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Abstract. A new signature system of multivariate public key cryptosys-
tem is proposed. The new system, Hidden Pair of Bijection (HPB), is the
advanced version of the Complementary STS system. This system real-
ized both high security and quick signing. Experiments showed that the
cryptanalysis of HPB by Gröbner bases has no less complexity than the
random polynomial systems. It is secure against other way of cryptanal-
ysis effective for Complementary STS.
On the other hand, since it is based on bijections, signatures exist for
any message, unlike other cryptosystems based on non-bijections such as
HFE or Unbalanced Oil and Vinegar.

Keywords: Multivariate Public Key Cryptosystem, Digital Signature,
Bijection, Rainbow

1 Introduction

1.1 Multivariate Public Key Cryptosystem

Multivariate Public Key Cryptosystem (MPKC) is one of the important subjects
of post-quantum cryptosystems. Its one-wayness is based on the knowledge that
solving a set of multivariate polynomial equations over a finite field is NP-hard
[10].

Among post-quantum cryptosystems, it would have the highest number of
variants, with about 30 to 40 schemes proposed in the past. Although, according
to the classification proposed by Wolf, et al. [24], the number of basic trapdoors
of MPKCs is only four. Most of the MPKCs are created by modifying the basic
trapdoors, such as by eliminating polynomials or adding some noise, to improve
the security against attacks.

1.2 Central Map and Public Key of MPKC

An MPKC cryptosystem is created by building a polynomial system with trap-
door structure, whose inverse mapping is easily computed. Since it is well possible
to analyze the structure of this polynomial system, the system cannot be directly
used as the public key. Let P ′ ∈ F q[x]

m be the polynomial system with the trap-
door. When a plain text x ∈ F n

q is encrypted, usually x is transformed by affine
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transform S beforehands. Thus obtained intermediate variable v ∈ F n
q is as-

signed to the polynomial system P ′. Resulting vector w ∈ Fm
q is transformed

again by another affine transform T . The composite mapping P := T ◦ P ′ ◦ S
is used as the public key. The polynomial system P ′ is called “central map.”
The relationship among affine transformations, central map, and the public key
is illustrated in the Figure 1.

In the signature scheme, y is the document and the signature x, which sat-
isfies the equation P (x) = y, is computed by the signer.

x ∈ F n
q

S ∈ F q[x]
n

-
affine

transformation

v ∈ F n
q

-
P ′ ∈ F q[v]

m

central map

w ∈ Fm
q -

T ∈ F q[w]m

affine
transformation

?

P := T ◦ P ′ ◦ S ∈ F q[x]
m Public Key

y ∈ Fm
q

Fig. 1. Multivariate Public Key Cryptosystem

1.3 MPKC Trapdoors

According to the classification of Wolf [24], the basic trapdoors of MPKC are:

1. Unbalanced Oil and Vinegar (UOV)
2. Stepwise Triangular System (STS)
3. Matsumoto-Imai (MI)
4. Hidden Field Equation (HFE)

Among the above four trapdoors, STS and Matsumoto-Imai are bijections. The
property of bijectiveness has been made full use of by various scientists including
Tsujii et al [22]. Here Matsumoto-Imai and STS are explained as examples.

Matsumoto-Imai One of the most well-known MPKC trapdoors would be
the Matsumoto-Imai (MI) Cryptosystem [12]. This scheme is regarded as a very
basic among MPKCs and several variants have been proposed. Its construction
is explained concisely in the textbook of Ding et al. [6]:

Let F q be a finite field of characteristic q, and take i(x) ∈ F q[x] to be
any irreducible polynomial of degree n. Then F qn is a quotient field defined as
F q[x]/i(x), a degree n extension of F q. Let ϕ : F qn → F n

q be the standard
F q-linear isomorphism between F qn and F q

n given by

ϕ(a0 + a1x+ . . .+ an−1x
n−1) := (a0, a1, . . . , an−1).
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Choose θ so that 0 < θ < n and

gcd(qθ + 1, qn − 1) = 1.

Map G over F qn is as follows:

G(X) = X1+qθ .

Now if η is an integer such that

η(1 + qθ) ≡ 1 mod (qn − 1)

then G−1(X) = Xη. Now let P ′ be the map over F q
n defined by

P ′ = ϕ ◦G ◦ ϕ−1(x1, . . . , xn) = (g1, . . . , gn).

