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Abstract

This article concerns itself with the triangular permutation group, in-
duced by triangular polynomial maps over Fp, which is a p-sylow subgroup
of Perm(Fnp ). The aim of this article is twofold: on the one hand, we give an
alternative to Fp-actions on Fnp , namely Z-actions on Fnp and how to describe
them as what we call “Z-flows”. On the other hand, we describe how the
triangular permutation group can be used in applications, in particular we
give a cryptographic application for session-key generation. The described
system has a certain degree of information theoretic security. We compute its
efficiency and storage size.

To make this work, we give explicit criteria for a triangular permutation
map to have only one orbit, which we call “maximal orbit maps”. We describe
the conjugacy classes of maximal orbit maps, and show how one can conjugate
them even further to the map z −→ z + 1 on Z/pnZ.

AMS classification: 14R20, 20B25, 94A60

1 Introduction

When generalizing the concept of algebraic additive group actions on kn where k
is of characteristic zero, to fields of characteristic p, one tends to (obviously) go
to (k,+) actions on kn. These then automatically have order p. This makes the
generalization, though seemingly natural in some way, restrictive. For example, a
common class of additive group actions is those induced by strictly triangular poly-
nomial maps: maps of the form (X1 + g1, . . . , Xn + gn) where gi ∈ k[X1, . . . , Xi−1].
In characteristic zero all these maps can be embedded into a unique algebraic addi-
tive group action ϕ : (k,+) × kn −→ kn such that ϕ(1, X1, . . . , Xn) is exactly this
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map: analytically speaking, they are the “time one-maps of a (k,+) flow on kn”.
However, in characteristic p they do not always have order p, so they cannot be part
of a (k+)-action.

To give an example, if F = (x + y + z, y + z, z) in characteristic zero, then the
additive group action becomes

(t, (x, y, z)) −→ (x+ ty +
1

2
(t2 + t)z, y + tz, z).

In particular, one can find a triangular polynomial map FT having coefficients in
k[t] such that Fm, being the evaluation of FT at T = m, equals Fm for each m ∈ Z.
One of the nice things of strictly triangular polynomial maps in characteristic zero is
indeed this property that it is easy to compute powers of the map, i.e if F is a strictly
triangular map, then it is easy to compute Fm(v) for any given n ∈ N, v ∈ kn: such
a formula FT explains this. If one would like to consider (x + y + z, y + z, z) as a
map F3

p −→ F3
p, however, it is not directly possible to give such an explicit formula,

as one cannot divide by 2! This article shows how to solve this problem for the case
k = Fp, by studying (Z,+)-actions in stead of (k,+) actions. Regardless of these
actions, we explain how to quickly compute Fm(v) for this case.

Being able to compute Fm(v) quickly can be useful: in applications it can be
useful to have a set of maps ϕm which commute: an example is Diffie-Hellmann key
exchange (see section 6). One takes ϕm = Fm. We explain how to do this, compute
its storage size and computational difficulty, and explain why it has a certain degree
of security.

All of the theorems in section 2 are motivated by the application in section 5 and
6, while those of section 4 are inspired by it. Section 3 is a preparation for section
4.
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2 Triangular polynomial maps

2.1 The triangular permutation group Bn(Fp)
Below, write An := Fp[X1, . . . , Xn], and write in for the ideal in An generated by
the Xp

i − Xi. (Writing i, A if n is clear.) Write xi := Xi + i, and write Rn :=
Fp[x1, . . . , xn] = An/in. In this article, a polynomial map is an element F ∈ (An)n.
Each F induces a map Fnp −→ Fnp , i.e. we have a map π : (An)n −→ Hom(Fnp ,Fnp ).
Then in (please read as subset of An, not in ⊂ A !) is the kernel of π. Hence, we may
see π(F ) as an element of (Rn)n, and since π is surjective, these elements coincide
one to one with the elements of Hom(Fnp ,Fnp ). So it means that we can write maps
like (x21 +x2, x2 + 1 +x1) ∈ Hom(Fnp ,Fnp ). The set of elements in Hom(Fnp ,Fnp ) which
are isomorphisms we denote, as usual, by Perm(Fnp ).

We define a polynomial map to be triangular if F = (F1, . . . , Fn) where Fi ∈
Ai = Fp[X1, X2, . . . , Xi].

1 Similarly, F is called strictly triangular if Fi−Xi ∈ Ai−1 =
Fp[X1, . . . , Xi−1]. We state that an element in Hom(Fnp ,Fnp ) is strictly triangular if
it is the image of a strictly triangular element in Ann.

Polynomial maps can be composed, yielding another polynomial map, and hence
we have an associative operation ◦ on (An)n. The polynomial map I := (X1, . . . , Xn)
is an identity with respect to this operation, and a polynomial map is said to be
invertible if it has a polynomial inverse. The polynomial maps which are invertible
form a group, denoted GAn(Fp). Thus, π(GAn(Fp)) ⊆ Perm(Fnp ) (see [10, 11, 12]
on the image of this group). The set of strictly triangular polynomial maps forms
a subgroup (see [6] section 3.6) denoted by B0

n(Fp) (see [2] for the reasoning behind

1Note that often the definition is to let Fi ∈ Fp[Xi, . . . , Xn] (and in fact we are used to it
ourselves) but for this article it turned out to be more convenient to choose the definition in the
text; some induction proofs then have easier indexes).
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the naming of these groups). One can also define the groups Bn−m(Am) ⊂ Bn(Fp)
and B0

n−m(Am) ⊂ B0
n(Fp).

In this article we will focus on the group π(B0
n(Fp)), for which we introduce the

shorthand notation Bn(Fp). We also have the groups2

Bn−m(Rm) < Bn(Fp).

Elements σ ∈ Bn(Fp) thus have a unique representation of the form

σ = (x1 + g1, x2 + g2(x1), . . . , xn + gn(x1, . . . , xn))

where we assume that degxi(gj) ≤ p − 1 for each 1 ≤ i, j ≤ n. If σ ∈ Bn−m(Rm),
then it is like above, only gi = 0 if i ≤ m. We will write e = π(I) ∈ Perm(Fnp ). We
start with a few generalities on elements of Bn:

Lemma 2.1. Let σ ∈ Bn(Fp) where q = pm. Then

i Bn−m(Rm) C Bn(Fp).

ii Bn−m(Rm)/Bn−m−k(Rm+k) ∼= Bk(Rm). In particular, Bn−m(Rm)/Bn−m−1(Rm+1) ∼=
B1(Rm), which is isomorphic with the group < Rm,+ >.

iii If σ ∈ Bn−m(Rm), then σp ∈ Bn−m−1(Rm+1).

iv If σ ∈ Bn(Fp), then σp
n

= e.

v Any cycle in σ ∈ Bn(Fp) has length pi for some i.

vi #Bn−m(Rm) = p

(
pn−pm

p−1

)
. In particular, Bn(Fp) is a p-sylow subgroup of Perm(Fnp ).

vii If gcd(m, p) = 1, then for σ ∈ Bn(Fp) there exists τ ∈ Bn(Fp) such that
τm = σ.

