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Abstract. Proofs of Retrievability (POR) is a cryptographic method for remotely auditing the in-
tegrity of files stored in the cloud, without keeping a copy of the original files in local storage. In a
POR scheme, a user Alice backups her data file together with some authentication data to a poten-
tially dishonest cloud storage server Bob. Later, Alice can periodically and remotely verify the integrity
of her data stored with Bob using the authentication data, without retrieving back the data file dur-
ing a verification. Besides security, performances in communication, storage overhead and computaton
are major considerations. Shacham and Waters [1] gave a fast scheme with O(s) communication bits
and a factor of 1/s file size expansion. Although Ateniese et al. [2] achieves constant communication
requirement with the same 1/s storage overhead, it requires intensive computation in the setup and
verification. In this paper, we incorporate a recent construction of constant size polynomial commitment
scheme into Shacham and Waters [1] scheme. The resulting scheme requires constant communication
bits (particularly, 720 bits if elliptic curve is used or 3312 bits if a modulo group is used) per verification
and a factor of 1/s file size expansion, and its computation in the setup and verification is significantly
reduced compared to Ateniese et al. [2]. Essentially, Ateniese et al. [2] requires one group multiplication
per each bit of the data file in the setup, while the proposed scheme requires one group multiplication
per each chunk of data bits (160 bits per chunk if elliptic curve is used or 1024 bits per chunk if modulo
group is used). The experiment results show that our proposed scheme is indeed efficient and practical.
Our security proof is based on Strong Diffie-Hellman Assumption.

Keywords: Cloud Storage, Proofs of Retrievability, Remote Data Integrity Check, Homomorphic
Authentication Tag, Polynomial Commitment, Provable Data Possession

1 Introduction

Backuping data in a cloud storage, for example Amazon Cloud Drive, Microsoft Skydrive, or Drop-
box, is gaining popularity recently. We are considering scenarios where users may have concerns
of the integrity of their data stored in the cloud storage. Such prudent users may not be simply
satisfied with the cloud storage server’s promise on maintaining the data integrity. Instead, they
desire a technical way to verify that whether the cloud storage server is keeping his promise and
following the service level agreement (SLA). That is, these users want to base their data integrity
on the incapability of cloud storage server to break SLA without being caught.

Cloud storage users have many reasons to not trust in the cloud storage server, for example, the
cloud storage server may have incentive to cut cost by shifting data to a cheaper but slower storage,
or the cloud storage server may intend to cover up data loss events. Such threat to integrity of data
stored in cloud is indeed realistic. Several events about massive loss of Gmail [3] and Hotmail [4]
have been reported. There are also plenty of data loss cases that are claimed by individuals but not
confirmed officially by the cloud server, e.g. data loss cases in Dropbox [5].

Proofs of Retrievability (POR) model proposed by Juels and Kaliski [6] is among the first few
attempts to formulize the notion of “remotely and reliably verifying the data integrity without re-
trieving the data file”. A POR scheme consists of setup phase and a sequence of verification phases.
In the setup phase, a data owner Alice preprocesses her data file using her private key to generate



some authentication information. Then Alice sends the data file together with authentication in-
formation to the cloud storage server Bob, and removes them from her local storage. Consequently,
in the end of setup phase, Alice only has her private key in her local storage, and Bob has both the
data file and the corresponding authentication information. In each subsequent verification phase,
Alice generates a random challenge query and Bob is supposed to produce a short response or proof
upon the received challenge query, based on Alice’s data file and the corresponding authentication
information. In the end of a verification phase, Alice will verify Bob’s response using her private
key and decide to accept or reject this response.

The performance of a POR scheme is determined by a few factors: communication bits (i.e.
the bit lengths of a challenge and a response) exchanged between Alice and Bob per verification,
storage overhead on Alice/Bob’s side, computation time on Alice/Bob’s side in a verification, and
computation time for setup on Alice side.

Several solutions for remote integrity check are proposed. Ateniese et al. [2] proposed a solution
with O(1) communication and 1/s storage overhead, by generalizing the RSA-based scheme [7],
where s is the ratio of the size of a data block to the size of an authentication tag. The drawback
of this scheme is that it needs to carry out a large number of exponentiations and is thus com-
putationally intensive in both setup phase and verification phase. Shacham and Waters [1] gave a
scheme which is much more efficient in computation (only addition/multiplication and pseudoran-
dom function are required) and has the same 1/s storage overhead. However, this scheme requires
O(s) communication bits per verification. Both Ateniese et al. [2] and Shacham and Waters [1] adopt
some sorts of homomorphic linear authenticator [8] and random sampling to achieve efficiency. It is
possible to incorporate the error erasure code into a remote data integrity check scheme, in order to
reduce the number of data blocks accessed during one verification, in a similar way and achieving
similar tradeoff as in the sublinear online memory checker [9].

1.1 Our result

In Shacham and Waters [1]’s POR scheme, the size of a proof is dominated by s group elements.
We manage to aggregate these s group elements into two group elements, leading to a reduction in
proof size from O(s) to O(1), by exploiting an intriguing property of polynomial, which is recently
used by Kate [10] to construct a constant size polynomial commitment.

Our contributions can be summarized as below.

– We propose a new efficient and secure POR scheme in Section 4. In this scheme, a data block
consists of s group elements and a subset of ` blocks are accessed in each verification. The storage
overhead is 1/s of the data file size, and communication cost is O(1) bits per verification, and
the computation cost is O(s) group exponentiations on the server side (prover) and O(`) group
addition/multiplication/PRF on the client (verifier) side.

– We prove that the proposed POR scheme is secure in Theorem 1 under a variant of Strong Diffie-
Hellman Assumption, which is weaker than the original Strong Diffie-Hellman Assumption.

– The empirical study in Section 5 shows that our scheme is practical under reasonable setting.

In a typical setting where an elliptic curve group of size λ = 160 is used and the system
parameter s = 100, during each verification, 720 communication bits are exchanged between the
data owner and the cloud storage server where 240 bits for challenge and 480 bits for response, and
100 elliptic curve exponentiations are required to generate a response on the cloud storage server
side. The small number of communication bits is also desirable in situations where the challenge
and response could be piggybacked into packets generated by other services provided the server.
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1.2 Related work

Recently, a lot of works [6, 2, 11, 1, 12, 13, 14, 15, 8, 16, 17] have devoted to the study of remote
data integrity check. Juels et al. [6] presented a strong security model, Ateniese et al. [2] gave an
efficient scheme which is secure under a weaker PDP model. Efficient methods using some sorts of
homomorphic authentication tag are proposed in [11,1,8]. Dynamic-PDP [13] extends to dynamic
setting and public verifiability is exploited in [16] and the privacy issue in public verification is
studied in [17]. Recently, Kate et al. [10] proposed an efficient commitment scheme for polynomial
and Benabbas et al. [18] proposed a secure delegation scheme for polynomial. Both schems can be
extended to support POR easily but with limitations. We will elaborate more on Kate et al. [10]’s
polynomial commitment scheme in Section 3.

The most efficient variant scheme E-PDP in Ateniese et al. [2] is suffering the attack by Shacham
and Waters [1]. In Ateniese et al. [2], the main construction requires the prover to compute the
product

∏
(i,ai)∈Chal T

ai
i for all tags Ti selected by the challenge Chal. The authors proposed an

efficient variant scheme, named E-PDP, by setting all coefficients ai in the challenge Chal as 1,
so that only multiplication is involved and expensive exponentiation is avoided. Shacham and
Waters [1] presented an attack on E-PDP, such that the adversary can answer correctly a non-
negligible fraction of queries, but there exists no extractor that can recover any data block.

1.3 Organization

The rest of this paper is organized as below: Section 2 reviews the security formulation of Proofs
of Retrievability. We describe background knowledge on Kate’s polynomial commitment scheme in
Section 3 and present our main scheme in Section 4. We analyze the performance of the proposed
scheme, conduct experiments and report the empirical results in Section 5. After that, we conclude
this paper in Section 6.

Section 4 is self-contained and readers may jump to Section 4 directly to read our main con-
struction.

2 Formulation

2.1 Summary of Notations

At the first, we summarize the key notations used in this paper in Table 1.

2.2 System Model

We restate the POR [6, 1] model as below, with slight modifications on notations. We adopt the
1-round prove-verify version in Juels [6] for simplicity.

Definition 1 (POR [6, 1]) A Proofs Of Retrievability (POR ) scheme consists of four algorithms
(KeyGen, DEncode, Prove, Verify):

– KeyGen(1λ) → (pk, sk): Given security parameter λ, the randomized key generating algorithm
outputs a public-private key pair (pk, sk).

– DEncode(sk,M)→ (idM, M̂): Given the private key sk and a data file M, the encoding algorithm
DEncode produces a unique identifier idM and the encoded file M̂.

– Prove(pk, idM, M̂, C) → ψ: Given the public key pk, an identifier idM, an encoded file M̂, and
a challenge query C, the prover algorithm Prove produces a proof ψ.

