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Abstract.  Grand Cru, a candidate cipher algorithm of NESSIE project, 
is based on the strategy of multiple layered security and derived from 
AES-128. This algorithm was not selected for second phase evaluation 
of NESSIE project due to implementation and processing cost. In this 
paper we present relatively a fast implementation of the cipher using 
Texas Instrument’s DSP C64x+.  
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1   Introduction 

There are many significant developments in cryptanalysis of Block Ciphers 
during past years and new techniques [2, 3, 4, 5, 6, 7, 8, 9] have been introduced. 
Many of them are effective enough to break full round versions of ciphers [3, 4, 5]. 
However these techniques are mostly successful on ciphers with fixed structure and 
components. For well designed key dependent or dynamic structured ciphers or 
ciphers having key dependent or dynamic components are mostly not mucheffected. 
Although there are some efforts for cryptanalysis of such kind of ciphers [12, 13, 14] 
but still these techniques are not mature enough to present serious vulnerability of 
the cipher. The vulnerability found in these type of ciphers are mainly due to poor 
design having some specific fixed observation in the cipher itself [14]. There is no 
reason to not believe that such a well designed cipher persist more security measures 
against modern cryptanalytic techniques.     

Grand Cru [9] a candidate cipher algorithm of NESSIE [10] project, is successor 
of AES-128 [1] and is based on strategy of multiple layered security. This tactic is 
aimed at combining different security motivations and hence is a useful practice to 
improve security of widely used existing crypto algorithms against known modern 
cryptanalytic techniques. It also provides a noble way to use long keys in existing 
algorithms without redesigning key-schedule and/or encryption algorithms. This idea 
seems noble until and unless the proposed cipher is as efficient as the original one. 
Although the proposed algorithm was not selected for second phase of NESSIE 
project due to the cost of speed, no weakness was found in the algorithm. 



TMS320DM648 belongs to Texas Instrument (TI) Advance Digital media 
processors. TheDM648 is based on the third-generation high-performance, advanced 
VelociTI™ very-long-instruction-word (VLIW) architecture [12]. This processor 
very useful for video/audio applications. DM648 contains CPU, memory and 
interrupts controllers. In addition, the DSP subsystem acts as the overall system 
controller, responsible for handling many system functions such as system-level 
initialization, configuration, user interface, user command execution, and 
connectivity functions. 

Due to its subsystem, DM648 is an excellent choice for digital media applications 
[12].DSP’s advanced VLIW CPU allows executing up to eight instructions per cycle. 
On these bases DM648 claim that this type of processor’s performance is up to ten 
times the performance of typical DSPs. 

DM648 contains comprehensive components including its mega module with 
memory (DSP subsystem), five video ports, Ethernet components, different I/O port 
and powerful DMA with DDR2 memory controller interface [15]. 

The complete Block diagram of DM648 is as shown in figure 1: 

 
Figure 1: Block Diagram of DM648 

  
The rest of the paper is organized as follows. A short description of Grand Cru 

algorithm is given in section 2. In Section 3, we describe the implementation 



methodology of Grand Cru using TI DM648 processor. Section 4 briefly presents 
comparison of the implementation costs of AES-128 and Grand Cru.  In section 5, 
we present the potential of designing multiple layered security based ciphers by the 
use of current state of the art hardware solutions.  

2 Short overview of Grand Cru 

In this section we present a short overview of Grand Cru [9]. We describe encryption 
algorithm and round keys generation procedures for the cipher.  
 
2.1 Encryption Algorithm  

Each round of encryption function of Grand Cru consists of the following sub-
functions. 

 
Initial/Outer Round Key Addition, ψψψψ 

 A 128-bit sub key is added over modulo 2� (A Byte Wise Addition) 
 
The transformation, � 

 The transformation �: �0,1
���  �0,1
��� is defined as follows: Let the 
input of � be denoted by ��� … �� where each ��; � � 0,1, … 15 is a byte 
then output ��� … �� is derived iteratively by:  
1. for � � 0 �� 15 do 

 ���� ��� �� � ���� ��� �� �  !��" 
2. for � � 0 �� 15 do 

 for # � 0 �� 15, # $ � do 
  �% � �% �  !��" 

Add Round Key, σσσσ  
An exclusive-or with the round key 
 
Non Linear Layer, γγγγ  
Byte wise substitution of input using 8 ' (�� ) 8 ' (�� S-box 
 
Keyed Byte Wise Rotation, ββββ 
Key-bits based rotation of output of S-box (a byte value)  
 
Keyed Shift Row, *+  
A cyclic shift of the �,- row by # number of bytes to the left, where � �0 … 3. Key determines the number of rotations of each row. 
 
