
Efficient Implementation of Grand Cru with TI C6x+

Processor

Azhar Ali Khan1, Ghulam Murtaza2

1 Sichuan University, Chengdu, China
2 National University of Sciences and Technology, Islamabad, Pakistan

1 azhar_iiee@yahoo.com, 2 azarmurtaza@hotmail.com

Abstract. Grand Cru, a candidate cipher algorithm of NESSIE project,
is based on the strategy of multiple layered security and derived from
AES-128. This algorithm was not selected for second phase evaluation
of NESSIE project due to implementation and processing cost. In this
paper we present relatively a fast implementation of the cipher using
Texas Instrument’s DSP C64x+.

Keywords: Grand Cru, Keyed Structure of AES-128, DSP Implementation of
Grand Cru.

1 Introduction

There are many significant developments in cryptanalysis of Block Ciphers
during past years and new techniques [2, 3, 4, 5, 6, 7, 8, 9] have been introduced.
Many of them are effective enough to break full round versions of ciphers [3, 4, 5].
However these techniques are mostly successful on ciphers with fixed structure and
components. For well designed key dependent or dynamic structured ciphers or
ciphers having key dependent or dynamic components are mostly not mucheffected.
Although there are some efforts for cryptanalysis of such kind of ciphers [12, 13, 14]
but still these techniques are not mature enough to present serious vulnerability of
the cipher. The vulnerability found in these type of ciphers are mainly due to poor
design having some specific fixed observation in the cipher itself [14]. There is no
reason to not believe that such a well designed cipher persist more security measures
against modern cryptanalytic techniques.

Grand Cru [9] a candidate cipher algorithm of NESSIE [10] project, is successor
of AES-128 [1] and is based on strategy of multiple layered security. This tactic is
aimed at combining different security motivations and hence is a useful practice to
improve security of widely used existing crypto algorithms against known modern
cryptanalytic techniques. It also provides a noble way to use long keys in existing
algorithms without redesigning key-schedule and/or encryption algorithms. This idea
seems noble until and unless the proposed cipher is as efficient as the original one.
Although the proposed algorithm was not selected for second phase of NESSIE
project due to the cost of speed, no weakness was found in the algorithm.

TMS320DM648 belongs to Texas Instrument (TI) Advance Digital media
processors. TheDM648 is based on the third-generation high-performance, advanced
VelociTI™ very-long-instruction-word (VLIW) architecture [12]. This processor
very useful for video/audio applications. DM648 contains CPU, memory and
interrupts controllers. In addition, the DSP subsystem acts as the overall system
controller, responsible for handling many system functions such as system-level
initialization, configuration, user interface, user command execution, and
connectivity functions.

Due to its subsystem, DM648 is an excellent choice for digital media applications
[12].DSP’s advanced VLIW CPU allows executing up to eight instructions per cycle.
On these bases DM648 claim that this type of processor’s performance is up to ten
times the performance of typical DSPs.

DM648 contains comprehensive components including its mega module with
memory (DSP subsystem), five video ports, Ethernet components, different I/O port
and powerful DMA with DDR2 memory controller interface [15].

The complete Block diagram of DM648 is as shown in figure 1:

Figure 1: Block Diagram of DM648

The rest of the paper is organized as follows. A short description of Grand Cru

algorithm is given in section 2. In Section 3, we describe the implementation

methodology of Grand Cru using TI DM648 processor. Section 4 briefly presents
comparison of the implementation costs of AES-128 and Grand Cru. In section 5,
we present the potential of designing multiple layered security based ciphers by the
use of current state of the art hardware solutions.

2 Short overview of Grand Cru

In this section we present a short overview of Grand Cru [9]. We describe encryption
algorithm and round keys generation procedures for the cipher.

2.1 Encryption Algorithm

Each round of encryption function of Grand Cru consists of the following sub-
functions.

Initial/Outer Round Key Addition, ψψψψ

 A 128-bit sub key is added over modulo 2� (A Byte Wise Addition)

The transformation, �

 The transformation �: �0,1
��� �0,1
��� is defined as follows: Let the
input of � be denoted by ��� … �� where each ��; � � 0,1, … 15 is a byte
then output ��� … �� is derived iteratively by:
1. for � � 0 �� 15 do

 ���� ��� �� � ���� ��� �� � !��"
2. for � � 0 �� 15 do

 for # � 0 �� 15, # $ � do
 �% � �% � !��"

Add Round Key, σσσσ
An exclusive-or with the round key

Non Linear Layer, γγγγ
Byte wise substitution of input using 8 ' (��) 8 ' (�� S-box

Keyed Byte Wise Rotation, ββββ
Key-bits based rotation of output of S-box (a byte value)

Keyed Shift Row, *+
A cyclic shift of the �,- row by # number of bytes to the left, where � �0 … 3. Key determines the number of rotations of each row.

