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Abstract. Rational secret sharing was proposed by Halpern and Teague
in [12]. The authors show that, in a setting with rational players, secret
sharing and multiparty computation are only possible if the actual secret
reconstruction round remains unknown to the players. All the subsequent
works use a similar approach with different assumptions.

We change the direction by bridging cryptography, game theory, and
reputation systems, and propose a “social model” for repeated rational
secret sharing. We provide a novel scheme, named socio-rational secret
sharing, in which players are invited to each game based on their repu-
tations in the community. The players run secret sharing protocols while
founding and sustaining a public trust network. As a result, new con-
cepts such as a rational foresighted player, social game, and social Nash
equilibrium are introduced.

To motivate our approach, consider a repeated secret sharing game
such as “secure auctions”, where the auctioneers receive sealed-bids from
the bidders to compute the auction outcome without revealing the losing
bids. If we assume each party has a reputation value, we can then penalize
(or reward) the players who are selfish (or unselfish) from game to game.
We show that this social reinforcement rationally stimulates the players
to be cooperative.

Keywords: cryptography, game theory, reputation systems.

1 Introduction

The classical (t, n)-secret sharing scheme was proposed in [29, 5], where a dealer
distributes shares of a secret α among n players P1, . . . , Pn for a subsequent secret
recovery. In a Shamir secret sharing [29], the dealer first generates a random
polynomial f(x) ∈ Zq[x] of degree t−1 such that f(0) = α is the secret. He then
sends shares f(i) to player Pi for 1 ≤ i ≤ n. As a result, any group of t or more
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players can reconstruct the secret by Lagrange interpolation whereas any group
of size less than t cannot gain any information about the secret. The standard
assumption in traditional secret sharing is that each player is either honest (i.e.,
he follows protocols) or malicious (i.e., he deviates from protocols) where (1) at
least t honest parties cooperate in order to recover the secret, and (2) the total
number of malicious players is less than t.

A new research direction was initiated by Halpern and Teague [12] in the
area of secret sharing and multiparty computation in a game-theoretic setting.
In this new scheme, players are rational rather than being honest or malicious.
This means each player selects his action (i.e., revealing his share or not revealing
it) based on the utility that he can gain. As illustrated by the authors, classical
secret sharing fails in this setting due to the failure of the secret reconstruction
round. We should highlight that, in the context of rational secret sharing, “devi-
ation” means that a player has not revealed his share during the reconstruction
phase. Sending incorrect shares is another issue which can be prevented by hav-
ing the dealer sign the shares. For a simple example of such an authentication
method, see [17]. We now provide a high-level description of the problem.

If players are primarily incentivized to learn the secret, and secondly, they
prefer that fewer of the other parties learn it, then it is not reasonable for each
player to reveal his share in the “recovery phase”. For instance, suppose players
P1, P2, P3 receive shares 6, 11, 18 from a dealer respectively, where f(x) = 3 +
2x+x2 ∈ Z19[x] is the secret sharing polynomial. If only two players reveal their
shares in the recovery phase, then the third selfish player (who has not revealed
his share) can reconstruct the secret using two revealed shares and his own
private share. Obviously, the other two cooperative players who have revealed
their shares do not learn the secret. This justifies why the players do not reveal
their shares in a rational setting, i.e., each player waits to receive shares of the
other parties (see [7, 15] for an overview in this direction).

To generalize this, consider the following scenario for a player Pj where the
degree of the secret sharing polynomial is t − 1. If players Pi (for i less than
t − 1 or i more than t − 1) reveal their shares, nothing changes whether Pj
reveals his share or not. In the former case, no one learns the secret. In the
latter case, everyone learns the secret. On the other hand, if exactly t−1 players
Pi reveal their shares, then Pj can not only learn the secret with his own private
share (i.e., t shares are sufficient to use Lagrange interpolation) but also can
prevent the other players from learning the secret by not revealing his share,
i.e., achieving the second preference of a self-interested player in rational secret
sharing. In other words, for each Pi, revealing the share is weakly dominated by
not revealing the share. As a result, no one reveals his share and the secret is
never reconstructed.

Before providing our solution to the rational secret sharing problem, we
briefly introduce the notion of social secret sharing [25, 26] in which players
are either honest or malicious. In this protocol, weights of the players, i.e., the
number of shares each player can hold, are periodically updated such that the
players who cooperate receive more shares than those who defect. Although this
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scheme addresses a different issue compared to the secret recovery problem in a
rational setting, we use its trust function in order to construct a new solution
concept in rational cryptography.

1.1 Our Solution in Nutshell

In our “socio-rational” setting, the players are “selfish” similar to standard ra-
tional secret sharing. In addition, they have “concerns” about future gain or loss
since our secret sharing game is repeated an unknown number of times. We term
this new type of the player, a rational foresighted player. In the proposed scheme,
each player has a reputation value which is updated according to his behavior
each time the game is played. The initial reputation value is zero and its com-
putation is public. For instance, if a player cooperates (he reveals his share), his
trust value is increased, otherwise, it is decreased. A long-term utility (used by
each player for action selection) and an actual utility (used for the real payment
at the end of each game) are computed based on the following parameters:

1. Estimation of future gain or loss due to trust adjustment (virtual utility).
2. Learning the secret at the current time (real utility).
3. The number of other players learning the secret at the moment (real utility).

All these factors are used by each player to estimate his long-term utility and
consequently to select his action, whereas only the last two items are used to
compute the real payment at the end of each game. To estimate future impact,
the following scenario is considered: whenever a player cooperates (or defects),
we assume he can potentially gain (or lose) some extra units of utility, i.e.,
he has a greater (or lesser) chance to be “invited” to the future games and
consequently he gains (or loses) more utilities. In other words, if the reputation of
Pi is decreased, he will have less chance to be invited to the future secret sharing
games. Otherwise, Pi is going to be invited to more secret sharing games. To
realize this scenario, in each game, the dealer selects the players based on their
reputations, for instance, 50% from reputable players, 30% from newcomers, and
20% from non-reputable parties, where the number of players in each category
possibly varies.

This gain or loss is “virtual” at the current time but will be “realized” in
the future. As an example of “future impact”, consider the following statements,
where U � u and V � v:

1. As a consumer, if you buy something today (cooperate and lose $u), you will
receive a significant discount from the producer (rewarded $U) on your next
purchase.

2. As a producer, if you use low-grade materials to save some money (defect
and gain $v), you will lose many of your consumers (penalized $V) in the
coming years.

In other words, if we construct a socio-rational model where the players can gain
(or lose) more utility in the future games than the current game, depending on
their behavior, we can then incentivize them to be foresighted and cooperative.
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1.2 Our Motivation

In secure multiparty computation [9, 4, 6], various players cooperate to jointly
compute a function based on the private data they each provide. As stated in
the literature, secret sharing is a fundamental method that is used by the players
to inject their private data into a multiparty computation protocol. At the end
of a multiparty computation protocol, each player has a share of the function
value. Therefore, they can collaborate to reveal this value to everyone.