Proof. (i) If σ ∈ Bn(Fp), write σm ∈ Bm(Fp) for the first m coordinates. If one
composes elements σ, τ ∈ Bn(Fp), then one can easily check that (στ)m = σmτm.
Now σ ∈ Bn(Fp) satisfies σ ∈ Bn−m(Rm) if and only if σm = e ∈ Bn−m(Rm). Thus,
if σ ∈ Bn−m(Rm) and τ ∈ Bn(Fp), then (τ−1στ)m = τ−1m eτm = e ∈ Bn−m(Rm), hence
Bn−m(Rm) is closed under conjugation by elements of Bn(Fp) and hence normal.
(ii) A proof sketch to save space: modding out Bn−m−k(Rm+k) removes the last
n−m− k coordinates and leaves the first m+ k coordinates intact. To understand

2There’s a small formal issue here: if σ ∈ Bk(R) then σ = (x1 + g1, . . . , xn + gn) where
gi ∈ R[x1, . . . , xi−1], but we actually mean σ ∈ Bn−m(Rm) then σ = (x1+m + g1+m, . . . , xn + gn)
where gi+m ∈ Rm[x1+m, . . . , xi+m−1], and not even that: we identify (x1+m + g1+m, . . . , xn + gn)
with (x1, x2, . . . , xm, x1+m +g1+m, . . . , xn +gn). However, these formal things are easily fixed, and
we do not want to interrupt the flow of the article with these formalities: all elements are from the
group Bn(Fp) and the groups mentioned are all subgroups of this group.
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B1(R) for a ring R, note that elements are of the form (x1+r) and that (x1+r)(x1+
s) = (x1 + r + s).
(iii) Any element in < Rm,+ > has order p, hence if σ ∈ Bn−m(Rm) then σ +
Bn−m−1(Rm+1) ∈ Bn−m(Rm)/Bn−m−1(Rm+1) has order p; hence σp ∈ Bn−m−1(Rm+1).
(iv) Applying (iii) n times, yields that if σ ∈ Bn(Fp) = Bn(R0), then σp

n ∈ B0(Rn)
which is the trivial group.
(v) follows easily from (iv).
(vi): The number of coefficients of gi is pi−1. Hence, an element in Bn−m(Rm) is

determined by pm + pm+1 + . . . + pn = pmpn−m−1
p−1 coefficients. The stated formula

follows since each coefficient can take p values.
(vii) Since (m, pn) = 1 there exist a, b ∈ Z such that am + bpn = 1. Pick τ := σa,
then τm = σam = σ.

Remark 2.2. In respect to lemma 2.1 part (vi) we mention the papers of Kaluznin
from 1945 and 1947 [7, 8] which were motivated by finding the p-sylow subgroups of
Perm(N) where N ∈ N∗. His description of the p-sylow groups of Perm(pn) is exactly
the triangular permutation group. This example of a p-sylow group resembles the
following well-known example: let B := {I + N | N ∈ Matn(Fp) strictly upper
triangular} be the set of unipotent upper triangular matrices in GLn(Fp). Then B
is a p-sylow subgroup of GLn(Fp). In fact, B = GAn(Fp) ∩ Bn(Fp).

2.2 Maximal orbit maps

Definition 2.3. We define σ ∈ Bn(Fp) being of maximal orbit if σ consists of one
permutation cycle of length pn.

Next to the theoretical interest, our motivation for studying maximal orbit maps
is for the application in the last section. The reason that we do not generalize the
results of this article to other finite fields (i.e. finite extensions of Fp) is that there
exist no elements of maximal orbit in Bn(Fpm) if m ≥ 2. (One can prove lemma 2.1
part (i) for Fpm for all m, so the longest possible orbit is pn in stead of pnm.)

Theorem 2.4. σ = (x1 + g1, . . . , xn + gn) is of maximal orbit if and only if the
coefficient ci of xp−11 · · ·xp−1i−1 in gi is nonzero for each 1 ≤ i ≤ n. Furthermore, if σ
is of maximal orbit, then

σp
n−1

(α̃, a) = (α̃, a+ (−1)n−1cn)

for each a ∈ Fp, α̃ ∈ Fn−1p .

Proof. We will prove the result by induction to n. If n = 1 then σ = (x1 + g1),
and this is a cycle of length p if and only if g1 6= 0. Suppose the theorem is proven
for n − 1. Write σ = (σ̃, σn) where σ̃ can be seen as an element of Bn−1(Fp). Let
α = (α̃, αn) ∈ Fnp where αn ∈ Fp, α̃ ∈ Fn−1p . By the induction assumption, σ̃
permutes Fn−1p with a pn−1 cycle if and only if the coefficients are as described in
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the theorem. In particular, if σ̃ does not permute Fn−1p then let β ∈ Fn−1p such that

iterating σ̃ on α̃ never reaches some β̃. Then iterating σ on α will never reach (β̃, αn)
and σ is not of maximal order. So let us assume that σ̃ is of maximal order, and let
us try to determine whether the coefficient of (x2x3 · · ·xn)p−1 in σn determines if σ
is of maximal order.

Iterating σ̃ to α̃ cycles through all elements

α̃0, α̃1, . . . , α̃pn−1−1

(where α̃0 := α̃) of Fn−1p , and σ̃p
n−1

(α̃) = α̃. Hence, σi(α) = (α̃i, ci) for some ci ∈ Fp.
One sees that σ(α̃i, ci) = (α̃, ci + gn(α̃i)) and thus we have that ci+1 = ci + gn(α̃i),
yielding the formula

ci := α0 +
i−1∑
j=0

gn(α̃j).

We apply the above formula for i = pn−1, where we need to compute

pn−1−1∑
j=0

gn(α̃i) =
∑

β∈Fn−1
p

gn(β).

We can split the sum for each monomial appearing in gn. By the below lemma 2.5 we
see that only the term (x1x3 · · · xn−1)p−1 is of importance. Hence, if the coefficient
of this term in gn is zero, then σp

n−1
(α) = α and σ is not of maximal order, and if

the coefficent is a ∈ F∗p, then

σp
n−1

(α̃, αn) = (α̃, αn + (−1)n−1a)

and hence σ is of maximal order.

Lemma 2.5. Let M(x1, . . . , xn) = xa11 x
a2
2 · · ·xann where 0 ≤ ai ≤ p − 1 for each

1 ≤ i ≤ n. Then
∑

α∈Fn
p
M(α) = 0 unless a1 = a2 = . . . = an = p − 1, when it is

(−1)n.

