
A coprocessor for secure and high speed modular arithmetic

Nicolas Guillermin1,2

1 DGA Information Superiority, Bruz, France
2 IRMAR, Université Rennes 1, France

Abstract. We present a coprocessor design for fast arithmetic over large numbers of cryp-
tographic sizes. Our design provides a efficient way to prevent side channel analysis as well
as fault analysis targeting modular arithmetic with large prime or composite numbers. These
two countermeasure are then suitable both for Elliptic Curve Cryptography over prime fields
or RSA using CRT or not. To do so, we use the residue number system (RNS) in an efficient
manner to protect from leakage and fault, while keeping its ability to fast execute modular
arithmetic with large numbers. We illustrate our countermeasure with a fully protected RSA-
CRT implementation using our architecture, and show that it is possible to execute a secure
1024 bit RSA-CRT in less than 0.7 ms on a FPGA.

Keywords: countermeasure, fault analysis, side channel analysis, high speed, RNS, FPGA

1 Introduction

The same time cryptographic applications have flooded our all day life, security of cryptographic
implementations has become a concern for the research community. First proposed by Kocher et
al. [16], passive side channel analysis attend to discover the embedded secrets from activity of
the component. This threat involves both symmetric and asymmetric implementations. To protect
against side channel exploitation, developers use countermeasures such as desynchronisation [1],
masking [7] or multiple rail logic [21].

In parallel fault analysis has become a major threat for cryptographic devices. First introduced
in [6], fault analysis showed its efficiency against a huge range of cryptographic services : symmetric
[4] and asymmetric [6].

On another topic, the Residue Number System (RNS), introduced in [15], has demonstrated
its ability to execute efficient modular arithmetic with large prime and composite numbers, first
theoretically [2], and then in practice, on RSA cryptosystem [14] as well as on elliptic curves [20,
13].

Bajard et al. [3] proposed a countermeasure called Leak-Resistant Arithmetic (LRA), lying on
the RNS. The main idea of this paper is to randomize the way of representing numbers, i.e the
RNS base. This countermeasure has been proven to add few overhead compared to the fixed base.
Nevertheless, it has never been to our knowledge any complete hardware implementation of it. The
only attempt was done for a full RSA-CRT on a FPGA in [9], we explain in subsection 5.2 why
this attempt is not satisfying, neither for side channel analysis, nor for fault analysis.

Our contribution : We present the first full hardware implementation of the Bajard et al. [3]
LRA countermeasure. We show that considering some adaptations, it is perfectly suitable with the

Cox Rower architecture first introduced in [14]. Moreover, we introduce a new technique to detect
faults during a modular computation, called the RNS Fault Detection (RFD). The RFD detects
fault during the computation, by using the redundancy of RNS representation, and by checking it
at each step during the whole computation. The two countermeasures can be used together, as well
as with other known countermeasures. Eventually we prove the low cost of our countermeasure by
exhibiting a full 1024 bit RSA-CRT implementation in around 0.6 ms on a Altera Stratix III FPGA,
with less than 15% area overhead and around 6% time overhead for our two countermeasures. Target
application of such special purpose designs are all the fields where high speed, low latency and high
level resistance against attacks are required (example : IPSEC set-top box, PKCS#11 tokens,...).

Structure of the paper : section 2 reminds all the previous work and introduces prerequisites and
notation for the rest of the paper. It deals with mathematical backgrounds of RNS, and presents
the Cox Rower architecture, first introduced in [14]. If the reader is familiar with these work,
we suggest him to go directly to section 3. Section 3 describes the adaptation of the Bajard [3]
LRA countermeasure, and shows its compliance with the Cox Rower architecture. We prove in
this part that the LRA countermeasure can be adapted for high speed cryptoprocessor with very
few overhead. Section 4 introduces the RFD countermeasure, an improvement of the Cox Rower
giving an fault detection ability. Eventually section 5 applies the two countermeasures on a Cox
Rower, and shows implementation overhead brought by these two countermeasures in the case of a
1024 bits RSA-CRT implementation. In this section we also give a brief overview of the state-of-art
countermeasure to protect RSA-CRT.

2 The Residue Number System

Notations : In all the paper, for (a, b) ∈ N2, we denote by |a|b the result of a modulo b.
We also define the following function :

dec(X) R −→ [0; 1[
X −→ X − bXc

2.1 RNS

Let B = {m1, · · · ,mn} be a set of coprime natural integers, and M(B) =
∏n
i=1mi. The residue

number system (RNS) representation < X >B of X ∈ N is the set of positive integers {x1 =
|X|m1 , · · · , xn = |X|mn}. This representation allows fast arithmetic in Z/M(B)Z :

< X + Y >B = {|x1 + y1|m1 , · · · , |xn + yn|mn}
< X − Y >B = {|x1 − y1|m1 , · · · , |xn − yn|mn}
< X × Y >B = {|x1 × y1|m1

, · · · , |xn × yn|mn}
< X / Y >B = {|x1 / y1|m1

, · · · , |xn / yn|mn}
The last line is only available for Y coprime with M(B). The integer |X|M (B) is recovered

thanks to the Chinese remainder theorem :

X =

∣∣∣∣∣
n∑
i=1

|xi × ξi|mi ×
M(B)

mi

∣∣∣∣∣
M

(B) with ξi = |M(B)

mi

−1
|mi . (1)

For the rest of the paper we call B a RNS base, and M(B) its module.

