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Abstract. Cryptanalytic time memory tradeoff algorithms are tools for
quickly inverting one-way functions and many consider the rainbow ta-
ble method to be the most efficient tradeoff algorithm. However, it was
recently announced, mostly based on experiments, that the paralleliza-
tion of the perfect distinguished point tradeoff algorithm brings about
an algorithm that is 50% more efficient than the perfect rainbow table
method. Motivated by this claim, we provide an accurate theoretic anal-
ysis of the parallel version of the non-perfect distinguished point tradeoff
algorithm.
Performance differences between different tradeoff algorithms are usu-
ally not very large, but even these small differences can be crucial in
practice. So we take care not to ignore the side effects of false alarms
while analyzing the online time complexity of the parallel distinguished
point tradeoff algorithm. Our complexity results are used to compare the
parallel non-perfect distinguished point tradeoff against the non-perfect
rainbow table method. The two algorithms are compared under identical
success rate requirements and the pre-computation efforts are taken into
account. Contrary to our anticipation, we find that the rainbow table
method is superior in typical situations, even though the parallelization
did have a positive effect on the efficiency of the distinguished point
tradeoff algorithm.

Keywords: time memory tradeoff, parallel distinguished point, distin-
guished point, rainbow table

1 Introduction

Cryptanalytic time memory tradeoff algorithms are tools for quickly inverting
one-way functions with the help of pre-computed tables. By changing the algo-
rithm parameters, one is able to balance the size of the stored pre-computed
table against the average time required for each inversion. The tradeoff tech-
niques are typically used to recover passwords from the information of password
hashes and there are commercial implementations which allow one to defeat the

⋆ This paper is to be (was) presented at INDOCRYPT 2011.



access control mechanisms that are embedded in widely used document file for-
mats. The tradeoff technique is not only used among hackers, but is also an
important tool for the law enforcement agencies.

It has long been known that the tradeoff attacks can be prevented by design-
ing the security system to incorporate what are referred to as random salts, but
there still are many systems in use today that do not incorporate this counter-
measure, and the only obstacle in applying the tradeoff attacks to these systems
is the large pre-computation requirement. However, as was shown in [12], even
this barrier is lowered when the security ultimately relies on human generated
passwords. Hence, many current security systems are susceptible to the trade-
off attacks, and finding the exact capabilities and limitations of the tradeoff
algorithms remains an interesting subject of study.

The first explicit time memory tradeoff algorithm was invented by Hell-
man [8]. Shortly thereafter, the distinguished point (DP) technique was intro-
duced. This idea, attributed to Rivest in [7], greatly reduces the table lookup re-
quirements of Hellman’s original algorithm. The tradeoff algorithm most widely
known to the public today is the rainbow table method [13]. When the search
space size is N , a typical tradeoff algorithm allows storage requirement M and
inversion time T to be balanced, subject to the equation TM2 ≈ N2, through
the choice of associated parameters. Rough analyses of the tradeoff algorithms
show that the tradeoff coefficient Xtc = TM2/N2 is close to 1 for reasonable
choices of parameter sets. However, it is different for each algorithm and does
change with the choice of the parameter set.

The tradeoff coefficient Xtc is a measure of how efficiently an algorithm bal-
ances storage against online time, with a smaller number corresponding to better
tradeoff efficiency. In a recent work [11], that builds on the works [1, 10], the value
of Xtc was accurately computed for the Hellman, DP, and rainbow tradeoffs, and
then the tradeoff coefficients of the three algorithms were compared against each
other. Unlike previous attempts, the comparison of [11] took the inversion suc-
cess rate, pre-computation cost, and the number of bits required to store each
table entry fully into account. Their conclusion, in oversimplified terms, was that
the classical Hellman and the DP tradeoffs perform comparable to each other
and that the rainbow table method outperforms these two. Even though this was
in agreement with what many had believed for some time, the performances of
the algorithms were shown to be quite close to each other for moderate success
rates, justifying the need for such careful analyses before any comparison.

In this work, we give a treatment analogous to [11] of the DP tradeoff variant
that processes its multiple pre-computation tables in parallel. We present an
accurate theoretic online time complexity analysis of the parallel DP tradeoff
and compare its performance with that of the rainbow tradeoff. Clearly, the
wall-clock running time of the parallel DP tradeoff will be much shorter than
the original serial DP tradeoff, but our focus will be on the combined running
time of all processors, which is the measure of algorithm execution complexity
that is widely used in cryptology.
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The conclusions are that parallelization has a positive effect, not only on
the wall-clock running time, but also on the combined processor time of the DP
tradeoff. However, for typical range of parameters, the gain in performance ob-
tained is shown to be insufficient to overcome the superiority of the rainbow table
method over the DP tradeoff. If the wall-clock running time is more important
than the total processor time, depending on the degree of parallelism available,
there can be situations where the parallel DP tradeoff is desirable over the rain-
bow tradeoff. However, if the combined processor time is more important, one
should use the rainbow method rather than the parallel DP method.

Our analysis may be seen as theoretic or practically limited in two respects.
First, the above mentioned combined processing time may not directly corre-
spond to the real-world cost of running an algorithm, but this issue is clearly
outside the scope of this paper. Second, we do not discuss whether implement-
ing the parallel DP tradeoff is practical on various specific platforms. In fact,
the demand for online memory by the parallel DP tradeoff is higher than other
tradeoff algorithms and this could be critical in certain environments. However,
aside from issues that are specific to implementation environments, we are as
practical as possible in treating the two compared algorithms, in that the success
probabilities, pre-computation costs, and bits required per table entry are taken
into account during algorithm comparison.

We acknowledge that parallel processing of tradeoff tables is not a new idea.
Distributed key search with a central pre-computation table repository is men-
tioned in [2, 3] as an application for DP tradeoffs. It was noted in [13] that
processing multiple rainbow tables in parallel will reduce the total combined
processor time. In fact, the rainbow tradeoff is usually taken to process its ta-
bles in parallel, even though the number of its tables is much smaller than that
of the DP tradeoff and allows lower degree of straightforward parallelization.
In [10] one can find a very rough heuristic argument as to why the classical
Hellman tradeoff will not benefit from parallelization. Finally, the work [9, 14]
claims that the parallel version of the perfect3 DP tradeoff is twice as efficient
as the perfect rainbow table method, mainly based on experiment results.

The current work was motivated by the above mentioned [14], which an-
nounced the perfect table parallel DP tradeoff as the “New World Champion” of
tradeoff algorithms. However, all the algorithms considered in this paper are the
non-perfect table versions. Let us explain our choice to analyze the non-perfect
table version of the parallel DP tradeoff rather than the perfect table version.