Proof. We proceed by induction to n. For n = 1 we have a standard exercise on
finite fields: we get sums of d-th powers of the elements in Fp, which we call S. Let
a be a generator of F∗p. Then S =

∑p−1
i=1 (ai)d. Let b = ad. Then S =

∑p−1
i=1 b

i. If
d = p − 1, then b = 1 and S = p − 1 = −1. If d < p − 1, then b 6= 1. Then
S(b− 1) = bp − 1 = 0. Since b− 1 6= 0, S = 0.

Now assume the lemma has been proven for n−1. Define M̃ = xa22 · · ·xann . Then∑
α∈Fn

p
M(α) =

∑
b∈Fp

∑
α̃∈Fn−1

p
ba1M̃(α̃)

=
∑

b∈Fp
ba1
(∑

α̃∈Fn−1
p

M̃(α̃)
)

(induction) = δ ·
∑

b∈Fp
ba1

where δ = 0 unless a2 = . . . = an = p − 1, when it is (−1)n−1, by induction. Now∑
b∈Fp

ba1 = 0 unless when a1 = p− 1, when it is -1. Thus the lemma is proven.

6



So, the above theorem 2.4 gives a clear citerion in the coefficients appearing in σ
for when an element in Bn(Fp) is of maximal order. Now, note that lemma 2.1 part
(vi) actually tells one that it is possible to find an “m-th root” of any σ ∈ Bn(Fp)
when (m, p) = 1. For m = p, however, it will not be always possible. (In particular,
if σ is of maximal orbit, it is not possible.) This induces a few questions we were
unable to solve satisfactory like theorem 2.4 does:

Question 2.6.
(1) Can one recognise of the coefficients in σ ∈ Bn(Fp) if σ is a p-th power of another
map in Bn(Fp)? In particular, what is Bn−1(R1)/G where G :=< σp | σ ∈ Bn(Fp) >.
(2) Can one recognise of the coefficients in σ ∈ Bn(Fp) if σ is a pi-th power of a map
of maximal orbit?

(Note that G in (1) is a fully invariant subgroup of Bn(Fp), and in particular
normal, see [14] page 28.)

There are some necessary requirements, like in (1) σ must be in Bn−1(R1) and
(consequently) in (2) σ ∈ Bn−i(Ri), but these are by no means sufficient: (x1, x2+x1)
is not a p-th power while (x1, x2 + 1) is.

2.3 Classification of maximal order maps

The following few lemmas are meant to be tools to reduce the number of coefficients
necessary to describe σ. First, we will consider the issue that if two maps are
powers of each other, then they are interchangeable in some semse (in particular
in the application). After that we will find the conjugacy classes of maximal order
maps.

Definition 2.7. We say that two permutations c, c′ ∈ Perm(N) where N ∈ N∗ are
equivalent if < c >=< c′ >, i.e. there exist a, b ∈ N∗ such that ca = c′, (c′)b = c.

Definition 2.8. σ = (x1 + g1, . . . , xn + gn) ∈ Bn(Fp) is said to be on standard form
if σ(0, 0, . . . , 0) = (0, 0, . . . , 0, 1), i.e. the constant terms of g2, . . . , gn are zero and
g1 = 1.

Lemma 2.9. If σ ∈ Bn(Fp) of maximal order, then there is exactly one σ′ ∈ Bn(Fp)
on standard form, such that σ, σ′ are equivalent. In other words, standard form
maximal order maps form a representant system of the maximal order maps modulo
equivalence.

Proof. Write σ = (x1 + g1, σ̃). Since σ is of maximal order, g1 6= 0. Now let a ∈ N
be an inverse of g1 modulo p. Then σa = (x1 +ag1, . . .) = (x1 +1, . . .) and by lemma
2.1 part (vii), σa is equivalent to σ. So we can assume that g1 = 1 by replacing σ
by σa.

Now, starting with O := (0, 0, . . . , 0) and iterating σ, then we see that σm(O) =
(m mod p, . . .). So, this first coordinate equals 1 if and only if m mod p = 1
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which means that m = ap + 1 for some a ∈ N. Since σ is of maximal order, the
sequence O, σ(O), σ2(O), . . . , σp

n−1(O) lists all elements of Fnp . The sublist of vectors
starting with 1 is σ(O), σp+1(O), σ2p+1(O), . . . , σp

n−p+1(O). One of these elements
equals (0, 0, . . . , 0, 1), i.e. there exists exactly one a ∈ N such that σap+1(O) =
(0, 0, . . . , 0, 1). By lemma 2.1 (vii) , σap+1 is equivalent to σ, and satisfies the above
requirement. (Uniqueness is automatic, as for a cycle of length pn in Perm(Fnp ) there
is only one power of that cycle sending O to (0, 0, . . . , 0, 1). )

We will now focus on finding representants for the conjugacy classes of maximal
order maps.

Definition 2.10. Write xα = xα1
1 · · · xαn

n for α ∈ Fnp . Define

R−n :=
∑

α∈Fn
p ,α 6=(p−1,...,p−1)

Fpxα

the subvector space of Rn without the monomial (x1 · · ·xn)p−1.
If σ ∈ Bn(Fp), define σ∗ : Rn −→ Rn by σ∗(f) = f(σ). We denote by e∗ the identity
map on Rn.

Lemma 2.11. If σ ∈ Bn(Fp) is of maximal orbit, then ker(σ∗ − e∗) = Fp. (The
converse is also true: if the kernel is Fp, then σ is of maximal orbit.)

Proof. Let f ∈ ker(σ∗ − e∗). Then 0 = σ∗(f)− e∗(f) = f(σ)− f so f = f(σ), and
thus f = f(σi) for all i. Let α ∈ Fnp , then f(α) = f(σi(α)) for each i. Since σ is of
maximal orbit, we thus get that f(α) = f(β) for each β ∈ Fnp , in other words, f is
a constant function. Notice that since f ∈ Rn this indeed means f = 0.
The converse goes similarly: if σ is not of maximal orbit, then f only needs to be
constant on the orbits of σ.

Corollary 2.12. If σ ∈ Bn(Fp), then Im(σ∗ − e∗) ⊆ R−n . If σ is of maximal orbit,
then we even have equality Im(σ∗ − e∗) = R−n .

Proof. Note that σ∗(R−n ) ⊂ R−n . A computation shows that (σ∗−e∗)((x1 · · ·xn)p−1) ∈
R−n . Because of linearity of σ∗ − e∗ we thus have that (σ∗ − e∗)Rn = (σ∗ −
e∗)(Fp(x1 · · ·xn)p−1 +R−n ) ⊆ Fp(σ∗ − e∗)((x1 · · ·xn)p−1) + (σ∗ − e∗)(R−n ) ⊆ R−n .

The second part follows from lemma 2.11: the kernel has dimension 1, so the
image must have codimension 1.