We refer to sealed-bid auctions [13] as an application of multiparty computa-
tion. In a secure auction, auctioneers receive many sealed-bids from bidders and
the goal is to compute the auction outcome (i.e., the winner and selling price)
without revealing the losing bids. The main reason for using sealed-bids is the
fact that, if bids are not kept private, they can be used in the future auctions and
negotiations by different parties, say auctioneers, to maximize their revenues, or
competitors, to win a later auction. To motivate our concept of “socio-rational
secret sharing”, consider the following repeated game, as shown in Figure 1:

1. The bidders select a subset of auctioneers based on a non-uniform probability
distribution over the auctioneers’ types, i.e., reputable auctioneers have a
greater chance to be selected.

2. Each bidder then acts as an independent dealer to distribute the shares of
his sealed-bid among the selected auctioneers.

3. Subsequently, the auctioneers compute the selling price and determine the
winner by using a multiparty computation protocol.

4. In the last phase of the multiparty computation, the auctioneers reconstruct
the selling price α and report it to the seller.

In this setting, only the auctioneers who have learned and reported α to the
seller, are each paid $Ω, i.e., there exists a “competition” for learning the secret.
In addition, $Ω are divided among the auctioneers who have learned the secret;
each of them can therefore earn more money if fewer of them learn α. If we repeat
this game an unknown number of times and choose an appropriate invitation
mechanism based on the players’ reputation, we can incentivize the auctioneers
to be cooperative, that is, they will reveal the shares of α in the recovery phase.
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Fig. 1. Sealed-Bid Auction as a Repeated Secret Sharing Game
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1.3 Our Contribution

We provide a new solution concept to the rational secret sharing problem by
considering a social setting in which the players enter into a long-term interaction
for executing an unknown number of independent secret sharing protocols.

In our model, a public trust network is constructed in order to incentivize
the players to be cooperative. This incentive is sustained from game to game
since the players are motivated to enhance their reputations and consequently
gain extra utility. In other words, they avoid a selfish behavior due to the social
reinforcement of the trust network. Constructing a “social model” and inviting
the players to a repeated game based on their “reputations” in the community,
is a new contribution not only in rational cryptography but also in the existing
game-theoretic solution concepts. We refer the reader to [21] for other discussions
in this direction. Our scheme has the following desirable properties:

• It has a single secret recovery round, despite the existing solutions.
• It provides a game-theoretic solution that is always a Nash equilibrium.
• It is immune to rushing attack; it is not advantageous for players to wait.
• It prevents players from aborting the game; the case in some solutions.

The rest of this paper is organized as follows. Section 2 provides the relevant
background. Section 3 reviews the literature of rational cryptography. Section
4 present our construction. Section 5 compares our solution with the existing
schemes and techniques. Finally, Section 6 provides concluding remarks.

2 Preliminaries

In this section, some preliminaries regarding game-theoretic concepts along with
social and rational secret sharing schemes are presented.

2.1 Game-Theoretic Concepts

A game consists of a set of players, a set of actions and strategies (i.e., the way
of choosing actions), and finally a pay-off function which is used by each partic-
ipant to compute his utility. In cooperative games, players collaborate and split
the total utility among themselves, i.e., cooperation is enforced by agreements.
In non-cooperative games, players can not form agreements to coordinate their
behavior, i.e., any cooperation must be self-enforcing.

The prisoner’s dilemma, shown in Figure 2, is an example of non-cooperative
games. In this game, we have two possible actions: C: keep quiet (or cooperation)
and D: confess (or defection). In the pay-off matrix, +1, 0,−1, and −2 denote
freedom, jail for one year, jail for two years, and jail for three years respectively.
The outcome of this game is going to be (D,D) due to the Nash equilibrium
concept, while the ideal outcome is (C, C). To analyze why the game has such an
outcome, consider the following two scenarios:
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1. If P1 selects C (the first row), then P2 will select D (the second column) since
+1 > 0.

2. If P1 selects D (the second row), then P2 will select D (the second column)
since −1 > −2.

This means that, regardless of whether P1 cooperates or defects, player P2 will
always defect. Since the pay-off matrix is symmetric, we also have that, regardless
of whether P2 cooperates or defects, player P1 will always defect. In other words,
since players are in two different locations and cannot coordinate their behavior,
the final outcome is going to be (D,D).

P P

-1 -1+1 -2D: Confess

-2 , +10 , 0C: Quiet

D: ConfessC: Quiet

P2

P1 -1 , -1+1 , -2

-2 , +10 , 0
P1 -1 , -1+1 , -2

-2 , +10 , 0
P1

P1: “what if I defect”P2

1 , 1+1 , 2D: Confess

P1: “what if I cooperate”
P2

2

Fig. 2. Nash Equilibrium in Prisoner’s Dilemma

Definition 1. Let A def
= A1 × · · · × An be an action profile for n players, where

Ai denotes the set of possible actions of player Pi. A game Γ = (Ai, ui) for
1 ≤ i ≤ n, consists of Ai and a utility function ui : A 7→ R for each player Pi.
We refer to a vector of actions a = (a1, . . . , an) ∈ A as an outcome of the game.

Definition 2. The utility function ui illustrates the preferences of player Pi
over different outcomes. We say Pi prefers outcome a to a′ iff ui(a) > ui(a

′),
and he weakly prefers outcome a to a′ if ui(a) ≥ ui(a′).

In order to allow the players to follow randomized strategies (where the
strategy is the way of choosing actions), we define σi as a probability distribution
over Ai for a player Pi. This means that he samples ai ∈ Ai according to σi. A
strategy is said to be a pure-strategy if each σi assigns probability 1 to a certain
action, otherwise, it is said to be a mixed-strategy. Let σ = (σ1, . . . , σn) be the

vector of players’ strategies, and let (σ′i,σ−i)
def
= (σ1, . . . , σi−1, σ

′
i, σi+1, . . . , σn),

where Pi replaces σi by σ′i and all the other players’ strategies remain unchanged.
Therefore, ui(σ) denotes the expected utility of Pi under the strategy vector σ. A
player’s goal is to maximize ui(σ). In the following definitions, one can substitute
an action ai ∈ Ai with its probability distribution σi ∈ Si or vice versa.

Definition 3. A vector of strategies σ is a Nash equilibrium if, for all i and
any σ′i 6= σi, it holds that ui(σ

′
i,σ−i) ≤ ui(σ). This means no one gains any

advantage by deviating from the protocol as long as the others follow the protocol.
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Definition 4. Let S−i
def
= S1 × · · · × Si−1 × Si+1 × · · · × Sn. A strategy σi ∈ Si

(or an action) is weakly dominated by a strategy σ′i ∈ Si (or another action)
with respect to S−i if:

1. For all σ−i ∈ S−i, it holds that ui(σi,σ−i) ≤ ui(σ′i,σ−i).
2. There exists a σ−i ∈ S−i such that ui(σi,σ−i) < ui(σ

′
i,σ−i).

This means that Pi can never improve its utility by playing σi, and he can some-
times improve it by not playing σi. A strategy σi ∈ Si is strictly dominated if
player Pi can always improve its utility by not playing σi.

