
Decoding One Out of Many

Nicolas Sendrier

INRIA Paris-Rocquencourt, Project-Team SECRET
nicolas.sendrier@inria.fr

Abstract. Generic decoding of linear codes is the best known attack
against most code-based cryptosystems. Understanding and measuring
the complexity of the best decoding technique is thus necessary to select
secure parameters. We consider here the possibility that an attacker has
access to many cryptograms and is satisfied by decrypting (i.e. decoding)
only one of them. We show that, in many cases of interest in cryptology,
a variant of Stern’s collision decoding can be adapted to gain a factor
almost

√
N when N instances are given. If the attacker has access to

an unlimited number of instances, we show that the attack complexity
is significantly lower, in fact raised by a power slightly larger than 2/3.
Finally we give indications on how to counter those attacks.

1 Introduction

Code-based cryptography have attracted a lot of interest in the past few years,
accompanying the rise of post-quantum cryptography. It allows public-key en-
cryption scheme [McE78,Nie86], zero-knowledge protocols [Ste93,Vér97,GG07],
digital signature [CFS01], hash functions [AFG+08,BLPS11], stream ciphers
[FS96,GLS07] to mention only the most classical primitives. The common point
of all code-based cryptographic primitives is the fact that they rely on the hard-
ness of decoding a linear code with no apparent algebraic structure. The problem
is NP-hard [BMvT78], and in fact, the parameter selection for those systems
is based on the best knows decoding techniques, usually the collision decod-
ing [Ste89] and its variants, and sometimes the generalized birthday algorithm
(GBA) [CP91,Wag02].

The complexity of information set decoding (ISD) for cryptographic appli-
cation has been widely studied and is well understood (see [Pet11] for today’s
state of the art). In this work, we consider the case where the attacker knows
many instances of the problem and wishes to solve only one of them. Doing this
with ISD has already been done [JJ02], but the analysis does not help us to
understand how much we can gain. With GBA, there an unpublished attack,
attributed to Bleichenbacher, which saves, more or less, a factor

√
N when N

instances are decoded simultaneously (and the solution for only one is needed).
When saving a factor

√
N to an attack, there is necessarily a limit to N . If

the initial cost was T , we must have T/
√
N ≤ N because each instance must be

read once. Thus the optimal value for N is T 2/3 which is also the new cost for
the attack.

We will show in this paper that, when the number of errors to decode is
smaller than the Gilbert-Varshamov distance, collision decoding can be adapted
to save a factor N0.5−c (with a small positive c for which we have an estimate)
when decoding one out of N instances. Also, if the number of instances is un-
limited, we show that the cost of the decoding is raised to the power 2/3 + c′

(with a small positive c′ for which we have an estimate).

We will first analyze an abstract variant of ISD, similar to the one of [FS09].
We will then show how this algorithm and its analysis can be extended to the case
of many instance and provide some estimates of what this modified algorithm
can gain.

This new attack constitute a threat which must be considered. We briefly
explain in the conclusion how to completely avoid this threat. The countermea-
sure is simple but it is a new feature to consider when implementing code-based
cryptography.

Notation:

– Sn(0, w) denotes the sphere of radius w centered in 0 in the Hamming space
{0, 1}n, more generally Sn(x,w) denotes the same sphere centered in x.

– |X| denotes the cardinality of the set X.

2 The Decoding Problem in Cryptology

The security of code-based cryptography heavily relies on the hardness of de-
coding in a random linear code. The computational syndrome decoding problem
is NP-hard and is conjectured difficult in the average case.

Problem 1 (Computational Syndrome Decoding - CSD) Given a matrix
H ∈ {0, 1}r×n, a word s ∈ {0, 1}r, and an integer w > 0, find e ∈ {0, 1}n of
Hamming weight ≤ w such that eHT = s.

We will denote CSD(H, s, w) the above problem and the set of its solutions. De-
coding is one the the prominent algorithmic problem in coding theory for more
than fifty years. So far, no subexponential algorithm is known which correct a
constant proportion of errors in a linear code. Code-based cryptography has been
developed on that ground and for many code-based cryptosystems, public-key
encryption [McE78,Nie86] and digital signature [CFS01], zero-knowledge proto-
cols based on codes [Ste93,Vér97,GG07], hash-function [AFG+08], PRNG and
stream ciphers [FS96,GLS07] and many others, decoding is the most threatening
attack and therefore is a key point in the parameter selection.

2.1 Generic Decoding Algorithms

There are two main techniques for addressing CSD in cryptology. The most an-
cient one, Information Set Decoding (ISD) can be traced back to Prange [Pra62].

The variants useful today in cryptology all derive more or less from Stern’s al-
gorithm [Ste89], which we will call collision decoding, following [Pet11]. It was
implemented (with various improvements) in [CC98] then in [BLP08] which re-
ports the first successful attack on the original parameter set. General lower
bounds were proposed [FS09]. The last published variant is ball-collision decod-
ing [BLP11] which features a better decoding exponent than collision decoding.