Proposition 2.13. Let σ, τ ∈ Bn(Fp) of maximal orbit, i.e.

σ = (x1+λ1, x2+λ2x
p−1
1 +g2, x3+λ3(x1x2)

p−1+g3, . . . , xn+λn(x1 · · ·xn)p−1+gn),

τ = (x1 +µ1, x2 +µ2x
p−1
1 +h2, x3 +µ3(x1x2)

p−1 +h3, . . . , xn +µn(x1 · · ·xn)p−1 +hn),

where λi, µi ∈ F∗p, and gi, hi ∈ Ri−1. Then there exists ϕ ∈ Bn(Fp) such that
ϕ−1σϕ = τ if and only if λi = µi for all 1 ≤ i ≤ n. If ϕ exists, then one may
additionally assume ϕ to be on standard form (see definition 2.8), and then ϕ is
unique.
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The above proposition hence shows that λ1, . . . , λn is a defining invariant for σ.

Proof. By induction to n. The case n = 1 is obvious (one picks ϕ = (x1 + 1), which
is on standard form). Write σ = (σ̃, xn + gn), τ = (τ̃ , xn + hn). The induction
assumption means we can find a unique standard form map ϕ̃ in n − 1 variables
such that ϕ̃−1σϕ̃ = τ̃ if and only if λ1 = µ1, . . . , λn−1 = µn−1. We will extend
ϕ := (ϕ̃, xn)φ where φ := (x1, . . . , xn−1, xn + fn). Write (ϕ̃, xn)−1σ(ϕ̃, xn) = (τ̃ , xn +
λn(x1 · · ·xn)p−1 + kn) where kn ∈ R−n−1. Now a computation reveals φ−1(τ̃ , xn +
λn(x1 · · ·xn)p−1 + kn)φ = (τ̃ , xn + λn(x1 · · · xn)p−1 + kn + (e∗ − τ̃ ∗)(fn)). We thus
are (only) able to change λn(x1 · · ·xn)p−1 + kn by elements of R−n−1 as corollary 2.12
shows, meaning that τ and σ are only conjugate if λn = µn. Let us assume the
latter, and pick fn so that (e∗− τ̃ ∗)(fn) = kn. If we assume fn to have constant part
zero then fn is unique. ϕ is now on normal form by construction, and the above
shows that it is unique.

Definition 2.14. Define δi ∈ Ri as the polynomial such that δi(p−1, . . . , p−1) = 1
and δ(α) = 0 for all other α ∈ Fip. (And δ0 = 1.) Then define

∆ := (x1 + δ0, x2 + δ1, . . . , xn + δn−1).

Theorem 2.15. Let σ ∈ Bn(Fp) of maximal orbit. Then there exist a unique ϕ ∈
Bn(Fp) on standard form, and a diagonal linear map D, such that D−1ϕ−1σϕD = ∆.

Proof. Write µi for the coefficient of (x1 · · ·xi−1)p−1 in δi−1 (µ1 = 1). By proposition
2.13 we see that σ is equivalent to (x1 + λ1, x2 + λ2δ1, . . . , xn + λnδn−1) for some
λi ∈ F∗p. Write D := (λ1x1, . . . , λnxn). By proposition 2.13 there exists a unique
ϕ ∈ Bn(Fp) on standard form such that ϕ−1σϕ = (x1 + λ1, x2 + λ2δ1(D

−1), x3 +
λ3δ2(D

−1), . . . , xn +λnδn−1(D
−1)). Now a computation reveals that D−1ϕ−1σϕD =

∆.

The above theorem thus enables us to see all maximal orbit maps as a unique
conjugate of one map, namely ∆. This map is, in some sense, very simple, as the
following remark shows:

Remark 2.16. Define the bijection ζ : Z/pnZ −→ (Fp)n by ζ(a0 + a1p + . . . +
an−1p

n−1) = (a0, . . . , an−1) mod p where 0 ≤ ai ≤ p − 1. Then ζ∆ζ−1 is the map
m −→ m+ 1.

The following lemma is specifically necessary for the application in section 5, in
order to prove a certain degree of security.

Lemma 2.17. Let σ ∈ Bn(Fp) be of maximal orbit, and let αi ∈ Fnp for 1 ≤ i ≤ m+1
and βi := σ(αi). Let

Ω := {τ ∈ Bn(Fp) | τ(αi) = βi, 1 ≤ i ≤ m, τ of maximal orbit}.

9



Then for any j ∈ N, j ≤ logp(m), τ ∈ Ω, τj(αm) is fixed, while for any j > logp(m),
the values τj(α) where τ runs over Ω are uniformly distributed on Fp.
Hence, when knowing m pairs (αi, σ(αi)) of a specific σ as above, then given another
value αm+1, one can predict the first [logp(m)] coordinates of σ(αm+1) with 100%
certainty, while the other coordinates are fully unknown.

Proof. Let σ = (f1, . . . , fn) like stated. Note that fj = xj+gj(x1, . . . , xj−1) and that
gj has pj−1 coefficients (of which one, the coefficient of (x1x2 · · ·xj−1)p−1, is nonzero,
a fact we will ignore). What in fact is given, is for each 0 ≤ j ≤ n−1 a list of m pairs
(αi, gn−j(αi)). Each such pair gives one linear equation on the coefficients of gn−j.
If j ≤ logp(m), then pj ≤ m, and we have an overdetermined set of linear equations,
so gn−j is fixed. If j > logp(m), then pj > m, and we have an underdetermined set
of linear equations on the coefficients of gn−j. It is now standard to see that gn−j can
still be any value, and the possible outcomes of gn−j can appear with equal chance.
(The set of degree p polynomials in one variable where p − 1 values are fixed, is
exactly of size p: for each value of Fp there’s one polynomial. )

3 Generalities on polynomial maps Z −→ Fp
The below definitions we took from [4]. These concepts first appeared in [13].

Definition 3.1. Let A,B ⊆ Q. Then define

Int(A,B) := {f ∈ Q[T ] | f(A) ⊆ B}.

In this article, A will be Z(p) or Z, and B = Z. In particular, we abbreviate
Int(Z) = Int(Z,Z). Note that Int(A,B) is a subring of Q[T ].

The following is a well-known lemma:

Lemma 3.2.

Int(Z) =
⊕
i∈N

Z
(
T

i

)
= Z

[(
T

i

)
i ∈ N

]
.

Proof. (sketch) Let V be the set of polynomials of degree d and less having coeffi-
cients in Q. The polynomials

(
T
0

)
,
(
T
1

)
, . . . ,

(
T
d

)
form a Q-basis for V . This means

that f =
∑d

i=0 ai
(
T
i

)
for some ai ∈ Q. Let v = (f(0), f(1), . . . , f(d)) ∈ Zd+1,

~a = (a0, a1, . . . , ad). Define A := (
(
i
j

)
) of size (d+ 1)× (d+ 1). Then v = A~a where

A has coefficients in Z, is of upper triangular form, and has only 1’s on the diagonal.
Hence, A is invertible with an inverse having coefficients in Z. Thus, ~a = A−1v is a
vector in Zd+1 proving the lemma.