2.2 Rational Secret Sharing

In this section, we review rational secret sharing, which was initiated by Halpern
and Teague [12]. The scheme consists of a dealer D, who creates a secret sharing
scheme with threshold t, and n players P1, . . . , Pn.

The protocol proceeds in a sequence of iterations where only one iteration
is the “real” secret recovery phase (i.e., the last iteration) and the rest are
just “fake” iterations for trapping selfish players. At the end of each iteration,
the protocol either terminates (due to the observation of selfish behavior or
cooperation for secret recovery) or it proceeds to the next iteration. Indeed, in
any given round, players do not know whether the current iteration is the real
recovery phase (where a player may gain more utility by being silent and not
sending his share to others), or just a test round. The following steps (a)-(d)
provide a description of the initial solution to a rational secret sharing game,
where n = 3, t = 3, and shares are revealed simultaneously, as shown in [12, 10].
Table 1 shows all the different possibilities that can occur.

(a) In each round, D initiates a fresh secret sharing scheme where each player
Pi receives a share fi.

(b) During an iteration, each player Pi flips a biased coin ci ∈ {0, 1} where
Pr[ci = 1] = ρ.

(c) Players compute c∗ = ⊕ci by a multiparty computation protocol without
revealing ci-s.

(d) Now c∗ is known to everyone. If c∗ = ci = 1, Pi broadcasts his share. We
then have:

(d.1) If three shares are revealed, the secret is recovered and the protocol
ends.

(d.2) If c∗ = 1, and no share or two shares are revealed, players terminate
the protocol.

(d.3) In any other cases, the dealer and players proceed to the next round,
i.e., step (a).

To see how the above protocol works, assume P1, P2 follow the protocol
whereas P3 is willing to deviate. He may deviate in “coin-tossing” or in “re-
vealing” his share. We should note that each Pi selects ci independently. The
following cases are different possible deviation scenarios:
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Rows c1 c2 c3 Public c∗ Revealed Shares

1 0 0 0 0 -

2 0 0 1 1 f3

3 0 1 0 1 f2

4 0 1 1 0 -

5 1 0 0 1 f1

6 1 0 1 0 -

7 1 1 0 0 -

8 1 1 1 1 f1, f2, f3

Table 1. Three-Player Rational Secret Sharing Game

• It is not advantageous for P3 to bias c3 to be 0 with higher probability, since,
when c3 = 0, either no share or one share is revealed.

• It is also not advantageous for P3 to bias c3 to be 1 with higher probability,
since, when c3 = 1, either no share, or one share, or all shares are revealed.
This may lead to an “early” secret recovery but it does not have any effect
of the utility of P3.

• If c3 = 0 or c∗ = 0 (that is, one of rows 1, 3, 4, 5, 6, 7 in Table 1 occurs), then
there is no incentive for P3 to deviate since in all these cases he is supposed
not to reveal his share.

• If c3 = 1 and c∗ = 1 (that is, one of rows 2, 8 in Table 1 occurs), then player
P3 is supposed to reveal his share. There exist two possibilities:

1. c1 = 1 and c2 = 1, which occurs with the following probability:

Pr[c1 = 1 ∧ c2 = 1|c3 = 1 ∧ c∗ = 1] =
Pr[c1 = 1 ∧ c2 = 1 ∧ c3 = 1]

Pr[c3 = 1 ∧ c∗ = 1]

=
ρ3

(1− ρ)(1− ρ)ρ+ ρ3

=
ρ2

(1− ρ)2 + ρ2
.

2. c1 = 0 and c2 = 0, which occurs with the remaining probability:

Pr[c1 = 0 ∧ c2 = 0|c3 = 1 ∧ c∗ = 1] =
Pr[c1 = 0 ∧ c2 = 0 ∧ c3 = 1]

Pr[c3 = 1 ∧ c∗ = 1]

=
(1− ρ)(1− ρ)ρ

(1− ρ)(1− ρ)ρ+ ρ3

=
(1− ρ)2

(1− ρ)2 + ρ2
.
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Therefore, if player P3 deviates by not revealing his share, either he is going
to be the only player who learns the secret or the protocol terminates and he
never learns the secret. Let assume player P3 gains U+ if he is the only player
who learns the secret, let U denotes the utility gain for each Pi if all three players
learn the secret, and let U− denotes the utility gain, say $0, for each player Pi if
no one learns the secret. It is assumed that U+ > U > U−. Therefore, a rational
P3 will cheat only if:

U+

(
ρ2

(1− ρ)2 + ρ2

)
+ U−

(
(1− ρ)2

(1− ρ)2 + ρ2

)
> U. (1)

If we assign an appropriate value to ρ, based on the players’ utility function,
such that the inequality (1) is not satisfied, then P3 has no incentive to deviate
when c3 = 1 and c∗ = 1.

The authors in [12] also showed that this three-player game can be generalized
to a game with n players. As we just stated, certain assumptions regarding the
players’ utility function are required for rational secret sharing to be achievable.
Let ui(a) denotes the utility of Pi in a specific outcome a of the protocol. Suppose
li(a) is a bit defining whether Pi has learned the secret or not in a. We then
define δ(a) =

∑
i li(a), which denotes the number of players who have learned

the secret. The generalized assumptions of rational secret sharing are as follows:

• li(a) > li(a
′)⇒ ui(a) > ui(a

′).
• li(a) = li(a

′) and δ(a) < δ(a′)⇒ ui(a) > ui(a
′).

The first assumption means Pi prefers an outcome in which he learns the secret,
that is, since li(a) = 1 and li(a

′) = 0, he therefore prefers a. The second
assumption means Pi prefers an outcome in which the fewest number of other
players learn the secret, given that Pi learns (or does not learn) the secret in
both outcomes.

2.3 Social Secret Sharing

Now we review social secret sharing, introduced by Nojoumian et al. [25], where
the shares are allocated based on a player’s reputation and the way she interacts
with other parties. In other words, weights of players are adjusted such that
participants who cooperate receive more shares compared to non-cooperative
parties. This is similar to human social life where people share more secrets with
whom they really trust and vice versa. In the context of social secret sharing,
the players are either honest or malicious.

To quantify the reputation of each player in a social secret sharing scheme,
we apply the trust calculation method proposed in [24] (which is the modified
version of the solution in [30]). We start with the following definition:

Definition 5. Let T ji (p) be the trust value assigned by Pj to Pi in time interval
p. Ti : N 7→ R is the trust function used to compute the reputation of Pi:
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Ti(p) =
1

n− 1

∑
j 6=i

T ji (p),

where −1 ≤ Ti(p) ≤ +1 and Ti(0) = 0, i.e., we calculate the average of n−1 trust
values (personal quantities) to compute a player’s reputation (a social quantity).

For instance, let the trust values of P1, P2, and P3 with respect to P4 be
T 1
4 (p) = 0.4, T 2

4 (p) = 0.5, and T 3
4 (p) = 0.6. As a result, reputation of P4 will

be T4(p) = 0.5. In this paper, only a public value Ti(p) is assigned to each
player Pi, where Ti(p) represents his reputation. Equivalently, we can assume
that Ti(p) = T ji (p) for all j.

