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Abstract
Kloosterman sums have recently become the focus of much research, most notably due

to their applications in cryptography and their relations to coding theory.
Very recently Mesnager has showed that the value 4 of binary Kloosterman sums gives

rise to several infinite classes of bent functions, hyper-bent functions and semi-bent functions
in even dimension.

In this paper we analyze the different strategies used to find zeros of binary Kloosterman
sums to develop and implement an algorithm to find the value 4 of such sums. We then
present experimental results showing that the value 4 of binary Kloosterman sums gives rise
to bent functions for small dimensions, a case with no mathematical solution so far.

1 Introduction
Kloosterman sums have recently become the focus of much research and are actively studied for
their applications in cryptography, coding theory, and other fields. We denote by Km(a), for
a ∈ F2m , the so-called classical binary Kloosterman sum over F2m . Lachaud and Wolfmann have
proved in [22] that Km(a) takes all values multiple of 4 in the range [−2(m+2)/2 +1, 2(m+2)/2 +1].

It has been proved that both the values 0 and 4 of Km(a) lead to construct several special
important classes of Boolean functions [6] such as bent functions (introduced by Rothaus [31]
in 1972), hyper-bent functions (introduced by Youssey and Gong [41] in 2002) and semi-bent
functions (introduced by Chee, Lee and Kim [9] in 1994) in even dimension. All such functions are
used in various areas and are of great interest in the fields of cryptography and communication,
since they play a prominent role in the security of cryptosystems. For example they play an
important role in the design of hash functions and of stream and block ciphers.

It is known since 1974 that the zeros of Km(a) give rise to bent functions, but it is only in
2009 that Mesnager [28] has proved that the value 4 for Km(a) also leads to construction of bent
and hyper-bent functions. Some authors have proposed algorithms for testing the zeros of binary
Kloosterman sums, but until now no algorithm has been proposed in the literature to test or find
the value 4 of binary Kloosterman sums. In this paper we are interested precisely in studying
the various algorithms to test whether Km(a) = 4 or not for a given a ∈ F2m or to find an a
giving value 4.

The paper is organized as follows. In Sect. 2 we give some background on Boolean functions,
binary Kloosterman sums and elliptic curves over finite fields. In Sect. 3 we recall classical results
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about divisibility of binary Kloosterman sums and give alternate proofs of such results involving
the theory of elliptic curves. In Sect. 4 we first present different algorithms to test and find
specific values of binary Kloosterman sums. Then, emphasizing the specificity of the zero case,
we study the use of elliptic curves involved in this case, explain which results can be extended
to the value 4, develop and implement an algorithm to find that value. In Sect. 5 we present
experimental results showing that all the values 4 of binary Kloosterman sums for 4 ≤ m ≤ 16,
m even, give rise to bent functions, what was not known before.

2 Notation and Preliminaries
For any set S, S∗ denotes S∗ = S \ {0} and #S the cardinality of S. Unless stated otherwise, m
will be a positive integer greater than 3 and a an element of F2m used to define (hyper, semi)-bent
Boolean functions with n = 2m inputs.

2.1 Background on Boolean Functions
A Boolean function f on F2n is an F2 -valued function on the Galois field F2n of order 2n. The
weight of f , denoted by wt(f), is the Hamming weight of the image vector of f , i.e. the cardinality
of its support {x ∈ F2n | f(x) = 1}.

For any positive integer k, and r dividing k, the trace function from F2k to F2r will be denoted
by Trkr (·). It can be defined as:

Trkr (x) =
k
r−1∑
i=0

x2ir = x+ x2r + x22r
+ · · ·+ x2k−r

.

In particular, we denote the absolute trace over F2 of an element x ∈ F2n by Trn1 (x) =
∑n−1
i=0 x

2i .
Every non-zero Boolean function f defined on F2n has a (unique) trace expansion of the form:

∀x ∈ F2n , f(x) =
∑
j∈Γn

Tro(j)1
(
ajx

j
)

+ ε(1 + x2n−1), aj ∈ F2o(j)

called its polynomial form, where Γn is the set of integers obtained by choosing one element
in each cyclotomic class of 2 modulo 2n − 1, the most usual choice being the smallest element
in each cyclotomic class, called the coset leader of the class, o(j) is the size of the cyclotomic
coset containing j, and ε = wt(f) modulo 2. Recall that, given an integer e, 0 ≤ e ≤ 2n − 1,
with binary expansion: e =

∑n−1
i=0 ei2i, ei ∈ {0, 1}, the 2-weight of e, denoted by w2(e), is the

Hamming weight of the binary vector (e0, e1, . . . , en−1).
Let f be a Boolean function on F2n . Its “sign” function is the integer-valued function χ (f) =

χf = (−1)f . The Walsh-Hadamard transform of f is the discrete Fourier transform of χf , whose
value at ω ∈ F2n is defined as:

χ̂f (ω) =
∑
x∈F2n

(−1)f(x)+Trn1 (ωx) .

Bent functions are functions with maximum non-linearity. They only exist for even number of
inputs and can be defined as follows.