Corollary 3.3.

Int(Z,Z(p)) =
⊕
i∈N

Z(p)

(
T

i

)
= Z(p)

[(
T

i

)
i ∈ N

]
.
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If f ∈ Z[
(
T
m

)
| m ∈ N] then it makes sense to consider the map Z −→ Fp given

by n −→ f(n) mod p. Also, if r ∈ Z(p), then it makes sense to write down r mod p
in the following way: if r = a

b
where a ∈ Z, b ∈ Z\pZ then r mod p = (a mod p)(b

mod p)−1.

Definition 3.4. Define τ : Int(Z,Z(p)) −→ Hom(Z,Fp) by τ(f)(n) = f(n) mod p
for any f ∈ Int(Z,Z(p)).
We say that f, g ∈ Int(Z,Z(p)) are equivalent under τ if τ(f) = τ(g).

Remark 3.5. If f ∈ Int(Z,Z(p)) then there is some g ∈ Int(Z) which is equivalent
under τ .

Definition 3.6. Define Qi :=
(
T
pi

)
.

Proposition 3.7. Let f ∈ Int(Z,Z(p)) be of degree d. Then f is equivalent to some
g ∈ Z[Q0, Q1, . . . , Qr] where r = [logp(d)]. Furthermore, g is at most of degree p− 1
in each Qi.

The above proposition is based on Lucas’ Theorem [9]:

Lucas’ Theorem: Let 0 ≤ αi < p, 0 ≤ βi < p where αi, βi ∈ N. Then(
α0 + α1p+ α2p

2 + . . .+ αnp
n

β0 + β1p+ β2p2 + . . .+ βnpn

)
≡p
(
α0

β0

)(
α1

β1

)(
α2

β2

)
· · ·
(
αn
βn

)
.

Proof. (of proposition 3.7.) First, note that the polynomial Qi(T ) =
(
T
pi

)
as-

signs to α0 + α1p+ . . .+ αip
i + . . .+ αnp

n the value αi, using Lucas’ Theorem.
Let f be as in the proposition. By corollary 3.3 f is a Z(p)-linear combination

of
(
T
0

)
,
(
T
1

)
, . . . ,

(
T
d

)
, which means by remark 3.5 that f is equivalent to a Z-linear

combination of
(
T
0

)
,
(
T
1

)
, . . . ,

(
T
d

)
. Now if d = α0 + α1p + . . . + αnp

n we use Lucas’
Theorem again to derive the following:(

T
d

)
=
((T

1)
α0

)((T
p)
α1

)(( T
p2)
α1

)
· · · · ·

(( T
pn)
αn

)
=
(
Q0

α0

)(
Q1

α1

)(
Q2

α1

)
· · · · ·

(
Qn

αn

)
.

Note that
(
T
d

)
is a polynomial in Q0, . . . , Qn where the highest coefficient in the

Qi is Qα0
0 Q

α1
1 · · ·Qαn

n . Hence, since f is equivalent to a Z-linear combination of(
T
0

)
,
(
T
1

)
, . . . ,

(
T
d

)
, the highest coefficient of Q0, . . . , Qn−1 is possibly p − 1, and the

highest coefficient of Qn is αn.

4 Exponents of triangular maps over Fp
4.1 Some more generalities

Definition 4.1. Define Bn := Z[Q0, Q1, . . . , Qn−1] where the Qi are independent
variables, and B := ∪Bn. We also define Sn := Bn/jn where jn := (Qp

i − Qi | 1 ≤
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i ≤ n), and j := ∪jn and S := ∪Sn = B/j . We will abuse notation, and write “Qi”
when we might mean “Qi + j”. At some point we will denote Q0 by t.

In section 3 we already introduced the map τ : B −→ Hom(Z,Fp) defined
by τ(Qi)(a) =

(
a
pi

)
mod p if a ∈ Z. (In fact, we can extend the definition to

τ : Z(p)[Q0, Q1, . . . , Qn−1] −→ Hom(Z,Fp), but proposition 3.7 allows us to avoid
this extension for now.) However, we will extend τ naturally to

τ : B[X1, . . . , Xn] −→ Hom(Z× Fnp ,Fp).

Now the kernel of this map includes the ideal i ⊆ Z[X1, . . . , Xn] as defined in section
2, hence this map factors

τ : B[X1, . . . , Xn] −→ B[x1, . . . , xn] −→ Hom(Z× Fnp ,Fp)

where B[x1, . . . , xn] = B ⊗ Z[X1, . . . , Xn]/i. Notice that the ideal j is also in the
kernel (as τ(Qp

i )(a) =
(
a
pi

)p
mod p =

(
a
pi

)
mod p = τ(Qi)(a) ) hence the map

factors again

τ : B[X1, . . . , Xn] −→ B[x1, . . . , xn] −→ S[x1, . . . , xn] −→ Hom(Z× Fnp ,Fp).

Now it is not hard to check that this last map is injective (not surjective!), so
S[x1, . . . , xn] represents the part of Hom(Z× Fnp ,Fp) that we’re interested in.

Then, finally, we extend the map τ to n variables:

τ : B[X1, . . . , Xn]n −→ S[x1, . . . , xn]n ⊂ Hom(Z× Fnp ,Fnp ).

Note that in all equations above one can replace B by Bm and S by Sm.

4.2 More general triangular groups

If one has a ring K, then one can make the group Bn(K) and B0
n(K) as described

in section 2. But, it is possible to make slightly less intuitive groups: suppose that
K1 ⊆ K2 ⊆ . . . ⊆ Kn is a chain of rings. Then one can make the set

{(X1 + g1, X2 + g2, . . . , Xn + gn) gi ∈ Ki[X1, . . . , Xi−1]}

which becomes a subgroup of B0
n(K). However, one can even make this work for

more general subsets of K which are not necessarily subrings.

Definition 4.2. Let K be a ring and let Wi a subgroup of (K[X1, . . . , Xi−1],+)
such that

Wi ◦ (X1 +W1, X2 +W2, . . . , Xi +Wi) ⊆ Wi.

Then define

B(W1,W2, . . . ,Wn) := {(X1 + g1, . . . , Xn + gn) gi ∈ Wi}

which is a subset of Bn(K).
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Lemma 4.3. B(W1,W2, . . . ,Wn) is a subgroup of Bn(K).