The perfect DP tradeoff was first studied in [2, 3]. They left some unresolved
problems and many view [15] as completing the analysis. However, the analysis
of [15] does not provide figures that are accurate enough for use in this paper
as data representing the performance of a competing algorithm. For example,
an entry in Table 2 of the paper gives 21.6425 and 21.1357 as experimental
and corresponding theoretic figures concerning a certain storage count. On the

3 The use of perfect tables is not stated explicitly in [9, 14], but was clarified to us
during private communication. We also learned that short chain length bounds were
used in their experiments.
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surface, the two values seem to be in good agreement, but one must note that
they are presented in logarithmic scale. We cannot explain the details here, but
when the two storage figures representing experiment and theory are translated

to tradeoff efficiency figures, they become the ratio
(

221.6425

221.1357

)2 ≈ 2.02. Theoretic
result of such inaccuracy may be acceptable for many applications, but is not
appropriate for the purpose of comparing different algorithms, since algorithm
performances are likely to differ by a comparable ratio.

A perfect DP table is obtained by removing redundancies present in a non-
perfect DP table and this implies that each perfect table requires more pre-
computation to construct than the non-perfect version, if the two are to bring
about the same success rate. Even though the perfect table DP tradeoff is ex-
pected to be more efficient than the non-perfect table version, with the current
state of knowledge explained above, it is hard to judge whether the degree of
enhancement in efficiency justifies the additional pre-computation involved.

Since the state of current knowledge is far from ready for the treatment
of perfect table parallel DP tradeoffs, and since it is unclear if the efficiency
advantage of the perfect version will be worth the higher pre-computation cost,
the non-perfect table parallel DP tradeoff is treated in this paper. The perfect
table parallel DP tradeoff is certainly of interest and is left as a subject of future
study, which can be approached only after a more accurate analysis of the perfect
table (serial) DP tradeoff has been developed. The initial view of the effects of
parallelism we obtain and the method of approaching we develop in dealing with
the non-perfect case will be of guidance in studying the perfect case.

The rest of this paper is organized as follows. We fix the basic terminology
and recall some previous results in Section 2. The parallel DP tradeoff algorithm
is made explicit in Section 3 and its theoretic analysis is given in Section 4.
After verifying our theoretic developments with experiments in Section 5, the
efficiency figures obtained through our analysis are compared against those of the
original DP and rainbow table methods in Section 6. The final section contains a
summary of our results. Most of the technical proofs are deferred to the appendix.

2 Preliminaries

Throughout this paper F : N → N will be a function acting on a set N of
size N . As is done by any theoretic analysis of tradeoff algorithms, we take F to
be the random function during our theoretic arguments.

Inversion Problem. Let us first clarify the inversion problem we are considering,
as there are two versions that need to be distinguished in any accurate analysis
of the tradeoff algorithms. Given the inversion target y = F (x), the first version
asks the algorithm to return any single x ∈ N satisfying F (x) = y. In the second
version, the tradeoff algorithm is allowed to return multiple x ∈ N satisfying
F (x) = y and is declared successful as soon as the specific x that was used
to create y is returned. The two inversion objectives clearly require different
amounts of resources to achieve. If applications of the tradeoff technique to
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password recovery from sufficiently long password hashes are to be considered,
the second version is the correct inversion problem to study [11]. In the interest of
practical applicability, the current paper deals with the second inversion problem.

Terminology. We assume that the reader has basic knowledge of the DP and
rainbow tradeoff algorithms. Below, we quickly review the terminology and fix
notation, mainly focusing on the DP tradeoff, but analogous terminology and no-
tation will be used with the rainbow tradeoff. All tradeoff algorithms considered
in this paper are the non-perfect table versions.

The correct answer to be recovered and the inversion target will always be
denoted by x and y = F (x), respectively. Each DP table, consisting of starting
and ending point pairs of pre-computed DP chains, will contain approximately
m entries. What is meant by the term approximately will be explained below.
The probability of DP occurrence is set to 1

t , so that the average chain length
is roughly t. We distinguish between a DP table and a DP matrix, which is the
complete set of m pre-computed chains. An online chain merging into a pre-
computation chain will bring about a false alarm. We omit any mentioning of
reduction functions, as our arguments will mostly focus on a single table. Rather
than using exactly t tables, we allow more flexibility and use ℓ tables, where ℓ ≈ t.
Flexibility is also given to the matrix stopping rule, so that mt2 = DmscN , with
a matrix stopping constant Dmsc ≈ 1. The condition Dmsc ≈ 1 can be justified as
was originally done by Hellman [8] or through a birthday paradox argument as
given in [5, 6]. In all cases, we assume that the parameters are reasonable in the
sense that m, t ≫ 0, which, in particular, implies t ≪

√
N through the matrix

stopping rule.

Any implementation of the DP tradeoff will place a chain length bound t̂ to
detect chains falling into loops that do not contain DPs. If one generates m0

chains with the chain length bound t̂, one can expect to collect m0{1−
(

1− 1
t

)t̂}
DP chains. Rather than requiring a DP table to contain the information of
exactly m DP chains, we take the approach that the chains are always generated

fromm0 = m/{1−
(

1− 1
t

)t̂} starting points and that the resulting approximately
m DP chains are accounted for by each DP table.

Note that the expected number of chains that do not reach a DP within the

t̂ iterations is m0

(

1 − 1
t

)t̂
so that the ratio of wasted iterations m0t̂

(

1 − 1
t

)t̂

over the approximate total pre-computation effort m0t is
t̂
t

(

1− 1
t

)t̂
. This quickly

approaches zero as t̂
t is increased. In the interest of practical applications of

the tradeoff technique, we will focus on the situation where t̂
t is sufficiently

large, so that most of the pre-computation effort is put to use. However, since
the mentioned approach to zero is extremely fast, we treat t̂ and t as being

of somewhat similar order, even when assuming t̂
t to be sufficiently large. This

allows us to assume t̂ ≪
√
N and freely use the approximation

(

1− 1
t

)t̂ ≈ e−t̂/t.

In practice, setting t̂ = 10 t should be large enough for most purposes.
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Extensions to the DP Tradeoff. There are a few tricks that can be used with the
DP tradeoff to increase its efficiency.

1. Starting points that require less storage than random ones are used [2, 6].
In particular, sequential starting points [1] allow each starting point to be
recorded in logm0 ≈ logm bits rather than logN bits.

2. Information concerning the ending points that can be recovered from the DP
definition is not recorded [6]. This reduces log t bits of storage per ending
point.

3. The index file (or hash table) technique [6] is used to remove almost logm
bits per ending point without any loss of information.

