
Backward Unlinkability for a VLR Group
Signature Scheme with Efficient Revocation

Check?

Julien Bringer1 and Alain Patey1,2

1 Morpho (SAFRAN Group)
2 Télécom ParisTech

Identity and Security Alliance (The Morpho and Télécom ParisTech Research Center)

Abstract. Verifier-Local Revocation (VLR) group signatures, introdu-
ced by Boneh and Shacham in 2004, are a particular case of dynamic
group signature schemes where the revocation process does not influence
the activity of the signers. The verifiers use a Revocation List to check
if the signers are revoked. In all known schemes, checking a signature
requires a computational time linear in the number of revoked members.
Usually, it requires one pairing per revoked user. Recently, Chen and Li
proposed a scheme where Revocation Check uses exponentiations instead
of pairings. In this paper, we first propose a correction of their scheme to
enable a full proof of the traceability property. Then our main contribu-
tion is to extend this tweaked scheme to ensure Backward Unlinkability.
This important property prevents the loss of anonymity of past signa-
tures when a user is revoked. We succeed in achieving this consequent
improvement with a constant additional cost only. We thus obtain the
scheme with the most efficient Revocation Check among VLR schemes
enabling Backward Unlinkability.

Keywords: Group Signatures, Verifier-Local Revocation, Backward Un-
linkability, Exculpability, Efficiency, Revocation Check

1 Introduction

Group signatures, introduced by Chaum and van Heyst [CvH91], enable
a registered member to sign anonymously on behalf of a group. The iden-
tity of a signer can only be revealed by a Group Manager who knows
all the secret parameters of the group. Actual group signature schemes
are dynamic: members can join and leave (voluntarily or not) the group
at any time. To enable this, a revocation process is established. First
dynamic schemes proposed to reissue new keys for everyone but the re-
voked members. In the same spirit, some schemes offer to use dynamic
accumulators [CL02].
We focus in this paper on schemes with Verifier-Local Revocation (VLR),
a particular way to deal with revocation where we do not want addi-
tional interactions with the signers. A Revocation List (RL) is built by

? A short version of this work appears at SECRYPT 2012 [BP12].

the group manager and sent only to the verifiers. The signers do not
take it into account when they sign. Verifying a signature is divided
into two parts: a Signature Check to verify if the signer is a registered
member and a Revocation Check to verify, using RL, whether the signer
is revoked. This type of group signature schemes is useful for applica-
tions where signers are often offline or are computationally weak devices
(TPMs, smartcards. . .). Several proposals for VLR group signatures have
been made, either in the Random Oracle Model as [BS04, NF06, YO08,
NSS+09, CL10, NF05, ZL06, WL10, SNS+09] or in the Standard Model
as [LV09,INHJ10]. A similar concept is introduced in [KTY04] for trace-
able signatures with an implicit tracing mechanism. Applications of VLR
schemes are, for instance, Direct Anonymous Attestation (DAA) in the
context of Trusted Computing [BCC04, BL10], Vehicular Ad-hoc NET-
works (VANETs) [SSBP08] or anonymous authentication [BCPZ08].
One downside of VLR schemes is the lack of efficiency of the Revocation
Check during the verification of a signature. Indeed, in the original [BS04]
scheme and many other propositions like [NF06,LV09], this part requires
at least one pairing operation per each revoked user. [NSS+09] proposed
a slight variant where products of pairings are used instead of sepa-
rate pairings. In [CL10], Chen and Li proposed a VLR scheme using
exponentiations in the Revocation Check. As exponentiations require
less computation time, this is a substantial improvement concerning effi-
ciency. Another VLR-like scheme based on exponentiations is described
in [YO08] but it has weaker security properties (no coalition-resistance).
However, in the [CL10] scheme, proofs of security are not detailed and
it is unclear how to obtain an extractor for the proof of knowledge in-
cluded in the signature. Having an extractor is necessary for the proof
of traceability, one of the essential security properties required from a
group signature scheme. This is why we propose a patch to the origi-
nal [CL10] scheme and explain explicitly how to build an extractor for
the thus modified algorithm. This part of our work is a basis for our full
scheme and can be seen as a useful tool for our proofs of security.
Another issue in most VLR schemes is the following: once a user has
been revoked, all his previous signatures lose their anonymity. The prop-
erty that prevents this loss is called Backward Unlinkability (BU). It also
allows a user to come back into the group after having been revoked and
use the same keys as before while remaining anonymous. This property
was first introduced by Song in [Son01]. There have been several pro-
posals to enable BU in schemes using pairings in the Revocation Check,
e.g. [NF06] in the Random Oracle Model or [LV09] in the Standard
Model. This does not change the type of operations to use in the Re-
vocation Check. The other parts of the signing and verifying algorithms
are slightly modified but the difference is constant and small.
The same techniques cannot be applied to schemes based on exponen-
tiations. A first proposal for such schemes has been suggested without
specific proofs in [AST02] in the context of quadratic residues, based on
the [ACJT00] scheme. We present in this paper an improvement, inspired
by the technique from [AST02] that we adapt to the context of bilinear
groups, to the efficient [CL10] scheme in order to add the BU property.
Moreover we obtain full proofs of our security results including the BU

functionality and we also patch the [CL10] scheme in order to ensure
traceability. To achieve BU, we use zero-knowledge proofs of knowledge
involving double discrete logarithms. This technique requires a number
of computations that is a function of a security parameter, but that is
independent of the total number of users and of the number of revoked
members. Moreover, this technique is generic and can be applied to other
exponentiation-based VLR schemes, e.g. [YO08].
Our scheme satisfies Backward Unlinkability, Traceability and Exculpa-
bility in the random oracle model. Security is based on the strong Diffie-
Hellman (SDH) assumption, a slight adaptation of the Decisional Diffie-
Hellman (adapted DDH) assumption and the Discrete Logarithm (DL).
Contrary to the various previous constructions of VLR group signature
schemes with BU, our contribution succeeds in eliminating pairings in
the revocation checks, and thus greatly increases the efficiency when ver-
ifying a signature. We increase, by a constant overhead, the size of our
signatures and the time required for signing but: 1/the overhead can be
pre-computed offline such that the message-depending part of the signa-
ture is as efficient as in other VLR schemes; 2/the saving in computation
time for the online verification (including revocation check) is very im-
portant as soon as the number of revoked members is large (from a few
dozens of members).
In the sequel, we first give formal definitions for VLR schemes and their
security requirements in Section 2. We then describe the mathematical
background needed to build our scheme in Section 3. We describe in
Section 4 our proposal to add BU to exponentiation-based VLR schemes
based on the [CL10] suggestion. We explain how to obtain an extractor
for the thus patched signature and give our security results in Section 5.
We analyze the efficiency of our scheme in Section 6 and conclude in
Section 7. We finally give formal proofs of security in Appendix A.

2 Definitions

In this section, we describe the model for VLR group signature schemes
and the security properties that we expect from our scheme. We extend
the VLR group signature model from [CL10] by including Backward
Unlinkability following the model of [NF06]. The security properties for
generic dynamic group signatures are from [BSZ05, BS04] for Verifier-
Local Revocation and from [NF06] to enable Backward Unlinkability.