ISD is the best know technique when the error weight w is smaller than the
Gilbert-Varshamov distance, which is defined as the smallest integer d0 such
that (

n

d0

)
≥ 2r.

When w is larger than d0 the Generalized Birthday Algorithm (GBA) [Wag02]
(order 2 GBA was previously published in [CP91]) is sometimes more efficient
than ISD. The first use of GBA for decoding was proposed in [CJ04] for attacking
an early version of FSB [AFG+08]. Finally, when w gets even larger (typically
w > r/4) the best known technique is linearization [Saa07].

2.2 Decoding One Out of Many Instances

In this work we will also consider another scenario where the attacker dispose of
a large number of instances (H, s, w) where the parity check matrix H and the
error weight w are identical, but the syndrome s runs over some large set.

Problem 2 (Computational Syndrome Decoding - Multi) Given a ma-
trix H ∈ {0, 1}r×n, a set S ⊂ {0, 1}r, and an integer w > 0, find a word
e ∈ {0, 1}n of Hamming weight ≤ w such that eHT ∈ S.

For convenience, we will also denote CSD(H,S, w) this problem and the set of its
solutions. It has been addressed already using GBA by Bleichenbacher (unpub-
lished, reported in [OS09]) for attacking the digital signature CFS. In practice,
the attacker builds a large number N of favorable instances of the decoding
problem and gain a speedup of

√
N . This reduces the order of magnitude of the

attack from O(2r/2) to O(2r/3). A variant of CFS resistant to this attack was
recently published [Fin10].

An attempt at using ISD with multiple instances was already made in [JJ02].
We revisit here that work in a more general setting and with a more thorough
complexity analysis.

3 A Generalized Information Set Decoding Algorithm

Following other works [LB88,Leo88], J. Stern describes in [Ste89] an algorithm
to find a word of weight w in a binary linear code of length n and dimension k
(and codimension r = n − k). The algorithm uses two additional parameters p
and ` (both positive integers). We present here a generalized version, similar to

For any fixed values of n, r and w, the following algorithm uses four pa-
rameters: two integers p > 0 and ` > 0 and two sets W1 ⊂ Sk+`(0, p1) and
W2 ⊂ Sk+`(0, p2) where p1 and p2 are positive integers such that p1 + p2 = p.

procedure main isd
input: H0 ∈ {0, 1}r×n, s0 ∈ {0, 1}r

repeat

P ← random n× n permutation matrix
(isd 0)

(
(H ′, H ′′, U)← PartialGaussElim(H0P) // as in (1)
s← s0U

T

e← isd loop(H ′, H ′′, s)
while e = fail
return (P, e)

procedure isd loop

input: H ′ ∈ {0, 1}`×(k+`), H ′′ ∈ {0, 1}(r−`)×(k+`), s ∈ {0, 1}r
for all e1 ∈W1

(isd 1)
n

i← e1H
′T , s′′1 ← e1H

′′T

write(e1, s
′′
1 , i) // stores (e1, s

′′
1) at index i

for all e2 ∈W2

(isd 2)
n

i← s′ + e2H
′T , s′′2 ← s′′ + e2H

′′T

Elts← read(i) // extracts the elements stored at index i
for all (e1, s

′′
1) ∈ Elts

(isd 3)
n

if wt (s′′1 + s′′2) = w − p
return e1 + e2 (success)

return fail (fail)

Algorithm 1. Generalized ISD algorithm

the one presented in [FS09], which acts on the parity check matrix H0 of the code
(instead of the generator matrix). Table 1 describes the algorithm. The partial
Gaussian elimination of H0P consists in finding U (r× r and non-singular) and
H (and H ′, H ′′) such that1

r − ` k + `
1

. . . H ′′ s′′
T

UH0P = H = 1 , sT = UsT0 =

` 0 H ′ s′
T

(1)

where U is a non-singular r × r matrix. We have e ∈ CSD(H, s, w) if and only
if ePT ∈ CSD(H0, s0, w). Let (P, e′) be the output of the algorithm and e′′ =
s′′ + e′H ′′T the word e = (e′′, e′) is in CSD(H, s, w).

1 in the unlikely event that the first r − ` columns are dependent, we change P

Definition 1. For any fixed value of n, r and w, we denote WFISD(n, r, w)
the minimal work factor (average cost in elementary operations) of Algorithm 1
to produce a solution to CSD (provided there is a solution), for any choices of
parameters `, p, W1 and W2.

In the literature, elementary operations are often binary instructions. Our pur-
pose here is to obtain a measure allowing us to compare algorithms, to measure
the impact of multiple instances and to make an asymptotic analysis. Any rea-
sonably fixed polynomial time (in n) “elementary operation” will serve that
purpose.