4. The ending points are simply truncated before storage [4, 6]. Information
is lost through this process and since a partial match between the end of
an online chain and a DP table entry will falsely be interpreted as a chain
collision, a new type of false alarm appears. However, these can be resolved
in exactly the same way as with the exiting false alarms. Using the analysis
given in [11], one can maintain the side effects of additional false alarms to
a manageable level by controlling the degree of truncation.

5. Suppose that the online chain has become a DP chain of length i and has pro-
duced an alarm. When regenerating the associated pre-computation chain to
resolve the alarm, one need not continue any further than t̂−i iterations [11].

From now on, the term (original) DP tradeoff will refer to the algorithm variant
that utilizes all five techniques described above.

When the first four tricks described above, which reduce storage, are applied,
each DP table entry can be stored in slightly more than logm bits. The 1-st,
3-rd, and 4-th items can also be applied to the rainbow tradeoff, after which
each rainbow table entry consumes slightly over logm bits. However, the m for
the rainbow tradeoff should be taken to be of order similar to mt of the DP
tradeoff, so the rainbow table entries take up larger space than the DP table
entries. If the DP tradeoff parameters m and t are roughly of the same order
and corresponding rainbow tradeoff parameters are used, each rainbow table
entry will occupy twice the number of bits required of a DP table entry. This
discussion concerning the difference in bits required per table entry was first
made in [4] and was theoretically confirmed in [11].

Previous Results. The original DP tradeoff, as defined above, was analyzed
in [11]. In the remainder of this section, we review results from [11] that are
required in this paper and introduce some more notation.

Given a DP matrix, its coverage rate is defined to be the number of distinct
nodes that appear among the DP chains as inputs to the one-way function F ,
divided by mt. Note that the DPs ending each pre-computation chain are not
counted in this definition. The expected coverage rate can be computed through
the formula

Dcr =
2√

1 + 2Dmsc + 1
, (1)
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when t̂
t is sufficiently large. In particular, the coverage rate can be seen as a

function of the single variable Dmsc =
mt2

N , rather than the separate parameters
m, t, and N .

Let Dpc = mtℓ
N be the pre-computation coefficient so that DpcN is the pre-

computation cost. It is not difficult to show that the probability of success for the
DP tradeoff can be expressed as Dps = 1 − e−DpcDcr . If we rewrite this equation
in the form

Dpc = − ln(1 − Dps)

Dcr
= − ln(1− Dps)

2

(√
1 + 2Dmsc + 1

)

, (2)

we can see that, under a fixed requirement on the success rate of the DP trade-
off, the pre-computation coefficient Dpc is a function of the matrix stopping
constant Dmsc.

Finally, when t̂
t is sufficiently large, the time memory tradeoff curve for the

original DP tradeoff is given by TM2 = DtcN
2, where the tradeoff coefficient is

Dtc =
(

2 +
1

Dmsc

) 1

D 3
cr

Dps
{

ln(1 − Dps)
}2

. (3)

When placed under a fixed success rate requirement Dps, this can also be seen
as a function of Dmsc through a substitution of (1).

3 Parallel DP

The details of the DP tradeoff algorithm that processes its tables in parallel are
made explicit in this section. The following two further extensions to the DP
tradeoff appear in [9, 14].

6. A full record of the online chain is maintained during the online phase.
When required to resolve an alarm, one compares the current end of the
regenerated pre-computation against the complete online chain, rather than
against just y. This allows one to stop at the exact position of chain merge,
rather than at the end of the pre-computation chain.

7. The ℓ DP tables are processed in parallel, rather than serially. This causes
relatively more time to be spent in dealing with short online chains and
brings about a reduction in the number of alarms.

The DP tradeoff that incorporates all seven DP extension techniques discussed
so far will be referred to as the parallel DP tradeoff, or pD in short. The purpose
of this paper is to analyze the pD tradeoff. Analogous to the Dmsc notation
introduced for the DP tradeoff, we use pDmsc to denote the matrix stopping
constant associated with the pD tradeoff.

Since the pD and the original DP tradeoffs share the same pre-computation
algorithm, their respective coverage rates and pre-computation costs are equal,
when identical parameters m, t, and ℓ are used. The online phase algorithms of
the two tradeoffs are different, but the differences have no effect on the success
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probability. Thus, equations (1) and (2) are also valid for the pD tradeoff, when
the variable Dmsc is replaced by pDmsc. Hence, the notation Dcr, Dps, and Dpc will
also be used to denote coverage rate, probability of success, and pre-computation
coefficient for the pD tradeoff. However, equation (3) is not applicable to pD
and obtaining its analogue for the pD tradeoff is the main objective of the next
section.

The 6-th item will surely increase the efficiency of the tradeoff algorithm, but
the effect of the 7-th item is not as clear. Working with shorter chains will reduce
collisions, but each collision is likely to require a longer chain regeneration before
it can be ruled out as a false alarm. Predicting its positive effect with certainty
does not seem possible without a rigorous analysis, as will be done in this paper.

One can easily argue that a straightforward application of the final two ad-
ditional DP extensions would require online memory that is of tℓ = Θ(T ) order
size, which cannot be acceptable. The number of expected accesses to the online
memory is also of the same order and can become a problem. The work [9] ex-
plains that an application of a secondary DP definition for selective recording of
the online chain can overcome these problems. However, even the resulting vastly
reduced requirements for online memory and its accesses will still be somewhat
larger than those of the original DP tradeoff. Discussions of how practical or
impractical such modified approaches will be on specific implementation envi-
ronments are outside the scope of this paper. In this work, we simply treat the
online memory issue as accesses to acceptably sized fast memory.

The 7-th item requires more explanation. The number of DP tables is roughly
of O(N

1

3 ) order, which is likely to be larger than the number of available proces-
sors for N of interest, implying that each processor will be assigned to multiple
tables. In such a situation, we require each processor to work with its share of
assigned tables in a round-robin fashion. A processor should process a single
iteration for a table and then move onto the next table it was assigned, rather
than take the approach of fully processing one table and then fully processing
its next assigned table.

We have partially clarified how DP should be parallelized, but there still is an
issue concerning the resolving of false alarms. Consider, for the moment, a fully
parallel system, where all the DP tables are distributed to different processors.
When a processor encounters an alarm, it will regenerate a pre-computation
chain, during which time period other processors will continue with their respec-
tive online chain iterations. By the time the alarm is resolved, many of the other
processors would have reached the end of the online chain creation. This shows
that the approach of the 7-th trick in trying to have more time spent on short
online chains fails in the fully parallel environment.

Fortunately, each processor is likely to be assigned multiple tables in practice.
We assume this situation and, in implementing the 7-th DP extension, each
processor is made to resolve any alarm that it encounters, before processing any
more online chain iterations. Then, since each processor will be struggling to
resolve its share of alarms, further iterations of the online chains are effectively
postponed until many of the alarms are resolved. If a set of tables allocated to
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a certain processor rarely produces alarms, online chain iterations for this set
of tables will proceed faster than those of other sets of tables, but the overall
behavior will be as if the online chain iterations were delayed until current alarms
are resolved.