Algorithm 1 Red(X, p,B1,B2)

Require: B and B2 RNS bases with M(B1) > αp and M(B2) > 2p
Require: p coprime with M(B1) and M(B2)
Require: < X >B1 and < X >B2 with X < αp2

Require: precomputations : < | − p−1|M(B1) >B ,< |M(B1)−1|M(B2) >B2 and < p >B2
Require: algorithm Switch(A, β, β′)
Ensure: < S >B and < S >B2 such that |S|p = |XM(B1)−1|p and S < 2p
1: < Q >B←< X × | − p−1|M(B1) >B1
2: Switch(Q,B1,B2)
3: < R >B2←< X + p×Q′ >B2
4: < S >B2←< R×M(B1)−1 >B2
5: Switch(S,B2,B1)
6: return < S >B1 and < S >B2

2.2 RNS Montgomery reduction algorithm and base extension

An adaptation of the classical Montgomery reduction algorithm to the context of RNS has been
proposed by Bajard et al. in [2]. Algorithm 1 is given for remaindering. Let p ∈ N. This algorithm
needs the definition of two RNS bases B1 and B2 with M(B1) and M(B2) coprime with p and with
each other (thus the set of coprimes of B1 and B2 defines a RNS base B with M(B) = M(B1)M(B2)
). For the sake of simplicity, we consider these two bases to be of the same size n, even if this
algorithm is completely general. B is then a RNS base of size 2n. If M(B1) > αp and M(B2) > 2p,
for any X < αp2, algorithm 1 computes the values {< S >B1 , < S >B2} = Red(X, p,B1,B2), with

S = |XM(B1)
−1|p + δp (δ = 0 or 1).

This algorithm needs the input of another function : considering two RNS bases β and β′, of
size n with M(β) and M(β′) coprime, we define Switch(X,β, β′) by the following :

Switch(X,β, β′) [0;M(β)[−→ [0;M(β′)[
< X >β −→ < |X|M(β) >β′

In order to do this transformation, all the former fast implementations using RNS for cryptogra-
phy[17, 20, 13] used the Kawamura algorithm proposed in [14]. This algorithm uses CRT reconstruc-
tion formula (equation 1). The main concern is the computation of the reduction modulo M(B1) in
equation 1. Kawamura [14] proposes an efficient technique using fixed point division presented on
the algorithm 2. In the following we present the work introduced in [14] with the point of view we
need for our work, since we will focus on variation of the algorithm 2 and its subroutines.

This algorithm needs a lot of precomputations : if β = {m1, · · · ,mn} and β′ = {m′1, · · · ,m′n},
one will need of |(M(β)/mi)−1|mi, |(M(β)/mi)|m′

j
, and |−M(β)|m′

j
for (i, j) ∈ [1, n]2. Kawamura’s

algorithm indeed computes in β′ the following value :

X =

n∑
i=1

(ξi ×
M(β)

mi
)−M(β)b

n∑
i=1

ξi
mi
c with ξi = |xi

M(β)

mi

−1
|mi (2)

The evaluation of the quotient b
∑n
i=1

ξi
mi
c is done by the line 9. A function eval(a, b) which evaluates

the a/b quotient in R is needed. This function eval(a, b) must give an under-approximation of a/b
: eval(a, b) = a/b − error. The value reg accumulator is initialized at a value errinit (line 4 of
algorithm 2), which plays a significant role :

Algorithm 2 Switchβ,β′(X)

1: for i from 0 to n do
2: ξi = |ximi/M(β)|mi
3: end for
4: reg accumulator = errinit
5: for j from 0 to n′ do
6: rj = 0.
7: end for
8: for i from 0 to n do
9: reg accumulator = reg accumulator + eval(ξi/mi)

10: for j from 0 to n′ do
11: rj = rj + |xj + ξiM(β)/mi|µj
12: if reg accumulator >= 1 then
13: rj = |r̃j −M |µj
14: end if
15: reg accumulator = dec(reg accumulator)
16: end for
17: end for

– If errinit = 0, then the output of the Kawamura algorithm is < X >β′ or < X + β >β′ when
the branch 13 is executed one time too few. This is the case for the call of Switch(Q,B1,B2) at
line 2 of algorithm 1. We see easily that as Switch(Q,B1,B2) =< Q >B2 or < Q+M(B1) >B2

and if M(B2) > 3p, we have the following : S = |XM(B1)
−1|p + δp with δ ∈ {0, 1, 2}.

– On the Switch(S,B2,B1) at line 5, let us introduce the value errmax

errmax = max(

n∑
i=0

(
ξi
m̃i
− eval(ξi, m̃i)) (3)

If the inequation errmax ≤ errinit < 1−3p/M(B2) holds, then the output of Switch(S,B2,B1)
is < S >B1 , and the result of algorithm 1 is then the < S >B1 , < S >B2 we were waiting for
(S < 3p).

All previous hardware implementation used the eval(a, b) function of [14] : b was estimated by
2r, and a was reduced to the 8 most significant bits. This coarse approximation is enough for typical
cryptographic sizes.

2.3 Hardware architecture

It has been shown in [17, 13], that this algorithm is easily implementable in high speed hardware
implementations for both Elliptic curve (EC) and RSA cryptosystems. The Kawamura’s architecture
used in [17] for RSA and in [13] for EC is called the Cox Rower. Since we use it in this paper, we
present more specifically the architecture. An overview of the architecture is presented on figure 5
in appendix.

The Rowers are synchronous hardware modules parametrized by the word length r and a pseudo-
mersenne size rε. For any value (x, y, t) ∈ [0; 2r]3 any value m ∈ [2r − 2rε ; 2r], any τ ∈ {0, 1}, the
Rower computes |x×y+τt|m and adds it or not with the previous result in the accumulator register.

Considering that rε < r/2, the reduction phase is a classical reduction by a pseudo mersenne, and
algorithm given in [13] works fine.

The Cox module is used to compute the lines 9 and 13 of algorithm 2. Together with the Rowers,
it is sufficient to compute the whole algorithm 1, and therefore RSA (CRT or not) [17] or EC [13].
Note that the exponent is treated in the sequencer and does not appear on figure 5. In all previous
hardware, the Cox is a simple hardware 8 bit accumulator.