– Verify(sk, idM, C, ψ)→ accept or reject: Given the private key sk, an identifier idM, a chal-
lenge query C, and a proof ψ, the deterministic verifying algorithm Verify will output either
accept or reject.
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Table 1: Summary of Key Notations in this paper
Notation Semantics

x
$←− S Uniformly randomly choose x from the finite set S.

λ Group size

s The number of group elements in a data block. Typically, an authentication tag consists of one group
element. So s is also the ratio of the size of a data block to the size of an authentication tag.

` The number of data blocks accessed during a verification.

n The number of data blocks in a data file. Thus the size of a data file is nsλ bits.

~m A vector of form (m0,m1,m2, . . . ,md−1), where d is the dimension of vector ~m.

f ~m(x) A polynomial m0 +m1x+m2x
2 + . . .+md−1x

d−1 of degree d− 1 with vector ~m as coefficient, where d
is the dimension of vector ~m.

PRF Pseudorandom function

POR Proofs of Retrievability

PDP Provable Data Possession

EPOR Efficient Provable Data Possession; it is the name of the scheme proposed in this paper

Completeness. A POR scheme (KeyGen, DEncode, Prove, Verify) is complete, if an honest prover
(who ensures the integrity of his storage and executes the procedure Prove to compute a proof) will
always be accepted by the verifier. More precisely, for any key pair (pk, sk) generated by KeyGen,
and any data file M, any challenge query C, if ψ ← Prove(pk, idM, M̂, C), then Verify(sk, idM, C, ψ)
outputs accept with probability 1, where (idM, M̂)← DEncode(sk,M).

2.3 Security Model

2.3.1 Trust Model and Scope of Topic In a POR system, only the data owner is trusted
and the cloud storage server is treated as untrusted and potentially malicious.

We clarify that, the following topics are out of the scope of this paper: (1) Support of dynamic
operations; (2) Denial of Service Attack; (3) Frame attack. This is not a limitation of our work,
since all of these can be achieved using existing methods.

2.3.2 POR Security Game We rewrite the POR security game in Juels et al [6] and Shacham et
al. [1] in a standard way. The security game between a probabilistic polynomial time (PPT) adver-
sary A and a PPT challenger C w.r.t. a POR scheme E = (KeyGen, DEncode, Prove, Verify) is as
below.
Setup: The challenger C runs the key generating algorithm KeyGen to obtain public-private key
pair (pk, sk), and gives pk to the adversary A.
Learning: The adversary A adaptively make queries where each query is one of the following:

– Store query (M): Given a data file M chosen by A, the challenger C responses by running data
encoding algorithm (id, M̂) ← DEncode(sk,M) and sending the encoded data file M̂ together
with its identifier id to A.

– Verification query (id): Given a file identifier id chosen by A, if id is the (partial) output of some
previous store query that A has made, then the challenger C initiates a POR verification with
A w.r.t. the data file M associated to the identifier id in this way:
• C chooses a random challenge Chal;
• A produces a proof ψ w.r.t. the challenge Chal;

Note: adversary A may generate the proof in an arbitrary method rather than applying the
algorithm Prove.
• C verifies the proof ψ by running algorithm Verify(sk, id, Chal, ψ). Denote the output as b.

4



At the end C sends the decision bit b ∈ {accept, reject} to A as feedback. Otherwise, if id is not
the (partial) output of any previous store query that A has made, C does nothing.

Commit: Adversary A chooses a file identifier id∗ among all file identifiers she obtains from C
by making store queries in Learning phase, and commit id∗ to C. Let M∗ denote the data file
associated to identifier id∗.
Retrieve: The challenger C initiates ζ number of POR verifications with A w.r.t. the data file
M∗, where C plays the role of verifier and A plays the role of prover, as in the Learning phase.
At the end of each verification, C provides the decision bits (accept or reject) to A as feedback.
From messages collected in these ζ interactions with A, C extracts a data file M′ using some PPT
extractor algorithm. The adversary A wins this game, if and only if M′ 6= M∗.

The adversary A is ε-admissible [1], if the probability that A convinces C to accept in a verification
in the Retrieve phase, is at least ε. We denote the above game as GameEA(ζ).

Definition 2 ( [6, 1]) A POR scheme E is sound, if for any PPT ε-admissible adversary A with
non-negligible ε, there exists a polynomial ζ, such that the advantage AdvEA(ζ) defined as below is
negligible.

AdvEA(ζ) def= Pr
[
A wins GameEA(ζ)

]
(1)

2.3.3 Clarification of Security Model There should be no confusion between the security
formulation and the real world application of a POR scheme. We remark that the security games
GameEA, especially the Retrieve phase, are only for security formulation, and applications of a POR
scheme do not necessarily follow the description of the security game exactly. For example, in real
world applications, the data owner will be the one who chooses the data file, instead of the cloud
storage server, and the data owner can retrieve her data file by simply requesting the cloud storage
server to send it back.

The Retrieve phase in the security games just ensures that, in theory, user’s file can be recovered
from multiple verifications with the cloud storage server efficiently (using some PPT extractor
algorithm), as long as the cloud storage server can pass a non-negligible fraction of challenge
queries. Essentially, a secure POR scheme provides a mechanism, in which the data owner will be
guaranteed that her data file can be efficiently recovered from the server’s storage at the moment
that a verification is accepted, without actually downloading the file from the server. Furthermore,
this guarantee is based on the assumption that the cloud storage server is not able to solve some
cryptographic hard problems1, without trusting in the cloud storage server.

2.4 Assumption

Let p and q = 2p+ 1 be prime. The subgroup G of quadratic residues in Z∗q has order p. A weaker
variant of Strong Diffie-Hellman Assumption over the group G is described as below.

Definition 3 (A weaker variant of s-Strong Diffie-Hellman (s-SDH) Assumption [19,20])
Let p and q = 2p + 1 be prime, and G be the subgroup of quadratic residues in Z∗q. Let g be

a random generator of G. Let α $←− Zp be chosen at random. Given as input a tuple (p, q, T =

(g, gα, gα
2
, . . . , gα

s−1
)), for any PPT adversary A, for a random c

$←− Zp \ {−α}, the probability
Pr
[
A(p, q, T, c) = g1/(α+c)

]
is negligible.

1 For information-theoretical secure POR schemes (e.g. [14]), there will be no such assumption.
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Recall that in a standard Strong Diffie-Hellman Assumption, the value c is chosen by the adver-
sary A, while in the above variant, the value c is randomly chosen. Therefore, the standard Strong
Diffie-Hellman Assumption implies the variant in Definition 3. We remark that when our scheme
is alternatively instantiated using elliptic curve, the elliptic curve version of SDH Assumption is
required.

3 Background on Constant Size Polynomial Commitment Scheme

Kate et al. [10] proposed a constant size commitment scheme for polynomial. Their scheme exploits
a simple and elegant algebraic property of polynomials: For any polynomial f(x) ∈ Zp[x] and for
any scalar input r ∈ Zp, the polynomial x− r divides the polynomial f(x)− f(r).

3.1 Brief Description of Kate’s Polynomial Commitment Scheme

Let us denote with f ~m(x) ∈ Zp[x] the polynomial with coefficient vector ~m = (m0, . . . ,ms−1) ∈
(Zp)s, that is, f ~m(x) ≡

∑s−1
j=0mjx

j . Let G and GT be two multiplicative group of prime order p
and e : G×G→ GT be a bilinear map.

We brief Kate’s commitment scheme [10] as below: In the setup, a trust party chooses a public
key pk := (g, gα, . . . , gα

s−1
) ∈ Gs, where g is a generator of group G and α ∈ Zp is chosen at

random and kept secret. In order to commit a polynomial f ~m(x) :=
∑s−1
j=0mjx

j with coefficient
vector ~m = (m0, . . . ,ms−1) ∈ (Zp)s, a committer can compute a commitment C using the public
key pk, that is, C :=

∏s−1
j=0

(
gα

j
)mj

= gf ~m(α) ∈ G, and then publish C. Later, for any scalar r ∈ Zp,
the committer can compute y := f ~m(r) ∈ Zp and generate a short proof ψ (Kate [10] calls it
witness) to convince a verifier that y is indeed the correct evaluation of f ~m(r), without revealing
the polynomial f ~m(x). The proof (or witness) ψ is generated as below:

– Divide the polynomial f ~m(x)− f ~m(r) with (x− r) using polynomial long division, and denote
the coefficient vector of the resulting quotient polynomial as ~w = (w0, w1, . . . , ws−2), that is,
f~w(x) ≡ f ~m(x)−f ~m(r)

x−r .
– Then compute ψ := gf~w(α) using the public key pk in the same way as computing gf ~m(α), i.e.
ψ :=

∏s−2
j=0

(
gα

j
)wj

= gf~w(α) ∈ G.

After receiving (r, y, ψ) from the committer, a verifier can verify whether y ?= f ~m(r) with the proof
ψ and public key pk = (g, gα, . . . , gα

s−1
) and the public commitment C of the unknown polynomial

f ~m(x), using a bilinear map e : G×G→ GT :

e(g, C)/e(g, g)y ?= e(ψ, gα/gr). (2)

Note that the left hand side of above equation (2) is e(g, C)/e(g, g)y = e(g, g)f ~m(α)−y, and the right
hand side is e(ψ, gα/gr) = e(gf~w(α), gα−r) = e(g, g)(α−r)f~w(α).