2.1 VLR Group Signatures

There are three types of entities in our model: a Group Manager GM, a
set of members and a set of verifiers.
A VLR Group Signature Scheme with Backward Unlinkability and Ex-
culpability consists of the following algorithms:
KeyGen(k, T): On input a security parameter k and a number T of

periods, this algorithm, run by GM outputs the group public param-
eters gpk and the issuing key ik. It also sets an empty Revocation
List RLj , for each period j. These lists will be filled later with the
revocation tokens of the revoked users.

Join(gpk, ik; gpk): This algorithm is an interactive protocol between
GM and a member Mi. GM takes as input the public parameters
gpk and the issuing key ik, Mi takes only gpk.
In the end, Mi outputs an identity idi, a secret key ski, a credential
crei and a tracing key tki (included in crei). GM gets idi and tki
and outputs also a list of revocation tokens for Mi: rti = {rtij |j ∈
{1, . . . , T}}.

Revoke(gpk, rtij , j, RLj): GM runs this algorithm to prevent a member
Mi from making valid signatures at period j. It outputs an updated
revocation list RLj for period j, where rtij has been added.

Sign(gpk, j, ski, crei,m): This algorithm, run by a member Mi, takes as
input a message m, Mi’s keys ski and crei and a message m to sign
at period j. It outputs a signature σ.

Verify(gpk, j, RLj ,m, σ): This algorithm, run by a verifier takes as in-
put a message m, its signature σ, a period j, the corresponding
Revocation List RLj and the public parameters gpk. It checks if the
message has been signed by an unrevoked group member, without
revealing the signer’s identity. The possible outputs are valid and
invalid.

Open(gpk, j,m, σ, {tki}i): This algorithm is run by GM. It takes a sig-
nature σ on a message m at period j as input, together with all
tracing keys of the group. It reveals the tracing key tki and the iden-
tity idi of the signer. If it fails to recover the identity of the signer,
it returns ⊥.

2.2 Security Requirements

We require our scheme to satisfy Correctness, Backward Unlinkability,
Traceability and Exculpability. These properties are described below.
Correctness The scheme is correct if every signature created by an

unrevoked member is verified as valid. Formally, let gpk be a set of
group signature public parameters, then for every time period j and
for every σ = Sign(gpk, j, ski, crei, m), (Verify(gpk, j, RLj , m, σ)
= valid) ⇔ rtij /∈ RLj .

Backward Unlinkability This model of Backward Unlinkability ap-
plies BU to the case of Selfless-Anonymity3. Consider the following
BU game played by an adversary A:
Setup: The challenger C runs KeyGen(k, T) and obtains gpk and

ik. He sends gpk to A.
Queries: At the beginning of each period j, A announces the be-

ginning of j to C so that they both increment j simultaneously.
At the current time period j, A can run the following queries:

– Join: Adversary A requests the creation of a new member.
C runs Join, obtains a new pair (ski, crei), stores it but
does not send it to A. However A is provided with the in-
formations that should have been sent over public channels.

3 Unlike Full-Anonymity which prevents signatures from giving any information about
their signer, in the Selfless-Anonymity case as defined by [BS04], a member knows
if a given signature was signed by him or not, but he does not gain any other
information.

– Sign: Adversary A requests a signature on a message m by
a member Mi. C computes σ = Sign(gpk, j, ski, crei, m)
and sends it to A.

– Corruption: Adversary A requests the signing key of a
member Mi. C sends (ski, crei) to A.

– Revocation: Adversary A asks for revocation of a member
Mi for period j. C returns rtij , adds it to RLj , sends it to
A.

– Open: Adversary A requests the opening of a signature σ
on a message m. C runs the Open algorithm and sends the
identity of the signer to A.

Challenge: Adversary A outputs a message m∗ and two members
Mi0 and Mi1 , who are neither corrupted, nor revoked at current
time j∗. C chooses b ∈R {0, 1} and sends σ∗ = Sign(gpk, j∗, skib ,
creib ,m

∗) to A.
Restricted Queries: AdversaryA can make the same queries as in

the Queries phase, as long as he does not require the revocation
for period j∗ or the corruption of Mi0 or Mi1 , nor the opening
of σ∗. In particular, the adversary can ask for the revocation of
Mi0 and/or Mi1 at any period strictly later than j∗.

Output: Adversary A outputs a guess b′ ∈ {0, 1} on b.

The scheme is said to satisfy the Backward Unlinkability property if
the probability |Pr[b = b′] − 1/2| is negligible for any probabilistic
polynomial-time adversary A.

Traceability The scheme is traceable if an adversary A is unable to
forge a valid signature that cannot be opened properly. Consider the
following Traceability game played by A:

Setup: The challenger C runs KeyGen(k, T) and obtains gpk and
ik. He sends gpk to A. He also sets an empty revocation list RL.

Queries: At the beginning of each period j, A announces the begin-
ning of j to C so that they both increment j simultaneously. At
the current time period j, A can execute the following queries:

– Join: Adversary A requests the creation of a new member
Mi at current period j. There are two possibilities:

1. Challenger C runs Join alone, obtains a new pair (ski,
crei), stores it but does not send it to A.

2. Challenger C and adversary A interact, C playing the role
of the manager and A the role of the new member. A ob-
tains his secret key and credential. C gets only the identity
idi and the tracing key tki. This user is directly revoked:
the revocation tokens rtij′ of Mi are added to RLj′ for
every j′ ≥ j, thus preventing A to make valid signatures
using this set of keys .

– Corrupt: Adversary A requests ski and crei of a member
Mi, at the current period j. C gives them to him and revokes
Mi: the revocation tokens rtij′ of Mi are added to RLj′ for
every j′ ≥ j.

– Sign: Same as in the Backward Unlinkability game.
– Open: Same as in the Backward Unlinkability game.

Output: Adversary A outputs a message m∗, the current interval
j∗ and a signature σ∗.

Adversary A wins the game if:

1. Verify(gpk, j∗, RLj∗ ,m
∗, σ∗) = valid (implying that σ∗’s open-

ing traces to a member outside the coalition);
2. Adversary A did not obtain σ∗ by making a Sign query on m∗.

The scheme satisfies Traceability if no polynomial probabilistic ad-
versary is able to win the above game with a non-negligible proba-
bility.

Exculpability The aim of the Exculpability property is to offer protec-
tion against the Group Manager. In the Exculpability game, roles
are inverted: the adversary is the GM and, consequently, knows the
group’s secret key and all the players’ credentials. The goal of the
adversary is to forge a valid signature that will be attributed to an
honest (i.e. not corrupted) member by the Open algorithm. This sig-
nature must be such that it cannot be denied by the signer. Consider
the following Exculpability game played by an adversary A:

Setup: Challenger C runs KeyGen(k, T) and obtains gpk and ik. C
stores gpk and sends gpk and ik to A4.

Queries: At the beginning of each period j, A announces the begin-
ning of j to C so that they both increment j simultaneously. At
the current time period j, A can request the following queries:

– Join: Adversary A requests the creation of a new member
Mi at current period j. A plays the role of the manager and
C the role of the member. C gets a signing key (idi, ski, crei)
and A gets (idi, tki).

– Corrupt: Adversary A requests ski and crei of a member
Mi, at the current period j. C gives them to him and revokes
Mi: the revocation tokens rtij′ of Mi are added to RLj′ for
every j′ ≥ j.

– Sign: Same as in the Backward Unlinkability game.

Output: Adversary A outputs a message m∗, the current interval
j∗, the corresponding Revocation List RLj∗ , a signature σ∗ and
a tracing key pair (idi∗ , tki∗).