During our analysis, when counting the total function iterations, we shall
take the simplified view that the i-th online chain iterations for all tables are
executed simultaneously and that the (i + 1)-th simultaneous iterations are ex-
ecuted only after all alarms encountered at the i-th iterations are resolved. This
view correctly reflects the parallelization details discussed so far.

4 Complexity of the pD Tradeoff

To analyze the tradeoff efficiency of the pD tradeoff, we need to compute the
expected time complexity of its online phase. This will be computed as a sum
of two parts. The first part is the time taken for the online chain creation. An
extremely rough approximation for this would be t times the number of tables ℓ,
but we want to be much more precise. The second part is the extra cost of
resolving alarms, which has been ignored in many existing analyses of tradeoff
algorithms. Three lemmas will be prepared before we state the tradeoff coefficient
of pD.

Since the pD tradeoff processes all the tables in parallel, the online phase is
likely to terminate with a correct answer before any of the tables are processed
in full. Hence, to compute the online time complexity, we need to understand
the success probability associated with the processing of each column of the DP
matrix rather than with the complete processing of a DP table.

Lemma 1. Visualize a DP matrix as having been aligned at the ending points.

The number of distinct points found in a column of distance i from the ending

points is expected to be

←

mi = Dcr m
(

1− 1

t

)i−1

,

when t̂
t is sufficiently large.

To roughly verify the correctness of this lemma, first notice that, by the def-
inition of Dcr, we can expect there to be Dcrmt distinct points in a single DP
matrix. Among these, a ratio of 1

t points are expected to reach DPs at their
next iterations. Hence, there are Dcrm points that are 1-iteration away from the
ending point DPs. This count is what is claimed by this lemma as

←

m1. We can
generalize this approach to obtain the number of points that lie further iterations
away from the DPs. A full proof of this lemma is given in page 20.

The sum
∑i

j=1
←

mj, which may be computed from this lemma, allows us to
express the probability for the answer x not to be found in any of the DP tables
within the first i iterations. By suitably combining this with the probability
(

1 − 1
t

)i−1 1
t for an online chain to reach a DP at the i-th iteration, it should

be possible to obtain the probability for the online chain creation for a specific
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table to terminate at the i-th iteration. This leads to the expected online chain
creation time of pD and is summarized below. We remind the readers that, as
was discussed in the previous section, the online chain creation is to be stopped
as soon as the alarm for the correct answer is encountered (and resolved).

Lemma 2. The online chain creation of the pD tradeoff is expected to require

t2
Dps

pDmscDcr

invocations of F , when t̂
t is sufficiently large.

A detailed proof of this lemma is given in page 21.
Our first goal, i.e., expressing the online chain creation effort, has been

reached. The second part, which is the cost of resolving alarms, is given next.

Lemma 3. The number of iterations required by the pD tradeoff in dealing with

alarms is expected to be

t2
ln(1− Dps)

Dcr

∫ 1

0

(1− Dps)
1−u lnu du,

when t̂
t is sufficiently large.

A full technical proof of this lemma is given in page 23, but let us briefly
explain how it can be approached. As was seen while obtaining the previous
lemma, we already have access to the probability for the i-th iteration of a table
to be processed. This i-th iteration generates work related to an alarm if and
only if the online chain becomes a DP chain at precisely the i-th iteration and
it merges with a pre-computation chain. The probability to encounter an online
DP chain of length i is easily written as (1 − 1

t )
i−1 1

t . For the merging part,
we turn things around and view the pre-computation chain as colliding into
the online chain of length i. This allows us to keep track of the length of the
pre-computation chain up to the point of collision while computing the collision
probability. Note that the length up to collision is equal to the work factor when
the 6-th DP extension is used. To arrive at the final statement, some computation
is required after combining the three parts that we have explained.

We have gathered enough material to compute the efficiency of pD in bal-
ancing storage against online time.

Theorem 1. The time memory tradeoff curve for the pD tradeoff is TM2 =
pDtcN

2, where the tradeoff coefficient is given by

pDtc =
( ln(1 − Dps)

Dps

∫ 1

0

(1 − Dps)
1−u lnu du+

1

pDmsc

) 1

D3cr
Dps

{

ln(1 − Dps)
}2

,

when t̂
t is sufficiently large.
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Proof. The expected online time complexity of the pD tradeoff is the sum of its
online chain creation and alarm treatment costs, which are given by Lemma 2
and Lemma 3, respectively. Thus, the time complexity may explicitly be written
as

T = t2
(

Dps

pDmscDcr
+

ln(1− Dps)

Dcr

∫ 1

0

(1− Dps)
1−u lnu du

)

.

Since the storage size is M = mℓ, we find

TM2 = (mtℓ)2
(

Dps

pDmscDcr
+

ln(1− Dps)

Dcr

∫ 1

0

(1− Dps)
1−u lnu du

)

.

To arrive at the claimed statement, it suffices to substitute mtℓ = DpcN and suit-
ably combine the result with Dps = 1− e−DpcDcr , which was mentioned above (2)
and stated as also being correct for pD in Section 3. ⊓⊔

Note that even though the definite integral appearing in this theorem cannot
be simplified any further, it can be treated as an explicit constant, as soon as
the requirement for inversion success rate Dps is fixed.

5 Experiment Results

This section presents two sets of experiments that were conducted to test some
of our theoretic arguments made in the previous section. In all tests, the one-way
function was taken to be the key to ciphertext mapping computed with AES-
128. Different fixed plaintexts were used to create multiple one-way functions.
Zero padding of keys and truncation of ciphertexts were used to control the size
of the space the one-way function acted on.

During our theoretic developments we dealt with two DP extension tech-
niques that were not treated in existing analyses of tradeoff algorithms. The
first concerns the 6-th DP extension that shortens the regeneration of pre-
computation chains, and we had to compute the reduced expected cost of dealing
with alarms. The second hurdle concerns the 7-th DP extension that changed the
order of online chain iteration executions, and we had to work out the probabil-
ity of inversion success associated with each column of a DP matrix, as opposed
to that associated with a whole DP matrix. We tested the correctness of our
arguments concerning these two issues with experiments.