Definition 1. A Boolean function f : F2n → F2 (n even) is said to be bent if χ̂f (ω) = ±2n2 , for
all ω ∈ F2n .
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Hyper-bent functions have even stronger properties than bent functions. More precisely,
hyper-bent functions can be defined as follows.

Definition 2. A Boolean function f : F2n → F2 (n even) is said to be hyper-bent if the function
x 7→ f(xi) is bent, for every integer i co-prime with 2n − 1.

Semi-bent functions exist for even or odd number of inputs. We will only be interested in
even number of inputs where they can be defined as follows.

Definition 3. A Boolean function f : F2n → F2 (n even) is said to be semi-bent if χ̂f (ω) ∈
{0,±2n+2

2 }, for all ω ∈ F2n .

2.2 Binary Kloosterman Sums and (Hyper, Semi)-Bentness Property
The classical binary Kloosterman sums on F2m are defined as follows.

Definition 4. The binary Kloosterman sums on F2m are:

Km(a) =
∑
x∈F2m

(−1)Trm1 (ax+ 1
x ), a ∈ F2m .

Note that we assume Trm1
( 1

0
)

= Trm1
(

02m−1−1
)

= 0. It is an elementary fact that Km(a) =
Km(a2):

Km(a) =
∑
x∈F2m

(−1)Trm1 (ax+ 1
x ) =

∑
x∈F2m

(−1)Trm1 (a2x2+ 1
x2 )

=
∑
x∈F2m

(−1)Trm1 (a2x+ 1
x ) = Km(a2) .

It has been shown that the zeros of binary Kloosterman sums lead to bent, hyper-bent and
semi-bent functions. We summarize the known results in Table 1:

• A class of functions is given in terms of a ∈ F2m ; remember that a ∈ F2m , but that the
corresponding Boolean functions have n = 2m inputs.

• Unless stated otherwise, the given conditions on a are necessary and sufficient for the
Boolean functions to verify the given property.

Similarly the value 4 of binary Kloosterman sums gives rise to bent, hyper-bent and semi-bent
functions. We summarize the known results about (hyper)-bent function in Table 2 and those
about semi-bent functions in Table 3. The conventions are the same as for Table 1.

Hence it is of cryptographic interest to study divisibility properties of binary Kloosterman
sums and develop efficient algorithms to find specific values of such sums or test their values.

2.3 Elliptic Curves over Finite Fields
In this subsection, we present some classical results about elliptic curves over finite fields, as well
as their connections with binary Kloosterman sums.

Let m be a positive integer, Fq the finite field of characteristic p with q = pm and Fq
its algebraic closure. Let E be an elliptic curve defined over Fq and given by a Weierstrass
equation [35, Chapter III]:

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 .
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Table 1: Families of (hyper)-bent and semi-bent functions for Km(a) = 0
Class of functions Property Conditions References

Trn
1
(
axr(2m−1)

)
; gcd(r, 2m + 1) = 1 hyper-bent Km(a) = 0 [13, 22, 24, 7]

Trn
1
(
axr(2m−1)

)
+ Trn

1

(
cx(2m−1) 1

2 +1
)

;

c ∈ F2n \ F2m , gcd(r, 2m + 1) = 1

semi-bent Km(a) = 0 [29]

Trn
1
(
axr(2m−1)

)
+ Trn

1

(
cx(2m−1) 1

2 +1
)

+ Trn
1

(
x(2m−1) 1

4 +1
)

;

Trn
m (c) = 1, gcd(r, 2m + 1) = 1, m odd

semi-bent Km(a) = 0 [29]

Trn
1
(
axr(2m−1)

)
+ Trn

1

(
cx(2m−1) 1

2 +1
)

+ Trn
1
(
x(2m−1)3+1

)
;

Trn
m (c) = 1, gcd(r, 2m + 1) = 1

semi-bent Km(a) = 0 [29]

Trn
1
(
axr(2m−1)

)
+ Trn

1

(
cx(2m−1) 1

2 +1
)

+ Trn
1

(
x(2m−1) 1

6 +1
)

;

Trn
m (c) = 1, gcd(r, 2m + 1) = 1, m even

semi-bent Km(a) = 0 [29]

Trn
1
(
axr(2m−1)

)
+ Trn

1
(
αx2m+1

)
+ Trn

1

(∑2ν−1−1
i=1 x(2m−1) i

2ν +1
)

;

gcd(r, 2m + 1) = 1, gcd(ν,m) = 1, Trn
m (α) = 1,

semi-bent Km(a) = 0 [29]

Table 2: Families of (hyper)-bent functions for Km(a) = 4
Class of functions Property Conditions References

Trn
1
(
aζix3(2m−1)

)
+ Tr2

1

(
βjx

2n−1
3

)
;

m odd and m 6≡ 3 (mod 6), β is a primitive ele-
ment of F4 , ζ is a generator of the cyclic group U
of (2m + 1)-th roots of unity, (i, j) ∈ {0, 1, 2}2

hyper-bent Km(a) = 4 and Trm
1
(
a1/3

)
= 0 [27]

