq × T and group them as (A,b) ∈
Zn×mq × Tm in the natural way.

• In the second stage of the game, draw one sample (z∗, bm+1) ∈ Zm × T, and let u = Az∗.

• Choose v, y, and x(2) as inH3 (andH4), let c = b+x(2)+vy ∈ Tm, and let cm+1 ← bm+1+Dβ′ ∈ T.
Output (Ā, c̄, z∗).

It is straightforward to check that if the simulator is playing the first extended-LWEq,β′,r
√

2 game (i.e.,
A is uniform; b = (Ats)/q + x(1) ∈ T for s ← Znq and x(1) ← Dm

β′ ; z
∗ ← DZm,r

√
2; and bm+1 ←

〈u, s〉/q +Dβ′ ∈ T), then the simulation emulates H3 perfectly. Similarly, if the simulator is playing the
second game (i.e., (A,b) is uniform; z∗ ← DZm,r

√
2; and bm+1 = 〈z∗,b− x(1)〉 + Dβ′ ∈ T), then the

simulation emulates H4 perfectly. By assumption, the two games are computationally indistinguishable, and
because the simulator is efficient, then so are H3 and H4.
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Claim 6.12. Experiments H4 and H5 are statistically indistinguishable.

Proof. The two experiments choose A, y, z∗, and u in exactly the same way; the only difference is in the
choice of c̄ = (c, cm+1). In experiment H4, we can rewrite this choice as c← U(Tm),

cm+1 ← 〈z∗, c− x(1) − x(2) − vy〉+Dβ = 〈z∗, c− x(1) − x(2)〉 − v〈z∗,y〉+Dβ ∈ T,

where v ← Dκ. In the remainder of the proof we show that with overwhelming probability over the choice of
z∗ and y, the v〈z∗,y〉 term above is statistically close to uniform modulo 1 (and independent of c). It follows
that c̄ ∈ Tm+1 is (statistically close to) uniform and independent of (Ā, z∗), exactly as in experiment H5.

We want to show that 〈z∗,y〉 = Ω(mr2) with overwhelming probability over the choice of z∗, y. To
do this, it is more convenient to switch back to choosing y ← Dm

r then z∗ ← y + DZm−y,r, which by
Lemma 6.4 introduces only negligible statistical error. Now, by the Chernoff-Hoeffding bound we know that
〈y,y〉 = ‖y‖2 = Θ(mr2) with overwhelming probability, because it is the sum of m independent identically
distributed terms y2

i each having expectation Θ(r2), and each bounded by r2 · ω(log n) with overwhelming
probability. Next, we have 〈z∗,y〉 = 〈y,y〉+ 〈DZm−y,r,y〉. For a small enough ν(n) = ω(

√
log n), with

overwhelming probability the second term is bounded from above by

r · ‖y‖ · ν(n) = O(
√
m · r2) · ν(n) = o(mr2).

Therefore, 〈z∗,y〉 = Ω(mr2).
Finally, observe that over the random choice of v ← Dκ, the term v〈z∗,y〉 is distributed as Dκ·〈z∗,y〉.

Since κ = ω(
√

logn)
mr2 by hypothesis, the distribution is Dω(

√
logn), which is statistically close to uniform

modulo 1 as desired.

7 Plan-Ahead Bideniable Hybrid Encryption for Long Messages

In pratice, it is desirable to have a (non-interactive) bideniable encryption scheme with short keys that can
encrypt an unbounded number of messages. But, since any such scheme is non-committing, a result of
Nielsen [Nie02] says that this goal is impossible to achieve. Fortunately, we can circumvent Nielsen’s result
via a relaxation called “plan-ahead” deniability (as first described in [CDNO97]), which still seems quite
useful in practical applications. In a plan-ahead-deniable scheme, the sender decides on some bounded
number of “fake” messages at the time of encryption, to which the sender and receiver may later equivocate
the ciphertext.

In this section, we show how to construct an efficient plan-ahead bideniable scheme for arbitrarily long
messages, by using a bideniable scheme for n-bit messages as a key-encapsulation mechanism. For simplicity,
we focus on the case of just one fake message; an extension to any bounded number is straightforward.

Plan-ahead bideniable encryption. A plan-ahead deniable encryption scheme PA-DEN with message-
spaceM consists of essentially the same algorithms as a deniable encryption scheme, but with the following
interface changes (other algorithms remain the same):

• The plan-ahead deniable encryption algorithm PADenEnc(pk,m0,m1), given a public key pk and
“real” and “fake” messages m0,m1 ∈M (respectively), outputs a ciphertext c.