Keyed Shift Column, */
A byte of each column is permuted, column wise, which depends on the
value of a key.

Mix Column Transformation, θθθθ
An MDS matrix multiplication applied to each column. The final round
does not include this transformation.

The transformation, 012

 The inverse transformation �1�is given as
1. for � � 15 �� 0 do

 for # � 0 �� 15, # $ � do
 �% � �% � !��"

2. for � � 15 �� 0 do
 ���� ��� �� � ���� ��� �� � !��"

2.2 Round Keys Derivation

The key derivation of Grand Cru is different from AES key structure. The
designer claims that only 128-bit current round key is required while the next round
key will be derived on the fly from previous key.
The key expansion is based on the function 345and round keys are derived from user
key by using following function. 6� � 345!67, �"

Where 67 is a 128-bit user key, 6� is the round key for � ' �8 round.

The details of key derivation are as follows:

The user computes 128-bit key, 6� using the following equation.

9::9:�9:�9:�9�: … 9��9�� � ;9�: 9��9�:9�:9::
9��9��9:�

9�� 9��9��9��9:�
9��9��9:�

< � !9:|9�|9�|9�"

where 6�% is a byte and 6� is a 4-byte value and 9�; � � 0,1,2,3 is the � ' �8 column.
This user key is passed to the function 345, which applies column wise rotation as
follows..

>�������:
? @�,A BCCCCCD >�����:��

?

After the column rotation a substitution Γ will be done as

>�������:
? E BCCCD ; !��" !��" !��" !�:"<

The next key is generated by passing the matrix through the following function.

6�F � 6�1GF � ΓIJ��K!6�1�F "L � M�/G �3 4|�
6�F � 6�1GF � 6�1�F PKQP,

Where M� is the round constant. The 11 round keys are defined as

6��, … 6�, 6� � !6G:F |6G�F |6G�F |6G�F ", … , !6RF|6�F|6�F|6GF", !6:F|6�F|6�F|6�F"

The Grand Cru requires 4 different 128-bit master keys. These keys can be
derived from a single 128-bit key by using some key derivative function. These four
128bit keys are then used in four round operations namely ψ , σ.π and β.

First 128-bit key is used for generating two 128-bit keys for ψ operation by using
following equation.

6�:, 6�: � 345!6:, 0", 345!6:, 1"

Second128-bit key is used for derivation of 11 round keys by using the following
function.

6��, … , 6��� � 345!6�, 0", … , 345!6�, 10"

Third key generates 5 sub keys for each round and these keys are used in π. This
operation consists of two (row and column) rotations. 5 sub-keys are generated as
follows.

for � � 0 �� 15 do
1. Compute 9�� … 9� � 345!6�, �"
2. Set counter S�T � 0
3. For # � 0 �� 15 do

 If 9% U 24 then 6��VS�TW � 9%, S�T X X
4. If S�T U 5

For # � S�T �� 5 do 6��VS�TW � 9%1Y,4 Z�[16

The last 128-bit key is used in β transformation which requires sixteen 3-bit keys for
10 rounds as described under

for � � 0 �� 9 do
1. Compute 9�� … 9� � 345!6�, �"
2. 6�� � ^ _:!9��" … ^ _:!9�"

3 Implementation of Grand Cru

T1 C6x+ processor is one of the best processors for implementation of different
algorithms. The round keys derivation and encryption algorithm implementation
techniques are presented in the following sub sections.

3.1 Round Keys Derivation Implementation Technique

The implementation of round key function in TI DM648 processor requires
ROTL, ADD4, XOR, LDW and conditional instructions. Look-up table is used for
substitution. The core of round key derivation of Grand Cru consists of a conditional
function and XOR operation. The conditional function checks if the round number is
exactly divisible by 4 then the intermediate function is executed otherwise XOR
operation is required. The intermediate function comprises a rotation of 32-bit value
(column) with substitution and two XOR operations. The 32-bit registers of the
processor helps in implementing the above function.

As substitution of Grand Cru is Byte wise, so implementation requires a splitting
process from 32-bit into 8-bit values. The implementation of 34 function takes the
advantage of parallelism of DM648. The load and store operations are done in
parallel. So, the 34function takes 80 cycle/called. The 34 is used in key generation for

functions ψ , π , β and σ. The functions σ and ψ, need to just call 34 function, where

as the functions π and β require other mathematical and logical operations.

Theψ‘s keys generation call 34only once which implies that the process consumes

only 98 cycles. Variables adjustment and function call, consume 18 cycles. The σ

calls 34 10 times and use 494 cycles. The π ‘s key generation function calls the
function 34 9 times, which requires 450 cycles. It also has ‘For’ loops with
conditional instructions. These extra operations require 4898 cycles. Hence a

complete generation of π requires 5348 cycles. The β transformation requires
sixteen, 3-bit keys per round. It calls the function 34, 9 times and trims the output into

3 bits. The required number of cycles for key generation of function β is 1071.