Proof. (sketch) The fact that the identity is in B(W1, . . . ,Wn) follows from the
fact that Wi is a subgroup and hence contains 0. A sketchy proof of the fact that it
contains the inverse of an element (X1 +g1, . . . , Xn+gn): then (X1−g1, X2, . . . , Xn)
is also in the set, and composing it with this element yields the first coordinate is
X1; iterating this process one ends up at (X1, . . . , Xn). The requirement “Wi◦(X1+
W1, X2 + W2, . . . , Xi + Wi) ⊆ Wi” is exactly what is needed to have the set closed
under composition: here one needs to check that gi(X1 + h1, . . . , Xi−1 + hi−1) ∈ Wi

for each gi ∈ Wi, hj ∈ Wj.

Since one has a group homomorphism B0
n(K) −→ Perm(Kn), there exists also

a group homomorphism B(W1, . . . ,Wn) −→ Perm(Kn). We study the special case
that K is an Fp-algebra such that r = rp for each r ∈ K. (Given an Fp-algebra,
one can get such an algebra by modding out the kernel of the frobenius endomor-
phism r −→ rp; one could also say that such an algebra is an Fp algebra with
Frobenius automorphism being the identity.) We will consider the case of sub-
section 4.1. Then the map B0(S) −→ Perm(Sn) is a restriction of the map τ :
S[X1, . . . , Xn]n −→ S[x1, . . . , xn]n −→ Hom(Sn, Sn) and thus it makes sense to write
down Bn(S), and we denote elements in this group like σ := (x1 + g1, . . . , xn + gn)
where gi ∈ S[x1, . . . , xn]. Thus, we can also define the subgroup

B(W1, . . . ,Wn) ⊂ Bn(S)

whereWi ⊂ S[x1, . . . , xi−1]. (Normally we should define this asWi ⊆ S[X1, . . . , Xi−1],
but the groups coincide modulo (Xp

1−X1, . . . , X
p
n−Xn) so this notation makes sense.)

In this article there are two such groups that we consider: remember that we
defined Rm := Fp[x1, x2, . . . , xm], Si := Fp[Q0, . . . , Qi−1]/ where  is generated by
the Qp

i − Qi, and note that SiRj = Si ⊗ Rj = Si[x1, . . . , xj]. We will consider
B(S1R0, S2R1, . . . , SnRn−1) and the one mentioned in the next lemma. Both of
them occur naturally in the next subsection.

Lemma 4.4. If Wi := Si−1Ri−1+FpQi−1, then Wi◦(x1+W1, . . . , xi−1+Wi−1) ⊆ Wi.
Hence, B(W1, . . . ,Wn) is a subgroup of B(S1R0, . . . , SnRn−1) and of Bn(Sn).

Proof. Let gi ∈ Wi, i.e. gi = P (x1, . . . , xi−1) + λQi−1 where P ∈ Si−1Ri−1. Let
hj ∈ Wj, then we need to prove that P (x1 + h1, . . . , xi−1 + hi−1) + λQi = gi(x1 +
h1, . . . , xi−1+hi−1) ∈ Wi. Now xj+hj ∈ SjRj−1 ⊆ Si−1Ri−1, and since P ∈ Si−1Ri−1
we get P (x1 + h1, . . . , xi−1 + hi−1) ∈ Si−1Ri−1 and we are done.

4.3 Exponents of triangular maps: Z-flows

Over a field K of characteristic zero, given a strictly triangular polynomial map
F , then it is always possible to give a formula for exponents Fm of F , to be more
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precise: there is a strictly triangular polynomial map FT ∈ GAn(K[T ]) such that
Fm = Fm for each m ∈ N.3 To give a simple (even linear) example:

Example 4.5. Let F = (x+y+z, y+z, z), if FT := (x+Ty+ 1
2
(T 2+T )z, y+Tz, z),

then Fm = Fm for each n ∈ N.

However, if one picks K a field of characteristic two, and considers the same map
F := (x+ y + z, y + z, z), then one runs into trouble defining FT , as it includes the
polynomial 1

2
(T 2 + T ). However, we can now use the previous subsection to solve

this problem. Note that if σT ∈ Bn(Sn), then one can substitute a value m ∈ Z for
T (thus mapping Qi(T ) to Qi(m) etc.) and one gets an element σm ∈ Bn(Fp).

Definition 4.6. Let σ ∈ Bn(Fp). Suppose σT ∈ Bn(Sn) is such that σm = σm for
each m ∈ Z. Then we define σT as the Z-flow of σ.

The wording Z-flow come from the analytic case: If F is a holomorphic map
Cn −→ Cn, then under some circumstances one can define a holomorphic map
FT : C × Cn −→ Cn such that FaFb = Fa+b for each a, b ∈ C, F1 = F and F0 = I.
Then FT is called a flow of F .

Theorem 4.7. Let σ ∈ Bn(Fp). Then
(1) there exists a Z-flow σT ∈ B(S1R0, S2R1, . . . , SnRn−1) of σ,
(2) and even σT ∈ B(W1, . . . ,Wn) where Wi as in lemma 4.4.

Proof. We use induction to n. For n = 1, σ = (x1 + a) where a ∈ Fp, , and we can
take σT := (x1 + Ta) ∈ x1 +R0S0 + FpQ0.
Let σ = (σ̃, xn + gn) ∈ Bn(Fp). We know that we can find σ̃T ∈ B(W1, . . . ,Wn−1)
such that σm = (σ̃m, xn + hm) where hm ∈ Rn−1. Now pick Hm ∈ Z[x2, . . . , xn] such
that Hm mod p = hm. Define

Mi(T ) :=

pn−1∏
j=0,j 6=i

(T − j)
i− j

and define G(T ) := M0H0 +M1H1 + . . .+Mpn−1Hpn−1. Note that G(T ) is of degree
pn − 1 in T . Note that G(i) = Hi, and G(T ) ∈ Q[T ][x1, . . . , xn]. Thus, if c(T )
is one of the coefficients in Q[T ], then c({0, 1, . . . , pn − 1}) ⊂ Z. Using lemma
3.2 we get that c(Z) ⊂ Z. Using proposition 3.7 we can replace each coefficient
c(T ) ∈ Q[T ] by an equivalent element in Z[Q0, Q1, . . . , Qn−1] (as [logp(p

n − 1)] =
n − 1), so we can assume that GT ∈ Z[Q0, . . . , Qn−1][x1, . . . , xn]. Thus define gT ∈
Fp[Q0, . . . , Qn−1][x1, . . . , xn−1] = SnRn−1 as the image of GT , and now we can define

σT := (σ̃T , xn + gT )

3More precisely, without details, it is possible to give a locally nilpotent derivation D such that
Fm = exp(mD), and then one can define FT := exp(TD). In this article, we take this as a fact,
for details we refer to [5] chapter 2.
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and thus σm = (σ̃m, xn + gm) = (σ̃m, xn + hm) = σm, which is what is required.
Left to prove is that gT ∈ FpQn−1 +Sn−1Rn−1 (where we only have gT ∈ SnRn−1

so far). Note that σp
n−1

(α̃, αn) = (α̃, αn + (−1)n−1a) where a is the coefficient
of (x1 · · ·xn−1)p−1 in xn + gn (see theorem 2.4). This means that σm = (x1 +
(−1)n−1a, x2, . . . , xn) if pn−1 divides m. Write λ = a(−1)n−1 ∈ Fp, then gmpn−1 =
mλ. Now define hT := gT−Qn−1(T )λ. Then hpn−1 = 0, and thus hT does not depend
on Qn−1 (which has order pn). Thus, hT ∈ Sn−1Rn−1 and gT ∈ Sn−1Rn−1+FpQn−1 =
Wn.