Our theory surrounding the online chain record is hidden from view behind
Lemma 3. Using arguments made during its proof we can explicitly write out
the expected cost of resolving alarms associated with a single table as

Dmsc t

∫ t̂/t

0

x e−x − t̂/t

et̂/t − 1

(

1− e−x
)

dx = Dmsc t
{

1− 1

et̂/t
− (t̂/t)2

et̂/t − 1

}

. (4)

More precisely, this ignores whether or not the correct answer was found among
other tables, and is the expected cost of resolving false alarms during the com-
plete processing of a single table, when all DP extensions up to the 6-th trick are
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applied. Rather than testing Lemma 3 directly, which could hide small details
through the averaging effect over multiple tables, we tested our theoretic treat-
ment of the 6-th DP extension through (4) that predicts behavior seen while
processing a single table. Testing this equation is also more appropriate in that
it still retains the dependence on the chain length bound parameter t̂.

Table 1. Cost of resolving alarms when fully processing a single DP table with an

online chain record

N m t t̂/t Dmsc theory test

228 512 512 1 0.5 12.84 13.02

228 512 512 5 0.5 210.86 210.19

228 512 512 10 0.5 254.83 254.70

229 1536 512 1 0.75 19.26 19.47

229 1536 512 5 0.75 316.29 316.28

229 1536 512 10 0.75 382.24 381.68

N m t t̂/t Dmsc theory test

228 768 512 1 0.75 19.26 19.47

228 768 512 5 0.75 316.29 315.67

228 768 512 10 0.75 382.24 382.12

228 1536 512 1 1.5 38.51 38.88

228 1536 512 5 1.5 632.58 631.08

228 1536 512 10 1.5 764.48 763.41

Experimental verification of (4) is summarized in Table 1. Each table entry
corresponds to 2,000 randomly generated DP tables and 5,000 online chain cre-
ations per table. All iterations spent in dealing with alarms that were generated
during this whole process were counted and divided by 2, 000× 5, 000. The tests

were conducted with different values of t̂
t and Dmsc, so as to verify (4) at various

inputs. We also tried different m and t pairs that give the same Dmsc value to
verify that the formula is indeed a function of Dmsc. All the experiment results
are very close to our theory.

The second experiment validates our treatment of the parallel processing of
tables. At the core of our associated argument is an equation obtained during the
proof of Lemma 2, that expresses the probability for the processing of a table to
stop at its i-th iteration.4 The theoretically obtained probability was compared
with values obtained through experiments. Working with the i-th termination
probability, rather than Lemma 2, which gives the number of one-way function
applications summed over all i, allows us more direct verification of finer details.

After fixing various parameters, we first executed a complete pre-computation
phase, thus preparing a set of ℓ tables. A simple XOR with a random fixed
constant was used as the reduction function for each table. Then, we ran the pD
online phase algorithm with a randomly generated inversion target and recorded
the iteration count at which the processing of each table was terminated. The
online phase was repeated with a certain number of random inversion targets.
The process described so far, starting from the pre-computation phase to the
multiple target inversions, was repeated a small number of times. Let us denote
the number of inversion targets tried per pre-computation set by keys and the

4 This is precisely (5) and (6) of page 22.
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number of complete pre-computation phases that were executed as rpt. The
number of times each specific i was recorded, summed over all tables and test
trials, was divided by ℓ× keys × rpt, and was taken as the probability obtained
through the experiment.
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Fig. 1. Probability for pD to stop processing of a specific table at the i-th iteration;
Only approximately 240 out of the t̂ test values are plotted as dots in each graph
(x-axis: i; y-axis: probability)

Test results are depicted as graphs in Figure 1. In each framed graph box,
the tiny irregular (red) dots represent the experiment results and the smooth
(blue) curve represents the theory. Because plotting all test results made the
dots too densely packed and hard to see, we only plotted approximately 240
points among the t̂ points of each graph, with the intervals between plotted
points shorter at smaller i values. The theoretic value for the i = t̂ position,
which is expressed as a separate equation, is marked with an ×-sign and the
corresponding experiment result is marked with a dot that is slightly larger than
others. It is clear that the test results and theory are mostly in good agreement.
However, the experiment data and theoretic value are visibly different at i = t̂
and this requires explanation.

The disagreement at i = t̂ is the largest for the right bottom graph. In
this case the chain length bound t̂ = 10t = 10240 ≈ 213.3 is rather close to√
N = 215.5, and since such a choice does not satisfy the assumptions made in

Section 2, this does not indicate a problem with our analysis. We were forced to
use such small parameters by lack of computational resources, but this should
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not be an issue in practical applications of the tradeoff technique, where N would
be much larger.

Let us discuss this matter slightly further. Recall that we had repeatedly

used
(

1 − 1
t

)i
as the probability for a chain not to reach a DP until the i-th

iteration. This value disregards the possibility of the chain looping back onto
itself and a more exact expression is

i
∏

j=1

(

1− 1

t
− j

N

)

+
i

∑

k=1

k

N

k−1
∏

j=1

(

1− 1

t
− j

N

)

.

The value
(

1− 1
t

)i
is a good approximation of this, as long as i ≪

√
N , but one

knows from the birthday paradox that
(

1− 1
t

)i
will slowly deviate from the value

given by the more complicated expression as i approaches
√
N . We conducted a

supplementary test, which we do not explain here due to page limits, to verify

that our use of
(

1 − 1
t

)i
as the ratio of non-DP chains remaining after the i-th

iteration was indeed the cause of the discrepancy between theory and experiment
at i = t̂, when t̂ is close to

√
N .

6 Comparison of Tradeoff Algorithms

The analysis given in Section 4 contains enough information for us to make com-
parisons between algorithms. We will first present a direct comparison between
the pD and the original DP tradeoffs. Then, we will present the range of design
options made available by the two DP variants and the rainbow tradeoffs com-
pactly as graphs. These graphs will be of more practical value than the initial
direct comparisons.

6.1 pD versus DP

As discussed in Section 3, the pD and the original DP tradeoffs will display
identical coverage rate, require identical pre-computation cost, and succeed in
recovering x with identical probability, when they are executed under the same
set of parameters m, t, and ℓ. The two algorithms also require the same amount
of physical storage for DP tables and they only differ in the online execution

time. Since the tradeoff coefficients are given as their respective TM2

N2 values, the
online time complexities may directly be compared through pDtc and Dtc. Here,
a smaller coefficient implies a more efficient tradeoff algorithm.

After reviewing the tradeoff coefficients as given by (3) and Theorem 1, one
can see that they are expressed in a very similar form. In fact, the only dif-
ference is in the first constant that sits inside the first set of parentheses. To
compare the pD tradeoff against the original DP tradeoff, it suffices to evalu-

ate
ln(1−Dps)

Dps

∫ 1

0 (1− Dps)
1−u lnu du at various success rates. Some explicit values

are 0.9293, 0.8345, 0.6879, 0.5283, 0.4332, and 0.2830 at respective success rates
25%, 50%, 75%, 90%, 95%, and 99%. Since all of these are strictly less than 2,
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the corresponding constant of the original DP tradeoff, we have a sure indication
that the pD tradeoff will outperform the original DP tradeoff.