Afterwards its structure is disguised by affine transformations:

P = T ◦ P ′ ◦ S(x1, . . . , xn) = (e1, . . . , en).

Matsumoto-Imai Cryptosystem was successfully cryptanalyzed by Patarin [14]
in 1995. After Patarin published the cryptanalysis, their group proposed an-
other trapdoor expanding the concept of MI. This is the Hidden Field Equation
cryptosystem [15]

Stepwise Triangular System (STS) Another example is Stepwise Trian-
gular System, whose basic concept was proposed by Tsujii [18][19] in 1986 and
1989 as an encryption system known as “Sequential Solution Method.” Similar
ideas were independently proposed by Shamir [17] in 1993 and T. T. Moh [13]
in 1999 as signature systems.

The central map of the sequential solution method is shown in the formula
(1).

w1 = g1(v1, v2, . . . , vk−1, vk)
w2 = g2(v1, v2, . . . , vk−1)
...

wk−1 = gk−1(v1, v2)
wk = gk(v1)

(1)

As shown above, the ciphertext y := (y1, . . . , yk) is decrypted by solving the
equation from the bottom. Since the polynomial gk(v1) = yk is univariate, it
is easily solved and afterwards the root is assigned to the variable v1 of the
equation gk−1(v1, v2) = yk−1. In this way whole system of equations is solved by
solving univariate equations one after another.

Kasahara et al. [11] proposed an encryption system based on this idea. His
idea, Stepwise Triangular System (STS), uses the ”step,” subsequences of the
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central map with r elements. r is a small number such as 4 or 5. Its structure is
shown in the equation (2).

Step 1


p1(v1, . . . , vr, . . . , vir, . . . , v(L−1)r, . . . , vLr)

...
...

pr(v1, . . . , vr, . . . , vir, . . . , v(L−1)r, . . . , vLr)

Step 2


pr+1(v1, . . . , vr, . . . , vir, . . . , v(L−1)r)

...
...

p2r(v1, . . . , vr, . . . , vir, . . . , v(L−1)r)

...

Step i


p(i−1)r+1(v1, . . . , vr, . . . , vir)

...
...

pir(v1, . . . , vr, . . . , vir)
...

Step L


p(L−1)r+1(v1, . . . , vr)

...
...

pLr(v1, . . . , vr)

(2)

The Step L, is an r-variate determined equation system. It is possible to decrypt
the whole ciphertext by solving small equation systems, in the similar way as
solving the univariate equation in the sequential solution method. Kasahara et
al. proposed their cryptosystem, which they named RSSE(2)PKC. Afterwards
they proposed its bijection version by the name of RSE(2)PKC.

1.4 Modifiers

Wolf et al. [24] proposed to classify the modifiers into 8 categories. One example
of modifiers is the ‘Internal Perturbation,’ proposed by Ding, et al. [4]. Now the
‘Internal Perturbation’ is explained as an example of Modifiers.

Let z1, . . . , zr be random linear polynomials of x and F (x) ∈ F q[x]
m is a

conventional MPKC public key such as MI or HFE. Now random r-variate poly-
nomials q1, . . . , qm are created and new public key
H(x) := F (x)+ (q1(z1, . . . , zr), . . . , qm(z1, . . . , zr))

T is generated. The resulting
polynomial vector H(x) is “perturbed” from the original public key and com-
plexity of Gröbner bases attack is higher than the original cryptosystem. Accord-
ing to Ding et al. [3], the relationship between time complexity of Gröbner bases
attack and m is exponential if the trapdoor of F (x) is Matsumoto-Imai and
r ≥ 6. Ding et al. have proposed new cryptosystems by modifying Matsumoto-
Imai and HFE [4][7] with internal perturbation.
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2 Background -Enhanced STS

Tsujii et al. proposed to apply the STS trapdoor, originally designed as an
encryption system, to signature. It was expected that the vulnerability of the
‘Triangular’ structure could be corrected by combining it with another symmetric
triangular structure into ‘rectangular.’

2.1 Complementary STS Structure

Wolf et al. [23] pointed out that it is possible to cryptanalyze the STS cryp-
tosystems such as RSE(2) and RSSE(2), by exploiting the descending ‘Chain of
Kernels.’