3.1 Links With the Other Variants of Collision Decoding

Information set decoding is an old decoding technique [Pra62], the variants of in-
terest today for cryptanalysis derive from Stern’s collision decoding [Ste89]. The
algorithm we present here is closer to the “Punctured Split Syndrome Decoding”
of Dumer [Dum91,Bar98]. Depending on how the sets W1 and W2 are chosen,
we may obtain any known variant, including the recent ball-collision decoding
[BLP11]. Of course the Algorithm 1 is an abstraction. An effective algorithm,
not to speak of its implementation must include a description of how the param-
eters p and ` are chosen (something we will do) and how the sets W1 and W2 are
selected (something we will not do completely). Our main purpose in this work
is to estimate the impact of having multiple instances. This requires some flexi-
bility in the choice of the sizes of W1 and W2 which is relatively natural in our
abstract model, but not straightforward, though probably possible, in the above
mentioned variants. We believe that the evolution of the complexity given in (9)
and (10) between the single and multiple instances scenarios can be obtained for
most variants of collision decoding after proper adjustments.

4 Cost Estimation

We will neglect all control instructions and assume that counting only the in-
structions in blocks (isd i) will give an accurate estimation of the algorithm
cost. For i = 0, 1, 2, 3 we will denote Ki the average cost in elementary opera-
tions (whatever that means) for executing the block of instructions (isd i).

Given n, r, w, p and `, we will denote

ε(p, `) ≈
(
r−`
w−p

)
min

(
2r,
(
n
w

)) (2)

the probability for some e′ ∈ Sk+`(0, p) to be a valid output of a particular
execution of isd loop given that the input (H0, s0) of Algorithm 1 has a solution.
Given, in addition, W1 and W2 we denote

P(p, `) = 1− (1− ε(p, `))|W1+W2| (3)

where W1+W2 = {e1+e2 | (e1, e2) ∈W1×W2}, the probability of one particular
execution of isd loop to return and element of Sk+`(0, p) given that the input
(H0, s0) of Algorithm 1 has a solution. In addition to the usual random coding
assumption (pseudo-randomness of syndromes) which have already been used in
the above probabilities, we will admit the following.

Assumptions and approximations:

1. K0, K1, K2, and K3 are independent of p, `, W1 and W2.
2. All sums e1 + e2 for (e1, e2) ∈W1 ×W2 are distinct and |W1||W2| ≤

(
k+`
p

)
.

3. Up to a (small) constant factor we have for any x� 1 and any integer N

1− (1− x)N ≈ min(1, xN)

Those assumptions and approximations will not cost more than a small constant
factor on the cost estimations we will compute later in this paper.

Proposition 3 For an input (H0, s0) such that CSD(Ho, s0, w) 6= ∅, the Algo-
rithm 1 will stop after executing

T (p, `) ≈ K0

P(p, `)
+
K1|W1|
P(p, `)

+
K2

|W1|ε(p, `)
+

K3

2`ε(p, `)
(4)

elementary operations in average.

Proof: The two leftmost terms are straightforward as the average number of calls
to isd loop is equal 1/P(p, `). One particular execution of (isd 2) will inspect
|W1| different sums e1 + e2 and thus succeeds with probability

π2 = 1− (1− ε(p, `))|W1| .

When the parameters are optimal we have ε(p, `)|W1| � 1 and thus π2 ≈
ε(p, `)|W1| which accounts for the third term in (4). Finally, if the call to isd loop
fails, the block (isd 3) will be called in average |W1||W2|/2` times. Thus if π3 is
its probability of success, we have

1− P(p, `) = (1− π3)
|W1||W2|

2` and thus π3 = 1− (1− ε(p, `))2
`

.

As ε(p, `)2` � 1, we have π3 = ε(p, `)2` and thus the rightmost term of (4). �

An easy consequence of this proposition is that the minimal cost for Algorithm 1
is obtained when W2 has maximal size (everything else being fixed), that is,
within our assumptions, when |W1||W2| =

(
k+`
p

)
. At this point, P(p, `) is inde-

pendent of W1 and the complexity is minimal when the two middle terms of (4)
equals, that is when

|W1| = L(p, `) =

√
K2P(p, `)
K1ε(p, `)

=
√
K2

K1
min

(√
1

ε(p, `)
,

√(
k + `

p

))
(5)

which is consistent with the results of [FS09]. We have

WFISD(n, r, w) = min
p,`
T (p, `)

where
T (p, `) ≈ K0

P(p, `)
+

2K2

L(p, `)ε(p, `)
+

K3

2`ε(p, `)
. (6)

Note that when ε(p, `)
(
k+`
p

)
< 1, the “min” in (5) is obtained for rightmost term

and W1 and W2 have (approximatively) the same size. Else P(p, `) = 1 (which
happens only when w is large) and the optimal choice consists in choosing W1

smaller than W2.