We have clearly ranked pD over DP, but there is one issue that could affect
this conclusion. The online memory access bottleneck of the pD tradeoff could
remain a non-negligible overhead, even when the secondary DP technique men-
tioned in Section 3 is applied, and one iteration of the pD tradeoff could take
longer, on average, than that of the DP tradeoff. Should the circumstances be
such that a marked difference in this iteration time is inevitable, the difference
must be taken into account when interpreting a tradeoff coefficient ratio as a
performance ratio. For example, if the pD tradeoff requires α time units per
iteration and the DP tradeoff requires β time units per iteration, then one must
compare the values α · pDtc and β · Dtc against each other rather than compare
pDtc against Dtc.

After seeing that pD outperforms DP, one naturally questions whether the
improvement comes from the 6-th or the 7-th DP extension, i.e., whether keeping
a record of the online chain or the parallel processing of tables was the main cause
for the improvement. Let us refer to the DP variant that uses the first six of the
seven DP extensions as the DP-OCR tradeoff. Details are not provided in this
paper due to the page limit, but we have also analyzed DP-OCR in full. Results
are that the tradeoff coefficient for DP-OCR falls between those of pD and DP,
if all three are subject to the same parameters m, t, and ℓ. When parameters
are such that only low inversion success rates (50%) are expected, DP-OCR
performs quite close to pD, implying that the online chain record accounts for
most of the improvement. However, when parameter achieving high success rates
(99%) are chosen, DP-OCR stands approximately halfway between original DP
and pD, implying that the parallelization does play a significant role in increasing
efficiency.

6.2 pD versus Rainbow

Our next goal is to include the rainbow tradeoff in the comparison. This is
not as straightforward as the comparisons between the two DP variants, mainly
because of the large structural differences between the DP and rainbow tradeoffs.
Below, we quickly review the approach of [11] before following it to present a
fair comparison. The information required to draw the graphs for the rainbow
tradeoff was also taken from [11]. Notation Rpc and Rtc will be used to denote the
pre-computation coefficient and the tradeoff coefficient of the rainbow tradeoff,
and the notation Xpc and Xtc will be used when referencing the pre-computation
and tradeoff coefficients that are not specific to a tradeoff algorithm.

The tradeoff coefficient Xtc = TM2

N2 is a measure of how efficiently the algo-
rithm balances online time against storage requirements. A smaller Xtc implies a
more efficient tradeoff between online time and storage. However, better tradeoff
efficiency usually requires a higher pre-computation cost and is not always de-
sirable in practice. The optimal balance point between the tradeoff efficiency Xtc

and pre-computation cost Xpc is a subjective matter that cannot be arbitrarily
set in this paper. What can be done objectively is to present the range of
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“tradeoff efficiency Xtc can be utilized, if pre-computation effort Xpc is
invested”

options that are made available by each algorithm, as a graph. Then, the imple-
menter can make subjective decisions based on this compact display of possible
choices and the physical resources that are available to him.

The above discussion would be sufficient for anyone interested in choosing pa-
rameters for one fixed tradeoff algorithm. However, a little more care is required
when comparing different algorithms. The range of possible options for each algo-
rithm must be presented in a consistent manner. A common requirement on the
success rate must be taken and the unit used to express the tradeoff coefficients
must be unified. We have already seen that a direct comparison between pDtc
and Dtc is justifiable. As for comparisons of these two against the rainbow trade-
off, let us simply state that pDtc and Dtc should be compared against 4Rtc (as
opposed to Rtc) to be fair. The main reason is that, as discussed in Section 2, the
number of bits per table entry required by a rainbow tradeoff is roughly twice
that of a DP tradeoff. The decision to compare pDtc against 4Rtc involves certain
assumptions, such as that m and t are of similar order and that the bookkeeping
of online chain records causes negligible overhead, but they are assumptions that
are typically made during theoretic analysis of tradeoff algorithms and the de-
tails should be clear to anyone with a full understanding of [11]. This concludes
our short review of the approach to fair tradeoff comparison given by [11].

The range of (Xpc, Xtc) options each tradeoff algorithm is capable of providing
is given in Figure 2. To draw the graph, for example, corresponding to the DP
tradeoff, one refers to (2) for the x-coordinate (pre-computation cost), substi-
tutes (1) into (3) for the y-coordinate (tradeoff coefficient), and then plots the
curve parameterized by Dmsc.

In each framed graph box, the two curves and the sequence of dots should
be seen as extending infinitely upwards. However, the right ends of the three
graphs are either clearly marked or clearly visible. The curves start to go back up
beyond the marked right ends, so that these marks correspond to the minimum
tradeoff coefficient achievable by each algorithm. As going beyond this minimum
implies using larger pre-computation while obtaining worse tradeoff efficiency,
parameters corresponding to the parts that are not drawn should not be used.

We are now ready to discuss the implications of the graphs given in Figure 2.
The graphs for Dtc and pDtc are given by the dashed and solid lines, respectively.
The possible (Rpc, 4Rtc) choices are given by the discrete sequence of dots. Each
dot corresponds to the use of a certain number of rainbow tables and since these
table counts tend to be small, especially at low success rate requirements, the
possible options appear spaced apart from each other. If one is required to fill
in the space between the dots, one may extend horizontal lines to the right of
each dot, until the line reaches over the dot to its right. Each box corresponds
to a certain requirement on the probability of successful inversions.

In all the graph boxes, the graphs for the pD tradeoff sit further away from
the bottom left corner than the dots for the rainbow tradeoff. Being closer to
the bottom left corner implies that the same tradeoff efficiency can be obtained
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Fig. 2. Tradeoff coefficients for the DP (dashed), pD (solid), and rainbow (large dots)
tradeoffs in relation to pre-computation cost, at various success rates; Numeric values
on each frame represent pre-computation iterations in units of N (bottom), tradeoff
coefficient values Dtc, pDtc, 4Rtc (left), and the matrix stopping constants Dmsc, pDmsc

that served as parameters for drawing the curves (top)

at a smaller pre-computation cost and that a better tradeoff efficiency can be
obtained at equal pre-computation cost. Hence a very rough conclusion would
be that the rainbow tradeoff is the best among the three algorithms.