Keyed Shift Column, */ 
A byte of each column is permuted, column wise, which depends on the 
value of a key.  



Mix Column Transformation, θθθθ  
An MDS matrix multiplication applied to each column. The final round 
does not include this transformation. 
 
The transformation, 012 

 The inverse transformation �1�is given as  
1. for � � 15 �� 0 do 

 for # � 0 �� 15, # $ � do 
  �% � �% �  !��" 

2. for � � 15 �� 0 do 
 ���� ��� �� � ���� ��� �� �  !��" 
 

2.2 Round Keys Derivation  

The key derivation of Grand Cru is different from AES key structure. The 
designer claims that only 128-bit current round key is required while the next round 
key will be derived on the fly from previous key. 
The key expansion is based on the function 345and round keys are derived from user 
key by using following function. 6� � 345!67, �" 
 
Where 67 is a 128-bit user key, 6� is the round key for � ' �8 round. 
 

The details of key derivation are as follows: 
 
The user computes 128-bit key, 6� using the following equation. 
 

9::9:�9:�9:�9�: … 9��9�� �  ;9�: 9��9�:9�:9::
9��9��9:�

9�� 9��9��9��9:�
9��9��9:�

< � !9:|9�|9�|9�" 

 
where 6�% is a byte and 6� is a 4-byte value and 9�; � � 0,1,2,3 is the � ' �8 column.  
This user key is passed to the function 345, which applies column wise rotation as 
follows.. 

>�������:
?        @�,A     BCCCCCD >�����:��

? 

After the column rotation a substitution Γ will be done as 

>�������:
?       E      BCCCD ; !��" !��" !��" !�:"< 



The next key is generated by passing the matrix through the following function. 

6�F � 6�1GF � ΓIJ��K!6�1�F "L � M�/G �3 4|� 
6�F � 6�1GF � 6�1�F  PKQP, 

Where M� is the round constant. The 11 round keys are defined as 

6��, … 6�, 6� � !6G:F |6G�F |6G�F |6G�F ", … , !6RF|6�F|6�F|6GF", !6:F|6�F|6�F|6�F" 

The Grand Cru requires 4 different 128-bit master keys. These keys can be 
derived from a single 128-bit key by using some key derivative function. These four 
128bit keys are then used in four round operations namely ψ , σ.π and β.  

First 128-bit key is used for generating two 128-bit keys for ψ operation by using 
following equation. 

6�:, 6�: � 345!6:, 0", 345!6:, 1" 

Second128-bit key is used for derivation of 11 round keys by using the following 
function. 

6��, … , 6��� � 345!6�, 0", … , 345!6�, 10" 

Third key generates 5 sub keys for each round and these keys are used in π. This 
operation consists of two (row and column) rotations. 5 sub-keys are generated as 
follows. 

for � � 0 �� 15 do 
1. Compute 9�� … 9� � 345!6�, �" 
2. Set counter S�T � 0 
3. For # � 0 �� 15 do 

 If 9% U 24 then 6��VS�TW � 9%, S�T X X  
4. If S�T U 5 

For # � S�T �� 5 do 6��VS�TW � 9%1Y,4  Z�[ 16 

The last 128-bit key is used in β transformation which requires sixteen 3-bit keys for 
10 rounds as described under 

for � � 0 �� 9 do 
1. Compute 9�� … 9� � 345!6�, �" 
2. 6�� � ^ _:!9��" … ^ _:!9�" 



3 Implementation of Grand Cru 

T1 C6x+ processor is one of the best processors for implementation of different 
algorithms. The round keys derivation and encryption algorithm implementation 
techniques are presented in the following sub sections. 