In summary, the commitment scheme proposed by Kate et al. [10] allows the owner of a poly-
nomial f(x) to generate a constant size proof for the correctness of the polynomial evaluation f(r)
at any particular point x = r.

3.2 Proofs of Retrievability Scheme implied by Kate’s Polynomial Commitment

We realize that Kate’s Polynomial Commitment2 Scheme [10] (Setup,Commit,CreatWitness,VerifyWitness)
immediately implies a POR scheme (KeyGen,DEncode,Prove,Verify).
2 In fact, Kate’s Polynomial Commitment scheme [10] contains two more algorithms Open and VerifyPoly. Since

these two algorithms are not required in our black-box construction of a POR scheme, we save them.
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KeyGen The data owner generates the public key pk := (g, gα, . . . , gα
s−1

) and private key sk := α
by running the algorithm Setup of Kate’s Polynomial Commitment Scheme [10].
DEncode The data file is represented as a vector ~m = (m0,m1., . . . ,ms−1) ∈ (Zp)s of dimension
s. The data owner computes the commitment C := gf ~m(α) by running algorithm Commit, sends the
file ~m to the cloud storage server and keeps the commitment C in local storage.
Prove After receiving a random input r from the data owner, the cloud storage server evaluates the

polynomial f ~m(x) at point x = r to obtain y := f ~m(r), and generates a witness ψ := g
f ~m(x)−f ~m(r)

x−r

by running CreatWitness. Then sends response (y, ψ) to the data owner.
Verify The data owner verifies whether ψ is a valid proof w.r.t. (r, y, C) by running algorithm
VerifyEval.

3.3 Discussion

The security of the above POR scheme can be reduced to the security of Kate’s commitment
scheme. However, the implied POR scheme suffers from several limitations:

1. The commitment generated using Kate’s [10] scheme is not a MAC (message authentication
code) or signature, since anyone with the public key can produce a valid commitment for any
polynomial (with degree less than s, which is the size of the public key). Consequently, the
commitments have to be stored in a trusted storage. Note in POR, the cloud storage is not
trusted.

2. The scheme requires to access every bit of the data during each verification, since it treats the
whole data file as one block, and does not support random sampling as in previous solutions [6,
1, 2].

3. The second limitation described above may be resolved by exploiting the homomorphism of
Kate’s polynomial commitment scheme, but with penalty. Kate’s polynomial commitment scheme
is homomorphic. That is, if C1 = gf ~m1

(α) is the commitment of a polynomial f ~m1
(x) and C2 =

gf ~m2(α) is the commitment of a polynomial f ~m2
(x), then C1×C2 = gf ~m1

(α)+f ~m2
(α) = gf ~m1+ ~m2

(α)

is a valid commitment of polynomial f ~m1+ ~m2
(x). So in a POR scheme, we may treat the data as

a sequence of n blocks, and apply the Kate’s scheme on each of them to obtain n commitments.
The verification can still be conducted due to the homomorphism. The drawback is that, due
to the first limitation described above, all of these n commitments have to be kept in the data
owner’s local storage. However, in a POR scheme, the data owner’s storage cost is desired to
be O(1) during verification and indeed all previous known solutions achieve O(1) storage cost
for the data owner. Besides this, generating n commitments can be computationally costly.

4 EPOR: Efficient Proofs of Retrievability Scheme

In this section, we construct an efficient POR scheme with private verification and name this scheme
as EPOR. Our construction integrates Kate’s polynomial commitment scheme [10] and Shacham
and Waters’ POR scheme [1] (the one with private verification) in a seamless way. We emphasize
that EPOR can be instantiated using elliptic curve, although in the following description, EPOR is
constructed over a modulo group.

Recall that: (1) the notation f ~m(x) denotes the polynomial with coefficient vector ~m = (m0, . . . ,
ms−1), that is, f ~m(x) ≡

∑s−1
j=0mjx

j ; (2) our scheme described below exploits an algebraic property
of polynomials: for any polynomial f(x) and for any scalar input r, the polynomial x − r divides
the polynomial f(x)− f(r).
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4.1 Construction

KeyGen(1λ) → (pk, sk)

Choose at random a λ bits safe prime q such that p = (q − 1)/2 is also prime. Choose at
random an element g from Z∗q such that the multiplicative order of g is p. Choose at random

two elements τ, α from Z∗p: τ, α
$←− Z∗p, Choose at random a PRF key, denoted as seed. The

public key is pk := (p, {gαj mod q}s−1
j=0) and the private key is sk := (p, seed, α, τ).

DEncode(sk,M) → (id, M̂)

Given the file M, first apply the error erasure code on it; then split the error erasure encoded
file into n vectors (or blocks), such that each vector consists of s elements from Zp: { ~mi =
(mi,0, . . . ,mi,s−1) ∈ Zsp}0≤i≤n−1. Choose a unique identifier id from domain {0, 1}λ. For each
~mi, 0 ≤ i ≤ n− 1, compute an authentication tag ti as below

ti := PRFseed(id, i) + τf ~mi
(α) = PRFseed(id, i) + τ

s−1∑
j=0

mi,jα
j mod p.

The final encoded file M̂ consists of { ~mi = (mi,0, . . . ,mi,s−1)}, 0 ≤ i ≤ n − 1, together with
authentication tags {ti}, 0 ≤ i ≤ n− 1.

Prove(pk, id, M̂, (r, C)) → (y, ψ, σ)

The challenge is (r, C), where r $←− Z∗p is a random nonce chosen from Z∗p, and C is a set {(i, νi)}
of ` index-weight pairs (i, νi)’s, where each index i ∈ [0, n−1], each weight νi ∈ B ⊆ [1, 2λ], and
i’s are distinct (Note: The set B is a system parameter as in [1] and will be used in the proof.
See Appendix B.1). Compute

µj :=
∑

(i,νi)∈C
νimi,j mod p for 0 ≤ j ≤ s− 1, (3)

σ :=
∑

(i,νi)∈C
νiti mod p. (4)

Let vector ~µ := (µ0, . . . , µs−1) (Note: ~µ =
∑

(i,νi)∈C νi ~mi). Evaluate polynomial f~µ(x) at point
x = r to obtain y := f~µ(r) mod p. Divide the polynomial f~µ(x) − f~µ(r) with (x − r) using
polynomial division, and denote the coefficients vector of the resulting quotient polynomial as
~w = (w0, . . . , ws−2), that is, f~w(x) ≡ f~µ(x)−f~µ(r)

x−r . Compute ψ with the public key pk = (p, {gαj

mod q}s−1
j=0) as below

ψ :=
s−2∏
j=0

(
gα

j
)wj

= gf~w(α) mod q. (5)

Output (y, ψ, σ).

Verify(sk, id, (r, C), (y, ψ, σ)) → accept or reject

Parse C as a set {(i, νi)} of ` index-weight pairs (i, νi)’s, where each index i ∈ [0, n − 1], each
weight νi ∈ B ⊆ [1, 2λ], and i’s are distinct. Verify the following equality Eq (6) with the private
key sk = (p, seed, α, τ). If it holds, then output accept; otherwise, output reject.

ψα−r
?= g

τ−1

(
σ−
∑

(i,νi)∈C
νiPRFseed(id,i)

)
− y

mod q (6)
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4.2 Discussion

– The challenge C = {(i, νi) : i ∈ [n], νi ∈ B ⊆ [1, 2λ]} can be represented compactly by two short
random seeds using a pseudorandom function. Alternatively, Dodis et al. [14]’s PoR Code can
be applied.

– As mentioned in Section 3, Kate’s commitment scheme [10] can be used as a secure POR scheme.
Compared to the POR scheme implied by Kate’s commitment scheme, our construction resolves
the limitations described in Section 3.3:

• The above scheme EPOR turns Kate’s commitment into an authentication tag (i.e. a message
authentication code). As a result, all such authentication tags can be stored in the untrusted
cloud storage, and the cloud storage server is unable to forge new authentication tags.
• Scheme EPOR splits the data file into a sequence of blocks and supports random sampling

during verification as in previous solutions [1, 2], that is, in each verification, only a small
number of data blocks are selected and accessed for integrity check. Consequently, the com-
putation cost during verification is greatly reduced. Note that due to the application of error
erasure code, such random sampling does not sacrifice the error detection probability of a
POR scheme, compared with the case that every bit is accessed during verification.
• During the data encoding (the algorithm DEncode), only group addition/multiplication and

PRF (pseudorandom function) evaluation are required, and the more expensive exponenti-
ations in generating Kate’s commitments are avoided. During verification, the data owner
only keeps the secret key in local storage which has size in O(1).