We now briefly review the approach proposed in [24]. As shown in Table 2,
three “types” of players (that is, B: bad; N : new; and G: good) with six possible
outcomes are defined, where α and β determine boundaries on the trust values
used to define the different sets of players. This approach then applies functions
µ(x) and µ′(x) respectively to update the reputation of each player Pi, as shown
in Figure 3. Parameters η, θ, and κ are used to increment and/or decrement the
trust value of a player. In intervals [1− ε,+1] and [−1, ε− 1], functions µ(x) and
µ′(x) both converge to 0, as required by Definition 5.

Current Trust Value Cooperation Defection

Pi ∈ B if Ti(p) ∈ [−1, β) Encourage Penalize

Pi ∈ N if Ti(p) ∈ [β, α] Give a Chance Take a Chance

Pi ∈ G if Ti(p) ∈ (α,+1] Reward Discourage

Table 2. Six Possible Actions for the Trust Management

Cooperation


Defection




In
cr

ea
se



D
ec

re
as

e

-1

Trust Value

+1



  1- -1

Trust Value

+1



 -1

Fig. 3. Trust Adjustment by µ(x) and µ′(x) Functions

We should stress that our trust function is not just a function of a single
round, but of the “players’ history”. That is, it rewards more the better a par-
ticipant has been, e.g., see Figure 3: Cooperation, where Ti(p) ∈ [α, 1 − ε], and
it penalizes more the worse a participant has been, e.g., see Figure 3: Defection,
where Ti(p) ∈ [ε− 1, β]. In addition, it provides opportunities for newcomers to
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increase their trust values even where we do not know much about their behavior,
e.g., see Figure 3: where Ti(p) ∈ [β, α].

Let `i ∈ {0, 1} where `i = 1 denotes that player Pi has cooperated in the
current period and `i = 0 denotes that he has defected. The proposed trust
function is as follows, where x = Ti(p− 1) (i.e., x is the previous trust value):

`i = 1 ⇒ Ti(p) = Ti(p− 1) + µ(x), where

µ(x) =



θ − η
β + 1

(x+ 1) + η Pi ∈ B

θ Pi ∈ N
κ− θ

1− ε− α
(x− α) + θ Pi ∈ G, Ti(p) ≤ 1− ε

κ

ε
(1− x− ε) + κ Ti(p) > 1− ε

`i = 0 ⇒ Ti(p) = Ti(p− 1)− µ′(x), where

µ′(x) =



κ

ε
(x+ 1) Ti(p) < ε− 1

θ − κ
β − ε+ 1

(x− ε+ 1) + κ Pi ∈ B, Ti(p) ≥ ε− 1

θ Pi ∈ N
η − θ
1− α

(x− α) + θ Pi ∈ G

Each function µ(x) and µ′(x) consists of four linear equations, each of which is
simply determined by two points (x1, y1) and (x2, y2) as follows:

y =
y2 − y1
x2 − x1

(x− x1) + y1.

To ensure that Ti(p− 1) + µ(x) ≤ 1 and Ti(p− 1)− µ′(x) ≥ −1 when x = 1− ε
and x = ε − 1 respectively, we must satisfy the conditions 1 − ε + κ ≤ 1 and
ε−1−κ ≥ −1, or equivalently κ ≤ ε. This is sufficient to ensure that Ti(p) never
exceeds +1 or −1.

It is worth mentioning that the authors in [24] also define an additional pa-
rameter as the transaction cost to deal with cheap cooperations and expensive
defections. For instance, consider a scenario in which a player cooperates in reg-
ular transactions for several times in order to gain a high trust value. He can
then defect in a critical transaction to severely damage the scheme. By consid-
ering this transaction cost parameter, a weight for “cooperation” or “defection”
is defined and accordingly the trust value is adjusted.

3 Literature Review

As we mentioned, the notion of rational secret sharing was introduced by Halpern
and Teague [12]. Assuming the same game-theoretic model, Lysyanskaya and
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Triandopoulos [20] provide a solutions in a mixed-behavior setting in which play-
ers are either rational or malicious. Abraham et al. [1] define a notion of resistance
to coalitions and present a coalition-resistant protocol. All these constructions
use simultaneous channels (either a broadcast channel or secure private chan-
nels) that means each player must decide on the value he wants to broadcast
before observing the values broadcasted by the other players; this is known as a
strategic game.

The proposed protocols in [18, 19, 14] rely on physical assumptions such as
secure envelopes and ballot boxes, which might be impossible or difficult to
implement. In the same model, Micali and Shelat [23] provided a purely rational
secret sharing scheme using a verifiable trusted channel. They showed that all
the existing solutions not only rely on the players’ rationality, but also on their
beliefs. As a result, they cannot guarantee that all rational players learn the
secret. For instance, suppose Pi believes that equilibrium (a, b) is played whereas
Pj believes (a′, b′) is played, but the game leads to (a, b′), which may not be an
equilibrium at all.

Kol and Naor [17] introduced an equilibrium notion, termed strict Nash equi-
librium, in an information-theoretic secure setting. In a Nash equilibrium, no
deviations are advantageous (i.e., there is no incentive to deviate). In its strict
counterpart, all deviations are disadvantageous (i.e., there is an incentive not to
deviate). They first considered both simultaneous and non-simultaneous broad-
cast channels and provided a new solution to avoid the simultaneous channel at
the cost of increasing the round complexity.

Kol and Naor later [16] showed that all the existing computational-based
protocols are susceptible to backward induction because of the cryptographic
primitives used in the beginning of those protocols. That is, they can surely be
broken after an exponential number of rounds. The authors then illustrate a new
cryptographic coalition-resilient approach that is immune to backward induction
by considering simultaneous as well as non-simultaneous broadcast channels.

The notion of computational strict Nash equilibrium was introduced in [8].
This construction is dealer-free and can tolerate a coalition of size t− 1 without
using simultaneous channels. It can even be run over asynchronous point-to-
point networks. Finally, it is efficient in terms of computation, share size, and
round complexity.

Maleka et al. [22] presented repeated rational secret sharing, with the same
approach proposed in [28], by considering two punishment strategies. In the for-
mer, each player reveals his share as long as the other players cooperate. As
soon as the first defection is observed, the players do not reveal their shares in
every subsequent game. In the latter, the players do not send their shares to the
deviant for k subsequent games after observing the first defection. In the first
scheme, each player not only punishes the deviant but also the other players
including himself. In the second method, a player may deviate in an expensive
secret recovery without having any concern for k subsequent cheap reconstruc-
tions. Indeed, the nature of a punishment strategy must depend on how much
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future outcomes are worth for each player. Finally, they only considered a fixed
number of m players without allowing newcomers to join the scheme.