3.1 Round Keys Derivation Implementation Technique  

The implementation of round key function in TI DM648 processor requires 
ROTL, ADD4, XOR, LDW and conditional instructions.  Look-up table is used for 
substitution. The core of round key derivation of Grand Cru consists of a conditional 
function and XOR operation. The conditional function checks if the round number is 
exactly divisible by 4 then the intermediate function is executed otherwise XOR 
operation is required. The intermediate function comprises a rotation of 32-bit value 
(column) with substitution and two XOR operations. The 32-bit registers of the 
processor helps in implementing the above function.  

As substitution of Grand Cru is Byte wise, so implementation requires a splitting 
process from 32-bit into 8-bit values.  The implementation of 34 function takes the 
advantage of parallelism of DM648. The load and store operations are done in 
parallel. So, the 34function takes 80 cycle/called. The 34 is used in key generation for 

functions ψ , π , β and σ. The functions σ and ψ, need to just call 34 function, where 

as the functions π and β require other mathematical and logical operations. 

Theψ‘s keys generation call 34only once which implies that the process consumes 

only 98 cycles. Variables adjustment and function call, consume 18 cycles. The σ 

calls 34 10 times and use 494 cycles. The π ‘s key generation function calls the 
function 34  9 times, which requires 450 cycles. It also has ‘For’ loops with 
conditional instructions. These extra operations require 4898 cycles. Hence a   

complete generation of π requires 5348 cycles. The β transformation requires 
sixteen, 3-bit keys per round. It calls the function 34, 9 times and trims the output into 

3 bits. The required number of cycles for key generation of function β is 1071.  

 

 

 

 



The number of cycles required for Grand Cru’s key generation is shown in Table 
1. 

Sr# Operation(key generation) Cycles 
1 ψ 98 
2 σ 494 
3 π 5348 
4 β 1071 

Total  7011 
Table 1: Number of Cycles for Key Generation Algorithm 

3.1 Encryption Algorithm Implementation Technique  

Initial/Outer Round Key Addition, ψψψψ 

This transformation is byte-wise modulo addition and Grand Cru calls this 
addition two times. These two transformations can easily be implemented with 
DM648 instruction ADD4. Each transformation with keys loading takes 22 cycles. 

The transformations � and �12 

From conceptual point of view, this transformation is very simple but this is the 
most expensive one from implementation aspect. Each transformation includes two 
intermediate functions and each function has two ‘For’ loops. The first loop has 15 
substitution and XOR operations. The second loop is nested one and has a total 256 
substitution and XOR operations with conditional instruction. 

After the implementation of � functions, we found that the function � takes 4352 
cycles and the function �12 requires 4414 cycles. 

Add Round Key, σσσσ  

This function of Grand Cru applies a XOR function to the input data (128-bit) 
and the corresponding round key. DM648 architecture gives LDDW (64-bit load) 
instruction to load 128-bit key and use only two LDDW. This architecture also 
reduces multiple XOR operations and need only 4 XOR instructions for 128bit value. 
The parallel unit of DM648 makes it possible that these XOR operations operate in 
parallel with other instructions. Hence these operations logically consume zero cycle.  

Non Linear Layer, γγγγ   

The simple and efficient method for this function is to use Look-up table which 
requires addition and load instructions.  The output of Add Round Key function is 



added with look-up table’s (32-bit base address) and gets exact location of required 
data. After the address obtain, its value is loaded.  

Keyed Byte-wise rotations, ββββ  

The function ββββ is based on 6�. The rotation is applied on single byte so it does not 
allow simple rotation instruction, ROTL. The shift operations are useful for this 
purpose. The number of rotations in left shift, SHL is based on key-bit value. The 
SHL contains the shifted bits of rotated byte while applying XOR it with right 
shifted (SHR) byte and gets the desire output. 

Instead of developing two separate modules of γ and β, the efficient single 
module is developed by using parallel instructions of C6x+. This single module 
consumes 128 cycles/round. Another advantage of this module is that the output of 
this module is 32-bit that is useful for next step.   