– Compared to Shacham and Waters [1]’ scheme, the algorithm Prove in EPOR is able to aggregate
s number of weighted sums µ0, µ1, . . . , µs−1 into two numbers y and φ using the idea in Kate’s
polynomial commitment scheme, where y = f~µ(r) =

∑s−1
j=0 µjr

j ∈ Zp (r is a random nonce

chosen by the data owner) and ψ = g
f~µ(α)−f~µ(r)

α−r ∈ Z∗q . In this way, EPOR requires only O(1)
communication bits per verification. In comparison, the Shacham and Waters [1] scheme requires
O(s) communication bits per verification, since (µ0, µ1, . . . , µs−1) are sent back directly as the
response.

4.3 Security

Theorem 1 The proposed scheme EPOR is a complete and sound POR scheme as defined in Sec-
tion 2, if the SDH Assumption in Definition 3 holds and PRF is cryptographic secure pseudorandom
function.

The full proof is given in the Appendix.

5 Performance Analysis and Experiment

In this section, we analyze the performance of our proposed scheme EPOR in communication,
storage, computation and false accept rate, and report the empirical results based on our prototype
implementation. We also compare our scheme with existing works by Shacham and Waters [1] and
Ateniese et al. [2]. We remark that, although our implementation adopts the modulo group of size
1024 due to our time constraint, our scheme can use elliptic curve with much smaller group size
160.
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5.1 Performance Analysis

5.1.1 Communication During a verification, the communication cost is the size of a challenge
plus the size of its corresponding response (or proof). In our scheme EPOR, the challenge consists
a set C of index-weight pairs and a random group element r. As mentioned previously, the set C
can be represented compactly with two 80 bits PRF seeds. The group element r is used to retrieve
a polynomial function value f(r) for some polynomial f(x) determined by a linear combination of
the data blocks specified in the set C. In the security analysis, the goal of r is to retrieve multiple
function values f(ri)’s for different inputs ri, and then recover the polynomial f(x) by solving a
linear equation system. For this reason, we can simply choose r from a smaller range [0, 280 − 1]
without any sacrificing in the security. As a result, the challenge size is 80× 3 = 240 bits.

In our scheme EPOR, a response, i.e. the proof, consists of three group elements y, σ, ψ, which
are derived from the challenge, the data blocks and authentication tags. So the size of a response
is 3λ bits. Therefore, the communication cost per verification is 3λ+ 240 bits.

5.1.2 Storage During verification, the data owner only keeps the private key in her local storage.
The size of private key is 3λ+ 80 bits.

The storage overhead (due to authentication tags) on the cloud storage server side is 1/s of the
data file size, where the system parameter s is the block size and equals to the ratio of the size of
a data block to the size of an authentication tag. The public key is also kept in the cloud storage
and its size is (s+ 1)λ bits. Note that in our scheme, there is only one public key per user, without
regarding to the number of files the user stores in the cloud storage server.

5.1.3 Computation Our scheme is very efficient in setup. Key generation requires s number
of group exponentiations. Suppose a nsλ bits data file consists of n data blocks, each block has s
group elements and each group element has λ bits. The data preprocess (i.e. the DEncode algorithm)
requires only ns number of group multiplications and additions, together with n PRF evaluations.
Note that the PRF is simulated with an AES stream cipher.

During a verification, the computation complexity on the cloud storage server side is dominated
by the computation of ψ in Equation (5) in the algorithm Prove on page 8. This dominant step
takes (s − 1) number of group exponentiations, and is the bottleneck of efficiency of our scheme
when the block size s becomes large.

5.1.4 False Positive Rate Recall that, error erasure code is applied at the beginning of the
algorithm DEncode. Suppose a rate-ρ Reed-Solomon code is adopted, that is, any ρ fraction of data
blocks in the encoded file can recover the original file, and the ratio of the size of encoded file to
the original is 1/ρ. If an encoded file is corrupted such that it is unable to recover the original using
the erasure decoding, then more than 1 − ρ fraction of data blocks are corrupted. In this case, a
randomly chosen data block is not corrupted with probability smaller than ρ, and the probability3

that ` independently randomly chosen data blocks will not hit any corrupted data block is smaller
than ρ`, independent on the file size. Our scheme guarantees that if a corrupted data block is hit in
a verification, then the data owner will accept with only negligible probability. So the false accept
rate is smaller than ρ`, if ` independently random blocks are accessed in a verification.

We list out the false accept rate w.r.t. various challenge size and various erasure code rate in
Table 2. The choices of value of challenge size ` is 100, 300, 500, or 700; the choices of erasure encode
3 Note that this argument is based on the case of choosing indices of data blocks at random with replacement. The

other case where choosing indices at random without replacement will have a larger error detection rate.
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rate ρ is 0.99 or 0.98. Note that the the storage overhead due to erasure encoding is 1/0.99− 1 ≈
0.0101 of original file size, if ρ = 0.99; 1/0.98− 1 ≈ 0.0204, if ρ = 0.98.

Table 2: The False Accept Rate Versus Challenge Size and Erasure code rate. Recall that the
challenge size ` represents the number of data blocks accessed in a verification.

Challenge Size False Accept Rate ρ` False Accept Rate ρ`

with ρ = 0.99 with ρ = 0.98

` = 100 0.366032341 0.132619556
` = 300 0.049040894 0.002332506
` = 500 0.006570483 0.000041024
` = 700 0.000880311 0.000000722

5.1.5 Recommended System Parameters We recommend the following system parameter
for our proposed scheme EPOR: The error erasure rate is 0.98, block size s is around 160, the
challenge size is around 500. In this setting, the false accept rate is 4.1024 × 10−5, the number of
communicaiton bits required in a verification is 720 for elliptic curve group or 3312 for modulo
group, the storage overhead is about 2% due to erasure encoding and 1/160 = 0.625% due to
authentication tags. Our experiment will confirm that the query latency is within 1 second.

5.1.6 Comparison We give a comparison on the performances of our scheme with Shacham
and Waters [1] and Ateniese et al. [2] in Table 3 with an example. A more detailed and generic
comparison is given in Table 4 on page 12. Note that in our proposed scheme EPOR, the practical
choice of value s is bounded by the computation on the server side, which is similar to the case of
Ateniese [2]. In contrast, in SW [1], the largest practical value of s is limited by the communication
requirement.

Table 3: Comparison with an example among the PDP scheme by Ateniese et al. [2], the POR
scheme by Shacham and Waters [1], and the POR scheme named EPOR proposed in this paper.
After erasure encoding, the file size is 1GB, block size is s = 100, and storage overhead due to
authentication tags is about 10MB for all schemes. For all schemes listed below, we assume that,
during a verification, the challenge C = {(i, νi)} are represented by two 80 bits PRF seeds. System
parameter ` represents the size of set C. All computation times are represented by the corresponding
dominant factor. exp and mul denote the group exponentiation and group multiplication respec-
tively in the corresponding group. Note that one 1024 bits modular exponentiation or one 160 bits
elliptic curve exponentiation takes roughly 5 millisecond in a standard PC.

Scheme Group Size Communication bits Computation (Data
Preprocess)

Computation (Prove)

Ateniese [2] λ = 1024 2λ+ 320 = 2368 223 exp. over Z∗N (100 + `) exp. over Z∗N
Shacham and Water [1] λ = 80 (s+ 1)λ+ 160 = 8240 227 mul. over Zp 100` mul. over Zp

EPOR (ECC) λ = 160 3λ+ 240 = 720 226 mul. over Zp 100 exp. over Elliptic Curve

EPOR (Zp) λ = 1024 3λ+ 240 = 3312 223 mul. over Zp 100 exp. over Z∗p
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Table 4: Performance Comparison. All schemes support private verification only In each scheme,
a challenge set C = {(i, νi)} contains ` index-coefficient pairs and is represented compactly by
two 80 bits PRF seeds. In the table, exp, mul and add represent exponentiation, multiplication and
addition in the corresponding groups/fields; notation |F| denotes the file size in bits. Recall that the
notations λ, s, `, n are as described in Table 1 in Section 2. Note: (1) Ateniese et al. [2,21] withdraws
the claim of public verifiability in order to fix a flaw in their proof. (2) In Ateniese’s PDP scheme,
exponentiation with a large integer of size sλ is required. We represent such exponentiation as a
number of s normal group exponentiation exp, where the exponent is λ bits long. Similar for the
RSA based scheme.

Scheme Finite Field
Size (bits)

Communica-
tion (bits)

Storage
Overhead

Computation (Prover) Computation
(Verifier)

Computation (Data Pre-
process)

RSA-based
scheme [7]

λ = 1024 2λ Zero |F|/λ exp. 1 exp. 1 exp.

PolyCommit [10]
(Elliptic Curve)

λ = 160 3λ Zero |F|/λ exp. + 2|F|/λ (mul. +
add.)

2 pairing |F|/λ (mul. + add.) + 1
exp.

PolyDelgegation
[18]

λ = 160 2λ+ 240 |F| |F|/λ (exp. + mul. + add.) 2 exp. |F|/λ (exp. + mul. +
add.)