Adversary A wins the game if all the following statements hold:
1. He did not obtain σ∗ from making a query on m∗;
2. Verify(gpk, j∗, RLj∗ ,m

∗, σ∗) = valid;
3. Open(gpk, j∗,m∗, σ∗, {tki}) = (idi∗ , tki∗);
4. He did not corrupt Mi∗ ;
5. It is impossible for Mi∗ to prove the knowledge of a member

key (idi, ski, crei) such that ski 6= ski∗ and such that ski could
have issued σ∗ as a valid signature5.

Note that the last requirement is to ensure protection against a dis-
honest opening from the manager. The scheme satisfies Exculpabil-
ity if no polynomial probabilistic adversary is able to win the above
game with a non-negligible probability.

4 This corresponds to a trusted setup run on behalf of the adversary.
5 This condition is formalized in [CL10] by using two functionalities called DProve

and DVerify.

3 Preliminaries

In this section, we introduce some notations and the complexity assump-
tions on which our scheme relies. We then explain how to manage a proof
of knowledge of an equality between a discrete logarithm and a double
discrete logarithm. We use this technique as a basis to extend the [CL10]
scheme to Backward Unlinkability.

3.1 Bilinear Groups and Pairings

Let G1 be a cyclic group of prime order p, G2 be a group of order a power
of p, GT be a cyclic group of prime order p, ψ be an homomorphism from
G2 to G1, g2 be an order-p element of G2 and g1 a generator of G1 such
that ψ(g2) = g1.
A pairing is a map e : G1 × G2 → GT that is bilinear (∀u ∈ G1, v ∈
G2, a, b ∈ Z, e(ua, vb) = e(u, v)ab) and non-degenerate (e(g1, g2) 6= 1).
We will refer to such groups G1, G2 and GT as bilinear groups.

3.2 Complexity Assumptions

The security of our scheme relies on the DL assumption, the q-SDH
assumption [BB04] and an adaptation of the DDH assumption. We define
them below.

Discrete Logarithm (DL) problem
Given: G a multiplicative finite cyclic group, with generator g, and
gn (with n ∈R Z).
Problem: Find n.

q-Strong Diffie-Hellman (q-SDH) problem
Given: bilinear groups G1, G2, GT , g1, g2 and a pairing e, as in

Section 3.1, and a q-tuple (gγ2 , .., g
(γq)
2) (γ ∈R Z∗p).

Problem: Compute a pair (g
1/(γ+x)
1 , x), with x ∈ Z∗p

Adapted DDH problem Given: G a multiplicative finite cyclic gro-
up of order a safe prime p, with generator g, ga, gb (a, b ∈R Z∗p), u a
generator of a subgroup of Z∗q (q prime) of order (p− 1)/2 and ua.
Problem: Distinguish gab from a random element z ∈ G.

3.3 Proofs of Knowledge for Double Discrete Logarithms

Let G be a cylic group of safe prime order p, g ∈ G, h a generator of
a subgroup of order (p − 1)/2 of Z∗q , where q is prime, and x ∈ Z∗p.
Let K = gx and L = gh

x

. We want to build a Non-Interactive Zero-
Knowledge Proof of Knowledge of x.
Unfortunately, a NIZK PK à la Schnorr [Sch89] is not possible. Let us
recall how it works to prove the knowledge of a discrete logarithm while
signing a message. We consider the same elements but we only prove,
given g and K the knowledge of x such that K = gx. We use a hash
function H : {0, 1}∗ → Zp. For a message m, the prover chooses r ∈R Zp
and computes R = gr, c = H(m||K||R) and s = r + cx. He returns

g, K, c, s. To check the proof, the verifier computes R′ = gsK−c then
c′ = H(m||K||R′). If c = c′, he accepts the proof, else he rejects it.

It is easy to see that the “trick” used in this proof cannot be reapplied to
a double logarithm. We must use binary challenges instead of a modular
integer. This technique is due to Camenisch and Stadler [Sta96, CS97]
and has been suggested for group signatures by Ateniese et al. [AST02].

We describe in Table 1 how such a proof works for a security parameter λ
(we keep the same notations for g, h, x, K and L). In [Sta96], the authors
state that an attacker can cheat successfully only with probability 2−λ.

Proof Generation:

1. For l = 1 . . . λ, pick rl ∈R Zp and compute Vl = grl , Wl = gh
rl

.
2. Compute c = H(m||K||L||(Vl,Wl)l=1,...,λ).

3. For l = 1 . . . λ, let bl denote the lth bit of c. Set sl = rl − blx.
4. Return g, K, L, c, s1,. . . ,sλ.

Proof Verification:

1. For l = 1 . . . λ, let bl denote the lth bit of c. Compute V ′l = gslKbl and W ′l =

(g1−blLbl)h
sl

2. Compute c′ = H(m||K||L||(V ′l ,W
′
l)l=1,...,λ)

3. If c = c′, accept the proof, else reject it

Table 1. Signature-proof of knowledge of the equality of a logarithm and a double
logarithm.

4 Proposed Scheme

In this section we describe our extension of [CL10] to prove traceability
and to achieve Backward Unlinkability. We discuss also the modification
for the traceability proof in Section 5.1.

The KeyGen algorithm is described in Algorithm 1: we use bilinear
groups and the notations of Section 3.1 (G1, G2, GT , e, g1, g2). The
issuing key is γ ∈R Zp, its public counterpart is w = gγ2 . Notice that p
must be a safe prime so that adapted DDH holds in the group containing
the revocation tokens.

Algorithm 1 KeyGen(k, T)

1: Choose bilinear groups G1, G2, GT of order a k-bit prime number p that is safe (i.e. (p − 1)/2
prime number), a prime number q and a pairing e : G1 ×G2 → GT . Let g1, g2 be generators of
G1 and G2.

2: Choose a hash function H : {0, 1}∗ → Zp and a security parameter λ for the proofs of knowledge
involving double logarithms.

3: Choose g̃1, ĝ1 ∈R G1, γ ∈R Z∗p, h1, . . . , hT ∈R Z∗q , (γ and the hj ’s of order (p − 1)/2) and

compute w = gγ2 .
4: Compute T1 = e(g1, g2), T2 = e(g̃1, g2), T3 = e(ĝ1, g2) and T4 = e(ĝ1, w).

5: Output: gpk = (G1, G2, GT , e, p, g1, g2, g̃1, ĝ1, w, H, T1, T2, T3, T4, λ, h1, . . . , hT) and

ik = γ.

The Join algorithm is explained in Algorithm 2. Each member Mi choo-
ses a secret key ski = fi ∈R Zp, not known by GM. Mi gives to GM an
identity idi = g̃fi1 and proves the knowledge of fi. GM sends him, over
a secure channel, a credential crei = (Ai, xi), which is almost an SDH
couple [BB04]. It satisfies e(Ai, wg

xi
2) = e(g1g̃

fi
1 , g2). To enable Backward

Unlinkability, we divide the time into T periods. For each period j, there
is a public token hj . The revocation token for a member Mi at period j
is rtij = hxij and tki = xi is the tracing key. Revocation lists are different
at each period, they are denoted RLj .

Algorithm 2 Join(gpk, ik ; gpk)

1: GM sends a nonce ni ∈ {0, 1}k to Mi.

2: Mi chooses fi ∈R Zp and computes Fi = g̃
fi
1 . He sets ski = fi and idi = Fi. He chooses

rf ∈R Zp and computes R = g̃
rf
1 . He computes c = H(gpk||Fi||R||ni) then sf = rf + cfi.