The number of cycles required for Grand Cru’s key generation is shown in Table
1.

Sr# Operation(key generation) Cycles
1 ψ 98
2 σ 494
3 π 5348
4 β 1071

Total 7011
Table 1: Number of Cycles for Key Generation Algorithm

3.1 Encryption Algorithm Implementation Technique

Initial/Outer Round Key Addition, ψψψψ

This transformation is byte-wise modulo addition and Grand Cru calls this
addition two times. These two transformations can easily be implemented with
DM648 instruction ADD4. Each transformation with keys loading takes 22 cycles.

The transformations � and �12

From conceptual point of view, this transformation is very simple but this is the
most expensive one from implementation aspect. Each transformation includes two
intermediate functions and each function has two ‘For’ loops. The first loop has 15
substitution and XOR operations. The second loop is nested one and has a total 256
substitution and XOR operations with conditional instruction.

After the implementation of � functions, we found that the function � takes 4352
cycles and the function �12 requires 4414 cycles.

Add Round Key, σσσσ

This function of Grand Cru applies a XOR function to the input data (128-bit)
and the corresponding round key. DM648 architecture gives LDDW (64-bit load)
instruction to load 128-bit key and use only two LDDW. This architecture also
reduces multiple XOR operations and need only 4 XOR instructions for 128bit value.
The parallel unit of DM648 makes it possible that these XOR operations operate in
parallel with other instructions. Hence these operations logically consume zero cycle.

Non Linear Layer, γγγγ

The simple and efficient method for this function is to use Look-up table which
requires addition and load instructions. The output of Add Round Key function is

added with look-up table’s (32-bit base address) and gets exact location of required
data. After the address obtain, its value is loaded.

Keyed Byte-wise rotations, ββββ

The function ββββ is based on 6�. The rotation is applied on single byte so it does not
allow simple rotation instruction, ROTL. The shift operations are useful for this
purpose. The number of rotations in left shift, SHL is based on key-bit value. The
SHL contains the shifted bits of rotated byte while applying XOR it with right
shifted (SHR) byte and gets the desire output.

Instead of developing two separate modules of γ and β, the efficient single
module is developed by using parallel instructions of C6x+. This single module
consumes 128 cycles/round. Another advantage of this module is that the output of
this module is 32-bit that is useful for next step.

Keyed Shift Row, `a

In Grand Cru, there are 2 keyed rotations which rotate a byte value within a 32-
bit value. The 1st keyed rotation is applied row-wise after default shift row operation
as in AES. This rotation takes place by the use of 3rd key of Grand Cru. Grand Cru
represents a table, ‘t-table’ to ensure a unique rotation in all blocks of 32-bit values
in single round.

For pi rotation, a byte of key splits into pairs of 2-bit values which takes 7 cycles.
The VLIW‘s instruction ROTL takes 2 cycles for each 32-bit values and splitting
applies bit-wise. Thus, value of shift byte converts into bits and then it uses with
ROTL. The rotation takes 2 cycles for each column but generating keyed rotation
value take 7 Cycles/Round. The complete Keyed shift Row takes 16 cycles/round.

Keyed Shift Column, `b

The 2nd keyed permutation in Grand Cru algorithm is keyed column Shift. The
byte store in keyed Shift Row is row wise and ROTL instruction in column shifting
requires conversion of rows into columns. After conversion, this shift needs a single
ROTL instruction. With all the complication, it takes 71 cycle/round.

Mix Column Transformation, θθθθ

Mix column in Grand Cru is same as in AES. VLIW offers a valuable instruction
Galois filed multiplication (GMPY). Its modified instruction, GMPY4 applies on
byte. Before applying GMPY4, irreducible polynomial in GFPGFR needs to set.
The output of GMPY4 gives 32-bit value and for XOR sum of these 4 bytes requires

splitting of 32-bit into 8-bit. This Splitting can done by using C6x+ instructions
AND, SHL/SHR, and XOR. GMPY4 instruction requires 3 delay slots which is
meaningless by whole matrix multiplication. Due to splitting, one element of mix
column will generate in 10 cycles and sixteen elements need 160 cycles. Here
parallel unit gives full support to reduce cumulative mix column’s cycles and it
consume 109 cycles per round.

Sr.# Operation(encryption) Cycles/Round
1 ψ 22
2 V 4352
3 v-1 4414
4 σ 0
5 γ and β 128

6 c@ 16
7 cY 71
8 θ 109

Total 128-bit Encryption 11946
Table 2: Number of Cycles for Encryption Algorithm

Some cycles of individual operations has been reduced by using parallel operation
with other modules.