• The plan-ahead sender faking algorithm PASendFake(pk, rS ,m0,m1, b), given a public key pk,
original coins rS , “real” and “fake” messages m0,m1 ∈ M (respectively), and target bit b, outputs
“faked” random coins r∗S for Enc.
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• The plan-ahead receiver faking algorithm PARecFake(fk, c, b), given a faking key fk, a ciphertext c,
and a target bit b, outputs “faked” random coins r∗R for Gen.

We make the analogous correctness requirements to Section 3. We say that a deniable encryption scheme
DEN is plan ahead bideniable under chosen-plaintext attack if, for any fixed messages m0,m1 ∈M and any
b ∈ {0, 1}, the output distributions of the following two experiments are computationally indistinguishable:

pk ← Gen(1n; rR)
c← Enc(pk,mb; rS)

Return (pk, c, rR, rS)

(pk, fk)← DenGen(1n)
c← PADenEnc(pk,m0,m1; rS)
r∗R ← PARecFake(fk, c, b)
r∗S ← PASendFake(pk, rS ,m0,m1, b)
Return (pk, c, r∗R, r

∗
S)

Symmetric encryption. A building block we use in our construction is a one-time pseudorandom sym-
metric encryption scheme. Recall that a symmetric encryption scheme with message-space M is a pair
(E,D) of algorithms (we assume wlog that the symmetric key is a uniformly random K ∈ {0, 1}n), where
E(K,m) outputs a ciphertext c and D(K, c) outputs a message m. We say that the scheme is one-time pseu-
dorandom if for any m ∈M the output distributions of the following two experiments are computationally
indistinguishable:

K ← {0, 1}n
c← E(K,m)
Return c

K ← {0, 1}n
c← E(K,m); c′ ← {0, 1}|c|
Return c′

Note that standard block cipher-based symmetric encryption schemes are one-time pseudorandom (in fact,
they are stronger than that) assuming the underlying block cipher is a PRF [BDJR97], so pseudorandomness
is not an additional assumption in practice. That is, using any standard block cipher mode of operation, we
obtain a one-time pseudorandom symmetric encryption scheme with short keys for arbitrarily long messages.

Our scheme. Let us first give a high-level overview of our scheme. We borrow an idea of [CDNO97] used
in the symmetric setting, whereby a sender chooses “real” and “fake” symmetric keys K0,K1. The deniable
encryption algorithm PADenEnc encrypts K0‖K1‖b with the underlying bideniable scheme, where b is a
uniformly random bit. It appends to this the symmetric encryptions of m0 under K0, and m1 under K1, in an
order determined by b. (That is, letting, c0,c1 denote these two symmetric ciphertexts, respectively, it appends
cb‖c1−b.) The normal encryption algorithm, on the other hand, encrypts K0‖0n‖b under the bideniable
scheme and instead of encrypting a “fake” message simply chooses a uniformly random string of appropriate
length. As before, the order of the symmetric “ciphertexts” is determined by b.

Formally, let BI-DEN′ be a bidenaible encryption scheme with message-space {0, 1}2n+1, and let SYM
be a symmetric cipher with key length n and message spaceM. Define the plan-ahead hybrid bideniable
encryption scheme PA-DEN[BI-DEN′,SYM] with message-spaceM via the algorithms in Figure 4. To
simplify its description we assume that E is deterministic. We also augment the inputs to each algorithm of
PA-DEN[BI-DEN′,SYM] to include items that are easily computable from those given to it by the above
definition.
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Gen(1n):
(pk, sk)← Gen′(1n)
Return (pk, sk)

Enc(pk,m):
K0 ← {0, 1}n; b← {0, 1}
casym ← Enc′(pk,K0‖0n‖b)
c0 ← E(K0,m)

c1 ← {0, 1}|cb|
Return casym‖cb‖c1−b

Dec(sk, c):
casym‖c0‖c1 ← c
K0‖K1‖b← Dec′(sk, casym)
m← Dec′(Kb, cb)
Return m

DenGen(1n):
(pk, sk, fk)← Gen′(1n)
Return (pk, sk, fk)

PADenEnc(pk,m0,m1):
K0,K1 ← {0, 1}n; b← {0, 1}
casym ← DenEnc′(pk,K0‖K1‖b)
c0 ← E(K0,m0)
c1 ← E(K1,m1)
Return casym‖cb‖c1−b

PARecFake(fk, c,K0‖K1‖b′, b):
c← casym‖c0‖c1

x← K0‖K1‖b′; y ← Kb‖0n‖b
r∗R ← RecFake′(fk, casym, x, y)
Return r∗R

PASendFake(pk, c, rS , b):
c← casym‖c0‖c1

K0‖K1‖b′‖r ← rS // r are the coins for DenEnc′

x← K0‖K1‖b′; y ← Kb‖0n‖b
r∗S ← SendFake′(pk, casym, r, x, y)
Return Kb‖r∗S‖c1−b

Figure 4: Algorithms of the plan-ahead bideniable hybrid encryption scheme PA-DEN[BI-DEN′,SYM].