Trn
1
(
axr(2m−1)

)
+ Tr2

1

(
bx

2n−1
3

)
;

m odd, gcd(r, 2m + 1) = 1

hyper-bent Km(a) = 4 [28]

Trn
1
(
ax2m−1

)
+ Tr2

1

(
bx

2n−1
3

)
;

m even
bent Km(a) = 4 (necessary condition) [28]

Table 3: Families of semi-bent functions for Km(a) = 4
Class of functions Property Conditions References

Trn
1
(
axr(2m−1)

)
+ Tr2

1

(
bx

2n−1
3

)
+ Trn

1

(
cx(2m−1) 1

2 +1
)

;

b ∈ F∗4 and c ∈ F2n \ F2m , gcd(r, 2m + 1) = 1, m odd

semi-bent Km(a) = 4 [29]

Trn
1
(
ax3(2m−1)

)
+ Trn

1

(
cx(2m−1) 1

2 +1
)

+ Tr2
1

(
bx

2n−1
3

)
;

m odd and m 6≡ 3 (mod 6)

semi-bent Km(a) = 4 [29]

Trn
1
(
axr(2m−1)

)
+ Tr2

1

(
bx

2n−1
3

)
+ Trn

1

(
cx(2m−1) 1

2 +1
)

+

Trn
1

(
x(2m−1) 1

4 +1
)

;

b ∈ F∗4 , Trn
m (c) = 1, gcd(r, 2m + 1) = 1, m odd

semi-bent Km(a) = 4 [29]

Trn
1
(
axr(2m−1)

)
+ Tr2

1

(
bx

2n−1
3

)
+ Trn

1

(
cx(2m−1) 1

2 +1
)

+

Trn
1
(
x3(2m−1)+1

)
;

b ∈ F∗4 , Trn
m (c) = 1, gcd(r, 2m + 1) = 1, m odd

semi-bent Km(a) = 4 [29]

Trn
1
(
axr(2m−1)

)
+ Trn

1
(
αx2m+1

)
+ Trn

1

(∑2ν−1−1
i=1 x(2m−1) i

2ν +1
)

+

Tr2
1

(
bx

2n−1
3

)
;

b ∈ F∗4 ; gcd(r, 2m + 1) = 1, gcd(ν,m) = 1, Trn
m (α) = 1, m odd

semi-bent Km(a) = 4 [29]
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We denote by OE the point at infinity of E (i.e. the neutral point for the addition law), by [n]
the multiplication by an integer n on E and by End(E) = EndFq (E) the ring of endomorphisms
of E over the algebraic closure Fq . Over Fq , elliptic curves are classified up to isomorphism by
their j-invariant.

The group of rational points of E over an extension Fqk of Fq (i.e. points with coordinates
in Fq ) is denoted by E(Fqk); the number of points of this group by #E(Fqk). When the context
is clear, we denote #E(Fq ) simply by #E. It is a classical result that #E = q + 1 − t where
t is the trace of the Frobenius automorphism of E over Fq and the following theorem has been
shown by Hasse.

Theorem 5 ([35, Theorem V.2.3.1]). Let t be the trace of the Frobenius automorphism of an
elliptic curve over Fq , then:

|t| ≤ 2√q .

For an integer n, we denote by E[n] the n-torsion subgroup of the points of E over Fq , i.e.

E[n] = {P ∈ E(Fq ) | [n]P = OE} .

The subgroup of rational points of n-torsion is denoted by E[n](Fq ) = E[n] ∩ E(Fq ). The
following classical result gives the structure of the groups of torsion points.

Proposition 6 ([35, Corollary III.6.4]). Let n be a positive integer.

• If p - n, then E[n] ' Z/nZ× Z/nZ.

• One of the following is true: E[pe] ' {0} for all e ≥ 1 or E[pe] ' Z/peZ for all e ≥ 1.

It can also be shown that a point of E is of n-torsion if and only if its coordinates are roots
of a bivariate polynomial called the n-division polynomial of E [3, Section III.4]. In fact one can
even choose a univariate polynomial in the x coordinate that we denote by fn.

Here we will be interested in ordinary elliptic curves which can be defined as follows.

Definition 7 ([35, Theorem V.3.1]). Let E be an elliptic curve defined over Fq and t the trace
of the Frobenius automorphism of E. We say that E is ordinary if it verifies one of the following
equivalent properties:

• p - t;

• E[p] ' Z/pZ;

• End(E) is an order in an imaginary quadratic extension of Q.