Tsujii et al. proposed to combine two independent STS central maps [21].

While one STS system increases the variables by r from the initial r as the
step proceeds, the other decreases the variables by r from the initial (m−r). If a
new central map is created by linearly combining the elements with the elements
of the corresponding step, the rank (=number of variables) of all elements in
the central map becomes the same. Resulting cryptosystem should be secure
both against Gröbner Bases and Rank Attack. The concept of the structure is
illustrated in Figure 2.

F1

F2

Fig. 2. Complementary STS Structure

The central map of Complementary STS is shown in the formula (3). The
whole system has m polynomials with (2m − r) variables. Every polynomial in
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the system has the rank m.

Step 1


p1(u1, . . . , ur, v1, . . . , vm−r)

...
pr(u1, . . . , ur, v1, . . . , vm−r)

...

Step i


p(i−1)r+1(u1, . . . , uir, v(i−1)r+1, . . . , vm−r)

...
p(i−1)r+r(u1, . . . , uir, v(i−1)r+1, . . . , vm−r)

...

Step L− 1


p(L−2)r+1(u1, . . . , um−r, vm−2r+1, . . . , vm−r)

...
p(L−2)r+r(u1, . . . , um−r, vm−2r+1, . . . , vm−r)

Step L


p(L−1)r+1(u1, . . . , um)

...
p(L−1)r+r(u1, . . . , um)

(3)

All elements of u := (u1, . . . , um) ∈ F q[x1, . . . , x2m−r]
m and v := (v1, . . . , vm−r) ∈

F q[x1, . . . , x2m−r]
m−r are intermediate variables generated by the affine trans-

formation S : (u,v)T = S(x). When arbitrary values are assigned to v1, . . . , vm−r,
the structure of the formula (3) becomes STS central map.

2.2 Check Equation -Enhanced STS

After proposing the Complementary STS, Tsujii et al. found that the ‘Chain of
Kernels’ was not completely eliminated in the Complementary STS either, and
that High Rank Attack on the structure is still possible [20]. Therefore they have
improved the signature system and proposed the new system as “Enhanced STS
[20][22].” This system uses the “Verifier” equation system in parallel with the
public key. The procedure of signing and validating is illustrated in the Figure
3.

P ′(u,v) is the Complementary STS public key, system of polynomials with
n(= 2m−r)-variatem polynomials. LetH ′ ∈ F q[u,v] be the polynomial system
designed to satisfy ∀u ∈ Fm

q , H ′(u,α) = 0. The polynomial system H(x) :=

H ′ ◦S is the “Check Equation,” which satisfies H(x) = 0 ∀x such that S(x) =
(u,α).

The procedure of signing a message m is as follows:

1. Affine transformation T is inverted to the m.

m′ = T−1(m)

2. The value (α1, . . . , αm−r) are assigned to (v1, . . . , vm−r)
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Fig. 3. Improving the Security by Check Equation

3. The resulting P ′(u1, . . . , um, α1, . . . , αm−r) is m-variate STS public key,
which is bijection.

4. The equation system P ′(u1, . . . , um, α1, . . . , αm−r) = m is solved.
5. The signature is obtained by inverting the affine transformation S to the

root (s′1, . . . , s
′
m, α1, . . . , αm−r).

s := (s1, . . . , sn) = S−1(s′1, . . . , s
′
m, α1, . . . , αm−r)

The procedure of validation is done this way:

1. It is checked whether P (s1, . . . , sn) is m.
2. It is checked whether H(s1, . . . , sn) is 0.

Even if the Complementary STS public key P (x) is successfully cryptanalyzed
by any chance, it is impossible to find the signature which also satisfies the
equation H(s1, . . . , sn) = 0.

It should be noted that the P (v1, . . . , vm, α1, . . . , αm−r) is a bijection and
therefore it is possible to sign any message even if a pre-determined value (condi-
tion to satisfyH(x) = 0)(α1, . . . αm−r) is assigned to v2. Otherwise it frequently
occurs that signature of m does not exist.