Other results have recently been proposed in the literature. For instance,
Ong et al. [27] presented a protocol that is fair when the reconstruction phase is
executed with many rational players together with a minority of honest parties.
Asharov and Lindell [3] explained that in all the existing protocols, the designer
needs to know the actual utility values of the players. They then showed that it is
possible to achieve utility independence through the relaxation of assumptions.
Gradwohl et al. [11] provided the definitions of computational solution concepts
that guarantee sequential rationality. Finally, Asharov et al. [2] showed how game
theoretic concepts can be used to capture cryptographic notions of security.

4 Socio-Rational Secret Sharing

We first provide formal definitions of a social game, a social Nash equilibrium,
and socio-rational secret sharing. In our model, each Pi has a public reputation
value Ti, where Ti(0) = 0 and −1 ≤ Ti(p) ≤ +1; p = 0, 1, 2, . . . denote the
time periods of the games. The construction of this function is independent of
our protocol, therefore, we use the existing function presented in Section 2.3.
Since the importance of each game might be different, it would be possible to
consider the transaction cost parameter (as stated in Section 2.3) during trust
adjustment, but we do not use this in this paper. We assume each player’s
action ai ∈ {C,D,⊥}, where C and D denote “cooperation” and “defection”
respectively, and ⊥ denotes Pi has not been chosen by the dealer to participate
in the current game.

Definition 6. In a society of size N , a social game Γ = (Ai, Ti, ui, u′i), where
1 ≤ i ≤ N , is repeatedly played an unbounded number of times among different
subsets of players. Each Pi has a set of actions Ai, a reputation value Ti, a long-

term utility function ui, and an actual utility function u′i. Let A def
= A1×· · ·×AN

be the action profile. In each game:

• A subset of n ≤ N players is chosen by the dealer for each new secret sharing
game based on their reputation values Ti, where more reputable players have
a greater chance to be selected.

• Each Pi estimates his long-term utility by ui : A×Ti 7→ R based on his gain
in the current game and future games. Player Pi then selects his action ai
according to ui.

• Let a = (a1, . . . , aN ) ∈ A be the current game’s outcome. The actual utility
of each Pi is computed based on a function u′i : A 7→ R at the end of the
current game.

• Each player’s reputation value Ti is publicly updated by a trust function based
on each player’s action in the current game, as shown in Section 2.3, except
that Ti(p) = Ti(p− 1) if ai = ⊥.
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Note that the long-term utility function ui is used for “action selection” and the
actual utility function u′i is used to compute the “real gain” at the end of the
current game.

Definition 7. A vector of strategies σ is said to be a social Nash equilibrium
in each game of a social game Γ if for all i and any σ′i 6= σi it holds that
ui(σ

′
i,σ−i) ≤ ui(σ). Accordingly, if ui(σ

′
i,σ−i) < ui(σ), it is said to be a strict

social Nash equilibrium. That is, considering future games, a player cannot gain
any benefit by deviating from the protocol in the current game.

In the next sections, we discuss the utility function which is a central compo-
nent in every game. This is due to the fact that players make decisions based on
this function. Note that the utility assumption refers to the players’ preferences
over the game’s outcome whereas the utility computation shows the method of
computing the utility of each player.

4.1 Utility Assumption

Let ui(a) denotes Pi’s utility resulting from a list of players’ actions a by consid-
ering future games, let u′i(a) denotes Pi’s utility resulting from the current game,
let li(a) ∈ {0, 1} denote if Pi has learned the secret during a given time period,
and define δ(a) =

∑
i li(a). Also, let T a

i (p) denote the reputation of Pi after
outcome a in period p; each game of a social game is played in a single period.
The generalized assumptions of socio-rational secret sharing are as follows:

A. li(a) = li(a
′) and T a

i (p) > T a′

i (p)⇒ ui(a) > ui(a
′).

B. li(a) > li(a
′)⇒ u′i(a) > u′i(a

′).
C. li(a) = li(a

′) and δ(a) < δ(a′)⇒ u′i(a) > u′i(a
′).

The preference “A” illustrates that, whether player Pi learns the secret or not,
Pi prefers to maintain a high reputation. The preferences “B” and “C” are the
standard assumptions of rational secret sharing.

Definition 8. In a social game, a rational foresighted player has prioritized
assumptions: “A” (greediness) is strictly preferred to “B” and has an impact
factor ρ1, “B” (selfishness) is at least as good as “C” and has an impact factor
ρ2, and “C” (selfishness) has an impact factor ρ3. We denote this using the
notation Aρ1 � Bρ2 � Cρ3 , where ρ1 � ρ2 ≥ ρ3 ≥ 1.

The above definition reflects the fact that a rational foresighted player has a
“long-term” vision and firstly prefers to achieve the highest level of trustworthi-
ness. Only in this case, he will be involved in the future games and consequently
gain more profits (interpreted as greediness). He secondly prefers an outcome in
which he learns the secret. Finally, he desires the fewest number of other players
learn the secret. We next propose a long-term utility function that satisfies all
three preferences.
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4.2 Utility Computation

Our long-term utility function ui : A × Ti 7→ R computes the utility that each
player Pi potentially gains or loses by considering future games, based on as-
sumptions “A”, ”B”, “C”, whereas the actual utility function u′i : A 7→ R only
computes the current gain or loss in a given time period, based on assumptions
“B” and “C”.

Sample Function. We define two functions ωi(a) and τi(a) for the n partici-
pating players of the current game:

ωi(a) =
3

2− T a
i (p)

(2)

τi(a) = T a
i (p)− T a

i (p− 1). (3)

Since −1 ≤ T a
i (p) ≤ +1, then +1 ≤ ωi(a) ≤ +3. Let Ω > 0 be a “unit of

utility”, for instance, $100. To satisfy our assumptions in Section 4.1, we define:

A :
|τi(a)|
τi(a)

× ωi(a)×Ω where
|τi(a)|
τi(a)

=

{
+1 if ai = C
−1 if ai = D

(4)

B : li(a)×Ω where li(a) ∈ {0, 1} (5)

C :
li(a)

δ(a) + 1
×Ω where δ(a) =

N∑
i=1

li(a). (6)

• (4) will evaluate to +ωi(a)Ω if Pi cooperates and it will evaluate to−ωi(a)Ω,
otherwise. This means that Pi gains or loses at least 1Ω and at most 3Ω
(depending on his reputation value, as reflected in ωi) units of utility in the
future games due to his current behavior.

• (5) illustrates that a player gains one unit of utility if he learns the secret in
the current game and he loses this opportunity, otherwise.

• (6) results in “almost” one unit of utility being divided among all the players
Pi who have learned the secret in the current game; to avoid a division by 0
when δ(a) = 0, we use δ(a) + 1 in the denominator.