If E is not ordinary, we say it is supersingular.
Finally, using classical results of Deuring [12] and Waterhouse [39], the number of ordinary

elliptic curves (up to isomorphism) with a given trace t of the Frobenius automorphism (or
equivalently a number of points q + 1 − t), verifying |t| ≤ 2√q and p - t, can be computed as
follows. This property indeed implies that End(E) must be an order O in K = Q[α] and contains
the order Z[α] of discriminant ∆ where α = t+

√
∆

2 and ∆ = t2 − 4q. We denote by H(∆) the
Kronecker class number [33, 11]:

H(∆) =
∑

Z[α]⊂O⊂K

h(O) ,

where the sum is taken over all the orders O in K containing Z[α] and h(O) is the classical class
number.
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Proposition 8 ([33, 19, 11]). Let t be an integer such that |t| ≤ 2√q and p - t. The number
N(t) of elliptic curves over Fq with q + 1− t rational points is given by:

N(t) = H(∆) ,

where ∆ = t2 − 4q.

It should be noted that H(∆) can be computed from the value of the classical class number
of (the maximal order of) K using the following proposition.

Proposition 9 ([23, 11, 19, 10]). Let O be the order of conductor f in K, an imaginary quadratic
extension of Q, , OK the maximal order of K and ∆K the discriminant of (the maximal order
of) K. Then:

h(O) = fh(OK)
[O∗K : O∗]

∏
p|f

(
1−

(
∆K

p

)
1
p

)
,

where
(
·
p

)
is the Kronecker symbol.

Denoting the conductor of Z[α] by f , H(∆) can then be written as:

H(∆) = h(OK)
∑
d|f

d

[O∗K : O]
∏
p|d

(
1−

(
∆K

p

)
1
p

)
.

We now give results specific to characteristic 2. First, E is supersingular if and only if its
j-invariant is 0. Second, if E is ordinary, then its Weierstrass equation can be chosen to be of
the form:

E : y2 + xy = x3 + bx2 + a ,

where a ∈ F∗q and b ∈ Fq , its j-invariant is then 1/a; moreover its first division polynomials are
given by [20, 3]:

f1(x) = 1, f2(x) = x, f3(x) = x4 + x3 + a, f4(x) = x6 + ax2 .

The quadratic twist of E is an elliptic curve with the same j-invariant as E, so isomorphic over
the algebraic closure Fq , but not over Fq (in fact it becomes so over Fq2). It is unique up to
isomorphism and we denote it by Ẽ. It is given by the Weierstrass equation:

Ẽ : y2 + xy = x3 + b̃x2 + a ,

where b̃ is any element of Fq such that Trm1
(
b̃
)

= 1 − Trm1 (b) [15]. The trace of its Frobenius
automorphism is given by the opposite of the trace of the Frobenius automorphism of E, so that
their number of rational points are closely related [15, 3]:

#E + #Ẽ = 2q + 2 .

Lachaud and Wolfmann [21] (see also [19]) proved the following well-known theorem which
gives a connection between binary Kloosterman sums and elliptic curves.

Theorem 10 ([21, 19]). Let m ≥ 3 be any positive integer, a ∈ F∗2m and Em(a) the elliptic curve
defined over F2m by the equation:

Em(a) : y2 + xy = x3 + a .

Then:
#Em(a) = 2m +Km(a) .
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3 Divisibility of Binary Kloosterman Sums
3.1 Classical Results
Because of their cryptographic interest, divisibility properties of Kloosterman sums have been
studied in several recent papers. The following proposition is directly obtained from the result
of Lachaud and Wolfmann [22].

Proposition 11 ([22]). Let m ≥ 3 be a positive integer. The set {Km(a), a ∈ F2m} is the set of
all the integers multiple of 4 in the range [−2(m+2)/2 + 1, 2(m+2)/2 + 1].

This result states in particular that binary Kloosterman sums are always divisible by 4.
Afterwards several papers studied divisibility properties of binary Kloosterman sums by multiples
of 4 and other integers.

The following classical result was first proved by Helleseth and Zinoviev [18] and classifies
the values of Km(a) modulo 8 according to the value of the absolute trace of a.

Proposition 12 ([18]). Let m ≥ 3 be any positive integer and a ∈ F2m . Then Km(a) ≡ 0
(mod 8) if and only if Trm1 (a) = 0.

In the same article, they gave the following sufficient conditions to get certain values ofKm(a)
modulo 3.

Proposition 13 ([18]). Let m ≥ 3 be any positive integer and a ∈ F∗2m . Suppose that there
exists t ∈ F∗2m such that a = t4 + t3.

• If m is odd, then Km(a) ≡ 1 (mod 3).

• If m is even, then Km(a) ≡ 0 (mod 3) if Trm1 (t) = 0 and Km(a) ≡ −1 (mod 3) if
Trm1 (t) = 1.

Furthermore Charpin, Helleseth and Zinoviev gave in [8] additional results about values of
Km(a) modulo 3.

Proposition 14 ([8]). Let a ∈ F∗2m . Then we have:

• If m is odd, then Km(a) ≡ 1 (mod 3) if and only if Trm1
(
a1/3) = 0. This is equivalent to

a = b
(1+b)4 for some b ∈ F∗2m .

• If m is even, then Km(a) ≡ 1 (mod 3) if and only if a = b3 for some b such that Trm2 (b) 6=
0.

Most of these results about divisibility were first proved studying the link between exponential
sums and coset weight distribution [18, 8]. However some of them can be proved in a completely
different manner as we show in the next subsection.