Security. The intuition for the security of our scheme is very simple: by security of the underlying
bideniable scheme, the adversary cannot tell the difference between the “asymmetric” part of the ciphertexts
in the two plan-ahead bideniablility experiments. But, in the right-hand experiment, the adversary never sees
K1−b, so we can conclude by pseudorandomness of the symmetric scheme that c1−b looks random to it as
well. Formally, we prove the following theorem.

Theorem 7.1. Suppose BI-DEN′ is bideniable and SYM is pseudorandom. Then PA-DEN[BI-DEN′, SYM]
defined above is plan-ahead bideniable.

Proof. Fix m0,m1, b in the plan-ahead-deniablility experiments with the scheme. We define a “hybrid” game
as follows:

(pk, sk)← Gen′(1n; rR)
K0,K1 ← {0, 1}n; b← {0, 1}
casym ← DenEnc′(pk,Kb‖0n‖b; rS)
c0 ← E(K0,m0)
c1 ← E(K1,m1)
Return (pk, casym‖c0‖c1, rR,Kb‖rS‖c1−b)

By bideniability of BI-DEN′ the output distribution of the above hybrid game is indistinguishable from that
of the right-side plan-ahead-deniability experiment with the scheme. By one-time pseudorandomness of
SYM, it is also indistinguishable from the left-side one, finishing the proof.
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Extensions. We can make the above scheme more efficient in practice by discarding the bit b in the input
to the (deniable) encryption algorithm of the underlying bideniable scheme and instead ensuring that a
symmetric ciphertext decrypted under the wrong (honestly generated) key returns ⊥. (In effect this means b
is implicitly encoded, since the receiver can try encrypting c0 and c1 under K0 or K1 to determine b.) This
requires adding weak robustness to the symmetric encryption scheme in the sense of [ABN10]. Fortunately,
in the symmetric setting this is easily done by applying a MAC to the ciphertext.

Also note that our construction can easily be extended to achieve a notion of k-message plan-ahead
bideniability (where the sender decides on k − 1 “fake” messages at the time of encryption, to any of which
the sender and receiver may later equivocate the ciphertext). However, the length of a ciphertext increases by
a factor of k.

8 Bideniable Identity-Based Encryption

Here we extend our treatment of bideniability to the setting of identity-based encryption (IBE) [Sha84, BF01].
Deniability is qualitatively different in this setting than in the classical public-key one, and in particular may
offer benefits over the latter in some scenarios. Moreover, we show how both of our constructions readily
extend to it.

8.1 Definition

As in the PKE case, bideniable IBE augments traditional IBE with the ability for a sender and receiver to
reveal their secret data to a coercer so that it appears as if any desired message had been encrypted. For the
sender, this works analogously to the public-key case. For the receiver, we envisage some assistance from the
master authority, who remains uncoerced. Therefore, in our definition the receiver-faking algorithm will take
as input the master secret key rather than a separate ‘faking key.’ We further discuss this and other differences
with bideniable PKE following the definition.

For simplicity (and due to the increased complexity of the definition as compared to the public-key
case), we just define bideniable IBE, without separately defining sender- and receiver-deniability. The latter
definitions can be obtained straightforwardly.

Definition 8.1 (Bideniable IBE). A bi-deniable identity-based encryption scheme IBE-DEN with message
spaceM and identity-space ID is made up of the following algorithms:

• The normal setup, key-extraction, encryption, and decryption algorithms Setup,Ext,Enc,Dec are
defined as usual for identity-based encryption. These algorithms make up the induced normal scheme.

• The deniable encryption algorithm DenEnc(id ∈ ID,m ∈ M) has the same interface as a normal
identity-based encryption algorithm.

• The sender faking algorithm SendFake(pp, id, rS ,m
′,m), given public parameters pp, identity id ∈

ID, original coins rS and message m′ of DenEnc, and desired message m, outputs faked random
coins r∗S for Enc with respect to id.

• The receiver faking algorithm RecFake(msk, id, c,m), given the master secret key msk (which we
assume without loss of generality contains pp), an identity id ∈ ID, a ciphertext c, and a desired
message m ∈M, outputs faked private key skid for Ext with respect to id.

We require the following properties:
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1. Correctness. Any triplet (Setup,Ext,E,Dec), where E ∈ {Enc,DenEnc}, should form a correct
identity-based encryption scheme.