Ateniese [2] λ = 1024 2λ+ 320 |F|/s (` + s) exp. + 2` mult. + `
add + 1 hash + 2` PRF

` (exp. + mult.)
+ 1 hash

ns exp. + n hash

S.W. [1](Private
Verification)

λ = 80 (s + 1)λ +
160

|F|/s s` (add + mult) + 2` PRF (` + s) (add +
mult) + 3` PRF

|F|/λ (mul. + add.) +
|F|/(λs) PRF

EPOR (Elliptic
Curve)

λ = 160 3λ+ 240 |F|/s (s − 1) exp. + (s` + s + `)
(add + mul) + 2` PRF

2 exp. + ` (add +
mult) + 3` PRF

|F|/λ (mul. + add.) +
|F|/(λs) PRF

EPOR (Zp) λ = 1024 3λ+ 240 |F|/s (s − 1) exp. + (s` + s + `)
(add + mul) + 2` PRF

2 exp. + ` (add +
mult) + 3` PRF

|F|/λ (mul. + add.) +
|F|/(λs) PRF

We also compare the proposed scheme EPOR with Shacham and Waters’ scheme [1] in commu-
nication and storage overhead. For a 1GB data file, we plot the number of communication bits (i.e.
the size of a challenge and a proof) against the storage overhead for both schemes in Figure 1.

Fig. 1: Comparison on communication (in bits) and storage overhead (in megabytes) w.r.t. a 1GB data file. SW
denotes the POR scheme with private verification by Shacham and Waters [1]; EPOR (ECC) denotes our proposed
scheme instantiated over elliptic curve group; EPOR (Zp) denotes our proposed scheme instantiated over group Zp.
Note: In this comparison, the size of public key is counted as a part of storage overhead for EPOR.
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5.2 Experiment

The goal of this experiment is to measure the actual running time of the four algorithms KeyGen,DEnc,Prove,Verify
in the proposed EPOR scheme, with disk IO time included and networking communication time
excluded. Note that the reported query latency includes of running time of Prove and Verify and
disk IO time.

5.2.1 Experiment Environment and Setting We have implemented a prototype of our EPOR
scheme in C programming language. The large integer arithmetic is computed using GNU MP [22]
library version 5.0.1. The pseudorandom function PRF are simulated with AES symmetric cipher
provided in OpenSSL [23] library version 1.0.0d. The disk IO is handled by C library function mmap.
We observe a low memory consumption for all experiments conducted. Our implementation is not
optimized and further performance improvements of our scheme can be expected.

Our test machine is a laptop computer, which is equipped with a 2.5GHz Intel Core 2 Duo CPU
(model T9300), a 3GB PC2700-800MHZ RAM and a 7200RPM hard disk. The test machine runs
32 bits version of Gentoo Linux OS with kernel 2.6.36. The file system is EXT4 with 4KB page
size.

Our test data files are of size 16MB, 32MB, 64MB, 128MB, 256MB and 512MB, respectively
(We assume these are the file sizes after error erasure encoding). The choices of values of various
system parameters, i.e. group size λ, block size s and challenge size `, are listed in Table 5.

Table 5: The choices of values of various system parameters in our experiment
System Parameter Semantics Choices of Values

λ Group Size 1024
s Block size, i.e. the number of group elements in a data block 40, 80, 160, 320, 640, or 960
` Challenge size, i.e. the number of data blocks accessed in a verification 100, 300, 500 or 700.

Our experiments are conducted in this way:

– Key generation: For each choice of block size s, we generate a key pair with size s using the key
generating program KeyGen. The generated public key consists of s group elements.

– Data preprocess: For each test file, for each choice of value of block size s, we run the data
encoding program DEncode to generate a set of authentication tags.

– Verification: For each test file, for each choice of value of block size s, for each choice of value
of challenge size `, we run the Prove and Verify programs to simulate the interaction between
the data owner and cloud storage server.

Every single experiment case is repeated for 10 times and the reported timing data are the averages.
We remark that experiment trials are run in sequence without parallelization.

5.2.2 Experiment Results The experiment results are showed in Figure 2. All experiment
results are averaged over 10 trials. Since all experiment results vary little across different trials, we
do not report the variances or confidence intervals.

Our experiment result in Figure 2(a) indicates that the key generating time is proportional
to the key size, i.e. the number of group elements in a key. The experiment result in Figure 2(b)
indicates that the data preprocess time (particularly, DEncode) is proportional to the data file size
and almost independent on the block size s. The experiment also shows that the query latency is

13



(a) Time to generate a key VS the key size (b) Data preprocess time VS the block size. Each line is labeled
with the size (in megabytes) of corresponding data file.

(c) Query latency VS the challenge size for a 128MB data file.
Each line is labeled with the corresponding block size.

(d) Query latency for a 512MB data file.

Fig. 2: The subfigure (c) and (d) represent the results of the same experiment w.r.t. different data files, where (c)
for a 128MB data file and (d) for a 512MB data file. The key size is the number of group elements in a key; the
block size is the number of group elements in one data block; the challenge size is the number of data blocks accessed
during one verification. All time measurements include disk IO time, but do not include network communication
time. Our test data files are of size 16MB, 32MB, 64MB, 128MB, 256MB and 512MB, respectively. Various block
sizes include 40, 80, 160, 320, 640, and 960. Various challenge sizes include 100, 300, 500 and 700. Our test machine
is a laptop computer, equipped with a 2.5GHz Intel Core 2 Duo CPU (model T9300), a 3GB PC2700-800MHZ RAM
and a 7200RPM hard disk. Our program utilizes only one CPU core.

proportional to the block size s, almost independent on the file size, and grows very slowly with the
challenge size `, suggesting that the computation of exponentiations becomes the bottleneck when
s is so large. All of these results agree with our analysis.

6 Conclusion

We proposed an efficient and secure POR scheme. Our scheme requires only a constant number
of communication bits (particularly 720 bits when elliptic curve is used) per verification and 1/s
storage overhead, where s can be as large as hundreds. The small number of communication bits
in a verification makes it possible to piggyback the challenge and/or response of our scheme into
other communication packets between the data owner and the cloud storage server if any.
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A Concept of Valid Proof versus Correct proof

For the sake of presentation, we clarify two distinct concepts valid proof and correct proof.

Valid Proof : A proof is valid, if it is accepted by the verifier, i.e. the verifier algorithm outputs accept when taking
the proof as input.

Correct Proof : A proof is correct, if it is the same as the one generated by an honest prover on the same query,
i.e. the correct proof is the output of the Prove algorithm.

If a POR scheme is correct, then all correct proofs are valid proofs, but may not vice versa.
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B Shacham and Waters’ Proof Framework

Shacham and Waters [1] provided a modular proof framework for their proposed POR schemes. Informally, the proof
framework consists of three parts as below:

– Systems unforgeability: If a proof generated by an adversarial prover is valid (i.e. the proof is accepted by
the verifier), then the proof has to be correct (i.e. the proof is the same as the one generated by an honest prover
w.r.t. the same challenge), except a negligible probability; this part is proved using cryptographic techniques.

– Extractability: Given an adversarial prover that can provide correct proofs for a non-negligible fraction of
challenge queries, an extractor can collect sufficient number of correct proofs for different queries and recover a
large fraction of data file; this part is proved using combinatorial techniques.

– Retrievability: Using error erasure decoding algorithm (e.g. Reed-Solomon codes), the original data file can be
recovered from a small portion of correct data; this part is proved using coding-theoretical techniques.

Interestingly, the full proofs for all schemes proposed by Shacham and Waters [1] only differ in the first part, and
share the second and third parts. Furthermore, we find that proof for our schemes inherit this property, i.e. our proofs
also share the second (with minor modifications) and the third parts proof with Shacham and Waters [1].

Next, we quote the results for part two and part three proof in Shacham and Waters [1] as below.

B.1 Theorem for Part-Two Proof
Theorem 2 (Shacham and Waters [1], Theorem 4.3) Let ARetrieve denote the adversary A in the Retrieve phase
of the security game GameEA, and F be the n-block file chosen by A in the Commit phase. Suppose ARetrieve on file F
is well-behaved: i.e. any valid proof generated by ARetrieve has to be correct (with probability 1), and is ε-admissible:
i.e. convincingly answers an ε fraction of verification queries. Let ω := 1/#B + (ρn)`/(n − ` + 1)`. Then, provided
that ε−ω is positive and non-negligible, it is possible to recover a ρ fraction of the encoded file blocks in O(n/(ε−ω))
interactions with ARetrieve and in O(n2s+ (n+ εn3)/(ε− ω)) time overall.

Here, B denotes the domain of the coefficients in a verification challenge query and #B denotes the size of B.

B.2 Theorem for Part-Three Proof
Theorem 3 (Shacham and Waters [1], Theorem 4.8) Given a ρ fraction of the n blocks of an encoded file F ∗,
it is possible to recover the entire original file F with all but negligible probability.