3.2 Using Torsion of Elliptic Curves
Theorem 10 giving the value of Km(a) as the cardinality of an elliptic curve can indeed be used to
deduce divisibility properties of binary Kloosterman sums from the rich theory of elliptic curves.
We recall that the quadratic twist of Em(a) that we denote by Ẽm(a) is given by:

Ẽm(a) : y2 + xy = x3 + bx2 + a ,
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where b ∈ F2m has absolute trace 1; it has cardinality:

#Ẽm(a) = 2m + 2−Km(a) .

First of all, we recall a proof of the divisibility by 4 stated in Proposition 11 which is already
mentioned in [1]. For m ≥ 3, Km(a) ≡ #Em(a) (mod 4), so Km(a) ≡ 0 (mod 4) if and only
if #Em(a) ≡ 0 (mod 4). This is equivalent to Em(a) having a non-trivial rational point of 4-
torsion. This can also be formulated as both the equation of Em(a) and its 4-division polynomial
f4(x) = x6 + ax2 having a rational solution. It is easily seen that P = (a1/4, a1/2) is always a
non-trivial solution to this problem.

Then Lisoněk gave in [26] a similar proof of Proposition 12. Indeed, for m ≥ 3, Km(a) is
divisible by 8 if and only if Em(a) has a non-trivial rational point of 8-torsion. This is easily
shown to be equivalent to Trm1

(
a1/4) = Trm1 (a) = 0.

Finally it is possible to prove directly that the condition given in Proposition 13 is not
only sufficient, but also necessary, using torsion of elliptic curves. We use this property in
Subsection 4.3.

Proposition 15. Let a ∈ F∗2m .

• If m is odd, then Km(a) ≡ 1 (mod 3) if and only if there exists t ∈ F2m such that a = t4+t3.

• If m is even, then:

– Km(a) ≡ 0 (mod 3) if and only if there exists t ∈ F2m such that a = t4 + t3 and
Trm1 (t) = 0;

– Km(a) ≡ −1 (mod 3) if and only if there exists t ∈ F2m such that a = t4 + t3 and
Trm1 (t) = 1.

Proof. According to Proposition 13 we only have to show that if a verifies the given congruence,
it can be written as a = t4 + t3.

• We begin with the case m odd, so that 2m ≡ −1 (mod 3). Then Km(a) ≡ 1 (mod 3) if
and only if #Em(a) ≡ 0 (mod 3), i.e. if Em(a) has a non-trivial rational point of 3-torsion.
It implies that the 3-division polynomial of Em(a) given by f3(x) = x4 + x3 + a has a
rational solution, so that there exists t ∈ F2m such that a = t4 + t3.

• Suppose now that m is even, so that 2m ≡ 1 (mod 3).

– If Km(a) ≡ −1 (mod 3), then #Em(a) ≡ 0 (mod 3), and as in the previous case we
can find t ∈ F2m such that a = t4 + t3.

– If Km(a) ≡ 0 (mod 3), then #Em(a) ≡ 1 (mod 3), but #Ẽm(a) ≡ 0 (mod 3). The
3-division polynomial of Ẽm(a) is also given by f3(x) = x4 + x3 + a, so that there
exists t ∈ F2m such that a = t4 + t3.

4 Finding Specific Values of Binary Kloosterman Sums
4.1 Generic Strategy
In this section we present the most generic method to find specific values of binary Kloosterman
sums. To this end one picks random elements of F2m and computes the corresponding values

8



until a correct one is found. Before doing any complicated computations, divisibility conditions
as those stated in the previous section can be used to restrict the pool of elements to those
satisfying certain conditions (but without missing any of them) or to filter out elements which
will give inadequate values.

Then the most naïve method to check the value of a binary Kloosterman sum is to compute
it as a sum. However one test would need O(2mm log2m log logm) bit operations and this is
evidently highly inefficient. Theorem 10 tells that this costly computation can be replaced by
the computation of the cardinality of an elliptic curve over a finite field of characteristic 2. Using
p-adic methods à la Satoh [32], also known as canonical lift methods, this can be done quite
efficiently in O(m2 log2m log logm) bit operations and O(m2) memory [17, 38, 37, 25]. Working
with elliptic curves also has the advantage that one can check that the current curve is a good
candidate before computing its cardinality as follows: one picks a random point on the curve
and multiply it by the targeted order; if it does not give the identity on the curve, the curve does
not have the targeted cardinality.

Finally it should be noted that, if ones looks for all the elements giving a specific value,
a different strategy can be adopted as noted in [1]. Indeed a binary Kloosterman sum can
be seen as Walsh-Hadamard transform of the Boolean function Trm1 (1/x). Therefore we can
construct the Boolean function corresponding to the function Trm1 (1/x) and then use a fast
Walsh-Hadamard transform to compute the value of all binary Kloosterman sums. Building the
Boolean function costs one multiplication per element, so O(2mm logm log logm) bit operations
and O(2m) memory. The complexity of the fast Walsh-Hadamard transform is O(2mm2) bit
operations and O(2mm) memory [2].