3: Mi sends comm = (Fi, c, sf) to GM.

4: GM computes R′ = g̃
sf
1 F−ci and checks that sf ∈ Zp and c = H(gpk||F ||R′||ni). He chooses

xi ∈R Zp and computes Ai = (g1Fi)
1/(xi+γ). He sets crei = (Ai, xi), tki = xi and idi = Fi.

5: GM sends crei to Mi, using a secure channel.

6: Mi checks that e(Ai, wg
xi
2) = e(g1g̃

fi
1 , g2) and outputs (idi, ski, crei).

7: The revocation token for Mi at period j is rtij = h
xi
j .

The Sign algorithm is described in Algorithm 3. When a member Mi

creates a signature, he first chooses a random B ∈R G1 and computes

J = Bfi , K = Bxi and L = Bh
xi
j . He picks a random a ∈R Zp, computes

b = axi and T = Aiĝ
a
1 . He then does a NIZK PK of (fi, Ai, xi) satisfying

J = Bfi , K = Bxi and e(Ai, wg
xi
2) = e(g1g̃

fi
1 , g2). He also provides

evidence that b = axi as in [BS04] to ensure traceability based on an
extractor (cf. proof of Proposition 2). He finally computes a Proof of
Knowledge (c, (Vl,Wl)l=1...λ), as described in Section 3.3, of the equality:
logBK = loghj (logBL) (= xi).

Algorithm 3 Sign(gpk, ski, crei,m, j)

1: Choose B ∈R G1 and compute J = Bfi , K = Bxi and L = B
h
xi
j .

2: Choose a ∈R Zp, compute b = axi and T = Aiĝ
a
1 .

3: Choose rf , rx, ra, rb, r1, . . . , rλ ∈R Zp.

4: Compute R1 = Brf , R2 = Brx , R4 = KraB−rb , R3 = e(T, g2)−rxT
rf
2 T

rb
3 T ra4 , Vl = Brl and

Wl = B
h
rl
j , ∀l = 1 . . . λ.

5: Compute c=H(gpk||B||J||K||L||T ||R1||R2||R3|| R4||j||m).
6: Compute d = H(c||(Vl,Wl)l=1...λ).
7: Compute sf = rf + cfi, sx = rx + cxi, sa = ra + ca and sb = rb + cb.

8: ∀l = 1 . . . λ, let bl be the lth bit of d. Set sl = rl − blx.

9: Output: σ = (B, J,K,L, T, c, d, sf , sx, sa, sb, s1, . . . , sλ).

Remark 1. Note that the steps 1 to 4 in Algorithm 3 can be fully pre-
computed in advance. Particularly, it includes the costly proof of knowl-

edge of the equality of a logarithm and a double logarithm that we in-
troduce here to enable Backward Unlinkability. This leads to a message-
depending part of signature generation almost as efficient as in the other
VLR schemes.

The Verify algorithm is described in Algorithm 4. To check a signature,
the verifier checks both proofs of knowledge. If the checks succeed, he also

does a Revocation Check: ∀rti′j = h
x′i
j ∈ RLj , he checks that L 6= Brti′j .

Algorithm 4 Verify(gpk,m, σ,RLj , j)

1: Signature Check:
2: Check that B, J,K,L, T ∈ G1 and sf , sx, sa, sb, s1, . . ., sλ ∈ Zp.

3: Compute R′1 = Bsf J−c, R′2 = BsxK−c, R′3 = e(T, g2)−sxT
sf
2 T

sb
3 T sa4 T c1 e(T,w)−c and

R′4 = KsaB−sb .
4: Check that c=H(gpk||B||J||K||L||T ||R′1||R

′
2| |R

′
3||R

′
4||j||m).

5: ∀l = 1 . . . λ, let bl be the lth bit of d. Compute V ′l = BslKbl and W ′l = (B1−blLbl)
h
sl
j .

6: Check that d = H(c′||(V ′l ,W
′
l)l=1...λ).

7: Revocation Check:
8: Check that ∀rtij ∈ RLj , L 6= Brtij .

9: Output valid if all checks succeed. Otherwise output invalid.

The Open algorithm is described in Algorithm 5. This follows the usual
“implicit tracing algorithm” described in [BS04]: the GM does a Re-
vocation Check for the signature he would like to open (at period j),
successively with every revocation list of the form RLij = {rtij}, for each
member Mi. When the check fails, it means that the signer is the one
associated to the token in use.

Algorithm 5 Open(gpk,m, σ, j, hj , {tki}i)
1: ∀i, compute rtij = h

tki
j and set RLij = {rtij}.

2: ∀i, do the Revocation Check on σ using RLij . When it fails (i.e. when the equality holds), break

and return (tki, idi).

3: If all checks succeed, return ⊥.

5 Security

5.1 An extractor for the [CL10] signature scheme

In [CL10], the Sign algorithm was slightly different. Of course, there was
no proof of knowledge of a double logarithm. What is important to notice
is that there moreover was no R4 value. The full algorithm is described
in Algorithm 6. We do not re-write the Verify algorithm, it is easily
extractable from Algorithm 4 by removing the corresponding elements.

Algorithm 6 The original Sign(gpk, ski, crei,m) from [CL10]

1: Choose B ∈R G1 and compute J = Bfi and K = Bxi .
2: Choose a ∈R Zp, compute b = axi and T = Aiĝ

a
1 .

3: Choose rf , rx, ra, rb ∈R Zp.

4: Compute R3 = e(T, g2)−rxT
rf
2 T

rb
3 T ra4 , R1 = Brf , R2 = Brx

5: Compute c = H(gpk||B||J||K||T ||R1||R2||R3||m).
6: Compute sf = rf + cfi, sx = rx + cxi, sa = ra + ca and sb = rb + cb.

7: Output: σ = (B, J,K,L, T, c, sf , sx, sa, sb).

We found out that it was possible for a genuine user to send sa and sb
without following the original algorithm such that the signature is still
successfully checked. But we did not find a way to break the Traceability
of the system. However, we think there is something missing in the proof
of traceability in [CL10], that does not explicitly give an extractor. This
is why we add the R4 part in our algorithms. Notice that adding R4 does
not change the signature size but only adds one multi-exponentiation in
both Sign and Verify algorithms. Let us now prove that we can obtain an
extractor when using the Sign procedure from Algorithm 3. Note that as
a group signature is essentially a proof of knowledge (POK) of a member
key, the notion of extractor is here the same as in the context of POKs.

Theorem 1. There exists an extractor for the group signature scheme as
defined in Section 4, that extracts a valid key (x, f,A) from a convincing
signer.