We combine these three terms, weighted with their corresponding impact factors:

u′i(a) = ρ2

(
li(a)×Ω

)
+ ρ3

(
li(a)

δ(a) + 1
×Ω

)
, and (7)

ui(a) = ρ1

(
|τi(a)|
τi(a)

× ωi(a)×Ω
)

+ u′i(a)

= Ω ×

(
ρ1

(
|τi(a)|
τi(a)

× ωi(a)

)
+ ρ2

(
li(a)

)
+ ρ3

(
li(a)

δ(a) + 1

))
. (8)
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The function ui(a) shows that if player Pi, with preference factors ρ1 � ρ2 ≥
ρ3 ≥ 1, defects (or cooperates), he may gain (or lose) ρ2Ω + (ρ3Ω)/(δ(a) + 1)
utility in the current game, but he will lose (or gain) “x” units of utility in the
future games, where ρ1Ω ≤ x ≤ 3ρ1Ω. That is, future loss or gain is more im-
portant than the current loss or gain. We later show that the dealer gives a lesser
(or a greater) chance of contribution to non-reputable (or reputable) players in
the future games, that is, reputation remains with a player as a characteristic
which continuously affects his utility.

4.3 Proposed Protocol

We now discuss our socio-rational secret sharing scheme, the details are presented
in Figure 4. Suppose the public trust network has already been created. Assume
we have a dealer who initiates a (t, n)-threshold secret sharing scheme. Also,
assume all the players use a “pure-strategy”. A socio-rational secret sharing game
Γ = (Ai, Ti, ui, u′i) is a social game that is played among rational foresighted
players and it is based on the following elements:

1. Set of possible actions Ai = {C,D,⊥}, defined in Section 4.
2. Function Ti, except that Ti(p) = Ti(p− 1) if ai = ⊥, defined in Section 2.3.
3. Long-term utility function ui : A× Ti 7→ R, defined in Section 4.2.
4. Actual utility function u′i : A 7→ R, defined in Section 4.2.

Secret Sharing

1. Let φ be the current probability distribution over players’ types B,N ,G, as
defined in Section 2.3. The dealer D selects n out of N players, where n ≤ N ,
based on this non-uniform probability distribution.

2. D then initiates a (t, n)-secret sharing scheme by selecting f(x) ∈ Zq[x] of
degree t− 1, where f(0) = α is the secret. Subsequently, he sends shares f(i)
to Pi for the n chosen players, and leaves the scheme.

Secret Recovery

1. Each chosen player Pi computes his long-term utility function ui : A×Ti 7→ R,
and then selects an action, i.e., revealing or not revealing his share f(i).

2. If enough shares are revealed, the polynomial f(x) is reconstructed through
Lagrange interpolation and the secret f(0) = α is recovered.

3. Each chosen player Pi receives his utility u′i : A 7→ R (i.e., the real payment)
at the end of the reconstruction phase according to the outcome.

4. Finally, the reputation values Ti of all the chosen players are publicly updated
according to each player’s behavior and the trust function.

Fig. 4. Socio-Rational Secret Sharing Protocol
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The sharing phase is similar to that of standard secret sharing. The only
difference is the way that the dealer selects n out of N players for secret sharing.
In other words, the dealer gives more chance to reputable players compared to
unreliable parties. Although a natural approach is to invite only the reputable
players, it is not fair if the dealer does not provide any opportunity for new-
comers, or if he completely ignores the bad players. Once in a while, he should
give a chance to the bad players so they can compensate for their past behav-
ior. This is a realistic approach even in human society; it can be interpreted as
a “forgiveness factor”. The secret recovery phase is also similar to that of the
standard secret sharing but with some extra components.

We should mention that since the players’ reputations and the trust function
are public information. Therefore, all computations associated with the reputa-
tion system can be done by any authority or a committee of the players. It is
also worth mentioning that it is not required to consider unknown number of
iterations for secret recovery, which is the case in all the existing rational secret
sharing schemes. In fact, in a “socio-rational secret sharing” game, we have an
unknown number of independent secret sharing games, whereas in “rational se-
cret sharing”, we only have one secret with an unknown number iterations for
secret recovery.

Theorem 1. In a (2, 2)-socio-rational secret sharing, C strictly dominates D,
considering a long-term utility function , shown in Equation (8), which satisfies
the preferences of rational foresighted players, shown in Definition 8. In other
words, D is strictly dominated by C. As a result, (C, C) is a strict social Nash
equilibrium that is a unique solution.

Proof. We compute the utility of each outcome for Pi. Let Pj be the other player.

1. If both players cooperate, denoted by (C, C), then τi is positive, li = 1 since
Pi has learned the secret, and δ = 2 because both players have learned the
secret. We have:(

τi > 0, li = 1, δ = 2
)
⇒ u

(C,C)
i (a) = Ω

(
ρ1ωi + ρ2 +

ρ3
3

)
.

2. If only Pi cooperates, denoted by (C,D), then τi is positive, li = 0 since Pi
has not learned the secret, and δ = 1 because only player Pj has learned the
secret. We have:(

τi > 0, li = 0, δ = 1
)
⇒ u

(C,D)
i (a) = Ω

(
ρ1ωi

)
.

3. If only Pj cooperates, denoted by (D, C), then τi is negative, li = 1 since
Pi has learned the secret, and δ = 1 because only player Pi has learned the
secret. We have:(

τi < 0, li = 1, δ = 1
)
⇒ u

(D,C)
i (a) = Ω

(
− ρ1ωi + ρ2 +

ρ3
2

)
.



18 Nojoumian and Stinson

4. If both players defect, denoted by (D,D), then τi is negative, li = 0 since Pi
has not learned the secret, and δ = 0 because no one has learned the secret.
We have: (

τi < 0, li = 0, δ = 0
)
⇒ u

(D,D)
i (a) = Ω

(
− ρ1ωi

)
.

We ignore the common factor Ω. We know 1 ≤ ωi(a) ≤ 3 and ρ1 � ρ2 ≥ ρ3 ≥ 1.

• First, we have:

u
(C,C)
i (a) = ρ1ωi + ρ2 +

ρ3
3
> ρ1ωi = u

(C,D)
i (a). (9)

• Next, it is easy to see that

u
(C,D)
i (a) = ρ1ωi > −ρ1ωi + ρ2 +

ρ3
2

= u
(D,C)
i (a) (10)

if and only if 2ρ1ωi > ρ2 +
ρ3
2

. We have:

2ρ1ωi ≥ 2ρ1

> ρ2 + ρ3

> ρ2 +
ρ3
2
,

so the desired conclusion follows.
• Finally,

u
(D,C)
i (a) = −ρ1ωi + ρ2 +

ρ3
2
> −ρ1ωi = u

(D,D)
i (a). (11)

Therefore, we have the following payoff inequalities which proves the theorem:

Pi cooperates︷ ︸︸ ︷
u
(C,C)
i (a) > u

(C,D)
i (a) >

Pi defects︷ ︸︸ ︷
u
(D,C)
i (a) > u

(D,D)
i (a) .

ut

The interesting observation is the difference between the utilities u
(C,D)
i (a)

and u
(D,C)
i (a). This means that it is better for player Pi to cooperate, even

though he might not learn the secret and the other party might learn it. On the
other hand, even if Pi learns the secret by deviating at a given period (using the
share of the other party), he will gain less utility in the long-term. This is due to
future gain or loss and the significance of being reputable, which is incorporated
in our long-term utility function by considering an impact factor ρ1. We should

also note that, as ρ1 is increased, the difference between u
(C,D)
i (a) and u

(D,C)
i (a)

also increases, i.e., the enforcement for cooperation would be greater.
In a secret sharing scheme with selfish players, the outcome (U−,U−) is a

Nash equilibrium, as shown in Table 3, where U+ > U > U− > U−−. Rational
secret sharing solves this problem by using a randomized mechanism, as pre-
sented in Section 2.2. The payoff matrix associated with socio-rational secret
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HH
HHHP1

P2 Cooperation Defection

Cooperation U ,U U−−,U+

Defection U+,U−− U−,U−

Table 3. (2, 2)-SS with Selfish Players

HH
HHHP1

P2 Cooperation Defection

Cooperation U+,U+ U ,U−

Defection U−,U U−−,U−−

Table 4. (2, 2)-Socio-Rational SS

sharing is illustrated in Table 4. In this payoff matrix, the outcome (U+,U+) is
a strict social Nash equilibrium.