Keyed Shift Row, `a 

In Grand Cru, there are 2 keyed rotations which rotate a byte value within a 32-
bit value. The 1st keyed rotation is applied row-wise after default shift row operation 
as in AES. This rotation takes place by the use of 3rd key of Grand Cru. Grand Cru 
represents a table, ‘t-table’ to ensure a unique rotation in all blocks of 32-bit values 
in single round.  

For pi rotation, a byte of key splits into pairs of 2-bit values which takes 7 cycles. 
The VLIW‘s instruction ROTL takes 2 cycles for each 32-bit values and splitting 
applies bit-wise. Thus, value of shift byte converts into bits and then it uses with 
ROTL. The rotation takes 2 cycles for each column but generating keyed rotation 
value take 7 Cycles/Round. The complete Keyed shift Row takes 16 cycles/round. 

Keyed Shift Column, `b 

The 2nd keyed permutation in Grand Cru algorithm is keyed column Shift. The 
byte store in keyed Shift Row is row wise and ROTL instruction in column shifting 
requires conversion of rows into columns.  After conversion, this shift needs a single 
ROTL instruction. With all the complication, it takes 71 cycle/round.  

Mix Column Transformation, θθθθ 

Mix column in Grand Cru is same as in AES. VLIW offers a valuable instruction 
Galois filed multiplication (GMPY). Its modified instruction, GMPY4 applies on 
byte.  Before applying GMPY4, irreducible polynomial in GFPGFR needs to set. 
The output of GMPY4 gives 32-bit value and for XOR sum of these 4 bytes requires 



splitting of 32-bit into 8-bit. This Splitting can done by using C6x+ instructions 
AND, SHL/SHR, and XOR. GMPY4 instruction requires 3 delay slots which is 
meaningless by whole matrix multiplication. Due to splitting, one element of mix 
column will generate in 10 cycles and sixteen elements need 160 cycles. Here 
parallel unit gives full support to reduce cumulative mix column’s cycles and it 
consume 109 cycles per round. 

Sr.# Operation(encryption) Cycles/Round 
1 ψ 22 
2 V 4352 
3 v-1 4414 
4 σ 0 
5 γ and β 128 

6 c@ 16 
7 cY 71 
8 θ 109 

Total 128-bit Encryption 11946  
Table 2: Number of Cycles for Encryption Algorithm 

Some cycles of individual operations has been reduced by using parallel operation 
with other modules. 

4 Comparison 

The designer of Grand Cru implemented the algorithm on 8-bit Motorola 
microcontroller and used ANIS C on Pentium and Xeon. Advance digital signal 
processors reduce implementation cycles and drastically increase the throughput. 
The following table shows the comparison of results of processing cost of grand cru 
over different platforms. 

 Encryption/Cycle Key setup/Cycle 

8-bit Motorola  60000 300000 

Pentium 45000 200000 

Xeon 65000 300000 

DM648 11946 7011 

Table 3: Cost Comparison of Grand Cru over Different Platforms 

The comparison of implementation of Grand Cru with AES-128 in DM648 is as 
shown in the following table. 

 

 



 AES-128 Grand 
Cru 

Grand Cru  
excluding 0 and 012 

Key setup/Cycle 651 7011 7011 

Encryption/Cycle 2197 11946 3180 

Table 4: Cost Comparison of AES-128, Grand Cru and Grand Cru excluding 0 and 012 

functions using DM648 

Table 4 shows that the processing speeds are 40Mbps, 7Mbps and 27.6 Mbps 

@720 MHz for AES-128, Grand Cru and Grand Cru excluding v and v1� functions. 

5 Conclusion 

We have presented a reasonably efficient implementation of Grand Cru [9] using 
current Texas instruments T1 DM648 processor. We conclude that with the 
advancement in hardware, we are able to implement ciphers with proceed structures 
in efficient manner. One of our conclusions is that choices of sub-function in cipher 
are mainly cause of decreased efficiency rather than multiple layered structures 

itself. For example, by removing v and v1� function we have distinctly increased in 

efficiency of Gran Cru. Further our effort smashes the restriction in designing of 
multiple layered security based ciphers that are due to cost issues and one can design 
such ciphers to enhance security against rapidly increasing cryptanalytic techniques 
of conventional block ciphers. One also can obtain remarkably better results from 
our implementation by using techniques in efficient implementations of AES. 
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