4.1 Lower Bound

Assuming that K0 = 0 (we neglect the Gaussian elimination), the cost estimate
becomes

T (p, `) ≈ 2K2

L(p, `)ε(p, `)
+

K3

2`ε(p, `)
(7)

and because the first term is increasing and the second is decreasing (for param-
eters of cryptologic interest) we have for all p

1
2
T (p, `1) ≤ min

`
T (p, `) ≤ T (p, `1)

where `1(p), or `1 for short, is the unique integer in [0, r[such that the two terms
in T (p, `) are equal, that is

`1 = log2

(
K3

2K2
L(p, `1)

)
= log2

(
K3

2
√
K1K2

√
P(p, `1)
ε(p, `1)

)
.

The lower bound is
WFISD(n, r, w) ≥ min

p

1
2
T (p, `1)

and the various forms of T (p, `1) give various interpretations of the complexity

T (p, `1) =
2K1L(p, `1)
P(p, `1)

=
2K3

2`1ε(p, `1)
=

2K2

L(p, `)ε(p, `1)
=

2
√
K1K2√

P(p, `)ε(p, `1)

This bound is tight if the Gaussian elimination cost is negligible (which is often
the case in practice, see Table 2).

4.2 Some Numbers

For Table 3 will assume that K0 = nr, K1 = K2 = 1, and K3 = 2. The
elementary operation being a “column operation”: a column addition or the
computation of a Hamming weight, possibly accompanied by a memory access.

(n, r, w) log2(WFISD) min
p

log2

T (p, `1)

2
(2048, 352, 32) 81.0 80.5
(2048, 781, 71) 100.7 100.1
(4096, 252, 21) 80.4 80.0
(4096, 540, 45) 128.3 127.9
(8192, 416, 32) 128.8 128.4

(216, 144, 11) 70.2 70.1
(216, 160, 12) 79.4 79.3
(218, 162, 11) 78.9 78.8
(220, 180, 11) 87.8 87.7

(5 · 218, 640, 160) 91.8 90.9
(7 · 218, 896, 224) 126.6 125.7
(221, 1024, 256) 144.0 143.1
(23 · 216, 1472, 368) 205.9 205.0
(31 · 216, 1984, 496) 275.4 274.6

Table 2. Workfactor estimates and lower bounds for generalized ISD. The code pa-
rameters of the first block of numbers corresponds to encryption, the second to the
CFS digital signature scheme and the third to collision search in the (non-regular)
FSB hash function

The cost for (isd 1) and (isd 2) can be reduced to 1 by “reusing additions”, as
explained in [BLP08]. The “column” has size r bits (r− ` for (isd 3)), however
we need in practice ` bits for computing the index in (isd 1) and (isd 2),
and for (isd 3) we only need in average 2(w − p) additional bits for deciding
whether or not we reach the target weight. This sets the “practical column size”
to ` + 2(w − p) instead of r. We claim that up to a small constant factor, this
measure will give a realistic account for the cost of a software implementation.

4.3 Variations With the Parameter p

There exists an expression for the optimal, or nearly optimal value `1(p) of ` for a
given n, r, w, and p. Even though it defines `1(p) implicitly, it gives an intuition
of the significance and variations of `1. Finding something similar for p given
n, r, and w (with ` = `1(p) of course) seems to be more challenging. However,
we observe that, when w is much smaller than the Gilbert-Varshamov distance
(typically for encryption), the value of T (p, `1(p)) varies relatively slowly with p
when p is close to the optimal.

As an illustration, we give in Table 3 values of T (p, `) (computed with (6))
for various optimal pairs (p, `) and code parameters.

5 Decoding One Out of Many

We assume now that we have to solve CSD(H,S, w) for set of S of N indepen-
dent syndromes which all have a solution. We describe a procedure for that in

(n, r, w) = (4096, 540, 45)

p 6 7 8 9 10 11 12 13 14 15 16 17

` 34 38 43 47 51 56 60 64 68 72 76 80

log2 T (p, `) 129.4 129.0 128.7 128.5 128.4 128.3 128.3 128.4 128.6 128.9 129.2 129.6

(n, r, w) = (220, 180, 11)

p 4 5 6 7 8 9 10

` 41 50 59 68 77 86 94

log2 T (p, `) 106.1 102.1 98.2 94.6 91.2 88.1 87.7

(n, r, w) = (221, 1024, 256)

p 11 12 13 14 15 16 17 18 19 20 21 22

` 103 112 121 129 138 144 145 146 147 148 148 149

log2 T (p, `) 158.4 155.1 151.8 148.5 145.3 144.0 144.9 145.8 146.7 147.7 148.6 149.5

Table 3. Cost estimate for various optimal (p, `) the first (top) table corresponds to
encryption, the second to digital signature and the third to hashing

Algorithm 4. We keep the same notations and use the same assumptions and
approximations as in §4. We denote

PN (p, `) = 1− (1− ε(p, `))N |W1||W2| ≈ min (1, ε(p, `)N |W1||W2|)

the probability for one execution of doom loop to succeed. We have a statement
very similar to Proposition 3.