We should note that our socio-rational game is a non-cooperative game. In
fact, cooperation is self-enforcing due to the importance of reputation as well
as future concerns of a rational foresighted player. In a cooperative game, this
enforcement is provided by a third party and players do not really compete.
Moreover, this payoff matrix does not mean that the players never deviate. As
an example, consider a scenario in which a player is involved in many independent
social games. If he simultaneously receives many requests for secret recovery of
various schemes, he will select the one in which he can gain more utility. This is
discussed later, in Section 4.4.

We now analyze our socio-rational secret sharing in a setting where n > 2
players take part in each secret sharing game.

Theorem 2. In a socio-rational secret sharing scheme with n participants and
t = 2, C strictly dominates D for all Pi, assuming the preferences of rational
foresighted parties. Consequently, the vector aC = (aC1 , . . . , a

C
n) is a strict social

Nash equilibrium that is a unique solution.

Proof. Let Ci (or Di ) denote that player Pi cooperates (or defects), and let C−i
(or D−i) denote that, excluding Pi, all the other players cooperate (or defect),
and finally letM−i denotes that, excluding Pi, some players cooperate and some
of them defect, that is, we have both Cooperation and Defection. We compute
the utility of each outcome based on Equation (8) for the least possible threshold
t = 2 when n > 2, i.e., two shares are enough to learn any secret.

1. If all the players cooperate, denoted by (Ci, C−i), then τi is positive, li = 1
since player Pi has learned the secret, and δ = n because all the players have
learned the secret. We have:(

τi > 0, li = 1, δ = n
)
⇒ u

(Ci,C−i)
i (a) = Ω

(
ρ1ωi + ρ2 +

ρ3
n+ 1

)
.

2. If player Pi cooperates but some of the other parties cooperate and some
defect, denoted by (Ci,M−i), then τi is positive, li = 1, and δ = n because
all the players have learned the secret. We have:(

τi > 0, li = 1, δ = n
)
⇒ u

(Ci,M−i)
i (a) = Ω

(
ρ1ωi + ρ2 +

ρ3
n+ 1

)
.
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3. If only Pi cooperates, denoted by (Ci,D−i), then τi is positive, li = 0, and
δ = n − 1 because all the players, except Pi, have learned the secret. We
have: (

τi > 0, li = 0, δ = n− 1
)
⇒ u

(Ci,D−i)
i (a) = Ω

(
ρ1ωi

)
.

4. If only Pi defects, denoted by (Di, C−i), then τi is negative, li = 1, and δ = n
because all the players have learned the secret. We have:(

τi < 0, li = 1, δ = n
)
⇒ u

(Di,C−i)
i (a) = Ω

(
− ρ1ωi + ρ2 +

ρ3
n+ 1

)
.

5. If player Pi defects but some of the other parties cooperate and some defect,
denoted by (Di,M−i), then τi is negative, li = 1, and δ = n− 1 if only one
player reveals his share, or δ = n if at least two players reveal their shares.
We have:(

τi < 0, li = 1, δ
)
⇒ u

(Di,M−i)
i (a) = Ω

(
− ρ1ωi + ρ2 +

ρ3
δ + 1

)
,

where δ ∈ {n− 1, n}.
6. If all the players defect, denoted by (Di,D−i), then τi is negative, li = 0,

and δ = 0 because no one has learned the secret. We have:(
τi < 0, li = 0, δ = 0

)
⇒ u

(Di,D−i)
i (a) = Ω

(
− ρ1ωi

)
.

We now analyze these six scenarios:

• If player Pi cooperates (cases 1− 3), regardless of whether the other players
cooperate or defect, then

uCi (a) ≥ ρ1ωi. (12)

• If Pi defects (cases 4− 6), regardless of whether the other players cooperate
or defect, then

uDi (a) ≤ −ρ1ωi + ρ2 +
ρ3
n
. (13)

It is easy to prove that ρ1ωi > −ρ1ωi + ρ2 +
ρ3
n

. In fact, the proof is essentially

the same as the proof of (10) in Theorem 1. As a result, it is always in Pi’s best
interest to cooperate:

uCi (a) > uDi (a).

ut

Remark 1. A similar analysis can be given for any threshold t > 2 with any
number of players.
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4.4 Expected Utility

In this section, we illustrate how each Pi can compute his expected utility when
he participates in different independent social games. Note that the utility value
shows the connection between actions and their corresponding consequences for
a player, whereas the expected utility of Pi is an estimation of gain or loss when
he plays with another player Pj .

We initially show how to compute the expected utilities in a (2, 2)-game
for “cooperation” and “defection”. An expected utility is computed as a linear
combination of utility values and the probability of Pj ’s cooperation, where
εj ∈ [0, 1] denotes the probability that the opponent Pj may cooperate and
U+ > U > U− > U−− are the utility values from Table 4. We have:

EUCi (a) = εj U+ + (1− εj) U (14)

EUDi (a) = εj U− + (1− εj) U−− (15)

Theorem 3. In a socio-rational secret sharing game with two players Pi and Pj,
the expected utility of cooperation is greater than the expected utility of defection,
i.e., EUCi (a)−EUDi (a) > 0, where εj is the probability of opponent’s cooperation.

Proof.

EUCi (a)− EUDi (a) =
(
εj U+ + (1− εj) U

)
−
(
εj U− + (1− εj) U−−

)
by (14, 15)

= εj (U+ − U−) + (1− εj) (U − U−−)

> 0.

ut

We now consider the expected utilities in two independent (2, 2)-games. Let
us define EUCi (aij) and EUCi (aik) as the expected utilities of the two games,
when player Pi cooperates with players Pj and Pk respectively.

Theorem 4. Suppose Pi plays with Pj and Pk in two independent (2, 2)-games.
Player Pi then gains more utility if he collaborates with the most reputable player.