The whole architecture is parametrized by ν the number of Rowers, r and rε the word size
of the Rower. We only consider RNS bases B1 and B2 composed of n coprimes pseudo-Mersenne
numbers of size r. To get the best results, we assume that ν divides n, and ρ = n/ν. The modular
value p added with the needed α in algorithm 1 must respect dlog2(αp)e < r× n, but is as close as
possible to the limit (for the sake of efficiency). Thanks to the Cox Rower architecture, a full length
multiplication of two values less than 3p is executed in only 2ρ cycles. If we consider the following
bases B1 and B2 of size n, we can also execute the full algorithm 1 in ρ(2n + 3) cycles by mixing
the algorithm 2 in the algorithm 1. On figure 1 is the exhaustive list of the precomputations.

Fig. 1. Needed precomputations for algorithm 1 and 2 in Cox Rower

Precomputations used in

|(−pM(B1)/mi)
−1|mi for i ∈ [1, n] combined line 1 of Red and line 2 of Switch(Q,B1,B2)

|(pmn+j/(miM(B2))|mn+j for (i, j) ∈ [1, n]2 main loop of Switch(Q,B1,B2)
| − pmn+j/M(B2)|mn+j for j ∈ [1, n] used in line 13 of Switch(S,B1,B2)
|(mn+j/(M(B1)M(B2))|mn+j for j ∈ [1, n] combined line 3 and 4 of Red and line 2 of Switch(S,B2,B1)
|M(B2)/mn+j |mn+j for j ∈ [1, n] invert line 2 of Switch(S,B2,B1) 3

|M(B2)/mn+j |mi for (i, j) ∈ [1, n]2 main loop of Switch(S,B2,B1)
| −M(B2)|mi for i ∈ [1, n] used in line 13 of SwitchB2,B1

This architecture has proven to reach impressive efficiency while computing RSA and EC. For
example in [17], a 1024 bit RSA-CRT is computed in 2.4 ms at 80 MHz using ρ = 3 and r = 32 on
a 130 nm ASIC technology. In [13], Guillermin proposed different variations of n, with ρ = 1 for
EC. He proposed r = 36, well adapted to the high-end FPGA Xilinx or Altera with their 18 × 18
multipliers. Using r ' 36 a 160 bit EC is computed in 0.37 ms on an Altera Stratix II, and a 512
in only 2.23 ms.

Nevertheless, this architecture suffers drawback : It is designed to efficiently manipulate only
one length of numbers. For example, the 512 bit architecture is efficient only for manipulating
512 bit numbers (and 1024 before reduction). Small numbers can be used, but with much loss of
speed compared to their size. This makes them therefore not really suitable for countermeasure
like Shamir’s [19] and the following [5, 10], which manipulate small numbers at the end of the
computation.

In the rest of the paper, we define Cox Rower(n, r, ρ) a Cox Rower design with dn/ρe rowers of
word length r (then able to compute modular arithmetic up to nr − log2(α) bits). Our purpose is

3 used to spare pipeline idle states before the main loop of SwitchB2,B1

to adapt this architecture to provide it with the Bajard countermeasure [3], and a fault detection
ability, without losing the advantages of this architecture, neither in speed, nor in size.

3 Leak Resistant Arithmetic using Cox Rower Architecture

In this section we prove that the Leak Resistant Arithmetic (LRA) countermeasure of Bajard [3] is
also achievable on a Cox Rower considering some adaptations. Subsection 3.1 reminds the principle
of this countermeasure and subsection 3.2 presents the necessary adaptations to compute a LRA
variant in a Cox Rower.

3.1 The LRA countermeasure

The countermeasure consists in using a random partition γ of an RNS base β = {m1, · · ·m2n}
into 2 coprime RNS bases B1,γ = {mγ(1), · · · ,mγ(n)} and B2,γ = {mγ(n+1), · · · ,mγ(2n)} respecting
the conditions described in subsection 2.2 for any γ. By doing this, we transform any modular
value |X|p of the cryptosystem by its Montgomery representative |XM(B1,γ)|p. The number of
possible representatives of the same value X is then equal to the number of partitions γ. For a
Cox Rower(15, 36, 1) (enough to compute a 1024 bit RSA-CRT), this makes around 237 different
masks. This kind of mask needs no expensive inversion step for demasking, because it is automati-
cally done by invert Montgomery transformation (which is a simple call to the Red function).

Using the partition γ instead of any completely different RNS base each time allows to reduce
to 0 the need of specific precomputations depending on γ. To get this result, Bajard uses the
Mixed Radix System (MRS) transformation to implement the switch(X,β, β′). The value X is first
transformed in MRS of the base β before being recomputed in β′. The RNS to MRS transformation
does only need µi,j = |m−1i |mj . The MRS to RNS transformation uses mi,j = |mi|mj , and others
precomputed values such as < −p−1 >M(B1,γ) and < p >M(B2,γ) are indeed the set of | − p−1|mγ(i)
and |p|mγ(n+i)

. All these precomputations are independant from γ.

There does not exist speed efficient hardware implementation of this kind of algorithm so far,
mostly because there are too many dependencies of temporary results during the MRS transforma-
tion. Therefore it is not really suitable for parallel high speed computation.

The only difficulty is the computation of the Montgomery representative |XM(B1,γ)|p. We can
indeed do it by computing Red(X × |M(B)|p, p,B2,γ ,B1,γ) (note the base swap between B1,γ and
B2,γ).

3.2 Precomputations

The main difficulty of the Kawamura’s algorithm is the number of precomputations that are needed
to execute the reduction algorithm. These precomputations are not a problem if the bases B1 and
B2 are fixed and known.