4.2 Zeros of Binary Kloosterman Sum
When looking for zeros of binary Kloosterman sums, which is of high cryptographic interest as
Table 2 emphasizes, one benefits from even more properties of elliptic curves over finite fields.
Indeed, when Km(a) = 0, we get that #Em(a) = 2m. Hence all rational points of Em(a) are of
order some power of 2.

In fact, we know even more. As Em(a) is defined over a field of characteristic 2, its complete
2e-torsion (where e is any strictly positive integer) is of rank 1, whereas the complete le-torsion,
for a prime l different from 2, is of rank 2, as stated in Proposition 6. Therefore the rational Sylow
2-subgroup is cyclic, isomorphic to Z/2eZ for some positive integer e. In the case Km(a) = 0,
we even get that the whole group of rational points is isomorphic to Z/2mZ. Furthermore, basic
group theory tells that Em(a) will then have 2m−1 points of order 2m.

Finally it should be noted that if 2m | #Em(a), then #Em(a) must be equal to 2m. This is
a simple consequence of Hasse theorem 5 giving bounds on the number of rational points of an
elliptic curve over a finite field.

These facts have first been used by Lisoněk in [26] to develop a probabilistic method to test
whether a given a is a binary Kloosterman zero or not: one takes a random point on Em(a) and
tests whether its order is 2m or not. This test involves at most m duplications on the curve,
hence is quite efficient. Moreover, as soon as #Em(a) = 2m, half of its points are generators, so
that testing one point on a correct curve gives a probability of success of 1/2. This led Lisoněk
to find zeros of binary Kloosterman sums for m up to 64 in a matter of days.

Afterwards Ahmadi and Granger proposed in [1] a deterministic algorithm to test whether
an element a ∈ F2m is a binary Kloosterman zero or not. From the above discussion, it is indeed
enough to compute the size of the Sylow 2-subgroup of Em(a) to answer that question. This can
be efficiently implemented by point halving, starting from a point of order 4. The complexity of
each iteration of their algorithm is dominated by two multiplications in F2m . So testing a curve
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with a Sylow 2-subgroup of size 2e is of complexity O(e ·m logm log logm). Furthermore, they
showed that the average size of the Sylow 2-subgroup of the curves of the form Em(a) is 23 when
m goes to infinity, so that their algorithm has an average bit complexity of O(m logm log logm).

4.3 Implementation for the Value 4
As shown in Table 2, we have a necessary and sufficient condition to build bent functions from
the value 4 of binary Kloosterman sums when m is odd and a necessary condition only when
m is even. However the situation is more complicated than in the case of binary Kloosterman
zeros.

We are looking for a ∈ F2m such that Km(a) = 4. The cardinality of Em(a) should then be
#Em(a) = 2m +Km(a) = 4(2m−2 + 1) which does not ensure to have a completely fixed group
structure as in the case where #Em(a) = 2m. Moreover, in general, the number 2m−2 + 1 does
not verify many divisibility properties leading to an efficient test for the value 4. The cardinality
of the twist Ẽm(a) is given by #Ẽm(a) = 2m+ 2−Km(a) = 2(2m−1− 1) which does not provide
more useful information.

What we can however deduce from these equalities is that if Km(a) = 4, then:

• Km(a) ≡ 4 (mod 8), so that Trm1 (a) = 1;

• Km(a) ≡ 1 (mod 3), so that:

– if m is odd, then a can be written as t4 + t3;
– if m is even, then a can be written as t3 with Trm2 (t) 6= 0.

We can use both these conditions to filter out a to be tested as described in Algorithm 1 (for m
odd).

Algorithm 1: Finding the value 4 of binary Kloosterman sums for m odd
Input: A positive odd integer m ≥ 3
Output: An element a ∈ F2m such that Km(a) = 4

1 a←R F2m

2 a← a3(a+ 1)
3 if Trm1 (a) = 0 then
4 Go to step 1
5 P ←R Em(a)
6 if [2m + 4]P 6= 0 then
7 Go to step 1
8 if #Em(a) 6= 2m + 4 then
9 Go to step 1

10 return a

We implemented this algorithm in Sage [36]. It was necessary to implement a relatively ef-
ficient version of point counting in characteristic 2, none of them being available. The exact
algorithm chosen was an extension to characteristic 2 of Satoh’s original algorithm by Fouquet,
Gaudry and Harley [16]. The complexity of this algorithm is O(m3+ε) bit operations (or O(m5)
with naïve multiplication) and O(m3) memory, but it is quite simple and there was already an
existing implementation in GP/Pari by Yeoh [40] to use as a starting point. The computations in
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Z2m , the unique unramified extension of degree m of the 2-adic integers Z2, were done through
the direct library interface to Pari [30] provided in Sage. Our implementation has been con-
tributed back to Sage1. As a byproduct of our work we corrected and optimized the current
implementation of Boolean functions in Sage2. The code for manipulating binary Kloosterman
sums has also been made available on one author’s homepage3.