C Scheme EPOR is secure

C.1 The proposed POR scheme EPOR is complete
Proof. Suppose ψ = gf~w(α) mod p, σ =

∑
(i,νi)∈C

νiti mod p, y = fµ(r) mod p. Then the LHS (left hand side) of

Equation (6) is

LHS =
(
gf~w(α)

)α−r
= gf~w(α)×(α−r) = g

f~µ(α)−f~µ(r)

α−r ×(α−r) = gf~µ(α)−f~µ(r) mod q. (7)

The RHS (right hand side) of Equation (6) is

RHS = g
τ−1
(∑

(i,νi)∈C
νiti −

∑
(i,νi)∈C

νiPRFseed(id,i)

)
− y

(8)

= g
τ−1
(∑

(i,νi)∈C
νi(ti−PRFseed(id,i))

)
− y

(9)

= g
τ−1
(∑

(i,νi)∈C
νi · τf ~mi (α)

)
− y

(10)

= g

(
f∑

(i,νi)∈C
νi ~mi

(α)

)
− y

(11)

= gf~µ(α) − y ( Since ~µ =
∑

(i,νi)∈C

νi ~mi) (12)

= gf~µ(α) − f~µ(r) = LSH mod q. (13)

Note that we obtain Equation (11) from Equation (10), i.e. the equality between
∑

(i,νi)∈C
νif ~mi

(α) and f~a(α) with

vector ~a =
∑

(i,νi)∈C
νi ~mi, through some straightforward algebra manipulation over polynomials. ut
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C.2 Part One Proof of Scheme EPOR

Here we provide the part one proof for our scheme EPOR. Informally, our part one proof shows: The response (y, ψ, σ)
to a challenge query in EPOR is unforgeable, in the sense that no PPT adversary can find a valid but not correct
proof with non-negligible probability. First, in Lemma 4, we prove the unforgeability in the no-feedback setting where
all accept/reject decisions are kept private from the adversary. Next, in Lemma 5, we prove the unforgeability in the
feedback setting where all accept/reject decisions are provided to the adversary.

It is worthy to point out that, we achieve security in feedback setting by lifting the security in no-feedback setting,
in contrast with verifiable cloud computing [24,25] that achieve security only in no-feedback setting (for a much larger
class of delegated functions). We emphasize that this is possible because our scheme EPOR has an essential difference
with [24,25]: Informally, in EPOR, we prove that if the response (y, ψ, σ) is accepted by the verifier, then all of y, ψ, σ
are correct (i.e. equal to the corresponding value computed by an honest cloud server); while in the case of [24, 25],
their security proof only ensures that the computation result y is correct and cannot ensure whether the proof (ψ, σ)
is exactly the one generated by an honest cloud server. In [24, 25], indeed anyone with the public key of the fully
homomorphic encryption can output many different proofs (for the correct computation result) such that the verifier
will accept all of them.

We emphasize that the below proof has to deal with an special case: when α− r is even, (−ψ)α−r = ψα−r. That
is, with non-negligible probability, (y,−ψ, σ) is also a valid proof which can pass the Verify algorithm. Our following
proof will deal with special case explicitly. An alternative approach is that, in algorithm KeyGen we choose prime
q with an additional requirement q = 3 mod 4 and in algorithm Verify we add one more test to check whether ψ
is a quadratic residue modulo q. Note that g is a quadratic residue, so is ψ = gf~w(α). For prime q = 3 mod 4, the
negation of a quadratic residue modulo q is always a non-residue. In this way, the verifier will always reject (y,−ψ, σ).

Lemma 4 Suppose that all accept/reject decisions are completely hidden from the adversary. Let ARetrieve denote the
adversary A in the Retrieve phase of the security game GameEA, (pk, sk) be the key pair generated by the challenger in
the setup phase of game GameEA, id be the identifier chosen by adversary A in the Commit phase of game GameEA, M
be the data file associated to id and (id, M̂) be the output that A obtains from the challenger upon store query (M).
For any PPT adversary A,

AdvE,forge,no-fb
A (λ) = Pr


C := {(i, νi)}

$←−
(
[1, n]× [1, 2λ]

)`
with i distinct;

(y, ψ, σ)← Prove(pk, id, M̂, C);

(y0, ψ0, σ0)← ARetrieve(pk, id, C) :
Verify(sk, id, C, (y0, ψ0, σ0)) = accept ∧ (y0, ψ0, σ0) 6= (y, ψ, σ) ∧ (y0, ψ0, σ0) 6= (y,−ψ, σ)


≤ Advs-SDHA +

1

p
+NPRF · AdvPRFA ,

where NPRF denotes the number of distinct evaluation of PRF required. The probability is over all random coins and
the choice of the challenge query.

Proof (of Lemma 4).
Game 1. The first game is just the one specified in Lemma 4, i.e. a modified version of security game GameEA, such
that the adversary A wins if and only if A outputs a valid but incorrect POR proof for a randomly chosen challenge
query. We have AdvE,forge,no-fb

A = Pr[A wins Game 1].
Game 2. The second game is the same as Game 1, except that in the scheme E , the PRF function PRFseed(·) is
evaluated in the following way:

– The challenger keeps a table to store all previous encountered (v,PRFseed(v)) pairs.
– Given an input v, the challenger lookups the table for v, if there exists an entry (v, u), then return u. Otherwise,

choose a random u from the range of PRFseed, insert (v,PRFseed(v) := u) into the table and return u.

Game 3 The third game is the same as Game 2, except that adversaryA wins if and only if Verify(sk, id, C, (y0, ψ0, σ0)) =
accept and (y0, ψ0, σ0) 6= (y, ψ, σ) and (y0, ψ0, σ0) 6= (y,−ψ, σ) and σ0 = σ.
Game 4 The fourth game is the same as Game 2, except that adversaryA wins if and only if Verify(sk, id, C, (y0, ψ0, σ0)) =
accept and (y0, ψ0, σ0) 6= (y, ψ, σ) and (y0, ψ0, σ0) 6= (y,−ψ, σ) and σ0 6= σ.

It is straightforward that

Pr[A wins Game 2] = Pr[A wins Game 3] + Pr[A wins Game 4].

Claim C1 If there is a non-negligible difference in the adversary’s success probability between Game 1 and Game
2, then we can use the adversary to break the security of the PRF. That is,

|Pr[A wins Game 1]− Pr[A wins Game 2]| ≤ NPRF · AdvPRFA ,
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where NPRF is the number of distinct evaluations of PRF required to answer all store queries made by A and AdvAPRF
denotes the probability that A distinguish the output of PRF from true randomness.

The above Claim C1 can be proved using a standard hybrid argument. Here we save the details.

Claim C2 If adversary A wins Game 3 with non-negligible probability, then A can break the s-SDH assumption.
That is, Pr [A wins Game 3 ] ≤ Pr [A solves s-SDH problem] = Advs-SDHA .

Proof (of Claim C2). We construct an adversary B, based on the adversary A, to solve the s-SDH problem.

Given an input (p, q, {gα
j

}s−1
j=0), the adversary B can simulate the Game 3 as below:

KeyGen : Choose τ, seed in the same way as in the algorithm KeyGen. Let pk := (p, q, {gα
j

}s−1
j=0) and sk :=

(seed, α, τ, τ−1), where α is unknown to the adversary B.
DEncode : For each file block ~mi, generate the authentication tag ti by randomly choosing an element from group

Zp: ti
$←− Zp.

Note: There exists some unknown si’s, such that ti = si + τf ~mi
(α) mod p for each i.

Verification : In each verification, choose r
$←− Zp and C = {(i, νi)} at random.

The above game simulated by adversary B is identical to the Game 3 to the view of A. In Game 3, the

adversary A is given the public key pk = (p, q, {gα
j

mod q}s−1
j=0) and authentication tags ti’s for any data blocks

(vectors) chosen by A:

ti = PRFseed(id, i) + τf ~mi
(α) = PRFseed(id, i) + τ

s−1∑
j=0

mi,jα
j mod p.

Since in Game 3, the value of PRFseed(id, i) are truly uniformly random over Zp, the authentication tags ti’s
reveal no information to adversary A about the secret α at all (even if A was computationally unbounded).

Let (y, ψ, σ) and (y0, ψ0, σ0) be as specified in Lemma 4. Adversary B computes and outputs (c, w) to the SDH
problem as below:

– If y = y0: find any c 6= −r ∈ Zp and set w := g1/(r+c) mod q;

– If y 6= y0: set c = −r and w :=
(
ψ
ψ0

)1/(y0−y)
mod q.

Now We want to show that: if A wins the Game 3, i.e. Verify(sk, id, C, (y0, ψ0, σ0)) = accept and (y0, ψ0, σ0) 6=
(y, ψ, σ) and (y0, ψ0, σ0) 6= (y,−ψ, σ) and σ0 = σ, then g

1
α+c = w.

Since both (y, ψ, σ) and (y0, ψ0, σ0) are accepted by the verifier w.r.t. the same challenge (r, C), the two tuples
satisfy the Equation (6):

ψα−r
?
= g

τ−1
(
σ−
∑

(i,νi)∈C
νiPRFseed(id,i)

)
− y

mod q (14)

ψ0
α−r ?