Let us discuss this in more detail, starting with the case of success rate set to
25%. The optimal tradeoff coefficient reachable by the pD tradeoff is pDtc = 0.10.
This tradeoff efficiency can be used if the available resources permit 0.376N it-
erations of pre-computation. In comparison, the rainbow tradeoff achieves opti-
mal tradeoff coefficient 4Rtc = 0.18 at 0.309N pre-computation iterations. Even
though pDtc = 0.10 and 4Rtc = 0.18 represent online time ratio of 1.8 at equal
physical storage size, depending on the resources available to the tradeoff imple-
menter, the advantage of pD in tradeoff efficiency may or may not be worth its
disadvantage in the pre-computation cost one must accept. So far, neither of the
two tradeoffs can be said to be clearly superior over the other.
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However, another issue that is evident in the 25% case is that the rainbow
tradeoff provides much less flexibility in options than the pD tradeoff. For ex-
ample, the option of using pDtc = 0.11 at Dpc = 0.336 is available with the pD
algorithm. Compared to the optimal efficiency of pDtc = 0.10 at Dpc = 0.376,
this gives a valuable reduction in pre-computation cost at a small degradation of
tradeoff efficiency. Unless the cost of pre-computation is extremely cheap, most
implementers of the tradeoff algorithm will prefer to use pDtc = 0.11 over the
optimal pDtc = 0.10. The rainbow tradeoff does not allow such a freedom of
choice at the 25% probability of success.

Since the dots for the rainbow tradeoff are very close to the curve for the
pD tradeoff, one can say that every option provided by the rainbow tradeoff can
(nearly) be provided by the pD tradeoff. Since the pD tradeoff provides higher
flexibility and even the possibility of a lower tradeoff coefficient, it seems safe
to conclude that the pD tradeoff is preferable over the rainbow tradeoff at 25%
success rate.

Even though we have explained at length that the pD tradeoff could be
preferable over the rainbow tradeoff, the observations made for the 25% success
rate are not very applicable to any of the other graph boxes. In the 50% success
rate case, the optimal pD option of pDtc = 1.12 at Dpc = 0.915 is not a very
attractive choice over the rainbow option of 4Rtc = 1.17 at Rpc = 0.828, which
achieves similar tradeoff efficiency at a visibly lower pre-computation cost. Sim-
ilarly, we have pDtc = 6.19 at Dpc = 1.86 versus 4Rtc = 6.48 at Rpc = 1.66 for the
75% success rate, and pDtc = 18.5 at Dpc = 3.17 versus 4Rtc = 18.7 at Rpc = 2.81
for the 90% success rate. At these moderate success rates, the minimum pDtc
is slightly better than the minimum 4Rtc, but its use cannot be justified when
pre-computation cost is taken into account. In fact, as discussed in the 25% suc-
cess rate, implementers are likely to choose parameters somewhat away from the
optimal tradeoff efficiency points, where the rainbow tradeoff is clearly advanta-
geous over the pD tradeoff. As for higher success rates 95% and 99%, even the
minimum 4Rtc is smaller than the minimum pDtc, so that there is no reason to
prefer the pD tradeoff over the rainbow tradeoff.

7 Conclusion

The parallel DP tradeoff studied in this work is a cryptanalytic time memory
tradeoff algorithm that adds two extra techniques to the more widely known DP
tradeoff. The first is to keep a full record of the online chain so that alarms can be
resolved earlier during the pre-computation chain regeneration. The second idea
is to process the multiple DP tables in parallel. This allows for more time to be
spent in dealing with relatively shorter chains so that false alarms are hopefully
reduced. We have confirmed that both of these ideas have positive effects on the
efficiency of the DP tradeoff.

Our analysis of the pD tradeoff did not ignore the time taken to resolve false
alarms and is accurate enough to provide multiple significant digits. Results of
the analysis were used to provide a comparison between the pD and rainbow
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tradeoffs. The comparison of tradeoff efficiency was done in a fair manner in
the sense that factors such as the success probability of inversion, the storage
size in number of bits, and pre-computation cost were all taken into account.
Hence, the comparison results have practical implications on the choice of which
tradeoff algorithm to use.

Comparisons show that, even with the extra enhancements, the pD tradeoff
is not likely to be preferable over the rainbow tradeoff under most situations.
The only exception is when the success rate requirement is very low. For ex-
ample, when dealing with multi-target time memory tradeoffs [5], where the
rainbow tradeoff is known to be much less efficient than both the original Hell-
man and DP tradeoffs, our analysis is an indication that the use of the pD
tradeoff could be advantageous over the original DP tradeoff. At moderate suc-
cess rate requirements, the pD tradeoff can be slightly more efficient than the
rainbow tradeoff, but the choice to use the pD tradeoff cannot be justified when
the pre-computation cost is taken into account.

In short, when reduction in wall-clock running time is very important and
one is willing to parallelize the online phase to a very high degree, depending
on the degree of parallelization available, variants of the DP tradeoff could be a
reasonable choice. However, if total CPU time is more important than wall-clock
time, one should work with the rainbow tradeoff. Still, the pD tradeoff is more
efficient than the usual DP tradeoff, in that it requires a smaller total number of
function iterations, when the two are provided with the same pre-computation
table.

The theoretic analysis and the resulting concrete graphs of this paper can
easily be adjusted to cope with various specific situations and allow for educated
decisions. For example, when run on resource constrained environments such as
GPUs, iterations of pD may take longer than those of DP due to pD’s higher
demands for online memory. In this situation, it suffices to scale the tradeoff
coefficients of pD and DP according to their respective average iteration timings
before comparing their graphs to conclude whether the online memory require-
ment undermines the small advantage of pD over DP.
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A Technical Proofs of Lemmas

Full proofs to the three lemmas that were introduced in Section 4 are provided
here. The proofs mostly consist of careful applications of the random function
arguments followed by some technical computations.

A.1 Lemma 1

We want to compute the number
←

mi of distinct points situated at distance i
from the ending points in a DP matrix.

Consider a DP matrix constructed with a sufficiently large t̂
t . We may assume

that the fraction of wasted pre-computation iterations t̂
t

(

1− 1
t

)t̂ ≈ t̂
t exp(− t̂

t ) is
very small. This implies that only a negligible fraction of the points on which the
random function F was defined is discarded during the pre-computation table
creation.

Let us fix a specific method for counting the number of distinct non-ending
points in the DP matrix. These points are the inputs on which the random
function images were defined and their total number is expected to be Dcrmt.
An example of counting method would be to count by rows. One starts by
counting the number of points on the first row, excluding the ending point, and
successively adds the number of points found on the next row, being careful to
exclude any chain segment that merges into a previously counted chain. One
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could also count by columns or choose a more complicated walk through the DP
matrix.

Regardless of the counting method that is taken, one can view the points
that are counted as those inputs on which the random function was randomly
defined without any restriction. Chain iterations computed on all other F -input
points of the DP matrix can be seen as having followed the random function
definitions made on the counted points.