It might be that this theorem can be improved, in the sense that the Wi can be
chosen smaller. This comes down to the following question:

Question 4.8. Find W1, . . . ,Wn such that

B(W1,W2, . . . ,Wn) = 〈σT | σ ∈ Bn(Fp)〉 .

However, the below version is what is needed in the next section (as it is more
efficient). We denote t := Q0, thus Fp[t] := Fp[T ]/(T p − T ).

Theorem 4.9. Let σ ∈ Bn(Fp). Then there exist

σi,T ∈ B(Fpt, Ri+1[t], Ri+2[t], . . . , Rn−1[t]) ⊂ Bn(Fp[t])

for 0 ≤ i ≤ n− 1 such that σp
im = σi,m for each 0 ≤ m ≤ p− 1.

Proof. Lemma 4.10 gives the case i = 0. Defining τ := σp
i
, then τ ∈ Bn−i(Fp), so

we can apply lemma 4.10 to τ to find τ0,T ; now define σi,T := τ0,T , and σp
im = τm =

τ0,m = τi,m for each 0 ≤ m ≤ p− 1.

Lemma 4.10. Let σ ∈ Bn−i(Ri). Then there exists

σi,T ∈ B(Fpt, Ri+1[t], Ri+2[t], . . . , Rn−1[t])

such that σm = σi,m for each 0 ≤ m ≤ p− 1.

Proof. Let Mi(t) :=
∏p−1

j=0,j 6=i
t−j
i−j . Then define σ0,T =

∑p−1
i=0 Mif

i. It is now clear

that σ0,T ∈ Bn(Fp[t]), one only needs to see that the first component is of the form
x1 + tλ for some λ ∈ Fp. But since the first component of σ is x1 + λ for some λ,
and thus σm has x1 +mλ as first component, this is exactly the case.

5 Efficiently exponentiating maximal orbit trian-

gular maps

5.1 Basic idea

In some applications (the next secion is an example) it might be necessary to evaluate
σa(v) for a given σ ∈ Bn(Fp) of maximal orbit, and a ∈ Z, v ∈ Fnp . Here we explain
how to do this most efficiently, with respect to computation and storage space.
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First, we find ϕ and D as given in theorem 2.15: thus σ = Dϕ∆ϕ−1D−1. First,
note that because of remark 2.16 it is trivial to compute ∆a(v) for any given v ∈
Fnp , a ∈ Z: this part of the computation is negligible. We will consider any addition
to be negligible anyway, and simply count the number of multiplications in Fp are
needed. Hence, the evaluation σa(v) needs

• evaluations D(v), D−1(v),

• evaluations ϕ(v), ϕ−1(v).

The storage of ϕ does not immediately mean that ϕ−1 is stored (or efficiently
computable). However, the following representation solves this:

Definition 5.1. Write (xi + gi) for the map (x1, . . . , xi−1, xi + gi, xi+1, . . . , xn). Its
inverse is (as can be easily checked) (xi − gi).

Note that if ϕ = (x1 + g1, . . . , xn + gn) then ϕ = (x1 + g1)(x2 + g2) · · · (xn + gn).
Hence, ϕ−1 = (xn − gn)(xn−1 − gn−1) · · · (x1 − g1). Thus, evaluation of ϕ−1(v) is of
the same complexity as ϕ(v), and it is not necessary to store anything extra.

5.2 Storage size

Storage size of a map σ is bounded by the number of different elements in Bn(Fp)
of maximal orbit. Approximately, this means (see lemma 2.1 part (vi) ) that there
are pn−1

p−1 coefficients necessary.
If we want to store the useful description above, then one stores D, ϕ and ∆,

which is approximately double of that, i.e. we have to store approximately 2p
n−1
p−1

coefficients in Fp.

5.3 Efficiency

We need to determine how many multiplications are necessary. Note that the below
basic lemma can probably be improved (see for example [1]).

Lemma 5.2. Let f ∈ Fp[x1, . . . , xk] where k ≥ 1 and degxi(f) ≤ (p− 1) arbitrary.
Then the expected amount of multiplications to evaluate f is E [k] := pk−1.

Proof. We ignore the one-time computations necessary to evaluate xmi for each m ≤
log2(p). A polynomial f =

∑p−1
i=0 fix

i
k where fi ∈ Fp[x1, . . . , xk−1] so we need to

evaluate the fi and for all but f0 we need to multiply them by xik. This means
that E [k] = pE [k − 1] − 1. Since E [1] = 0, this recursive formula comes down to
E [k] = pk−1 − 1. We ignore the “-1” as we’re rounding off some values anyway.

Lemma 5.3. If ϕ ∈ Bn(Fp), then evaluation ϕ(λ) for some λ ∈ Fnp takes approxi-

mately pn−1−1
p−1 multiplications.
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Proof. If σ = (x1 + g1, . . . , xn + gn) where gi ∈ Ri−1, then evaluation of σ means
evaluationg the gi. By lemma 5.2, evaluation of gi (i ≥ 2) costs pi−2 multiplications.

Thus, we have possibly 1 + p+ p2 + . . .+ pn−2 = pn−1−1
p−1 multiplications that have to

be done.

Remark: If p = 2, then multiplication is of the same complexity as addition,
so the author suspects that the above focus on “amount of multiplications” may be
misleading. Nevertheless, we expect that especially the p = 2 case is very efficient
and can be very useful in applications.

6 A symmetric key cryptographic application: Diffie-

Hellmann session-key exchange.

6.1 Introduction

In cryptography, it is often desireable to not use a secret key continuously, but only
use the secret key to make session keys. If one session key is broken, then the system
is not completely (or completely not) broken, except for that session. The generic
protocol (Diffie-Hellmann session key exchange, see [15] p. 513 or [3] p. 145 protocol
5.2) has the following form:

• Alice and Bob share a secret key S, and have a set of parametrized maps φa
which commute, φaφb = φab.

• Alice chooses a random value a, and Bob chooses a random value b.

• Alice publicly sends Ma := φa(S), Bob publicly sends Mb := φb(S).

• Alce computes K := φa(Mb), Bob computes K := φb(Ma) and the session key
K is established.