Proposition 4 For an input (H0,S0) such that CSD(Ho, s0, w) 6= ∅ for all
s0 ∈ S0 the Algorithm 4 will stop after executing

TN (p, `) ≈ K0

PN (p, `)
+
K1|W1|
PN (p, `)

+
K2

|W1|ε(p, `)
+

K3

2`ε(p, `)
(8)

elementary operations in average.

We omit the proof which is similar to the proof of Proposition 3 with an identical
expression for the complexity except for PN (p, `) (which grows with N).

5.1 Cost of Linear Algebra

The constant K0 will include, in addition to the Gaussian elimination, the com-
putation of all the soUT for s0 ∈ S0. This multiplies the cost, at most, by a
factor N = |S0|. On the other hand, as long as N ≤ 1/ε(p, `)

(
k+`
p

)
(taking larger

N does not make sense) the probability PN (p, `) is N times larger than before
and thus the ratio K0/PN (p, `) do not increase. The total cost TN (p, `) is smaller
than T (p, `), so the relative contribution of the linear algebra will increase, but
the simplification K0 = 0 remains reasonable as long as PN (p, `)� 1.

When N is close or equal to 1/ε(p, `)
(
k+`
p

)
, as in §5.3, the situation is not so

simple. With fast binary linear algebra computing all the soUT will require about

For any fixed values of n, r and w, the following algorithm uses four parameters:
two integers p > 0 and ` > 0 and two sets W1 ⊂ Sk+`(0, p1) and W2 ⊂ Sk+`(0, p2)
where p1 and p2 are positive integers such that p1 + p2 = p.

procedure main doom
input: H0 ∈ {0, 1}r×n, S0 ⊂ {0, 1}r

repeat

P ← random n× n permutation matrix
(doom 0)

(
(H ′, H ′′, U)← PartialGaussElim(H0P) // as in (1)
S ← {s0UT | s0 ∈ S0}
e← doom loop(H ′, H ′′,S)

while e = fail
return (P, e)

procedure doom loop

input: H ′ ∈ {0, 1}`×(k+`), H ′′ ∈ {0, 1}(r−`)×(k+`), S ⊂ {0, 1}r
for all e1 ∈W1

(doom 1)
n
i← e1H

′T , s′′1 ← e1H
′′T

write(e1, s
′′
1 , i) // stores (e1, s

′′
1) at index i

for all e2 ∈W2

for all s = (s′, s′′) ∈ S

(doom 2)
n
i← s′ + e2H

′T , s′′2 ← s′′ + e2H
′′T

Elts← read(i) // extracts the elements stored at index i
for all (e1, s

′′
1) ∈ Elts

(doom 3)
n
if wt (s′′1 + s′′2) = w − p

return e1 + e2 (success)
return fail (fail)

Algorithm 4. DOOM ISD algorithm

Nr/ log2N column operations. For the extremal values of N of §5.3 (the worst
case), assuming K1 = K2 = K3/2 = 1, we have Pn(p, `) = 1 and a complexity

≈ Nr

log2N
+ 2`+2 with N =

22`(
k+`
p

) ≤ 2`

Unless we precisely use the optimal value of p, for which N ≈
(
k+`
p

)
≈ 2`, the

ratio N/2` will be significantly smaller than 1 and K0 = 0 provides an accurate
estimate. Finally when p is optimal (this value, by the way, is not necessarily an
integer) we have a complexity of the form 2`(r/`+ 4) and we cannot completely
neglect r/` compared with 4. For the sake of simplicity, we do it nevertheless.

5.2 Complexity Gain From Multiple Instances

We will denote
WF(N)

ISD(n, r, w) = min
p,`
TN (p, `)

and the gain we wish to estimate is the ratio

γ = logN
WFISD(n, r, w)

WF(N)
ISD(n, r, w)

which we expect to be close to 1/2. First, we must have

N ≤ 1
ε(p, `)

(
k+`
p

) =
min

(
2r,
(
n
w

))(
r−`
w−p

)(
k+`
p

)
else there is nothing to gain. Within this bound, we have

PN (p, `) = Nε(p, `)
(
k+`
p

)
and LN (p, `) =

√
K2
K1

√
N
(
k+`
p

)
and (assuming K0 = 0)

TN (p, `) =
2
√
K1K2√

N
(
k+`
p

)
ε(p, `)

+
K3

2`ε(p, `)
.

The same analysis as in §4.1 will tell us that the above sum is minimal (up to a
factor at most two) when its two terms are equal, that is when ` = `N (p), or `N
for short, where

`N = log2

K3

√
N
(
k+`N
p

)
2
√
K1K2

 .

Proposition 5 For a given p, we have

logN
T (p, `1)
TN (p, `N)

≈ 1
2
− c(p) where c(p) =

1
2 ln 2

w − p
r − `1 − w−p−1

2

.