We demonstrate here that they are neither a problem if we have a Cox Rower(n, r, ρ) at our
disposal, because all the needed precomputations can be done by the Cox Rower itself, starting from
γ independent precomputations (in fact, the same as the one Bajard needs). First we choose for every
Rower Rowj , ρ random moduli from B1,γ and ρ from B2,γ . Next for each chosen moduli mx we load
the RAM of jth Rower with the following precomputed values : |p|mx , |− p−1|mx , ||M(B)|p|mx ,mi,x

and µi,x for i ∈ [1, 2n]. The values mi,i and µi,i are both set to 1. Next we compute the following
values :

< A >B1,γ = < M(B2,γ) >B1,γ = {|
∏2n
i=nmγ(i),γ(j)|mγ(j)} for j ∈ [0, n]

< B >B1,γ = < M(B2,γ)
−1

>B1,γ = {|
∏2n
i=n µγ(i),γ(j)|mγ(j)} for j ∈ [0, n]

< C >B1,γ
= {|M(B1,γ)/mγ(i)‖mγ(i)} = {|

∏n
i=0mγ(i),γ(j)|mγ(j)} for j ∈ [0, n]

< D >B1,γ
= {|mγ(i)/M(B1,γ)|mγ(i)} = {|

∏n
i=0 µγ(i),γ(j)|mγ(j)} for j ∈ [0, n]

and the same < A′ >B2,γ
, < B′ >B2,γ

, < C ′ >B2,γ
and , < D′ >B2,γ

with B1,γ and B2,γ swapped
in the above formulae. The number of cycles needed to compute it in a Cox Rower(n, r, ρ) is 8ρn
cycles. From here it is easy to see that the values given in figure 1 can be easily computed through
2ρn+ 6ρ cycles :

{|(−pM(B1,γ)/mγ(i))
−1|mγ(i)} = < −p−1 ×A >B1,γ

{|pmγ(n+j)/(miM(B2))|mγ(n+j)
}B2,γ

= < p× >
| − pmn+j/M(B2)|mγ(n+j)

finir...

As we need Red(X, p,B2,γ ,B1,γ), we add 2ρn+ 6ρ cycles more. Eventually if another prime q is
needed (like RSA CRT), this adds 2ρ(n+ 3) for the whole reduction step.

Note that the value of the prime p is automatically masked by a value depending on γ during
the base precomputation. Therefore, even if the attacker knows the input X of the Red algorithm
(which is the case for the Montgomery representation computation), she will not be able to set
classical DPA to recover p (useful for RSA cryptosystem).

As a conclusion, the precomputations for the LRA countermeasure can efficiently be executed
by a Cox Rower(n, r, ρ). The total cycle cost is 12ρ(n + 1) cycles (with an extra cost of 2ρ(n + 3)
cycles for an additive prime. Therefore the main problem remains to load the complete RAMs with
precomputed values independant of γ (we use a simple data transfer to put all the precomputed
values corresponding to the moduli of B1,γ and B2,γ in the right Rower, no computation is needed).

4 The RNS Fault Detection countermeasure

In this section we introduce a new countermeasure against faults, which we call the RNS Fault
Detection (RFD). In this section we introduce this countermeasure independently from the LRA
countermeasure. These two can indeed be used separately. Therefore we start from the notation of
section 2.

4.1 Fault model

Let us consider a Cox Rower(n, r, ρ) defined with two fixed bases B1 = {m1, · · · ,mn} and B2 =
{mn+1, · · · ,m2n}, not necessarily random, and known by the attacker. All the mi are pseudo-
mersenne numbers, and we define rε as in subsection 2.3. Let p be the used modular value.

The fault model we address is a fault on a single Rower: while all the Rowers compute in parallel,
only one is targeted by the fault. This fault model is typical of a laser injection. As Rowers is the
most important part of the design, it is crucial to protect them, and we propose an efficient way to
achieve this goal. A fault on the Cox or on the sequencer of the Cox Rower is not addressed, some
ideas are proposed in the subsection 4.6.

The intuition we follow is that if the base is bigger (e.g a Rower is added), the Montgomery
reduction algorithm still gives a result between 0 and 3p, and then we can use the value of the
added Rower as a proof that no fault has been realized. We also follow the intuition that two RNS
values close to one another (with the same RNS digits on most of the moduli of the base) are not
close to one another in classical multiprecision representation (the absolute value of their difference
is big). We then just have to exploit this property. To do so, we still use the Kawamura algorithm
(algorithm 2) together with the Cox Rower architecture.

4.2 The s limited development Cox

First we need to reconsider the eval(a, b) function needed at line 9 of algorithm 2. Indeed, the
proposed ξi/2

r of [14] is too approximative as we will see in subsection 4.4. We propose to use a s
limited development of ξi/mi :

ξi/mi ' ξi(
s−1∑
j=0

(2r −mi)
j

2r(j+1)
) (4)

Therefore, with a s limited development design, the approximation eval(ξi,mi) is still an un-
derestimation, the value errmax defined in subsection 2.2 respects the following :

errmax ≤
n∑
i=0

(
2r −mi

2r

)s
≤ 2−s(r−rε)+dlog2(n)e (5)

The hardware design realizing this operation is given in figure 2. It is constituted of at least two
pipeline stages : a multiplication stage and an addition stage. The multiplication stage is constituted
of s − 1 multipliers. One of the operand is the main bus of the Cox Rower, and the second is a
precomputed value relying on B1 or B2. Considering that r is the maximal size of the multiplier,
we easily see that we can have s up to br/rεc without taking any risk on the critical path of the
design (the same multipliers are in the Rowers).