Proof. We follow the usual methodology (see [BS04] for instance). We
suppose that an extractor can rewind the protocol. We only consider the
“non-backward-unlinkable” part of the signature, i.e. we remove L and
the proof of knowledge of the double logarithm. The prover sends B, J ,
K, T , R1, R2, R3, R4. To a challenge value c, the prover responds with
sf , sx, sa, sb. To another challenge value c′ 6= c, the prover responds with
s′f , s

′
x, s
′
a, s
′
b. As the proof is convincing, all verification equations from

Algorithm 4 hold. We denote ∆c = c− c′, ∆sf = sf −s′f , ∆sx = sx−s′x,
∆sa = sa − s′a and ∆sb = sb − s′b.
Now consider the R′2 equation. Dividing the two instances gives us B∆sx

= K∆sc . Let x̃ = ∆sx/∆c . We obtain Bx̃ = K. Let also f̃ = ∆sf/∆c,
ã = ∆sa/∆c and b̃ = ∆sb/∆c.
Now consider the R′4 equation. We obtain K∆sa = B∆sb . With the
previous result, we have Bx̃∆sa = B∆sb then x̃∆sa = ∆sb or x̃ã = b̃.
Finally consider the R′3 equation. We obtain

e(T, g2)∆sxe(T,w)∆cT
−∆sb
3 T−∆sa4 = T

∆sf
2 T∆c1

then e(T,wgx̃2)e(ĝ1, g2)−b̃e(ĝ1, w)−ã = e(g1g̃
f̃
1 , g2).

Using the equality b̃ = ãx̃, we obtain e(T ĝ−ã1 , wgx̃2) = e(g1g̃
f̃
1 , g2). Set

Ã = T ĝ−ã1 , we have e(Ã, wgx̃2) = e(g1g̃
f̃
1 , g2) and (x̃, f̃ , Ã) is a valid key.

5.2 Security of our Scheme

In the Random Oracle Model (ROM), our VLR group signature scheme
satisfies Correctness, Backward Unlinkability (under the adapted DDH

assumption), Traceability (under the SDH assumption) and Exculpability
(under the DL assumption). The Correctness is straightforward. The
proofs for the other security properties are in Appendix A.

Proposition 1. Under the ROM and the hardness of the adapted DDH
problem in G1, the scheme described in Section 4 achieves Backward
Unlinkability.

Proposition 2. Under the ROM and the SDH assumption in (G1, G2,
GT), the scheme defined in Section 4 achieves Traceability.

Proposition 3. Under the ROM and the DL assumption, the scheme
described in Section 4 achieves Exculpability.

6 Efficiency

In this section, we analyse our scheme in terms of signature size and
computation cost. We then draw a comparison of the performances of
our scheme and some other VLR schemes.

6.1 Analysis of the Proposed Scheme

We compare here our proposal with the patched [CL10] scheme. Notice
that we add in the signature λ elements s1, . . . , sλ of Zp and one element
L of G1. Chen and Li proposed to use 256-bit Barreto-Naehrig curves
[BN05]. In this context, each element of G1 can be represented using
257 bits. A [CL10] signature using these parameters is 2308-bit long. A
signature from our scheme using a security parameter λ = 80 is 23301-
bit long, i.e. about ten times bigger. Concerning computation times,
our modification requires 2λ + 1 additional exponentiations in G1 and
λ exponentiations over Zq for the signing part. Nevertheless, all these
additional exponentiations are independent of the message and can be
pre-computed offline by the signer.

It also requires 2λ additional exponentiations in G1 and λ exponenti-
ations over Zq for the verifying part. Note that, despite this overhead,
one important property of our solution is that revocation check remains
as fast as in the original scheme. Consequently the cost of this overhead
will be amortized with large revocation lists (cf. next section).

This is summed up in Table 2. (me stands for multi-exponentiations in
G1, me stands for multi-exponentiations in Z∗q , ME for multi-exponentia-
tions in GT and P for pairings. The “patched CL” scheme is the [CL10]
scheme modified to obtain an extractor, i.e. our scheme without the
proof of knowledge of a double logarithm. And we denote by CL-BUλ

our scheme with a security parameter λ.)

Scheme Cost of Sign (offline) Cost of Sign (online) Cost of Verify
patched CL 6 me negligible (4 + |RL|) me

+ 1 ME (1 hash) + 1 ME + 1 P
Our scheme (CL-BUλ) (7 + 2λ) me negligible (4+ |RLj | + 2 λ) me

+ λ me + 1 ME (2 hash) + λ me + 1 ME + 1 P

Table 2. Computational costs for [CL10] and our scheme

6.2 Comparison with Existing Works

We now compare the additional cost for Backward Unlinkability for
the [CL10] scheme and for a pairing-based scheme. We use as an example
the [BS04] and the [NF06] schemes (denoted respectively by BS and NF
in the subsequent tables), the latter being a modification of the Boneh-
Shacham scheme enabling Backward Unlinkability. We implemented all
these algorithms on a PC with a 2.93 GHz Intel R©CoreTM2 Duo proces-
sor. The implementation uses the C++ programming language and the
NTL library [Sho]. The order p of the groups used in the implementation
is a 160-bit integer, q is a 1248-bit integer. We compute pairings using
an optimization technique from [Sto04].

Remark 2. The size of q is chosen so that the DL problem is hard over
the subgroups of Z∗q of order (p − 1)/2. Note that the impact on the
performances is very limited as only some of the additional exponenti-
ations for the proof of knowledge of the double logarithm / logarithm
equality are made on Z∗q and, in particular, the exponentiations made
during revocation check remain in G1 (whose order is the smaller prime
p).

One can find in Table 3 our results for the schemes [BS04] (BS) and
our correction of [CL10] without Backward Unlinkability. We give the
computation times for the Sign algorithm, for the constant part of the
Verify algorithm and, finally, the time needed for each additional re-
voked user. Our results imply that computing a pairing is about four
times longer than computing an exponentiation, which confirms the im-
provement brought by exponentiations in terms of efficiency.

In Table 4, we describe the additional time needed to add Backward
Unlinkability to these schemes. The operations in the Revocation Check
part have the same cost, that is why they are not mentioned here. We can
see that, for pairing based schemes ([BS04,NF06]), BU is essentially for
free. In our scheme, it requires about 100 more milliseconds per security
level (that can be handled offline for the signing part), which is coherent
with the theoretical costs of Table 2. We also show why, despite the
additional cost due to the security parameter of the proof of knowledge,
our scheme becomes quickly more efficient than a pairing-based scheme
with BU. In Table 5, we show the time needed by the Verify algorithm
for the NF scheme [NF06] and for our scheme, using different security
parameters. We can see that there is a threshold value for the number of
revoked members from which our scheme is more efficient. Our scheme
is the most adapted for large groups (from a few dozens of users).

For instance, we remark that the overall time for signing and verifying
when there are 1000 revoked members is divided by 3 for our scheme
CL-BU80 compared to the [NF06] scheme.

Scheme BS patched CL

Signature 1000 450

Verification 1170 400

Rev. Check (/rev.) 180 45

Table 3. Computation times for the schemes without BU, in ms.

Scheme with/ NF/BS CL-BU80/CL CL-BU128/CL
without BU

Signature 80 ms 8 s (offline) 13 s (offline)

Verification 40 ms 8 s 13 s

Table 4. Additional time for Backward Unlinkability.

Revoked members NF CL-BU80 CL-BU128

10 3 s 9 s 14 s

50 10 s 10.5 s 15.5 s

100 19 s 13 s 18 s

1000 3 min 53 s 58 s
Table 5. Overall computational time for the Verify algorithm, depending on the num-
ber of revoked members.

7 Conclusion

Our main contribution is to present the first VLR Group Signature
scheme that enables Backward Unlinkability where the revocation check

(which is the costliest part) requires |RL| (number of revoked users) ex-
ponentiations instead of |RL| pairings. Our technique can be applied to
add Backward Unlinkability to other VLR group signature schemes using
exponentiations in the Revocation Check.
By applying our technique to [CL10], that we moreover modified to give
a full security proof for traceability, we obtain the most efficient VLR
scheme enabling Backward Unlinkability. It also satisfies Exculpability
and full proofs are given.
Since it is still an open problem to prove if we can build a VLR scheme
with a sublinear Revocation Check or not, our technique is a consequent
improvement as it greatly reduces the cost of the elementary checks com-
pared to previous constructions of VLR group signature schemes with
BU.