Proof. Let Pj and Pk have different reputation values computed with the same
trust function. For instance, εj > εk, which means Pj is more reputable than Pk.
Suppose Pi receives the same unit of utility Ω in both games, and let aij ,aik be
the outcomes of the two games. We have:

EUCi (aij)− EUCi (aik) =
(
εj U+ + (1− εj) U

)
−
(
εk U+ + (1− εk) U

)
by (14)

= εj U+ − εk U+ + (1− εj) U − (1− εk) U
= (εj − εk) U+ + (εj − εk) U
> 0,

since εj > εk. As a result, EUCi (aij) > EUCi (aik). This means that player Pi gains
more utility if he collaborates with Pj rather than Pk. ut
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5 Comparison with Existing Techniques

Our contribution differs from rational secret sharing and social secret sharing,
as shown in Figure 5. Our scheme is a repeated game that addresses the problem
of secret recovery in the presence of rational foresighted parties, whereas:

• “rational secret sharing” is a one-time game with repeated rounds, and it
deals with the problem of secret recovery of a secret in the presence of
rational players, and

• “social secret sharing” defines how many shares each player can hold in a
weighted secret sharing scheme with honest and malicious parties.

Selfish Unselfish Honest Malicious Reputable Non 
Reputable

Honest 
But 

Curious
Newcomer

PartiesParties Parties

Reputation Systems
Trust Modeling

Cryptography
Secret Sharing

Game Theory
Solution Concept

Social Secret Sharing
Updating players’ weights [IET’10]

Rational Secret Sharing
reconstructing a secret [STOC’04]

Socio-Rational Secret Sharing
reconstructing various secrets

Fig. 5. Pedigree of the Socio-Rational Secret Sharing

Our contribution is also different from the punishment strategy used in the
repeated prisoners’ dilemma [28] where the players penalize potential deviants.
As the authors have mentioned, the major point behind the repeated games is
the fact that if each participant believes any deviation terminates the mutual
cooperation (resulting in a subsequent loss that outweighs the short-term gain),
he then prefers to cooperate. For instance, consider the prisoners’ dilemma with
Cooperation and Defection actions. Both players cooperate until one of them
deviates. Then, the other player chooses D for a specific number of times as a
punishment. Meanwhile, the deviant rewards the punisher by selecting C as a
compensation. Finally, the game returns to a mutual cooperation. Our approach
has the following advantages over the punishment strategy:

• In our model, a player is not just an abstract entity who selects actions.
He also has a social characteristic reflected in his reputation that shows his
trustworthiness. This attribute is solely determined by the player’s actions.
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• The punishment strategy is performed by selecting actions that are harmful
for deviants whereas, in our model, punishment or reward (losing or gaining
reputation and utility) is independent of action selection.

• Our approach avoids penalizing innocent players or the punisher himself. It
also avoids being involved, to some extent, in a game with seriously selfish
players who are not reputable (due to our “invitation approach”).

• The punishment strategy does not consider that a game may have various
levels of importance and utility weights when it is repeatedly played. For
instance, whether it is a secret sharing scheme to launch a “missile” or to
open a “safety box”.

• The punishment strategy has a discrete penalizing approach whereas our
construction has a continuous impact on the deviants. For example, it may
take a long time for a player to regain lost reputation.

• Our proposed approach not only considers punishment and reward but also
defines six different scenarios in order to fairly deal with various types of
players, including good players, bad players, and newcomers.

Our contribution is also different from the constructions forming histories
and beliefs such as subgame perfect equilibrium or Bayesian equilibrium [28].
In the former, players reassess their decisions based on the past history, i.e., a
sequence of previous actions. In the latter, the game is designed to deal with
the situations in which parties are not certain about the characteristics of each
others. Therefore, they form beliefs, i.e., a probability distributions over actions,
to anticipate any future behavior.

Let Pi be a specific player, and let Pj for 1 ≤ j 6= i ≤ n denote any other
player except Pi. Our trust calculation method and social setting differs from
these kinds of solution concepts in the following aspects:

• In forming a belief about Pi’s intentions, both parties contribute. That is,
Pi is indirectly involved by his behavior, i.e., action selections, and the other
players are directly involved by the methodology that they use in order to
form the probability distribution over actions. A belief may or may not be
common knowledge, meaning that various players may have different judg-
ments and beliefs about Pi. On the other hand, the reputation of Pi in a trust
network is solely determined by his behavior through a trust function, which
is a commonly known function for reputation measurement. That is, the rep-
utation is a direct reflection of Pi’s attitude (there is no misunderstanding),
and he knows the impact of his decision on the other players (i.e., whether
he is known as a good player, a bad player, or a newcomer). He can also
estimate how much extra utility he may gain or lose after his reputation’s
adjustment, which is a strong enforcement.

• Histories and beliefs are more general compared to the reputation system
in a trust network. This means a belief as a probability distribution can be
defined over any set of actions for any types of players. On the other hand,
reputation is built over a specific set of actions, such as Cooperation and
Defection (X : corruption as a malicious behavior might be also considered
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in a mixed model), for specific types of players, such as good players, bad
players, and newcomers. As a result, the reputation system is simpler and it
is more suitable for cryptographic constructions.

• In the history and belief systems, all the measurements are “inside” the
game-theoretic model whereas our reputation system isolates these compu-
tations from the game. For instance, two separate probability distributions
can be defined over the players’ types and actions by considering their past
behavior 3. But our publicly known trust function combines these two mea-
surements in a single reputation value outside of the game-theoretic model
(although these values might be interpreted similar to “types” and “beliefs”).
In other words, the punishment or reward is embedded inside of our repu-
tation system which continuously affects the players’ utilities in the game-
theoretic model, i.e., losing utility due to the reputation’s decline or losing
reputation and not being selected in the future secret sharing games.

6 Conclusion and Future Direction

This paper provides a multidisciplinary research connecting three major areas
of computer science in order to propose a novel solution for one of the most
fundamental cryptographic primitives.

As we illustrated, the social network with reputation consideration is a strong
enforcement for the participants to cooperate, for instance, a player may change
his non-cooperative approach after analyzing his reputation, or after estimating
his future loss. In our social setting, bad players can compensate for their past
behavior by continuous cooperation. On the other hand, reputable players can
gain more profits as long as they act properly, and newcomers can fairly start
their social interactions. Finally, we should stress that having a trust network
by considering long-term interactions can be seen as a new direction in game
theory itself, specifically, the theoretical models used in social sciences such as
economics and political science because elements in those frameworks are more
close to human social behavior.

As our future work, we are interested to consider other complicated models.
For instance, using referral chain in which two players who are interacting for
the first time, can gain some information with respect to each other’s reputation
through other parties or common friends. We also would like to scrutinize the
impact of a situation in which a player is involved in various societies while he
is holding different reputation values associated with each one. It would be also
interesting to construct a hybrid model in which both “reputation” and “belief”
are considered. In this case, reputation can be seen as an estimation of the past
behavior whereas belief can be viewed as an anticipation of the future activities.

3 For instance, suppose that Pi is good or bad with probabilities 0.7 or 0.3 respectively.
Based on these values, a Pj may believe that Pi reveals or denies to reveal his share
with certain probabilities, e.g., 0.9 or 0.1 respectively.
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