The addition part may be more complex to integrate. Indeed the Cox signal must be available
two cycles after the computed ξi value apparition on the main bus of the Cox Rower, this signal
being used on the second pipeline stage of the Rower (see figure 5). This lets us only one cycle to do
all the additions of equation 5. Nevertheless, the value of the Cox signal can easily be anticipated
if a high value of s is needed.

Note eventually that the original Kawamura’s Cox [14, ?], is actually our proposed Cox reduced
to s = 1 (with no multiplier).

4.3 Fault detection using s limited development Cox

Let us have B2 largely superior to 3p, the maximal value of {S}B2
on line 4 of algorithm 1. Let us

define σ such that M(B2) > 2σ+13p. M(B1) is still superior to αp. We can prove the following :

Proposition 1. Considering the 3 following conditions :

– s the limited development level is such that s(r − rε) ≥ dlog2(n)e+ σ + 1,
– errinit = 2−σ−1

– X the input of the Red algorithm is less than αp2 ,

the σ most significant bit of the accumulator register of the Cox are equal to 0 at the end of of the
second base change (line 5 of the algorithm 1).

Proof : As X ≤ αp2, we deduce that S ≤ 3p at line 4 of algorithm 1. In the SwitchB2,B1(S) (line
5) we can then deduce the following :

0 ≤ dec

(
n∑
i=0

ξi
mi

)
=

S

M(B1)
< 2−σ−1 (6)

Thanks to the definition of s and errinit, we also deduce that at the end of the algorithm 2,

dec

(
n∑
i=0

ξi
mi

)
≤ reg accumulator ≤ dec

(
n∑
i=0

ξi
mi

)
+ errinit (7)

We can have then the final inequation : 0 ≤ reg accumulator < 2−σ QED.

In figure 2, we present the fault detection capable Cox with a s limited development. Consider-
ing that the conditions of proposition 1 are fulfilled, if no fault is introduced in the design, the
”fault detected!” signal remains down during the whole computation. In the following we propose
to introduce faults on local variables in the Rowers.

Fig. 2. Fault detection capable Cox

· · ·

· · ·

· · ·

ξi

ROM1

εi ε2i

ROM2

εk−1
i

ROMk−1

Rowers

= 0

fault?

fault detected!

4.4 Fault detection on the base B2

In this subsection we introduce an error in one Rower, on a value on B2. It corresponds to a fault
either on {X}B2

, on the lines 3 and 4 of algorithm 1, on the line 5, 11 and 13 of the first base change,
the line 2 of the second base change, or on any precomputed value needed for precomputations in
B2.

We consider s, M(B2) and the faultless value X such that the conditions of proposition 1 holds.
We can then deduce

Proposition 2. If σ ≥ r + 1, any fault on the base B2 on a single Rower can be detected by the s
limited development Cox, or has no impact on the result.

Proof : Any unique fault on the upper invoked lines, leads to a value ξ′i = ξi + εi after the
execution of the line 2 of the second base change. As the registers of the Cox Rower are of size
r, we have −mn+i < −ξi ≤ εi ≤ 2r − ξi < 2r. At the end of the second base change, the value
of reg accumulator′ is set to dec(reg accumulator + eval(εi,mn+i)). We then have to consider 2
cases :

– εi = mn+i : We see easily that this fault has no impact on the result : the offset on < S >B (line
11 of algorithm 2) is M(B2) and is automatically corrected by the line 15, which is executed
one time too much. The fault detection may work or not, depending on the approximation of
eval(εi,mn+i),

– other εi : We have the following inequation :

εi
2r

< eval(εi,mn+i)) < εi

(
1

2r
+

1

2r+1

)
. (8)

Therefore it is easy to see that for any value εi /∈ {0;mn+i}, dec(reg accumulator+eval(εi,mn+i))
has at least one 1 in its σ most significant bits, and is automatically detected by the Cox.

4.5 Faults on the base B1

In this section we introduce fault on the line 1 of algorithm 1, on the line 2 of the first base change,
or on the lines 11 and 13 of the second base change (algorithm 2), or on any precomputed value
needed for precomputations in B1. All these faults induce incorrect values on the values ξi at line
2 of the first base change. For the fault on the second base change, we suppose that these will be
used further in the whole cryptographic algorithm. If not, we can detect them thanks to the RNS
to multiprecision transformation algorithm (indeed, the expected value must be less than 3p. If not,
it means that a fault occurred).

Proposition 3. Considering the 3 following conditions :

– s the limited development level is such that sρε ≥ dlog2(n)e+ σ + 1,
– errinit = 2−σ−1

– X the input of the Red algorithm is less than αp2 ,

If σ ≥ (r + dlog(6n)e + 1) + φ, the probability that there exist a potentially undetected fault on a
single Rower is

Pr(∃f undetected) < 2−φ (9)

Proof : we consider a single fault εi, with ξ′i = εi + ξi at line 2 of the first base change. Let us see
how it is propagated during the Red algorithm.

– Q′′ = |Q′+εiM(B1)/mi|M(B2) if the line 13 has been executed the same number with or without
the fault.

– Q′′ = |Q′ + εM(B1)/mi −M(B1)|M(B2) if line 13 of algorithm 2 has been executed one time to
much,

– Q′′ = |Q′ + εM(B1)/mi +M(B1)|M(B2) if line 13 of algorithm 2 has been missed once.

The input of SwitchB2,B1
(line 5 of algorithm 1) is therefore :

S′ = |S + εpm−1i |M(B2) (10)

or S′ = |S + εpm−1i − p|M(B2) (11)

or S′ = |S + εpm−1i + p|M(B2) (12)

Considering the fault detection as mentionned above. Thanks to the precision of the eval func-
tion, it is easy to see that the following proposition is true.