Proof: We have

`N = log2

K3

√
N
(
k+`N
p

)
2
√
K1K2

 and `1 = log2

K3

√(
k+`1
p

)
2
√
K1K2

and if we consider only the first order variations, we have `N ≈ `1 + 1

2 log2N .
Because we have

d

da

(
a

b

)
=
(
a

b

)
∆(a, b) where ∆(a, b) =

b−1∑
i=0

1
a− i

≈ b

a− b−1
2

it follows that, keeping only the first order variations, we have

ε(p, `N) ≈ ε(p, `1) exp(−c(p) logN)

where c(p) ≈ ∆(r − `1, w − p)/2 ln(2). Finally

T (p, `1)
TN (p, `N)

=
2`N ε(p, `N)
2`1ε(p, `1)

≈
√
N exp(−c(p) logN).

�

Impact of the Variations of p. The optimal value of p for large N might not be
the same as for N = 1. In practice when T (p, `1) vary slowly with p (parameters
corresponding to encryption) the behavior of Proposition 5 can be extended to
the workfactor and, as long as N is not too large, we have

WF(N)
ISD(n, r, w) ≈ WFISD(n, r, w)

Nγ
where γ ≈ 1

2
− 0.721

w − p
r − `1 − w−p−1

2

(9)

where p and `1 are the optimal parameters of the algorithm when N = 1. For

(n, r, w) log2N p ` WF
(N)
ISD observed γ expected γ

(4096, 540, 45) 0 12 60 128.4 − −
(4096, 540, 45) 40 12 80 110.5 0.4486 0.4487
(4096, 540, 45) 83.7 10 94 91.6 0.4398 0.4487

(2048, 352, 32) 0 6 30 81.0 − −
(2048, 352, 32) 40 7 54 63.4 0.4403 0.4394
(2048, 352, 32) 51.4 7 60 58.8 0.4324 0.4394

(220, 180, 11) 0 10 94 87.8 − −
(220, 180, 11) 40 6 79 79.6 0.2038 0.4856
(220, 180, 11) 70.3 4 76 74.6 0.1875 0.4856

(221, 1024, 256) 0 16 144 144.0 − −
(221, 1024, 256) 40 6 79 141.5 0.0640 0.2724
(221, 1024, 256) 117.6 4 76 137.1 0.0597 0.2724

Table 5. Decoding N instances

parameters corresponding to digital signature and hash function, the algorithm
does not seem to take full benefit of multiple instances.

5.3 Unlimited Number of Instances

We will denote
WF(∞)

ISD (n, r, w) = min
N,p,`

TN (p, `)

and we wish to compare this cost with WFISD(n, r, w). If we assume that N
unlimited, the best strategy for the attacker is to take exactly

N =
1

ε(p, `)
(
k+`
p

) =
min

(
2r,
(
n
w

))(
r−`
w−p

)(
k+`
p

)
instances, in which case (assuming K0 = 0, see the discussion in §5.1) the com-
plexity is

T∞(p, `) =
2
√
K1K2√
ε(p, `)

+
K3

2`ε(p, `)

The minimal value is reached, up to a constant factor, when ` = `∞(p) such that

`∞(p) = log2

(
K3

2
√
K1K2ε(p, `∞(p))

)
.

Interestingly `∞(p) is increasing with p and so is the complexity T (p, `∞(p)).
We thus want to choose p as small as possible. On the other hand, we have
|W1||W2| =

(
k+`
p

)
and |W2| must be a positive integer which limits the decrease

of p. We must have

|W1| ≤
(
k + `

p

)
⇒

√
K2

K1ε(p, `)
≤
(
k + `

p

)
,

with equality for the optimal p. Finally the optimal pair (p, `) is the unique one
such that we have simultaneously

` = log2

 K3

2
√
K1K2

√√√√min
(
2r,
(
n
w

))(
r−`
w−p

)
 = log2

(
K3

2K2

(
k + `

p

))
.

An Estimate of the Improvement. Let p is the optimal value obtained
above with an unlimited number of instances. In that case (we take K0 = 0,
K1 = K2 = 1, K3 = 2)

`1 = log2

√(
k + `1
p

)
and `∞ = log2

(
k + `∞
p

)
.

Keeping the first order variations we have `∞ ≈ 2`1. From Proposition 5 we have

logN
T (p, `1)
T∞(p, `∞)

≈ 1
2
− c(p) where c(p) = 0.721

w − p
r − `1

where N ≈ T∞(p, `∞) ≈ 2`∞ . Thus

T (p, `1) ≈ T∞(p, `∞)
3
2−c(p)

Proposition 6 For a given p, we have

log T (p, `1)
log T∞(p, `∞)

≈ 2
3

+
4
9
c(p) where c(p) =

1
2 ln 2

w − p
r − `1 − w−p−1

2

.

Coming back to the single instance case, and assuming that T (p, `1) varies very
slowly with p, we may assume that WFISD(n, r, w) ≈ T (p, `1). This means that
when an attacker has access to an unlimited number of instances and needs to
decode one of them only, the decoding exponent is multiplied by a quantity,
slightly larger than 2/3, close to the one given in the above proposition.