2.3 Vulnerability of Check Equation methodology

Although it might be difficult to solve the equationH(x), it should be noted that
all valid signatures corresponding to the check equation H(x) satisfy H(x) =
0, regardless of the message, i.e. every valid signature lies in a certain m-
dimensional space, although the signature is n-dimensional. Therefore, if m valid
signatures are collected, the linear space where every signature lies is found. The
attack is done as follows:
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1. Signatures σ1, . . . ,σm+1 are collected.
2. Differentials ∆σ1 = σ1−σm+1,∆σ2 = σ2−σm+1, . . . , ∆σm = σm−σm+1

are computed.
3. An m-variate linear polynomial vector L(u) = u1∆σ1+ . . .+um−1∆σm−1+

um∆σm + σm+1 ∈ F q[u1, . . . , um]n is created.
4. The n elements of L(u) are assigned to each element of P (x).
5. The resulting system of m-variate polynomials P ′(u) := P (L(u)) has the

STS structure.

Then it is possible to sign any message y by solving the equation P ′(u) = y.
Afterwards the solution is assigned to the n-dimensional linear polynomial vector
L(u). This signature also satisfies the check equation H(x) = 0.

Because of this vulnerability, Tsujii et al. proposed [22] to change the check
equation every time a message is signed.

3 “Hidden Pair of Bijection” Signature

Based on the idea of “Complementary Bijections” and “Check Equations,” a
new idea of MPKC signature is created.

3.1 Basic Trapdoor

Let F 1, F 2 : Fm
q → Fm

q be a pair of bijections. Now it is assumed that
F 1(0) = F 2(0) = 0. A polynomial vector H(v) := (h1(v), . . . , hm(v)) ∈ F q[v]

m

is defined as follows:

hi(v) =
m∑
j=1

m∑
k=1

aijkvjvm+k (1 ≤ i ≤ m) (4)

Coefficients aij ∈ F q are random values. When either the vector v1 := (v1, . . . , vm)
or v2 := (vm+1, . . . , vn) is 0, H(v) is 0, regardless of the rest of the elements of
vector v. Now the following mapping P ′(v) : F 2m

q → Fm
q is created:

P ′(v) := F 1(v1) + F 2(v2) +H(v) (5)

(v1 := (v1, . . . , vm), v2 := (vm+1, . . . , v2m))

If 0 is assigned to v2, both F 2(v2) and H(v) are zero vector, leaving only
F 1(v1), the bijection over Fm

q . Therefore for any message y ∈ Fm
q , one of its

pre-images is easily obtained as (F−1
1 (y),0). Another pre-image is also obtained

by computing (0,F−1
2 (y)).

There are two ways to sign a given message, but it is impossible to know
whether 0 was assigned to v1 or v2, without the knowledge of the hidden struc-
ture. This pair of bijections, F 1 and F 2, is the central map.
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3.2 Public Key

The HPB public key G(x) is created as follows:

P (x) = T 1(F 1(S1(x))) + T 2(F 2(S2(x))) +H(S(x)) (6)

In the formula (6), T 1,T 2 : Fm
q → Fm

q are affine transformations. S1 and S2

are the higher and lower half of an affine transformation S : F 2m
q → F 2m

q i.e.

S1(x) = (v1, . . . , vm)T , S2(x) := (vm+1, . . . , v2m)T .

1. Public Key:
m-dimentional polynomial vector P (x)

2. Private Key
Affine transformations T 1,T 2,S, and the pair of bijections F 1(x1),F 2(x2)

A message y ∈ Fm
q is signed along the following procedure. This is the case

in which F 2 is set zero:

1. T 1 is inverted to the message y: y′ = T−1
1 (y)

2. Bijection F 1 is inverted: s′ := F−1
1 (y′)

3. Signature s is computed by inverting the affine transformation S.

s = S−1(s′,0)

It is also possible to sign by setting F 1 to 0, instead of F 2.
F 1 and F 2 are not limited to STS. Any central map of bijection can be used.

Moreover, the trapdoors of the both need not be identical. Combinations such
as ‘STS and MI’ are possible.

3.3 Rainbow-like Implementation

The public key of HPB has twice as long signatures as the message. Although it
is shorter than that of Unbalanced Oil & Vinegar, it is not short enough for prac-
tical use. In order to shorten the signature length compared with the message,
it is possible to appned extra variables and polynomials by the implementation
similar to Rainbow [8].