As a result of our experiments, we found that the following value of a for m = 55 gives a
value 4 of binary Kloosterman sum. The finite field F255 is represented as F2 [x]/(x55 + x11 +
x10 + x9 + x7 + x4 + 1); a is then given as:

a = x53 + x52 + x51 + x50 + x47 + x43 + x41 + x38 + x37 + x35

+ x33 + x32 + x30 + x29 + x28 + x27 + x26 + x25 + x24

+ x22 + x20 + x19 + x17 + x16 + x15 + x13 + x12 + x5 .

5 Experimental Results for m Even
When m is even, Mesnager has showed in [28] that the situation seems to be more complicated
theoretically than in the case where m is odd and that the study of the bentness of the Boolean
functions given in Table 2 cannot be done as in the odd case. As shown in Table 2 we only have
a necessary condition to build bent functions from the value 4 of binary Kloosterman sum when
m is even. To get a better understanding of the situation we conducted some experimental tests
to check whether the Boolean functions constructed with the formula of Table 2 were bent or
not for all the a’s in F2m giving a value 4.

Therefore we define for a ∈ F∗2m and b ∈ F∗4 the Boolean function fa,b with n = 2m inputs as:

fa,b(x) = Trn1
(
ax2m−1

)
+ Tr2

1

(
bx

2n−1
3

)
. (1)

We now show that it is enough to test the bentness of a subset of these functions to get results
about all of them.

First of all, the next proposition proves that the study of the bentness of fa,b can be reduced
to the case where b = 1.

Proposition 16. Let n = 2m with m ≥ 3 even. Let a ∈ F∗2m and b ∈ F∗4 . Let fa,b be the function
defined on F2n by Equation (1). Then fa,b is bent if and only if fa,1 is bent.

Proof. Since m is even, F∗4 ⊂ F∗2m . In particular, for every b ∈ F∗4 , there exists α ∈ F∗2m such
that α 2n−1

3 = b. For x ∈ F2n , we have

fa,b(x) = Trn1
(
ax2m−1

)
+ Tr2

1

(
bx

2n−1
3

)
= Trn1

(
aα2m−1x2m−1

)
+ Tr2

1

(
α

2n−1
3 x

2n−1
3

)
= Trn1

(
a(αx)2m−1)

)
+ Tr2

1

(
(αx)

2n−1
3

)
= fa,1(αx) .

1http://trac.sagemath.org/sage_trac/ticket/11448
2http://trac.sagemath.org/sage_trac/ticket/11450
3http://perso.telecom-paristech.fr/~flori/kloo/
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Hence, for every ω ∈ F∗2n , we have

χ̂fa,b(ω) =
∑
x∈F2n

(−1)fa,b(x)+Trn1 (ωx)

=
∑
x∈F2n

(−1)fa,1(αx)+Trn1 (ωx)

= χ̂fa,1(ωα−1) .

Second, we know that Km(a) = Km(a2), so the a ∈ F2m giving a value 4 of binary Klooster-
man sums come in cyclotomic classes. Fortunately it is enough to check one a per class. Indeed
fa,b is bent if and only if fa2,b2 is, as proved in the following proposition.

Proposition 17. Let n = 2m with m ≥ 3. Let a ∈ F∗2m and b ∈ F∗4 . Let fa,b be the function
defined on F2n by Equation (1). Then fa,b is bent if and only if fa2,b2 is bent.

Proof.

χ̂fa,b(ω) =
∑
x∈F2n

(−1)fa,b(x)+Trn1 (ωx)

=
∑
x∈F2n

(−1)
Trn1 (ax2m−1)+Tr2

1

(
bx

2n−1
3

)
+Trn1 (ωx)

=
∑
x∈F2n

(−1)
Trn1
(
a2x22m−1

)
+Tr2

1

(
b2x2 2n−1

3

)
+Trn1 (ω2x2)

=
∑
x∈F2n

(−1)
Trn1 (a2x2m−1)+Tr2

1

(
b2x

2n−1
3

)
+Trn1 (ω2x)

=
∑
x∈F2n

(−1)fa2,b2 (x)+Trn1 (ω2x)

= χ̂fa2,b2 (ω2) .

In the specific case b = 1 that we are interested in, it gives that fa,1 is bent if and only if
fa2,1 is, which proves that checking one element of each cyclotomic class is enough.

Finally, as mentioned in Sect. 4, finding all the a’s in F2m giving a specific value is a different
problem from finding one such a ∈ F2m . One can compute the Walsh-Hadamard transform of the
trace of inverse using a fast Walsh-Hadamard transform. As long as the basis of F2m considered
as a vector space over F2 is correctly chosen so that the trace corresponds to the scalar product,
the implementation is straightforward.

The algorithm that we implemented is described in Algorithm 2. The implementation3 was
made using Sage [36] and Cython [4], performing direct calls to Givaro [14], NTL [34] and gf2x [5]
libraries for efficient manipulation of finite field elements and construction of Boolean functions.