WF(∞)
ISD (n, r, w) ≈WFISD(n, r, w)β where β ≈ 2

3
+ 0.321

w − p
r − `1 − w−p−1

2

(10)

where p and `1 are the optimal parameters of the algorithm when N = 1.
We can observe that in Table 6, as for formula (9) and Table 5, the behavior

is close to what we expect when encryption is concerned (when w is significantly
smaller than the Gilbert-Varshamov distance). For parameter corresponding to
the signature there is a gain but not as high as expected. For parameter corre-
sponding to the hash function, multiple instances does not seem to provide a big
advantage.

log2(WFISD) log2(WF
(∞)
ISD) obs. exp.

(n, r, w) p ` p = ` β β

(2048, 352, 32) 6 30 81.0 6.01 55.2 .682 .694
(2048, 781, 71) 6 29 100.7 8.20 69.2 .688 .696
(4096, 252, 21) 10 52 80.4 5.27 55.3 .688 .685
(4096, 540, 45) 12 60 128.4 9.00 88.0 .685 .689
(8192, 416, 32) 15 81 128.8 8.10 89.2 .693 .683

(216, 144, 11) 10 75 70.2 3.69 55.1 .785 .671
(216, 160, 12) 11 81 79.4 4.16 61.7 .777 .671
(218, 162, 11) 10 85 78.9 3.77 63.7 .808 .671
(220, 180, 11) 10 94 87.8 3.83 72.3 .824 .670

(5 · 218, 640, 160) 10 91 91.8 4.45 84.8 .924 .768
(7 · 218, 896, 224) 14 126 126.6 6.12 117.6 .929 .768
(221, 1024, 256) 16 144 144.0 6.96 134.0 .930 .768
(23 · 216, 1472, 368) 24 206 205.9 10.48 191.7 .931 .768
(31 · 216, 1984, 496) 32 275 275.4 14.01 257.2 .934 .767

Table 6. Workfactor with unlimited number of instances with the same code param-
eters as in Table 2

6 Conclusion

Decoding one out of many with collision decoding provides a significant advan-
tage to an attacker. For the digital signature scheme, the threat is real because
the attacker can create many syndromes by hashing many messages (favorable to
him), however what we gain with ISD is less than what Bleichenbacher obtained
with GBA. Anyway it is possible to completely avoid those attacks by signing
several related syndromes (see [Fin10]).

For very large values of w (used for instance in FSB) we have seen that
the attack is not so threatening, moreover the actual FSB [AFG+08] or RFSB
[BLPS11] use regular words and using ISD threatens an idealized version used
for the security proofs. Decoding regular words is harder, and the question of
how to decode one out of many and how to use it for an attack is still open.

Finally, for public-key encryption, when w is significantly smaller than the
Gilbert-Varshamov distance, we take the full force of the attack. If there is a

scenario where an attacker has access to many cryptograms and is satisfied by
decoding only one of them, then there is a threat. We consider two scenarios

– the encryption scheme is used (often) to exchange session keys,
– the encryption scheme is used to encrypt a long stream of data.

Note that the attacker will only decrypt a single block, still we wish to avoid that.
In the first scenario it is advisable to estimate the total number of session keys
that will be used in a public-key lifetime and to increase the security parameters
according to the result of the present study. The second scenario is plausible
because code-based encryption is very fast, but in that case, it is enough to
introduce some kind of chaining between encrypted blocks (which was advisable
anyway) to counter the attack. Decrypting a single block will then be of no use
to the attacker.

References

[AFG+08] D. Augot, M. Finiasz, Ph. Gaborit, S. Manuel, and N. Sendrier. SHA-3
proposal: FSB. Submission to the SHA-3 NIST competition, 2008.

[Bar98] A. Barg. Complexity issues in coding theory. In V. S. Pless and W. C.
Huffman, editors, Handbook of Coding theory, volume I, chapter 7, pages
649–754. North-Holland, 1998.

[BLP08] D. Bernstein, T. Lange, and C. Peters. Attacking and defending the McEliece
cryptosystem. In J. Buchmann and J. Ding, editors, Post-Quantum Cryp-
tography, volume 5299 of LNCS, pages 31–46. Springer, 2008.

[BLP11] D. Bernstein, T. Lange, and C. Peters. Smaller decoding exponents: Ball-
collision decoding. In Advances in Cryptology - CRYPTO 2011, LNCS.
Springer, 2011. To appear.

[BLPS11] Daniel J. Bernstein, Tanja Lange, Christiane Peters, and Peter Schwabe.
Really fast syndrome-based hashing. Cryptology ePrint Archive, Report
2011/074, 2011. http://eprint.iacr.org/.

[BMvT78] E. R. Berlekamp, R. J. McEliece, and H. C. van Tilborg. On the inherent
intractability of certain coding problems. IEEE Transactions on Information
Theory, 24(3), May 1978.

[CC98] A. Canteaut and F. Chabaud. A new algorithm for finding minimum-
weight words in a linear code: Application to McEliece’s cryptosystem and to
narrow-sense BCH codes of length 511. IEEE Transactions on Information
Theory, 44(1):367–378, January 1998.