= g
τ−1
(
σ0−
∑

(i,νi)∈C
νiPRFseed(id,i)

)
− y0

mod q (15)

Dividing Equation (14) with Equation (15), we obtain(
ψ

ψ0

)α−r
= gτ

−1(σ−σ0) + y0−y = g y0−y mod q ( Since σ0 = σ) (16)

If y = y0, then ψ 6= ψ0 and −ψ 6= ψ0, since (y0, ψ0, σ0) 6= (y, ψ, σ) and (y0, ψ0, σ0) 6= (y,−ψ, σ) and σ0 = σ
(Recall that we are assumming that A wins the Game 3). In this case, Equation (16) implies α = r. Thus adversary
B’s output (c, w = g1/(r+c) = g1/(α+c)) is a valid solution to the s-SDH problem.

If y 6= y0, substituting ψ
ψ0

with wy0−y mod q into the above equation, we have

w(y0−y)(α−r) = gy0−y mod q (17)

w = g1/(α−r)) mod q (18)

Thus adversary B’s output (c = −r, w) is a valid solution to the s-SDH problem. We emphasize that the above
argument allows the value c to be chosen at random. ut

Claim C3 For computationally unbounded adversary A, Pr [A wins Game 4] ≤ 1
p
.
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Proof (of Claim C3). Let (y, ψ, σ) and (y0, ψ0, σ0) be as specified in Lemma 4.
Suppose an computationally unbounded adversary A wins the Game 4, i.e. Verify(sk, id, C, (y0, ψ0, σ0)) = accept

and (y0, ψ0, σ0) 6= (y, ψ, σ) and (y0, ψ0, σ0) 6= (y,−ψ, σ) and σ0 6= σ.
Similar as the proof of Claim C2, we have(

ψ

ψ0

)α−r
= gτ

−1(σ−σ0) + y0−y mod q (19)

The computationally unbounded adversaryA can find α from the public key by solving discrete log, and eventually
find τ from the above equation. However, the secret τ is only involved in the authentication tag ti’s and is protected
by the PRFseed(·) which generates truly uniformly random numbers over Zp (Note that in Game 4, the output of
PRFseed(·) is chosen at random and kept in a lookup table as in Game 2). Thus, the probability that A finds τ has
to be 1/p. Consequently, the adversary A wins the Game 4 with probability

Pr [A wins Game 4] ≤ Pr [A finds τ ] =
1

p
.

ut

In summary, we have showed that

AdvE,forge,no-fb
A = Pr[A wins Game 1] ≤ Pr[A wins Game 2] +NPRF · AdvPRFA (20)

= (Pr[A wins Game 3] + Pr[A wins Game 4]) +NPRF · AdvPRFA (21)

≤ Advs-SDHA +
1

p
+NPRF · AdvPRFA . (22)

Therefore, Lemma 4 is proved. ut

Lemma 5 If Assumption 3 (s-SDH Assumption) holds and PRF is secure, then AdvE,forge
A is negligible, where AdvE,forge

A
is defined in the same way as AdvE,forge,no-fb

A in Lemma 4 except that the accept/reject decisions are provided to the

adversary A at the end of each verification. Let ε = AdvE,forge,no-fb
A . We have

AdvE,forge
A ≤ ε× (1− ε)Nver +

(
1− (1− ε)Nver

)
≈ ε+Nver · ε, (23)

where Nver is the number of verification queries made by the adversary A.

Proof (of Lemma 5).
Game 1 The first game is the same as in Game 1 in the proof of Lemma 4. It stands for forgeability game in
no-feedback model.
Game 2.k For each integer k ≥ 0, Game 2.k is the same as Game 1, except that the adversary A adaptively makes
k verification queries before launching forgery attack and the accept/reject decisions are provided to the adversary
A at the end of each of these k verifications.

We describe two different verification strategies for the simulator of the POR game.

– Simulated verifier: The simulator keeps a local copy of data and tags and plays an honest cloud storage server.
For each proof (y0, ψ0, σ0) received from the adversary A, the simulator computes the corresponding correct proof
(y, ψ, σ) from the simulator’s local copy of data and tags. If (y0, ψ0, σ0) ∈ {(y, ψ, σ), (y,−ψ, σ)}, then outputs
accept; otherwise outputs reject.

– Imaginary verifier: An imaginary verification oracle OVerify(sk;·) which somehow has the knowledge of the private
key.

Note that (1) the simulated verifier accepts only correct proof while the imaginary verifier oracle accepts all valid
proofs which include correct proofs; (2) the simulated verifier provides absolutely no new information to the adversary
A, since A itself can simulate such verifier by keeping another intact copy of the data of tags from the beginning.

Let us code accept with the bit ‘0’ and code reject with the bit ‘1’, and denote with ai ∈ {0, 1} be the decision
bit output by the imaginary verification oracle OVerify(sk;·) for the i-th verification query made by the adversary A;
bi ∈ {0, 1} be the decision bit output by the simulated verifier. Furthermore, let Ak := a1a2 . . . ak ∈ {0, 1}k and
Bk := b1b2 . . . bk ∈ {0, 1}k.

Claim C4 Pr[A wins Game 1] = Pr[A wins Game 2.0 ]

Claim C5 Pr[A1 = B1] = 1− ε, where ε = AdvE,forge,no-fb
A .
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Pr[A1 6= B1] is just the probability that the adversary A can forge a valid but not correct proof, without making any
previous verification query.

Claim C6 Let ε = AdvE,forge,no-fb
A . For any integer k ≥ 1, if Pr[Ak = Bk] = (1 − ε)k, , then Pr[Ak+1 = Bk+1] =

(1− ε)k+1.

This claim can be proved using the fact that Pr[ak+1 = bk+1|Ak = Bk] = 1 − ε, which is because that Ak = Bk
indicates that the adversary A has obtained no information from the accept/reject feedbacks in the k verification
queries.

Claim C7 Pr[A wins Game 2.k] ≤ ε · (1− ε)k +
(
1− (1− ε)k

)
.

Claim C7 can be easily proved using the result Pr[Ak = Bk] = (1− ε)k. Hence Lemma 5 is proved. ut

C.3 Part Two Proof of Scheme EPOR

For any C = {(i, νi)}, we choose s random nonces r0, r1, . . . , rs−1 and query the cloud storage sever with challenge
(ru, C), 0 ≤ u ≤ s−1 in sequence. Denote the received response from the server as (yu, ψu, σu). Suppose all responses
are accepted. Then we can find the polynomial f~µi(x) which passes all points (ru, yu). The coefficients ~µi of polynomial
f~µi(x) is a linear combination of data blocks ~mi’s,

~µi =
∑

(i,νi)∈C

νi ~mi

which is identical to the output of a server in the private verification scheme in Shacham and Waters’ [1]. Thus
the client obtains the same information about the original data file after s successful verifications as she can obtain
with Shacham and Waters’ [1] scheme in one successful verification (Note the communication cost per verification
is O(s) in Shacham and Waters’ [1], while O(1) in our case ). The rest of part two proof of Scheme EPOR follows
Theorem 4.3 in Shacham and Waters’ [1].

C.4 Part Three Proof of Scheme EPOR

The part three proof of Scheme EPOR is identical to the one in Shacham and Waters [1] for the private verification
scheme.

D An Efficient Variant version of Ateniese’s PDP scheme

Ateniese [2]’s PDP scheme requires the data owner to compute a group exponentiation for each data block to generate
an authentication tag in the setup. Now we present an efficient variant version of their scheme, which removes the
demand of expensive exponentiation operations in the setup.

KeyGen Choose a RSA modulus n = pq such that both p and q are safe primes. Choose at random g
$←− Z∗n such

that g has a multiplicative order (p− 1)(q − 1)/2 Let φ(n) = (p− 1)(q − 1). Choose a random α
$←− Zφ(n). Choose a

PRF seed s. Let sk := (p, q, α, s) and pk = (n, g).

Tagging For each data block mi, the data owner computes an authentication tag ti:

ti := αmi + PRF(s, i) mod φ(n).

Challenging The verifier finds a random d
$←− Zn, and computes gd := gd mod n. Chooses a challenge C :=

{(i, νi)} at random, such that i’s are index, and ν ∈ Zn. Sends C and gd to the server.
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Proving The server finds all selected blocks mi’s and tags ti’s, and compute (π1, π2) as below

π1 :=
∑

(i,νi)∈C

νimi; (24)

π2 :=
∑

(i,νi)∈C

νiti. (25)

Note: The above two equations are computed over integer domain.
The server computes and sends (gπ1

d mod n) and (gπ2 mod n) to the verifier.

Verifying The verifier checks whether the following equality holds:

(gπ1
d )α

?
=

(
gπ2

g

∑
(i,νi)∈C

νiPRF(s,i)

)d
mod n

The security of the above scheme can be proved using the Knowledge of Exponent Assumption (KEA).

E EPOR with public verifiability

In order to construct a variant version of EPOR to support public key verification, we require an homomorphic
signature scheme: Given valid message-signature pairs (Mi, σi) and weights νi’s, one can efficiently find a valid
signature for

∏
i
Mνi
i with the public key only.