References

[ACJT00] Giuseppe Ateniese, Jan Camenisch, Marc Joye, and Gene
Tsudik. A practical and provably secure coalition-resistant
group signature scheme. In Mihir Bellare, editor, CRYPTO,
volume 1880 of LNCS, pages 255–270. Springer, 2000.

[AST02] Giuseppe Ateniese, Dawn Xiaodong Song, and Gene Tsudik.
Quasi-efficient revocation in group signatures. In Matt Blaze,
editor, Financial Cryptography, volume 2357 of LNCS, pages
183–197. Springer, 2002.

[BB04] Dan Boneh and Xavier Boyen. Short signatures without ran-
dom oracles. In Christian Cachin and Jan Camenisch, editors,
EUROCRYPT, volume 3027 of LNCS, pages 56–73. Springer,
2004.

[BCC04] Ernest F. Brickell, Jan Camenisch, and Liqun Chen. Direct
anonymous attestation. In Vijayalakshmi Atluri, Birgit Pfitz-
mann, and Patrick Drew McDaniel, editors, ACM Conference
on Computer and Communications Security, pages 132–145.
ACM, 2004.

[BCPZ08] Julien Bringer, Hervé Chabanne, David Pointcheval, and
Sébastien Zimmer. An application of the Boneh and Shacham
group signature scheme to biometric authentication. In Kanta
Matsuura and Eiichiro Fujisaki, editors, IWSEC, volume 5312
of LNCS, pages 219–230. Springer, 2008.

[BL10] Ernie Brickell and Jiangtao Li. A pairing-based daa scheme
further reducing tpm resources. In Alessandro Acquisti,
Sean W. Smith, and Ahmad-Reza Sadeghi, editors, TRUST,
volume 6101 of LNCS, pages 181–195. Springer, 2010.

[BN05] Paulo S. L. M. Barreto and Michael Naehrig. Pairing-friendly
elliptic curves of prime order. In Bart Preneel and Stafford E.
Tavares, editors, Selected Areas in Cryptography, volume 3897
of LNCS, pages 319–331. Springer, 2005.

[BP12] Julien Bringer and Alain Patey. VLR group signatures: How
to achieve both backward unlinkability and efficient revocation
checks. In SECRYPT, 2012.

[BS04] Dan Boneh and Hovav Shacham. Group signatures with
verifier-local revocation. In Vijayalakshmi Atluri, Birgit Pfitz-
mann, and Patrick Drew McDaniel, editors, ACM Conference
on Computer and Communications Security, pages 168–177.
ACM, 2004.

[BSZ05] Mihir Bellare, Haixia Shi, and Chong Zhang. Foundations of
group signatures: The case of dynamic groups. In CT-RSA,
pages 136–153, 2005.

[CL02] Jan Camenisch and Anna Lysyanskaya. Dynamic accumu-
lators and application to efficient revocation of anonymous
credentials. In Moti Yung, editor, CRYPTO, volume 2442 of
LNCS, pages 61–76. Springer, 2002.

[CL10] Liqun Chen and Jiangtao Li. VLR group signatures with in-
disputable exculpability and efficient revocation. In PASSAT,
2010.

[CS97] Jan Camenisch and Markus Stadler. Efficient group signa-
ture schemes for large groups (extended abstract). In Burton
S. Kaliski Jr., editor, CRYPTO, volume 1294 of LNCS, pages
410–424. Springer, 1997.

[CvH91] David Chaum and Eugène van Heyst. Group signatures. In
EUROCRYPT, pages 257–265, 1991.

[INHJ10] Luan Ibraimi, Svetla Nikova, Pieter Hartel, and Willem
Jonker. An identity-based group signature with membership
revocation in the standard model. CTIT technical report se-
ries. University of Twente, 2010.

[KTY04] Aggelos Kiayias, Yiannis Tsiounis, and Moti Yung. Trace-
able signatures. In Christian Cachin and Jan Camenisch, ed-
itors, EUROCRYPT, volume 3027 of LNCS, pages 571–589.
Springer, 2004.

[LV09] Benôıt Libert and Damien Vergnaud. Group signatures with
verifier-local revocation and backward unlinkability in the
standard model. In Juan A. Garay, Atsuko Miyaji, and Akira
Otsuka, editors, CANS, volume 5888 of LNCS, pages 498–517.
Springer, 2009.

[NF05] Toru Nakanishi and Nobuo Funabiki. Verifier-local revocation
group signature schemes with backward unlinkability from bi-
linear maps. In Bimal K. Roy, editor, ASIACRYPT, volume
3788 of LNCS, pages 533–548. Springer, 2005.

[NF06] Toru Nakanishi and Nobuo Funabiki. A short verifier-local re-
vocation group signature scheme with backward unlinkability.
In Hiroshi Yoshiura, Kouichi Sakurai, Kai Rannenberg, Yuko
Murayama, and Shin ichi Kawamura, editors, IWSEC, volume
4266 of LNCS, pages 17–32. Springer, 2006.

[NSS+09] Toru Nakanishi, Amang Sudarsono, Yumi Sakemi, Yasuyuki
Nogami, and Nobuo Funabiki. A group signature scheme with
efficient verifier-local revocation check. In SCIS, 2009.

[PS00] David Pointcheval and Jacques Stern. Security arguments
for digital signatures and blind signatures. J. Cryptology,
13(3):361–396, 2000.

[Sch89] Claus-Peter Schnorr. Efficient identification and signatures
for smart cards. In Gilles Brassard, editor, CRYPTO, vol-
ume 435 of Lecture Notes in Computer Science, pages 239–252.
Springer, 1989.

[Sho] Victor Shoup. Number theory library. http://www.shoup.

net/ntl.
[SNS+09] Amang Sudarsono, Toru Nakanishi, Yumi Sakemi, Yasuyuki

Nogami, and Nobuo Funabiki. An implementation of a group
signature scheme with efficient verifier-local revocation check.
In ISEC, pages 37–42, 2009.

[Son01] Dawn Xiaodong Song. Practical forward secure group signa-
ture schemes. In ACM Conference on Computer and Commu-
nications Security, pages 225–234, 2001.

[SSBP08] Ahren Studer, Elaine Shi, Fan Bai, and Adrian Perrig. Tacking
together efficient authentication, revocation, and privacy in
vanets. Technical report, Carnegie Mellon CyLab, 2008.

[Sta96] Markus Stadler. Publicly verifiable secret sharing. In EURO-
CRYPT, pages 190–199, 1996.

[Sto04] Marcus Stogbauer. Efficient algorithms for pairing-based cryp-
tosystems. Master’s thesis, Darmstadt University of Technol-
ogy, 2004.

[WL10] Lingbo Wei and Jianwei Liu. Shorter verifier-local revocation
group signature with backward unlinkability. In Marc Joye,
Atsuko Miyaji, and Akira Otsuka, editors, Pairing, volume
6487 of LNCS, pages 136–146. Springer, 2010.