No fault detection⇒ S′ < M(B2)2−σ or S′ > M(B2)(1− 2−σ−1). (13)

Eventually as 0 ≤ X < 3p < 2−σ−1 , equation 13 becomes :

No fault detection⇒ |X ′ −X|M(B2) < M(B2)2−σ or X ′ > M(B2)(1− 2−σ). (14)

As X is between 0 and 3p, we have :

∀i ∈ [0;n[,∀εi ∈]−mi; 2r[, εi /∈ {0,mi},∀ζ ∈ {−1, 0, 1} 2−σ <
|εpm−1i + ζp|M(B2)

M(B2)
< 1− 2−σ

⇒ a fault detection occurs. (15)

We can see in this result that any fault on the base B leads to a deviation depending on the
basis B and p. We have 6n2r different possible deviation for a fault on a single Rower. If we consider
them equally distributed between 0 and M(B1), we can conclude our demonstration. Note that this
is a worst case for us : as p is very small compared to M(B2), the 3 values |εpm−1i +ζp|M(B2)/M(B2)
for ζ ∈ {−1, 0, 1} are close to one another. Note also that if a fixed base is used, the inequation ??
can be exhaustively tested for every i,εi and ζ.

4.6 Fault on the Cox or on the sequencer

At this point we have shown that if we take in consideration the conditions given in proposition
3 (which is essentially raising the size of M(B2) as well as the precision of the Cox) any fault on
a single Rower will automatically lead to a fault detection, as long as the sequence of operations
is not affected by the fault Unfortunately, it is not possible to prove the same assumption on the
Cox or on the sequencer. Nevertheless, considering that the Cox is a small part of the design, and
that it is necessary to prevent the sequencer from fault, we can use redundancy, dual rail, or any
classical technique to detect execution errors in this subpart of the design.

4.7 Combining both countermeasures

The LRA and the RFD countermeasures can efficiently be used together. Indeed we see that propo-
sitions 1 and 2 uniquely rely on n, r and s, and are therefore true for any permutation γ. For the
second base change, we have only restricted the probability of the existence of an undetected fault,
without proving their non existence. But as seen in equation 10, the fault depends on p but also
M(B1,γ) and M(B2,γ). Randomizing the RNS bases makes the task of the attacker harder.

5 Securing RSA-CRT with LRA and RFD countermeasures

In this section we propose an implementation of the Cox Rower carrying the LRA as well as the
RFD countermeasure. We design it to efficiently execute a classical cryptographic operation : the
1024 bit RSA-CRT cipher primitive.

Let N = pq a 1024 bit RSA key (p and q are 512 bit long), d the private exponent and
e = |d−1|φ(N) the public one. Let M be the input of the RSA primitive. The RSA-CRT computes

|Md|N , but using the RNS base {p, q} and its fast arithmetic over Z/NZ. It replaces the expensive
1024 bit exponentiation with two 512 bits exponentiation. The complexity reduction is around 4 (in
RNS as well as in the classical multiprecision context). Algorithm 3 describes the whole algorithm
to compute RSA-CRT using the Cox Rower. We remark that the reduction step is cheaper for RNS
the way it is proposed than the classical Garner’s recombination : C = cq + q(|q−1|p(cp − cq)). It
only costs 2 reductions which are mixed with the Montgomery inverse transformation instead of 3.

Algorithm 3 RSA− CRT for RNS (p, q, dp, dq, X,m)

Require: p, q, d a RSA key, m a message, B a RNS base,
Ensure: c = |md|pq
1: Radix2RNS(m,M(B))
2: computes γ a partition of B in B1,γ and B2,γ ,
3: Mp = TrMgt(m, p,B1,γ ,B2,γ)
4: Mq = TrMgt(m, q,B1,γ ,B2,γ)
5: Cp = expo(Mp, dp, p, ,B1,γ ,B2,γ)
6: Cq = expo(Mq, dq, q,B1,γ ,B2,γ)
7: cp = Red(Cp ∗ |q−1|p, p,B2,γ , Bg)
8: cq = Red(Cq ∗ |p−1|q, q,B1,γ ,B2,γ)
9: C = cp ∗ q + cq ∗ p

10: return RNS2Radix(C,M)

5.1 RSA-CRT physical vulnerability

It is a well known fact that classical RSA-CRT implementation without countermeasures is very
sensitive to differential fault analysis. Indeed, if an attacker gets a message and a corresponding
faulty cipher text (m, c′), after having injected a fault anywhere between line 3 and 9 she can get
the private key be simply executing the following computation :

p or q = gcd(N, c′e −m) (16)

The simplest way to prevent such an attack is to verify if c = me. Often, this countermeasure does
not cost a lot, since e is small. But in many case, e is not small, and verifying costs a lot (the
same as a classical 1024 bit exponentiation). Other times, e is simply not available (for example
the javacard RSA API does not provide it).

Design of countermeasure for RSA-CRT has known a lot of attention in the public community.
Among them, we can cite the following [5, 8, 12, 18, 22, 10]. All these countermeasure are design
for smart card devices, and evaluation of the performance uses a complexity approach. Parallelism
is rarely considered, and that makes these countermeasure not completely suitable for high speed
designs.

5.2 The Ciet et al. [9] countermeasure

In [9], the authors proposed a FPGA implementation of a 1024 bit RSA-CRT using r = 64 bits.
Like this work, they used the Residue Number System together with additional moduli in their
RNS base. They also claimed to be SCA-FA resistant, but their approach is not satisfactory for two
reasons :

– to avoid side channel, they proposed to use base randomization, but only choosing two bases
in a set precomputed ones. This is clearly less powerful than the Bajard et al. countermeasure
[3] proposed in this work.