Let P (v1, . . . , v2m) be the 2m-variate HPB public key. New variables
v2m+1, . . . , v2m+k (k ≥ m) are appended and linear polynomial vector λ(v) :=
(ℓ1, . . . , ℓk)

T ∈ F q[v1, . . . , v2m+k]
k is created as follows:

λ := A× (v2m+1, . . . , v2m+k)
T +B × (v1, . . . , v2m)T (7)

In the formula (7), A is a k × k invertible matrix and B is a k × 2m full-rank
matrix. Then a polynomial vector Q(v) is created, using a k-variate quadratic
bijection Γ (v) ∈ F q[v1, . . . , vk] and random 2m-variate quadratic polynomial
vector R(v1, . . . , v2m).

Q(v) := Γ (λ) +R(v1, . . . , v2m) (8)
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When constants are assigned to the variables v1, . . . , v2m, polynomial vector
Q(v) becomes a bijection from F k

q to F k
q . So a new (2m + k)-variate central

map is created: (
Q(v1, . . . , v2m+k)
P (v1, . . . , v2m)

)
(9)

When either v1, . . . , vm or vm+1, . . . , v2m are set all zero, the (m+k) dimensional
polynomial vector (9) is a bijection of the remaining variables. Now the number
of variables is (2m+ k) and the number of polynomials (m+ k).

4 Discussion of Security

4.1 Security against Gröbner Bases Attack

F 1 and H are working as the perturbation polynomials of the central map F 2

and vice versa. Therefore the HPB public key is expected to be difficult to attack
by computing the Gröbner bases. The assumption was confirmed by experiments.

When an underdetermined system of equations is solved by computing Gröbner
Bases, the extra variables are fixed in order to make the system determined.
When Braeken et al.[2] tested the security of Unbalanced Oil & Vinegar, they
fixed v variables by appending random v linear polynomials to the system. We
employed their procedure.

Experiments HPB signature keys using STS (r = 1: sequential solution method)
and Matsumoto-Imai as the bijection are created with varying length and alge-
braic attack using Gröbner Bases is done.

1. HPB systems P (x) with varying document length (with the signature length
double the document length) from about 18 to 24 are generated. Parameter
r of the STS is 1 (sequential solution method).

2. Document y are generated by random numbers.
3. The signature s for each document is generated
4. m Linear polynomials ℓ1(x), . . . , ℓm(x) are randomly generated.
5. The system of linear equations ℓ1(x)− ℓ1(s), . . . , ℓm(x)− ℓm(s) is appended

to the system of polynomials P (x)− y
6. Time to compute Gröbner bases of the ideal generated by the determined

polynomial system created in the step 5 is measured.
7. The computation time is compared with a randomly generated 2m-variate

equation systems with m polynomials. It is also made determined by ap-
pending m linear polynomials as done in the step 5

The reason for creating the linear equations as done in step 5 is to assure the
root of the equation to exist.
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The computer system used in calculating the Gröbner bases is as follows:
Computer: Proside edAEW416R2 workstation with AMD Opteron Model 854
processors at 2.80GHz and 64GB of RAM is used for the HPB using two STSs.
Japan Computing System (JCS) VC98220WSA-4U/T workstation, with CPU
AMD Opteron 8220 (2.80 GHz) quadcore and 128 Gbyte Memory for the HPB
usng two MIs
Software: Magma ver. 2.15-15 [1] running on Red Hat Enterprise Linux Advanced
Platform Standard for both computers.

Built-in function GroebnerBases() of Magma is used to compute the Gröbner
bases by F4 algorithm.

Table 1. Comparison of Gröbner base computing time, HPB(using Sequential Solution
method) and Random polynomial system

F4 Computing time(s)
in Second

Message HPB Public Key Random Difference
Length using Seq. Sol. Polynomials

18 2.26 2.33 -0.07

19 4.33 4.35 -0.02

20 8.69 8.74 -0.05

21 17.34 17.43 -0.09

22 56.00 55.87 0.13

23 88.60 88.45 0.15

24 604.21 604.70 -0.49

Table 2. Comparison of Gröbner base computing time, HPB(using Matsumoto-Imai)
and Random polynomial system