[CFS01] N. Courtois, M. Finiasz, and N. Sendrier. How to achieve a McEliece-based
digital signature scheme. In C. Boyd, editor, Advances in Cryptology - ASI-
ACRYPT 2001, volume 2248 of LNCS, pages 157–174. Springer, 2001.

[CJ04] Jean-Sebastien Coron and Antoine Joux. Cryptanalysis of a provably secure
cryptographic hash function. Cryptology ePrint Archive, Report 2004/013,
2004. http://eprint.iacr.org/.

[CP91] P. Camion and J. Patarin. The knapsack hash function proposed at crypto’89
can be broken. In D. W. Davies, editor, Advances in Cryptology - EURO-
CRYPT’91, volume 547 of LNCS, pages 39–53. Springer-Verlag, 1991.

[Dum91] I. Dumer. On minimum distance decoding of linear codes. In Proc. 5th Joint
Soviet-Swedish Int. Workshop Inform. Theory, pages 50–52, Moscow, 1991.

[Fin10] M. Finiasz. Parallel-CFS: Strengthening the CFS McEliece-based signature
scheme. In A. Biryukov, G. Gong, and D.R. Stinson, editors, Selected Areas
in Cryptography, volume 6544 of LNCS, pages 159–170. Springer, 2010.

[FS96] J.-B. Fischer and J. Stern. An efficient pseudo-random generator provably as
secure as syndrome decoding. In Ueli Maurer, editor, Advances in Cryptology
- EUROCRYPT’96, volume 1070 of LNCS, pages 245–255. Springer, 1996.

[FS09] M. Finiasz and N. Sendrier. Security bounds for the design of code-based
cryptosystems. In Mitsuru Matsui, editor, Advances in Cryptology - ASI-
ACRYPT 2009, volume 5912 of LNCS, pages 88–105. Springer, 2009.

[GG07] P. Gaborit and M. Girault. Lightweight code-based identification and signa-
ture. In IEEE Conference, ISIT’07, pages 191–195, Nice, France, July 2007.
IEEE.

[GLS07] P. Gaborit, C. Laudaroux, and N. Sendrier. Synd: a very fast code-based
stream cipher with a security reduction. In IEEE Conference, ISIT’07, pages
186–190, Nice, France, July 2007. IEEE.

[JJ02] T. Johansson and F. Jönsson. On the complexity of some cryptographic
problems based on the general decoding problem. IEEE-IT, 48(10):2669–
2678, October 2002.

[LB88] P. J. Lee and E. F. Brickell. An observation on the security of McEliece’s
public-key cryptosystem. In C. G. Günther, editor, Advances in Cryptology
- EUROCRYPT’88, volume 330 of LNCS, pages 275–280. Springer-Verlag,
1988.

[Leo88] J. S. Leon. A probabilistic algorithm for computing minimum weights of
large error-correcting codes. IEEE Transactions on Information Theory,
34(5):1354–1359, September 1988.

[McE78] R. J. McEliece. A public-key cryptosystem based on algebraic coding theory.
DSN Prog. Rep., Jet Prop. Lab., California Inst. Technol., Pasadena, CA,
pages 114–116, January 1978.

[Nie86] H. Niederreiter. Knapsack-type cryptosystems and algebraic coding theory.
Prob. Contr. Inform. Theory, 15(2):157–166, 1986.

[OS09] R. Overbeck and N. Sendrier. Code-based cryptography. In D. Bernstein,
J. Buchmann, and E. Dahmen, editors, Post-Quantum Cryptography, pages
95–145. Springer, 2009.

[Pet11] C. Peters. Curves, Codes, and Cryptography. PhD thesis, Technische Uni-
versiteit Eindhoven, 2011.

[Pra62] E. Prange. The use of information sets in decoding cyclic codes. IRE Trans-
actions, IT-8:S5–S9, 1962.

[Saa07] M.-J. Saarinen. Linearization attacks against syndrome based hashes. In
K. Srinathan, C. Pandu Rangan, and M. Yung, editors, Indocrypt 2007,
volume 4859 of LNCS, pages 1–9. Springer, 2007.

[Ste89] J. Stern. A method for finding codewords of small weight. In G. Cohen and
J. Wolfmann, editors, Coding theory and applications, volume 388 of LNCS,
pages 106–113. Springer-Verlag, 1989.

[Ste93] J. Stern. A new identification scheme based on syndrome decoding. In
D. R. Stinson, editor, Advances in Cryptology - CRYPTO’93, volume 773 of
LNCS, pages 13–21. Springer-Verlag, 1993.

[Vér97] P. Véron. Improved identification schemes based on error-correcting codes.
AAECC, 8(1):57–69, January 1997.

[Wag02] D. Wagner. A generalized birthday problem. In M. Yung, editor,
CRYPTO’02, volume 2442 of LNCS, pages 288–303. Springer, 2002.