– They proposed to use a redundant modulus in the RNS base, but instead of detecting the fault at
each reduction, they wait for the RNS to classical multiprecision representation transformation
to verify if the value is in the expected range (less than 3p in our case). Used alone, this
countermeasure is clearly weak. If a fault occurs at the beginning of the exponentiation step,
even though the faulty value will be large compared to 3p, as this value will be multiplied
and reduced many time before being turned into classical multiprecision representation, and
as M(B1) is necessarily more than 3p, the manipulated value will progressively decrease, and
may be eventually in the expected range at the end of the computation. Our approach does not
suffer this drawback, since all the temporary variables are tested each time they are reduced.

5.3 Our SCA-FA resistant implementation of a 1024 bits RSA-CRT

In RSA-CRT, no reduction by N is needed except in the reconstruction step (as x′p and x′q can be
up to 3p we have C < 6p). This reduction step cannot be done by the Cox Rower, but remains
cheap enough to be executed by a small general purpose embedded CPU. Therefore we propose a
Cox Rower having the following parameters :

n r rε ρ s σ φ
16 36 8 1 2 51 8

Note that with these parameters the value of σ is limited by s and not by the size ofM(B2). But these
parameters are clearly enough to ensure that no fault on a single Rower can be achieved without
being detected. We implement the architecture of the figure 5 on the Stratix III EP3SL50F484C2,
the smallest of the Stratix III series (available in the web edition of Altera Quartus II). We used
redundancy to protect both the Cox and the sequencer, as they are not protected by the RFD

countermeasure. The final design is cadenced by a single clock which can run up to 148 MHz at
85◦C, according to the Altera Quartus II software.

Fig. 3. Area consumption of the Cox Rower

Module number logic 18× 18 DSP Memory

Rower 16 467 ALM 9 2 M9k

Cox 2 220 ALM 4 0

sequencer 2 416 ALM 0 2 M9k

Cox Rower 1 8385 ALM 148 34 M9k

The total cost of the LRA and RFD countermeasures is 1323 ALM out of 8385 (15%), 13 18×18
DSP blocks out of 148 (9%), and eventually 6 M9k memory block out of 34 (18%).

To protect the exponentiation step against side channel analysis, we used the Montgomery ladder
together with the exponent randomization (see algorithm 5 in appendix). It is clearly less efficient
than the Rivain countermeasure [18], but does not need on the fly double chain computation (the
double chain computation needs to be on the fly because of the exponent randomization). We
chose a 36 bit random value. Our Leak Resistant Arithmetic countermeasure provides the operand
randomization needed to thwart Fouque attacks [11]. Thanks to the exponent randomization, we
are also immune against safe errors.

5.4 Montgomery representation computation

Let now X be an input of the RSA-CRT algorithm. One need first to compute the Montgomery
representation M(X) = |XM(B1,γ)|p. In [3], the computation of Red(X × |M(B)|p, p,B2,γ ,B1,γ)
gives the result, and the only precomputations which are needed do not depend on γ. In section
3 we have shown that our Cox Rower is able to do the same. But for RSA-CRT we need a small
adaptation of the Bajard algorithm : as X is 1024 bits long, X|M |p may be a 1536 bits number,
and we cannot use such a number in our Cox Rower. Algorithm 4 shows this adaptation.

Algorithm 4 TrMgt(X, p,B1,γ ,B2,γ)

Require: p a prime, X a message, B1,γ and B2,γ the two RNS bases,
Ensure: |Xd|pq
1: A = Red(X, p,B2,γ ,B1,γ)
2: B = A× |M(B)|p
3: C = Red(B, p,B2,γ ,B1,γ)
4: D = C × |M(B)|p
5: E = Red(D, p,B1,γ ,B2,γ)
6: return E

5.5 CRT reconstruction and RNS to Radix computation

It is easy to see that with our SCA-FA countermeasures, algorithm 3 is protected until line 8.
Afterwords, the variables are not masked by the LRA countermeasure. Fortunately, there are no
side channel attack to our knowledge able to take benefit of it (except very powerful attacks like
templates). But the operation of line 9 is vulnerable to fault attacks, and no reduction is used after
that. Attacking after line 9 is useless, since the manipulated values are public.

To protect the line 9, we propose to use the RNS2Radix reconstruction proposed by Guillermin
[13] together with our RFD countermeasure. Indeed, the main idea of this reconstruction is to
consider B1 = {2r} and B2 = B− {2r}. Indeed the value modulo 2r are the LSB of the result. This
value is subtracted on each module of B2, and the obtained value is multiplied by |2−r|M(B2), and
eventually a base switch can be computed between B1 and B2. Hence, this base switch presents
the same properties as the second base switch of the algorithm 1. In our proposed case, conditions
of proposition 2 are fulfilled, therefore any fault on B2 will be detected. Using the formula of
proposition 1 and 3, we find in this case that σ = 50 probability that there exists a fault on B1
which may be undetected is majored by 2−5. Moreover, as the base are fixed, it is easy to prove
with an exhaustive search that inequation 15 always holds.

5.6 cycle count

In figure 4 we compare two implementations of the RSA-CRT : the first one is a version using a
simple Montgomery ladder using 36 bit exponent randomization in a Cox Rower (15, 36, 1) imple-
menting neither the LRA countermeasure nor the RFD. We use it as a benchmark to evaluate the
marginal cost of our two countermeasures. The array shows that it costs less than 6% of the cycle
count.

The full 1024 bit RSA-CRT computation requires around 0.6 ms.