4 Comparison

The designer of Grand Cru implemented the algorithm on 8-bit Motorola
microcontroller and used ANIS C on Pentium and Xeon. Advance digital signal
processors reduce implementation cycles and drastically increase the throughput.
The following table shows the comparison of results of processing cost of grand cru
over different platforms.

 Encryption/Cycle Key setup/Cycle

8-bit Motorola 60000 300000

Pentium 45000 200000

Xeon 65000 300000

DM648 11946 7011

Table 3: Cost Comparison of Grand Cru over Different Platforms

The comparison of implementation of Grand Cru with AES-128 in DM648 is as
shown in the following table.

 AES-128 Grand
Cru

Grand Cru
excluding 0 and 012

Key setup/Cycle 651 7011 7011

Encryption/Cycle 2197 11946 3180

Table 4: Cost Comparison of AES-128, Grand Cru and Grand Cru excluding 0 and 012

functions using DM648

Table 4 shows that the processing speeds are 40Mbps, 7Mbps and 27.6 Mbps

@720 MHz for AES-128, Grand Cru and Grand Cru excluding v and v1� functions.

5 Conclusion

We have presented a reasonably efficient implementation of Grand Cru [9] using
current Texas instruments T1 DM648 processor. We conclude that with the
advancement in hardware, we are able to implement ciphers with proceed structures
in efficient manner. One of our conclusions is that choices of sub-function in cipher
are mainly cause of decreased efficiency rather than multiple layered structures

itself. For example, by removing v and v1� function we have distinctly increased in

efficiency of Gran Cru. Further our effort smashes the restriction in designing of
multiple layered security based ciphers that are due to cost issues and one can design
such ciphers to enhance security against rapidly increasing cryptanalytic techniques
of conventional block ciphers. One also can obtain remarkably better results from
our implementation by using techniques in efficient implementations of AES.

References

1. FIPS-197: Advanced Encryption Standard, November 2001, available at
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

2. Biham, E., Dunkelman, O., Keller, N.: Related-key impossible differential attacks on
AES-192, In CT-RSA’06, LNCS, vol. 3860, pp. 2--31, Springer Verlag (2006).

3. Biryukov, A., Khovratovich, D., Nikolic, I.: Distinguisher and related-key attack on the
full AES-256. In CRYPTO'09, LNCS. Springer Verlag (2009).

4. Biryukov, A., Khovratovich, D.: Related-key Cryptanalysis of the Full AES-192 and AES-
256, IACR ePrint report 2009/317, 2009. Available online at
http://eprint.iacr.org/2009/317.

5. Biryukov, A., Dunkelman, O., Keller, N., Khovratovich, D., Shamir, A.: Key Recovery
Attacks of Practical Complexity on AES Variants With Up To 10 Rounds. Cryptology
ePrint Archive, Report 2009/374, 2009. Available online at http://eprint.iacr.org/2009/374.

6. Kim, J., Hong, S., Preneel, B.: Related-key rectangle attacks on reduced AES-192 and
AES-256. In FSE 2007, LNCS, vol. 4593, pp. 225-241, Springer Verlag (2007).

7. Yong Zhuang, W., YuPu, H.: New Related-Key rectangle attacks on reduced
AES-192 and AES-256, Science in China Press, vol.52, n.4, pp. 617-626,
Springer Verlag (2009).

8. Biham, E., Keller, N.: Cryptanalysis of Reduced Variants of Rijndael, Available
at http://csrc.nist.gov/encryption/aes/round2/conf3/aes3papers.html

9. Borst, J.: The bolck cipher: Grand Cru, Available at
https://www.cosic.esat.kuleuven.be/nessie/workshop/submissions/grandcru.zip.

10. NESSIE (New European Schemes for Signatures, Integrity and Encryption) was a
European research project funded from 2000–2003 to identify secure cryptographic
primitives. https://www.cosic.esat.kuleuven.be/nessie/

11. Rimoldi, A.: PhD Thesis: On algebraic and statistical properties of AES-like ciphers. PhD
thesis, University of Trento (2009) Available at http://eprints-phd.biblio.unitn.it/151/

12. Gilbert, H., Chauvaud, P.: A Chosen Plaintext Attack of the 16-round Khufu
Cryptosystem, In CRYPTO ’94, LNCS, vol. 839, pp. 359-368, Springer Verlag (1994).

13. Vaudenay, S.: On the Weak Keys of Blowfish, In FSE ’96, LNCS, vol. 1039, pp. 27-32,
Springer Verlag (1996).

14. Abdelraheem, M. A., Leander, G., Zenner, E.: Differential cryptanalysis of round-reduced
PRINTcipher: Computing roots of permutations. In Antoine Joux, editor, Proc. FSE 2011,
LNCS, vol. 6733, Springer Verlag (2011).

15. TMS320Digital Media processor 648, Literature Number SPRS372F.
16. TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide, Literature Number:

SPRU732H October 2008.