In almost all settings the φa is iteration of a map, i.e. there is a map φ and φa =
φa; commutativity of all φa, φb is then automatic. (An exception would be Chebyshev
polynomials, for example. Then φa is the a-th Chebyshev polynomial.) The most
common example is in a discrete log session: then φa is simply exponentiation (and
φ is multiplication by the base value), i.e. φa(h) = ha. In this case, there is only one
map φ which is publicly available. In case there are more maps φ available, then
the choice of map is part of the secret key. The most extreme case is when φ can be
any permutation (a not very efficient system, as the secret key will be huge).

Any such system needs to satisfy some basic requirements:

• Preferrably, the orbit {φa(S) | a ∈ (set of allowed values for a)} should be
the complete set of possible session keys (or in the very least the orbits of φ
should be large). For if not, then an eavesdropper hearing Ma,Mb might learn
in which orbit of φ S is, which can be undesireable.
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• If one or more session keys are broken, then an attacker knows some triples
(φa(S), φb(S), φab(S)). It should be not possible to reconstruct S from such
triples (or only give away very little) - this can be under the condition of a
certain threshold of amount of broken keys.

• It should be feasible to compute φa(S) (and it should take approximately
equally long for each a).

In the discrete log setting, the security is based on infeasiblility of the discrete log
problem: It is then assumed that if s is the secret key, then sending sa, sb gives no
information on s, and if a session key k = sab is broken, then it is assumed that it is
an infeasible problem to find s given Ma = s,Mb = sb, and K = sab. Note that if one
session key is broken, then an attacker does have all information on the secret key s
(as there is only one solution (s, a, b) of sa = Ma, s

b = Mb, s
ab = K). This makes this

system not desireable for certain applications, like low-power applications where the
discrete log setting has to be small (and hence breakable) in order to be computable
for the low-power device. Another case is when the communication involves data
that can be sensitive for many years (like medical or governmental data), where one
should assume that in the future infeasible computations become feasible.

It is possible to provide alternatives to the discrete log setting, but it is not so
easy: the most difficult thing is that one needs commuting maps φa for which it is
easy to compute φa(s), and where φa(s) gives away no information. The work done
in the previous sections provides the tools for exactly such a method: here, φa will
be a conjugation of σa for some σ ∈ Bn(Fp).

6.2 System description

Setup phase: Alice and Bob (or a TTP) choose n ∈ N∗, p a prime, choose some
v ∈ Fnp , pick a random σ ∈ Bn(Fp) of maximal orbit and of standard form, and
compute ϕ, D as in theorem 2.15 so that σ = D−1ϕ−1∆ϕD.

Additionally, a bijection ω : Fnp −→ Fnp will be chosen.4 Alice and Bob store
(ω, ϕ,∆, w := ϕDω(v)) and additionally ω−1, if necessary. (Alice and Bob store
ϕDω(v) in stead of v, as v itself is not needed in computations).

The map φ = ω−1σω, and φa = ω−1σaω.

Communication phase: Alice and Bob will now establish a session key.

• Alice chooses a random integer value a ∈ [0, pn−1] and Bob chooses a random
integer value b ∈ [0, pn − 1].

4We don’t elaborate on what bijections ω may be chosen - a suggestion is to take a triangular
polynomial maps, but conjugated with (xn, . . . , x1), i.e. having variables reversed. Also, depending
on the possible choices for ω, one could take v = 0 in stead of random.
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• Alice publicly sends Ma := ω−1D−1ϕ−1∆a(w), Bob publicly sends Mb :=
ω−1D−1ϕ−1∆b(w).

• Alice computes K := ω−1D−1ϕ−1∆aϕDωMb, Bob computes
K := ω−1D−1ϕ−1∆bϕDωMa. K is the established session key ω−1D−1ϕ−1∆a+b(w).

6.3 Security

In order to make computations on security, we will assume that ω is the identity
map - hence the below security computations are only a worst-case bound.

Disclosed information to an eavesdropper: such a person will only hear
σa(v), σb(v) while not knowing a, b, v and σ. Since σ is of maximal orbit, σa(v) can
be any value in Fnp , and the same for σb(v). This hence gives zero information on v,
nor on σ, and there is no information even on σa+b(v).

Breaking a session key: If an attacker breaks a session key K = σa+b(v),
how much does this reveal from σ and v? So now an attacker hears a triple
(σa(v), σb(v), σa+b(v)). For the attacker, σa(v) is indistinguishable from a random
value w since a is random (and unknown). Hence, such a triple can be seen as a
triple (w, σb(v), σb(w)).

Claim: The information learned by a triple (u, σb(v), σb(u)) is comparable (or less)
to the information learned by a pair (u, σ(u)).
We will not rigidly prove the claim (as we’re unable to!), but indicate why it is
reasonable to assume the claim: first, notice that the triple (u, σb(v), σb(u)) has
an additional unknown, namely b. So, intuitively speaking, having three values is
equivalent to having two values with one free variable less. Also, notice that σb(v)
itself sounds to the eavesdropper as a random variable (as b is unknown), and that
the pair (u, σb(u)) gives less information than a pair (u, σ(u)).

Lemma 2.17 discusses exactly the information revealed by (u, σ(u)): for m ≥ 1
such values, the last [logp(m)] + 1 coordinates of σ (and hence of σi,T and v) are
disclosed while the others are completely unknown. (Notice that if ω is not the
identity, this disclosure is spread out over all the coordinate values in a sort of un-
clear way, depending on the complicatedness of ω.) If one wants to be absolutely
sure that the system has a degree of forward security, then one could decide to use
only the first so-many coordinate values of σa+b(v). For example, ignoring the last
coordinate value gives the system p− 1-forward security.

6.4 Storage size

Stored is (ω, ϕ,∆, w). Of these, ϕ and ∆ are described in section 5.2, which means
pn−1
p−1 coefficients in Fp for each. Storage size for ω depends on which maps are

allowed, our suggestion of using “lower-triangular” permutations amounts to another
share of that size.
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6.5 Efficiency

The computational tasks Alice has to do, are to do evaluations ω(u), ϕ(u), D(u),
and ∆(u) for u ∈ Fnp . Evaluations ∆(u) are trivial by remark 2.16, as are evalu-
ations D(u). If we assume ω is a “lower triangular permutation” this amounts to

evaluations of order as described in lemma 5.3, i.e. pn−1−1
p−1 multiplications. In each

session-key establishment each party has to do these evaluations something like 6
times (a fixed finite number of times).

7 Future research

A topic that requires further research is the role of the conjugation map ω in the
last section: how should it be chosen such that it hussles up σa well enough? We
proposed triangular maps in the other order of variables, but is this enough? Or is
it enough to simply use a linear or affine map?

Acknowledgements: The author would like to thank some people for dis-
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[7] Kaloujnine, Léo; Sur les p-groupes de Sylow du groupe symtrique du degré
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