Fig. 4. cycle count for a RSA-CRT without and with SCA-FA protections
.

subroutine RSA-CRT without protection RSA-CRT with protection overhead

Base precomputation 0 242 242
Radix2RNS 254 254 0

TrMgt 80 296 216
expo 82771 87155 4384

CRT reconstruction 93 97 4
RNS2Radix 1073 1209 136

total 84271 89253 4972

6 Conclusion

In this paper, we proposed an adaptation of the Leak-Resistant Arithmetic (LRA) countermeasure
of [3] and proposed a new countermeasure against fault called the RNS Fault Detection (RFD).
These two countermeasure are adapted to the Cox Rower architecture and provide a good protection

against side channel and fault analysis for any cryptographic function using modular arithmetic.
We implemented our countermeasure in a FPGA in the case of RSA-CRT 1024 bit, showing that
our countermeasure induced a small area overhead (15%) as well as a small latency overhead (6%).
This makes our countermeasure very affordable for any hardware device requiring both speed and
efficient protection against security threats.

Appendix

Fig. 5. General architecture of a Cox Rower

mi

RAM

RAM
coxi

cox row1 row2

sequencer

command

in
out

main bus

rown

cox

cox

sequencer

main bus

ALU

Triple port RAM

out

Algorithm 5 The Giraud countermeasure [12]

Require: X, d
Ensure: Xd

1: R = 1;S = X
2: for i from 1 to log2(d) do
3: if di = 0 then
4: S = S ×R;R = R2

5: else
6: R = S ×R;S = S2

7: end if
8: end for
9: if XR 6= S then

10: throw fault detection
11: end if
12: return R

References

1. Analysis and improvement of the random delay countermeasure of ches 2009. In CHES, volume 6225,
page 95, 2010.

2. Jean-Claude Bajard, Laurent-Stphane Didier, and Peter Kornerup. An rns montgomery modular mul-
tiplication algorithm. IEEE Transactions on Computers, 47(7):766–776, 1998.

3. Jean-Claude Bajard, Laurent Imbert, Pierre-Yvan Liardet, and Yannick Teglia. Leak resistant arith-
metic. In Cryptographic Hardware and Embedded Systems - CHES 2004, volume 3156 of Lecture Notes
in Computer Science, pages 116–145. Springer Berlin / Heidelberg, 2004.

4. Eli Biham and Adi Shamir. Differential fault analysis of secret key cryptosystems. In Proceedings of the
17th Annual International Cryptology Conference on Advances in Cryptology, pages 513–525, London,
UK, 1997. Springer-Verlag.

5. Johannes Blomer, Martin Otto, and Jean pierre Seifert. A new crt-rsa algorithm secure against bellcore
attacks. In CCS 2003, ACM SIGSAC, ACM Press, pages 311–320. ACM Press, 2003.

6. Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the importance of checking cryptographic
protocols for faults (extended abstract). In EUROCRYPT, pages 37–51, 1997.

7. D. Canright and Lejla Batina. A very compact ”perfectly masked” s-box for aes. In Proceedings of the
6th international conference on Applied cryptography and network security, ACNS’08, pages 446–459,
Berlin, Heidelberg, 2008. Springer-Verlag.

8. Mathieu Ciet and Marc Joye. Practical fault countermeasures for chinese remaindering based rsa
(extended abstract). In IN PROC. FDTC05, pages 124–131.

9. Mathieu Ciet, Michael Neve, Eric Peeters, and Jean jacques Quisquater. Parallel fpga implementation
of rsa with residue number systems can side-channel threats be avoided. In 46 th . International
Midwest Symposium on Circuits and Systems: MWSCAS 03, 2003.

10. Jean-Sébastien Coron, Christophe Giraud, Nicolas Morin, Gilles Piret, and David Vigilant. Fault attacks
and countermeasures on vigilant’s rsa-crt algorithm. In FDTC, pages 89–96, 2010.

11. Pierre-Alain Fouque and Frédéric Valette. The doubling attack - hy upwards is better than downwards.
In CHES, pages 269–280, 2003.

12. Christophe Giraud. An rsa implementation resistant to fault attacks and to simple power analysis.
IEEE Trans. Computers, 55(9):1116–1120, 2006.

13. N. Guillermin. A high speed coprocessor for elliptic curve scalar multiplications over Fp. In CHES ’10:
Proceedings of the Twelvth International Workshop on Cryptographic Hardware and Embedded Systems,
2010.

14. Shinichi Kawamura, Masanobu Koike, Fumihiko Sano, and Atsushi Shimbo. Cox-rower architecture for
fast parallel montgomery multiplication. In Advances in Cryptology EUROCRYPT 2000, volume 1807
of Lecture Notes in Computer Science, pages 523–538. Springer Berlin / Heidelberg, 2000.

15. Donald Knuth. The art of computer programming.
16. Paul C. Kocher. Timing attacks on implementations of diffie-hellman, rsa, dss, and other systems. In

CRYPTO, pages 104–113, 1996.
17. Hanae Nozaki, Masahiko Motoyama, Atsushi Shimbo, and Shin-ichi Kawamura. Implementation of

rsa algorithm based on rns montgomery multiplication. In CHES ’01: Proceedings of the Third Inter-
national Workshop on Cryptographic Hardware and Embedded Systems, pages 364–376, London, UK,
2001. Springer-Verlag.

18. Matthieu Rivain. Securing rsa against fault analysis by double addition chain exponentiation. In
CT-RSA, pages 459–480, 2009.

19. Adi Shamir. Improved method and apparatus for protecting public key schemes from timing and fault
attacks, 1998.

20. Robert Szerwinski and Tim Gayneysu. Exploiting the power of GPUs for asymmetric cryptography. In
Cryptographic Hardware and Embedded Systems CHES 2008, volume 5154 of Lecture Notes in Computer
Science, pages 79–99. Springer Berlin / Heidelberg, 2008.

21. Kris Tiri and Ingrid Verbauwhede. A logic level design methodology for a secure dpa resistant asic or
fpga implementation. pages 246–251, 2004.

22. David Vigilant. Rsa with crt: A new cost-effective solution to thwart fault attacks. In CHES, pages
130–145, 2008.