E.1 An Aggregatable Signature Scheme

SS.KeyGen(1λ)

Choose a bilinear map (p,G,GT , g, e), such that p is a λ bits prime, both groups G and GT have order p, g is a
generator of group G, and e : G× G→ GT is a blinear map. Choose ζ, β, γ from Z∗p at random. The public key

is spk := (g
1
ζ , g, gβ , gγ) and private key is ssk := (ζ, β, γ). Make the blinear map public.

SS.Sign(ssk,M)

Let h1, h2 : G → G be two random oracles. Choose y from Zp at random. The signature for M is computed as
below

(y, σ0, σ1) :=
(
y,
(
h1(M)Mβ

)ζ
,
(
h2(M) (Mgy)γ

)ζ) ∈ Z×G×G. (26)

SS.Combine(spk, C, {νi : i ∈ C}, {(Mi; yi, σi,0, σi,1)}i∈C)

Compute the aggregated signature for aggregated message M :=
∏
i∈CM

νi
i as below

(yM , σM,0, σM,1) :=

(∑
i∈C

νiyi mod p,
∏
i∈C

σνii,0,
∏
i∈C

σνii,1

)
. (27)

SS.Verify(spk,M, (yM , σM,0, σM,1), C, {νi : i ∈ C})

If the following two equalities hold, then output accept; otherwise output reject.

e(σM,0, g
1
ζ )

?
= e(g,

∏
i∈C

h1(Mi)
νi) e(gβ , M) (28)

e(σM,1, g
1
ζ )

?
= e(g,

∏
i∈C

h2(Mi)
νi) e(gγ , M · gyM ) (29)
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Lemma 6 The signature scheme SS = (SS.KeyGen,SS.Sign, SS.Combine, SS.Verify) constructed as above is known-
plaintext unforgeable in the random oracle model, if Diffie-Hellman Inversion Assumption holds.

Proof. Given (w,wζ , wζ
2
), the goal is to find wζ

3
.

The simulator simulates the signature scheme as below:

– KeyGen: Choose s0, s1 from Z∗p at random. Set β = s0ζ and γ = s1ζ. The public key is pk = (g
1
ζ = w, g =

wζ , gβ =
(
wζ

2
)s0

, gγ =
(
wζ

2
)s1

and the private key is sk = (ζ, β, γ).

Note: The simulator knows the values of public key and does not know the values of ζ, β or γ.
– Sign: The simulator chooses mi from Zp and sets the message Mi := gmi . The simulator programs the random

oracle h1 and h2 as follows:
• h1(Mi): Choose zi at random from Zp and set h1(Mi) as

h1(Mi) :=
gzi

Mβ
i

=
gzi

(gβ)mi
.

• h2(Mi): Choose ui at random from Zp and set h2(Mi) as

yi
$←− Zp; h2(Mi) :=

gui

Mγ
i g

yiγ
=

gui

(gγ)mi+yi
.

The signature is (yi, σi,0, σi,1), where σi,0, σi,1 are computed as below

σi,0 :=
(
h1(Mi)M

β
i

)ζ
= (gzi)ζ =

(
gζ
)zi

(30)

σi,1 :=
(
h2(Mi) (Mig

yi)γ
)ζ

= (gui)ζ =
(
gζ
)ui

. (31)

Let (yM , σM,0, σM,1) denote the correct signature for an aggregated message M =
∏
i∈CMi w.r.t. {νi : i ∈ C}.

Suppose an adversary can find a different valid signature (ŷM , σ̂M,0, σ̂M,1) for M̂ .
We have

e(σM,0, g
1
ζ ) = e(g,

∏
i∈C

h1(Mi)
νi) e(gβ , M) (32)

e(σM,1, g
1
ζ ) = e(g,

∏
i∈C

h2(Mi)
νi) e(gγ , M · gyM ) (33)

e(σ̂M,0, g
1
ζ ) = e(g,

∏
i∈C

h1(Mi)
νi) e(gβ , M̂) (34)

e(σ̂M,1, g
1
ζ ) = e(g,

∏
i∈C

h2(Mi)
νi) e(gγ , M̂ · gŷM ) (35)

Eq 34

Eq 32
: e(

σ̂M,0
σM,0

, g
1
ζ ) = e(gβ ,

M̂

M
) (36)

Eq 35

Eq 33
: e(

σ̂M,1
σM,1

, g
1
ζ ) = e(gγ ,

M̂

M
· gŷM−yM ) (37)

Since γ = sβ = s−1
0 s1β, we have

e(

(
σ̂M,1
σM,1

)s−1

, g
1
ζ ) = e(gβ ,

M̂

M
· gyM ) (38)

e(

(
σ̂M,1
σM,1

)s−1

σM,0
σ̂M,0

, g
1
ζ ) = e(gβ , gŷM−yM ) (39)

Therefore, gζβ can be computed ((
σ̂M,1
σM,1

)s−1

σM,0
σ̂M,0

) 1
ŷM−yM

= gζβ .

Problem: How about ŷM − yM = 0?

As a result, the simulator can compute wζ
3

=
(
gβ
)s−1

0 ζ
=
(
gζβ
)s−1

0 .

22



E.2 Construction of EPOR with public verifiability

KeyGen(1λ) → (pk, sk)
Run SS.KeyGen(1λ) to generate signing key pair (spk, ssk). Let the (p,G,GT , g, e) be the bilinear map groups
chosen by SS.KeyGen, where p is a λ bits prime, both groups G and GT have order p, g is a generator of group

G, and e : G × G → GT is a blinear map. Choose at random two elements τ, α from Z∗p: τ, α
$←− Z∗p, Choose at

random a PRF key, denoted as seed. The public key is pk := (spk, p, gτ , {gj := gα
j

∈ G}s−1
j=0) and the private key

is sk := (ssk, p, seed, α, τ).

DEncode(sk,M) → (id, M̂)
Given the file M, first apply the error erasure code on it; then split the error erasure encoded file into n vectors
(or blocks), such that each vector consists of s elements from Zp: { ~mi = (mi,0, . . . ,mi,s−1) ∈ Zsp}0≤i≤n−1. Choose
a unique identifier id from domain {0, 1}λ. For each ~mi, 0 ≤ i ≤ n−1, compute an authentication tag ti as below

ti := SS.Sign(ssk, gf ~mi (α))

The final encoded file M̂ consists of { ~mi = (mi,0, . . . ,mi,s−1)}, 0 ≤ i ≤ n− 1, together with authentication tags
{ti}, 0 ≤ i ≤ n− 1.

Prove(pk, id, M̂, (r, C)) → (y, ψ, σ)

The challenge is (r, C), where r
$←− Z∗p is a random nonce chosen from Z∗p, and C is a set {(i, νi)} of ` index-weight

pairs (i, νi)’s, where each index i ∈ [0, n− 1], each weight νi ∈ B ⊆ [1, 2λ], and i’s are distinct (Note: The set B
is a system parameter as in [1] and will be used in the proof. See Appendix B.1). Compute

µj :=
∑

(i,νi)∈C

νimi,j mod p for 0 ≤ j ≤ s− 1, (40)

σ :=
∏

(i,νi)∈C

tνii ∈ G. (41)

Let vector ~µ := (µ0, . . . , µs−1) (Note: ~µ =
∑

(i,νi)∈C
νi ~mi). Evaluate polynomial f~µ(x) at point x = r to obtain

y := f~µ(r) mod p. Divide the polynomial f~µ(x) − f~µ(r) with (x − r) using polynomial division, and denote

the coefficients vector of the resulting quotient polynomial as ~w = (w0, . . . , ws−2), that is, f~w(x) ≡ f~µ(x)−f~µ(r)

x−r .

Compute ψ and ψ2 with the public key pk = (p, gτ , {gα
j

mod q}s−1
j=0) as below

ψ :=

s−2∏
j=0

(
gα

j
)wj

= gf~w(α) ∈ G. (42)

ψ2 :=

s−1∏
j=0

(
gα

j
)µj

= gf~µ(α) ∈ G. (43)

ς := SS.Combine(spk, C, {gf ~mi (α), ti}(i,νi)∈C) (44)

Output (y, ψ, σ, ψ2, ς).

Verify(sk, id, (r, C), (y, ψ, σ, ψ2)) → accept or reject

Parse C as a set {(i, νi)} of ` index-weight pairs (i, νi)’s, where each index i ∈ [0, n − 1], each weight νi ∈ B ⊆
[1, 2λ], and i’s are distinct. Verify the following two equalities with the private key sk = (p, seed, α, τ). If it holds,
then output accept; otherwise, output reject.

SS.Verify(spk, ψ2, ς, C)
?
= accept (45)

e(ψ, gα/gr)e(g, g)y
?
= e(ψ2, g) (46)

Note that: (1) In [1], if we aggregate µ1, . . . , µs as
∏s

j=1
u
µj
j in the scheme with public verification, the resulting

scheme is not a secure POR. (2) The above scheme implies an efficient delegation scheme for polynomial evaluation,
where polynomial commitments gf ~m(α)’s can be put in the untrusted server and their integrity can be protected with
our new aggregatable signature scheme constructed in Appendix E.1.
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