F4 Computing time(s)

in Second
Message HPB Public Key Random Difference
Length using MI Polynomials

18 2.56 2.54 0.02

20 10.09 10.14 -0.05

22 64.78 64.95 -0.17

24 777.63 754.26 23.37

25 1601.42 1614.29 -12.87

Table 1 is the result of the Gröbner bases attack to the HPB using a pair of
STSs. Table 2 is for the ones using MIs. As shown in the both tables, the security
of HPB against Gröbner bases is as high as the random quadratic polynomials.
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4.2 Attack by collecting valid Signatures

As discussed in the section 2.3, if fixed constants are always assigned to fixed
m variables out of 2m, it is possible to find to which variables (linear polyno-
mials) the constants are assigned, by collecting (m + 1) signatures. Afterwards
the attackers would find the structure of the central map. HPB is designed to
innoculate the system against this attack. Since there are two ways to choose
variables between (x1, . . . , xm) and (xm+1, . . . , x2m), the probability that ran-
domly collected m signatures are all signed by setting the same variables to
zero declines exponentially as m grows. However, it might occur that 90 out of
100 signatures are signed by setting the first half to zero and remaining 10 are
not. In that case, 90 variables lie in the linear space spanned by xm+1, . . . , xn

and 10 variables are linear combinations of x1, . . . , xm. The structure is similar
to the trapdoors modified by internal perturbation with the r = 10. Now the
security discussion for this attack assumes two MIs as the bijection pair, since
its Differential Attack, which eliminates the effect of perturbation is extensively
studied.

As Ding et al. discussed [8][6][3], the complexity of computing Gröbner bases
is exponential function of the message length m as long as r ≥ 6. Its probability
is almost 100 % as long as m is sufficiently large. Consequently the resulting
polynomial system is expected still secure against Gröbner bases attack. Another
risk is the differential attack.

Fouque [9] pointed out that it is possible to look for the vector x where the
corresponding perturbation polynomials are all zero. If it is found, attackers can
eliminate the effect of the perturbation.

The complexity of this attack is estimated to be O(m3qrqgcd(θ,m)) [5], expo-
nential function of r.

Here it is assumed that 2N(N ≫ m) valid signatures are collected. Among
them, N signatures, or half of all, are signed by assigning 0 to x1, . . . , xm and
the rest is otherwise. When m are selected out of 2N signatures, the probability
that at least (m− k) of them are signed in the same way, is:

NCm−k

2NCm−k
=

N(N − 1) . . . (N −m+ k + 1)

2N(2N − 1) . . . (2N −m+ k + 1)

=
1

2m−k
× (N − 1)(N − 2) . . . (N −m+ k + 1)

(N − 1
2 )(N − 1) . . . . . . (N − m−k−1

2 )
<

1

2m−k
(10)

The following attack is considered:

1. Thereshold k is determined.
2. m signatures are randomly selected from N .
3. As described in the section 2.3, 2m-variate polynomials are transformed to

m-variate.
4. Resulting determined polynomial system is attacked by differential attack.
5. If the attack takes more than O(m3qkqgcd(θ,m)), the selection is regarded as

“failure” and go back to the 2.
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For the above attack to succeed,O(m32k2gcd(θ,m))×2m−k = O(m32gcd(θ,m)×2m)
operations are required.
Since the complexity of the attack increases exponetially as m grows, the HPB
using the pair of MI is secure against this attack.

It is expected that almost the same security is established when STS is used.

5 Discussion

5.1 Advantage of HPB

HPB is a new scheme of MPKC signature. It has several advantages over existing
signatures:

– HPB signature is twice as long as the document to be signed, shorter than
the UOV.

– Unlike other signatures based on non-bijections such as QUARTZ [16] (using
HFE), HPB always has pre-image and successfully signs the message in one
attempt.

The first feature would not be so important, since it is possible to reduce the rate
of signature to message using the rainbow-like structure. Important advantage
would be the later. Since other major MPKC signatures such as QUARTZ or
Rainbow are not assured to successfully sign the message in one attempt. This
repetition would make significant difference of the efficiency.

5.2 Future Study

Since HPB uses a combination of existng trapdoors, further attacks should be
investigated. Although, since each part of the pair perturbs another, it would be
quite difficult to analyze it, such as by differential attack.

The pair of bijections need not have the same trapdoors. For example, MI
and STS can form a pair. The configuration of the pairs and parameters would
have to be discussed to determine the optimum condition.
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