2. Multi-distributional bideniability. We require that for every adversary (“coercer”) A = (A1,A2) the
output distributions of the following two experiments are computationally indistinguishable:

(pp,msk)← Setup(1n)

(id∗,m,m′, st)← AO1,O2
1 (pp)

(rS , skid∗)← O1(id∗,m′,m)

Return AO1,O2
2 (rS , skid∗ , st)

(pp,msk)← Setup(1n)

(id,m,m′, st)← AO1,O2
1 (pp)

(r∗S , sk
∗
id∗)← O2(id∗,m′,m)

Return AO1,O2
2 (r∗S , sk

∗
id∗ , st)

where O1 and O2 are defined as follows:

O1(id,m1,m2):
c← Enc(pp, id,m2; r)
skid ← Ext(msk, id)
Return (c, r, skid)

O2(id,m1,m2):
c← Enc(pp, id,m1; r)
r∗ ← SendFake(pp, id, r,m1,m2)
sk∗id ← RecFake(msk, id, c,m2)
Return (c, r∗, sk∗id)

In the above experiments, we require that no id is queried to both O1 and O2 during the entire course of
the experiment; i.e., when counting all the queries made by A1 and A2 together. Moreover, we require that
neither A1 nor A2 query id∗ to either of their oracles.

Note in the above above experiments, the adversary is given access to two oracles — one that ‘honestly’
generates a sender’s coins and a receiver’s secret key, and one that generates ‘faked’ ones of each. (In the
first case, the adversary can alternatively generate coins for honest ciphertexts itself; we include them in this
oracle’s output only for symmetry.) The first oracle in particular captures the usual exposure of the sender’s
and receiver’s coins in the IBE setting, whereas the second models “coercing” a sender and receiver. By a
hybrid argument, it is easy to show that the above definition is equivalent to one where the adversary chooses
many challenge identities and messages. This means that the definition permits faking by an arbitrary number
of senders and receivers, for the same public parameters.

Comparison with bideniable PKE. We contrast our notion of bideniabile IBE with that of bideniable PKE
defined in Section 3. As we mentioned, the main functional difference is that in bideniable PKE a receiver
possesses its own faking key, whereas in the IBE setting the secret key of the master authority functions as the
faking key. The interpretation is that the receiver must get assistance (perhaps preemptively) from the master
authority to generate a fake secret key. We assume that the master authority cannot be coerced; e.g., because
it is outside the jurisdiction of the coercer. The upshot is that in this case there is no longer a need for receiver
multi-distributionality, i.e., a receiver need not choose one or the other key-generation algorithm to run.

It is also significant to note that in the IBE setting an interactive encryption protocol is not permitted,
since the receiver is not assumed to be registered in the system at the time of encryption. Moreover, the recent
impossibility proof of Bendlin et al. [BNNO11] readily extends to the IBE setting. Therefore, coordination
between the master authority and receiver to generate the faking key appears necessary in order to combine
the benefits of IBE with receiver deniability. (As discussion in the introduction, receiver deniability is
arguably more important in practice than sender deniability.)
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8.2 Constructions

Our constructions can be readily modified to work in the IBE setting. We briefly describe how this is done for
each one.

The simulatable-encryption scheme. In this case, we use parallel instances of a suitable IBE scheme
rather than a public-key one. That is, our IBE scheme’s public parameters will consist of 5n independently
generated public parameters pp1, . . . , pp5n of an underlying IBE scheme and the master secret key consists
of the the corresponding msk1, . . . ,msk5n. The key derivation, encryption, and decryption algorithms
are defined correspondingly, where each identity’s secret key consists of secret keys of this identity for a
randomly chosen n-set of the 5n parallel instances of the underlying IBE scheme.

Roughly, for bideniability the main property require of the underlying IBE scheme is that one can
invertibly sample a ciphertext that decrypts to a random bit under a given identity. This property was recently
studied by Bellare et al. [BWY11] (under the name “one-sided openability”) in the context of IBE secure
under selective-opening attacks (i.e., sender corruptions). They gave constructions achieving it, without
random oracles, based on the Decision Linear Assumption in bilinear groups and the Generalized Subgroup
Decision Assumption in bilinear groups of composite order. We note that since the master secret key in our
security model is never revealed to the coercer, we do not need any such condition on the public parameters of
the IBE scheme here. We must however, also require that its key-derivation algorithm be deterministic. This
is not really an additional requirement because it can always be achieved by the master authority maintaining
state or using a pseudorandom function.

The lattice-based scheme. In this case, we can transform the scheme into a bideniable IBE one exactly in
the same way as for the original GPV identity-based encryption scheme [GPV08]. This involves hashing
the identities using a random oracle; thus, we obtain a bideniable IBE scheme under the same assumption
in the random oracle model. However, we note that the random oracle is only used to make the scheme
identity-based and is not in any way used for its deniability properties. Indeed, we have already shown these
properties for the public-key version of the scheme without using a random oracle.
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