[YO08] Takuya Yoshida and Koji Okada. Simple and efficient group
signature scheme assuming tamperproof devices. In Kanta
Matsuura and Eiichiro Fujisaki, editors, IWSEC, volume 5312
of LNCS, pages 83–99. Springer, 2008.

[ZL06] Sujing Zhou and Dongdai Lin. Shorter verifier-local revocation
group signatures from bilinear maps. In David Pointcheval,
Yi Mu, and Kefei Chen, editors, CANS, volume 4301 of LNCS,
pages 126–143. Springer, 2006.

A Security Proofs

A.1 Proof of Backward Unlinkability

Under the ROM and the hardness of the adapted DDH problem, the
scheme described in Section 4 achieves Backward Unlinkability.
In particular the DDH problem on G1 (of order p) and the DL problem
on the used subgroups (related to the hl’s) of Z∗q of order (p− 1)/2 must
be hard.

Proof. Let us assume that there is an adversary A that succeeds with a
non-negligible probability to break the Backward Unlinkability game. We
describe here how to build a polynomial-time algorithm B, that solves
the adapted DDH problem in G1 with a non-negligible probability.
Adversary B is given as input an adapted DDH tuple (U, V = Ua,W =
Ub, Z, u, v = ua), where U ∈R G1, a, b ∈R Z∗p, Z ∈ G1 and u ∈R Zq of
order (p− 1)/2. He decides if Z = Uab by interacting with A as follows:

1. Setup: Adversary B runs the KeyGen algorithm. The hj ’s are not
chosen completely randomly: ∀j ∈ {1, . . . , T}, B chooses rj ∈R Zp
and sets hj = urj .

Adversary B obtains gpk and ik. gpk is sent to A.

2. Hash Queries: We model the hash function H as a random oracle.
When we do not specify that it should act otherwise, B chooses a
random element of Zp, while ensuring consistency.

3. Join Queries: We assume there are n Join Queries6. B picks i∗ ∈R
{1, . . . , n}.
When A requests a new member for the ith time:

– If i = i∗, B chooses fi∗ ∈R Zp and sets Fi∗ = g̃fi∗1 . B will
act as this user had the credential xi∗ = loguv(= a) without
knowing neither this credential xi∗ nor the corresponding Ai∗.
The revocation tokens for user Mi∗ will be rti∗j = vrj ,∀j ∈
{1, . . . , T}.

– If i 6= i∗, B runs the Join protocol, playing both roles of the
member and the manager. The revocation tokens are also un-
changed: ∀j, rtij = hxij .

4. Revocation Queries: If the requested ith member and the actual pe-
riod j are such that i = i∗ and j = j∗, B outputs a random guess
β ∈R {0, 1} and aborts the protocol. Otherwise, B outputs rtij .

5. Corruption Queries: If the requested member is Mi∗ , B outputs a
random guess β ∈R {0, 1} and aborts the protocol. Otherwise, it
gives the corresponding keys xi, Ai, fi, Fi to A.

If the requested member is Mi∗ , B outputs a random guess β ∈R
{0, 1} and aborts the protocol. Otherwise, it gives the corresponding
keys xi, Ai, fi, Fi to A.

6. Opening Queries: B follows the protocol and sends the identity Mi

of the signer of the requested signature to A.

7. Signing Queries: If the requested signer Mi is not Mi∗ , B answers to
the query using the keys for Mi as usual.

If i = i∗,

– Adversary B chooses r ∈R Zp and T ∈R G1. He then computes

B = Ur, J = Bfi∗ , K = V r and L = Brti∗j = Ur.v
rj

.
– Adversary B chooses c, d, sf , sx, sa, sb, s1, . . . , sλ ∈R Zp.
– Adversary B computes R1 = Bsf J−c, R2 = BsxK−c, R4 = Ksa

B−sb and R3 = e(T, g2)−sxT
sf
2 T

sb
3 T sa4 T c1 e(T,w)−c.

– Adversary B patches the oracle by setting c=H(gpk||B||J ||K||L|
|T ||R1||R2||R3||R4||j||m). If this has been queried before, B out-
puts a random guess β ∈R {0, 1} and aborts the protocol.

– ∀l = 1 . . . λ, let bl be the lth bit of d. B computes Vl = BslKbl

and Wl = (B1−blLbl)h
sl
j .

– Adversary B patches the oracle by setting d=H(c||(Vl,Wl)l=1...λ).
If this has been queried before, B outputs a random guess β ∈R
{0, 1} and aborts the protocol.

– Adversary B returns to A σ = (B, J , K, L, T , c, d, sf , sx, sa,
sb, s1, . . . , sλ).

6 n is the number of Join requests needed by A, it is consequently polynomial in k.

8. Challenge: Adversary A outputs a message m∗, the current period
j∗ and two unrevoked and uncorrupted members Mi0 and Mi1 . If
i0 6= i∗ and i1 6= i∗, B outputs a random guess β ∈R {0, 1} and
aborts the protocol.
Otherwise, B chooses b ∈ {0, 1} such that ib = i∗ and builds a
signature as follows:

– Adversary B chooses r ∈R Zp and T ∈R G1. He then computes

B = W r, J = Bfi∗ , K = Zr and L = Brti∗j = W r.v
rj

.
– Adversary B chooses c, d, sf , sx, sa, sb, s1, . . . , sλ ∈R Zp.
– Adversary B computes R1 = Bsf J−c, R2 = BsxK−c, R4 = Ksa

B−sb and R3 = e(T, g2)−sxT
sf
2 T

sb
3 T sa4 T c1 e(T,w)−c .

– Adversary B patches the oracle by setting c=H(gpk||B||J ||K||L|
|T ||R1||R2||R3||R4||j||m). If this has been queried before, B out-
puts a random guess β ∈R {0, 1} and aborts the protocol.

– For l = 1 . . . λ, let bl be the lth bit of d. B computes Vl = BslKbl

and Wl = (B1−blLbl)h
sl
j .

– Adversary B patches the oracle by setting d=H(c|| (Vl,Wl)l=1...λ).
If this has been queried before, B outputs a random guess β ∈R
{0, 1} and aborts the protocol.

– Adversary B returns to A σ∗ = (B, J , K, L, T , c, d, sf , sx, sa,
sb, s1, . . . , sλ).

9. Restricted Queries: Adversary A and B interact in the same way as
before the challenge, while respecting the restrictions.

10. Output: Adversary A outputs his guess b′ ∈ {0, 1}. If b = b′, B
outputs 1, meaning that Z = Uab, else B outputs 0.

If B never aborts:
– If Z = Uab, then B simulates the game perfectly, i.e. the challenge

signature σ∗ is a well-simulated signature for user Mi∗ . In this case,
A outputs the good result with probability 1/2 + ε, and so does B
for his adapted DDH instance.

– If Z 6= Uab, then σ∗ simulates a signature using a credential x =
logW (Z), which is, except with negligible probability, different from
the credentials of members Mi0 and Mi1 . In this case, A answers
with probability 1/2 B’s choice or the other identity. A outputs the
good result with probability 1/2.