In Table 4 we give the results of the computations we conducted along with different pieces
of information about them. One should remark that all the Boolean functions which could
be tested are bent. Evidence that our computations were correct is given by the fact that
the number of cyclotomic classes we found is so. This can be checked using the formula of
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Algorithm 2: Testing bentness for m even
Input: An even integer m ≥ 3
Output: A list of couples made of one representative for each cyclotomic class of

elements a ∈ F2m such that Km(a) = 4 together with 1 if the corresponding
Boolean functions fa,b are bent, 0 otherwise

1 Build the Boolean function f : x ∈ F2n 7→ Trn1 (1/x) ∈ F2
2 Compute the Walsh-Hadamard transform of f
3 Build a list A made of one a ∈ F2m for each cyclotomic class such that Km(a) = 4
4 Initialize an empty list R
5 foreach a ∈ A do
6 Build the Boolean function fa,1
7 Compute the Walsh-Hadamard transform of fa,1
8 if fa,1 is bent then
9 Append (a, 1) to R

10 else
11 Append (a, 0) to R

12 return R

Table 4: Test of bentness for m even
m Nb. of cyclotomic classes Time All bent?
4 1 <1s yes
6 1 <1s yes
8 2 <1s yes
10 3 4s yes
12 6 130s yes
14 8 3000s yes
16 14 82000s yes
18 20 - -
20 76 - -
22 87 - -
24 128 - -
26 210 - -
28 810 - -
30 923 - -
32 2646 - -
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Table 5: The fourteen cyclotomic classes such that K16(a) = 4 as elements of F2 [x]/(x16 + x5 +
x3 + x2 + 1)

x14 + x11 + x8 + x6 + x3 + x
x15 + x13 + x10 + x8 + x7 + x6 + x5 + x4 + x3 + 1
x14 + x13 + x12 + x10 + x8 + x2 + x
x14 + x12 + x11 + x9 + x6 + x
x15 + x11 + x9 + x7 + x6 + x3 + x2 + 1
x13 + x6 + x4 + x2 + x+ 1
x12 + x11 + x10 + x9 + x5 + x3 + x2 + x
x15 + x11 + x7 + x6 + x5 + x4 + x3 + x2

x15 + x13 + x9 + x8 + x5 + x4 + x3 + x
x15 + x11 + x10 + x3

x13 + x10 + x9 + x7 + x6 + x5 + x3 + x2 + x
x13 + x10 + x9 + x7 + x6 + x5 + x4 + x3 + x2 + x
x15 + x13 + x10 + x9 + x8 + x7 + x5 + x
x15 + x11 + x10 + x3 + x+ 1

Proposition 8. We are looking for elliptic curves with trace t of the Frobenius automorphism
equal to t = 1 − Km(a) = −3. Hence the number of cycloctomic classes is H(∆)/m where
∆ = 9 − 4 · 2m. Moreover, for the values we tested, except m = 12, 30, 32, this discriminant is
fundamental, so that the order Z[α] is maximal and H(∆) = h(∆) the classical class number, a
quantity even easier to compute.

Unfortunately we were not able to check bentness of functions for m > 16 due to lack of
memory. Constructing the Boolean functions of n = 2m variables is the most time consuming
part of the test, but the real bottleneck is the amount of memory needed to compute their Walsh-
Hadamard transform. One must indeed perform the Walsh-Hadamard transform using integers
of size at least 2m + 1 bits, so, with our implementation, integers of 64 bits from m = 16. The
amount of memory needed is then 64 ·22m ·2−30 = 22m−24 gigabytes. For m = 16 this represents
already 32GB of memory; for m = 18 it would be 512GB of memory. Therefore we give in
Table 5 the fourteen values of a found for m = 16, the highest value that we could test. The
corresponding Boolean functions of n = 32 variables are all bent as we already pointed out. In
Table 5, the finite field F216 is represented as F2 [x]/(x16 + x5 + x3 + x2 + 1).

6 Conclusion
In this work we studied the different existing algorithms to compute or test zeros of binary
Kloosterman sums in order to extend them to the computation of the value 4. This is a non-
trivial problem because the situation for zeros of binary Kloosterman sums is very specific.
Indeed, it involves results about the 2-torsion of elliptic curves over a finite field of characteristic
2 which can no longer be used when looking for the value 4. Nonetheless we showed that the
theory of elliptic curves gives other necessary conditions that we used to implement an algorithm
to find the value 4.

The case where m is odd is currently the most interesting from a cryptographic point of view
because such values lead to the construction of hyperbent functions of n = 2m variables. All of
our code has been contributed to the Sage project or made available online.

When m is even, the situation is theoretically more complicated. It has been shown that the
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value 4 is still a necessary condition, but it is an open problem to tell whether this condition
is sufficient for all m even or not. Therefore we conducted experiments to find all the values 4
of binary Kloosterman sums and test the corresponding Boolean functions for m even as big as
possible. All the values we tested gave bent functions, pointing out that the situation in the case
m even should definitely be studied further.
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