If B aborts, his output is random and he obtains the good result with
probability 1/2.
Let abort denote the event that B aborts. Let ε be the the probability of
success of A against the Backward Unlinkability game. With the previous
remarks, we have Pr(abort)ε as the advantage of B against adapted
DDH. Let α ∈ {0, 1} denote whether Z is random (α = 0) or equal
to Uab (α = 1) and β denote the guess of B: AdvB =

∣∣Pr(β = 0|α =
1) − Pr(β = 0|α = 0)

∣∣ =
∣∣1 − Pr(β = 1|α = 1) − Pr(β = 0|α = 0)

∣∣ =∣∣1−Pr(abort)Pr(β = 1|abort∧α = 1)−Pr(abort)Pr(β = 1|abort∧α =

1)−Pr(abort)Pr(β = 0|abort∧α = 1)−Pr(abort)Pr(β = 0|abort∧α =
1)
∣∣ =

∣∣1−Pr(abort) 1
2
−Pr(abort)(1

2
+ε)−Pr(abort) 1

2
−Pr(abort) 1

2

∣∣ =

Pr(abort)ε.

Now let us evaluate Pr(abort). We can neglect the cases where the
same hash queries are asked. Consequently, we neglect the abortions

of the Sign phase. The protocol aborts only in the Corruption, Re-
vocation and Challenge phases. The probability that it does not
abort is the probability that i∗ and j∗ are chosen for the challenge,
providing Mi∗ has not been either corrupted or revoked at time j∗.
Let qC denote the number of corruption queries and qR the maxi-
mum number of revocation queries for one period. The probability
that Mi∗ is neither corrupted nor revoked is ≥ 1− qR+qC

n . The prob-
ability that j∗ is chosen is 1/T . If i∗ is available for the challenge
choice, he has a probability ≥ 2/n to be chosen. Consequently, we
have AdvB ≥ (1− qR+qC

n) 2
nT ε.

Thus, as n is polynomial in k, the advantage of B against adapted
DDH in G1 is non-negligible and, consequently, our scheme satisfies
Backward Unlinkability under the adapted DDH assumption in G1.

A.2 Proof of Traceability

Under the ROM and the SDH assumption in (G1, G2, GT), the scheme
defined in Section 4 achieves Traceability.

Proof. Let us assume that there is an adversary A that succeeds with
a non-negligible probability to break the Traceability game. We here
describe how to build a polynomial-time algorithm B, that solves the
q-SDH problem with a non-negligible probability.
Adversary B is given as input a n-SDH instance, obtained from a triple
(g1, g2, w). He can then compute n − 1 SDH pairs (Bk, xk) using tech-
niques from [BB04]. He builds a new SDH pair by interacting with A as
follows:

1. Setup: Adversary B runs the KeyGen algorithm with one modifica-
tion. He picks a, b, x ∈R Z∗p and sets

g̃1 = ψ(((wgx2)bg−1
2)1/a) = g

((γ+x)b−1)/a
1 .

Notice that B knows w but not γ. Adversary B obtains gpk = (G1,
G2, GT , p, e, g1, g̃1, ĝ1, g2, w, H, T1, T2, T3, T4, λ, h1, . . . , hλ) and
sends it to A.

2. Hash Queries: We model the hash function H as a random oracle.
When we do not specify that it should act otherwise, B chooses a
random element of Zp, while ensuring consistency.

3. Join Queries: Let us remind that there are 2 cases of join queries: in
the first case, B runs the Join algorithm alone, in the second case A
and B interact.
We assume there are n Join Queries. Adversary B picks i∗ ∈R
{1, . . . , n}. We assume that the i∗th query is a query of the first
type. When A requests a new member for the ith time:

– If i = i∗, B sets fi∗ = a and crei = (gb1, x).
– If i 6= i∗, depending on the cases, B receives fi from A or chooses
fi ∈R Zp. B uses then one SDH pair (Bk, xk) to compute crei:
• xi = xk

•
Ai = B

1−fi/a+fib(x−xi)/a
k g

fib/a
1

= B
1−fi/a+fib(x+γ)/a
k

= (g1g̃
fi
1)1/(γ+xi).

4. Corruption Queries: At period j, B gives the secret key ski and the
credential crei of the requested member Mi. The revocation tokens
for Mi for periods j′ ≥ j are added to the RLj′ ’s.

5. Opening Queries: B follows the protocol and sends the identity Mi

of the signer of the requested signature to A.
6. Signing Queries: Given a signer identity, a message m to be signed

and a period j, B computes the signature σ using the Sign algorithm
and sends it to A.

7. Output: Adversary A outputs a signer’s identity, a message m and
a signature σ.

We can treat two types of forgeries :
1. Adversary A outputs a signature with secret key A∗ different from

all Ai’s.
2. Adversary A outputs a signature with the secret key of an uncor-

rupted member. B obtains an advantage against his SDH instance
only if A signs using Mi∗ ’s keys. This happens with probability 1/n
(non-negligible).

In both cases, B can rewind the framework to obtain two forged signa-
tures on the same message m at the same interval j using the sames
B,K, T,R1, R2.
Using the Forking Lemma [PS00] and our extractor described in Sec-
tion 5.1, B is able to compute a new SDH pair with non-negligible prob-
ability in polynomial time.
Thus, the scheme satisfies Traceability under the q-SDH assumption in
(G1, G2, GT).

A.3 Proof of Exculpability

Under the ROM and the DL assumption, the scheme described in Sec-
tion 4 achieves Exculpability.

Proof. Let us assume that there is an adversary A that succeeds with a
non-negligible probability to break the Exculpability game. We describe
here how to build a polynomial-time algorithm B, that solves the DL
problem with a non-negligible probability.
Adversary B is given as input a DL instance: (g, h). He finds loggh by
interacting with A as follows:
1. Setup: Adversary B runs the KeyGen algorithm with one modifica-

tion. He does not choose g̃1 randomly but sets g̃1 = g. The rest is not
modified. B sends gpk and ik to A, stores gpk and sets revocation
lists.

2. Join Queries: We assume there are n Join Queries. B picks i∗ ∈R
{1, . . . , n}. When A requests the creation of new member, A and B
play the Join algorithm, A as the GM and B as the joining member.
There is only one restriction: for the i∗th query, B does not pick
f∗i randomly but sets idi∗ = Fi∗ = h and simulates the proof of
knowledge of logg̃1Fi∗ . So ski∗ = loggh but A does not know its
value.

3. Corruption Queries: At period j, B gives the secret key ski and the
credential crei of the requested member Mi. The revocation tokens
for Mi for periods j′ ≥ j are added to the RLj′ ’s.
If the requested member is Mi∗ , B aborts the protocol.

4. Signing Queries: If A requests the signature of a member Mi 6= Mi∗ ,
B answers using the usual Sign algorithm. If the requested member
is Mi∗ , B runs Sign but does not choose B randomly, he chooses
t ∈R Zp and sets B = gt and J = ht. K, L and T are computed as
usual. The first proof of knowledge is simulated because B does not
know fi∗ and the second proof of knowledge, concerning K and L is
done normally.

5. Output: AdversaryA outputs a messagem, a signature σ = (B, J,K,
L, T,Π1, Π2), the current interval j, the revocation list RLj and a
tracing key pair (idi, tki).

Adversary B has an advantage against the DL instance if the latter key
pair corresponds to user Mi∗ . As i∗ looks random for A, it is chosen with
probability at least 1/n (consequently with non-negligible property).
If we assume that A wins the Exculpability game, we can state that
J = Bfi∗ , since this statement is indisputable.
Using the Forking Lemma [PS00], one can then extract fi∗ with non-
negligible probability. Consequently, B finds loghg, the solution for his
DL instance, with non-negligible probability in polynomial time.
Thus, our scheme is exculpable under the Discrete Logarithm assumption
in G1.