Since the F -image definitions were made randomly on the Dcrmt fresh points,
we can expect Dcrmt 1t many of these points to have been mapped to DPs by F .
The discussion at the beginning parts of this proof assures us that the ratio 1

t
of points mapped to DPs has not been altered inadvertently by the discarded
pre-computation. These points that were mapped to DPs are clearly the points
situated one iteration away from the DP ending points and these contain no
duplicates. A straightforward extension of this idea is that Dcrmt

(

1 − 1
t )

i−1 1
t

many distinct points are found i iterations away from the DPs, as claimed.

A.2 Lemma 2

The cost of creating the online chain is given by this lemma. Even though pD
processes all ℓ tables in parallel, let us focus on a single fixed table and compute
the expected work associated with its processing. The total cost will then be ℓ
times the value we compute.

The initial searching of the inversion target y = F (x) among the DPs, which
requires no F invocation, will be referred to as the 1-st iteration. As explained
at the end of Section 3, we take the convention that the outcome from the
i-th iteration of one table does not affect the i-th iteration of another table.
Only strictly previous iterations will have the possibility of affecting the current
iteration.

The pD algorithm will terminate the online chain creation for the table under
our focus right after processing the i-th iterations for all tables if and only if one
of the following events occur.

1. The online chain for the table under focus became a DP chain of length5 i,
while none of the other ℓ − 1 tables produced the correct answer x to be
recovered up to the i-th iteration.

2. The online chain for the table under focus did not reach a DP up to the i-th
iteration, and the correct x was found for the first time in one (or more) of
the other ℓ− 1 tables at the i-th iteration.

3. The online chain for the table under focus became a DP chain of length i,
and the correct inverse x was found for the first time in one (or more) of the
other ℓ− 1 tables at the i-th iteration.

5 We measure the length of an online chain starting from the unknown answer x.
The inversion target y is already an online chain of length 1 and the i-th iteration
produces an online chain of length i.
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Note that the above three events are mutually exclusive and that the two sub-
events that constitute each of the above three events are independent from each
other.

Let us compute the probability for the first event to occur. The online chain

requirement is satisfied with probability
(

1− 1
t

)i−1 1
t . As for the inversion failure

part, observe that no two distinct columns of a DP matrix, aligned at its ending
points, can contain a common element. Hence the number of distinct points, used
as inputs to F during table creation, that lie within i iterations away from the
ending points, is given by

∑i
j=1

←

mj . The probability for the other tables to fail in

producing the correct inverse up until the i-th iteration is thus
(

1−
∑i

j=1

←

mj

N

)ℓ−1
.

The second event is discussed next. Its online chain part occurs with prob-

ability
(

1 − 1
t

)i
. As for the part concerning the recovery of x, one must suc-

ceed in recovering the inverse within the first i iterations, but not succeed
within the first i − 1 iterations. This probability is given by the difference
{

1 −
(

1 −
∑i

j=1

←

mj

N

)ℓ−1} −
{

1 −
(

1 −
∑i−1

j=1

←

mj

N

)ℓ−1}
. We emphasize that suc-

cessful inversion before the i-th iteration must be ruled out, so that the simpler

expression 1−
(

1−
←

mi

N

)ℓ−1
does not serve our need.

After the probability for the third event is similarly computed, we can write
the probability for the processing of the table under focus to stop at the i-th
iteration to be

(

1− 1

t

)i−1 1

t

(

1−
∑i

j=1
←

mj

N

)ℓ−1

+
(

1− 1

t

)i{(

1−
∑i−1

j=1
←

mj

N

)ℓ−1

−
(

1−
∑i

j=1
←

mj

N

)ℓ−1}

+
(

1− 1

t

)i−1 1

t

{(

1−
∑i−1

j=1
←

mj

N

)ℓ−1

−
(

1−
∑i

j=1
←

mj

N

)ℓ−1}

.

If we apply Lemma 1, the approximation (1− 1/a)b ≈ e−b/a, and Dpc =
mtℓ
N , we

arrive at

(

1− 1

t

)i−1

exp
(

− DpcDcr

{

1−
(

1− 1

t

)i−1})

−
(

1− 1

t

)i

exp
(

− DpcDcr

{

1−
(

1− 1

t

)i})

,

(5)

which is correct for 1 ≤ i < t̂. In order for all the probabilities to add up to 1,
the final probability at i = t̂ should clearly be

(

1− 1

t

)t̂−1

exp
(

− DpcDcr

{

1−
(

1− 1

t

)t̂−1})

. (6)
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Since stopping at the i-th iteration implies i − 1 iterations of F , the cost of
online chain creation for the single table under our focus can be written as

{

t̂−1
∑

i=1

(

Equation (5)
)

· (i − 1)
}

+
(

Equation (6)
)

· (t̂− 1)

=

t̂−1
∑

i=1

(

1− 1

t

)i

exp
(

− DpcDcr

{

1−
(

1− 1

t

)i})

≈ t

∫ t̂/t

0

e−x exp
(

− DpcDcr
(

1− e−x
))

dx.

One can compute this explicitly and find it to be

t

DpcDcr

{

1− exp
(

− DpcDcr(1− e−t̂/t)
)}

≈ t

DpcDcr

{

1− exp(−DpcDcr)
}

=
t

DpcDcr
Dps,

where the approximation is valid for sufficiently large t̂
t . To arrive at the formula

claimed by Lemma 2, it now suffices to multiply ℓ to the above and then apply
1
ℓDpc =

1
t pDmsc.

A.3 Lemma 3

The number of one-way function iterations required to resolve alarms is given
by this lemma. We will continue to use the convention that was explained in the
previous subsection concerning the labeling of iterations and how only strictly
previous iterations can affect the current iteration. As before, we focus our at-
tention on a single table.

Let us assume that the i-th iteration of the online chain for this table resulted
in a DP and compute the work expected to deal with the alarm which may or
may not result from this DP. Even though the pre-computation chains were
generated long before the current online chain, we treat each pre-computation
chain as if it were being freshly generated and study how it might collide with
the current online DP chain of length i. That is, we generate a pre-computation
chain with a random function that has only been defined on the online chain so
far.

The probability for a randomly created chain to collide with a given online
chain of length i at the j-th iteration is

(

1− 1

t
− i

N

)j−1 i+ 1

N
≈ exp

(

− j

t

) i+ 1

N
.

This is since the first (j − 1) iterations must be chosen among non-DPs that do
not belong to the length-i online chain and the j-th iteration must land on one
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of the (i+ 1) online chain points. The approximation ignores the i
N term, since

it is of much smaller order than 1
t .

Note that the length of a pre-computation chain is at most t̂. This implies
that, as the j values approach t̂, we know beforehand that the next iteration
images will not land on the online chain points that are far from the ending
point. More precisely, we can write the probability for a random pre-computation
chain to collide with the online chain at distance j ≤ t̂ from the starting point
of the pre-computation chain as

j−2
∏

k=0

(

1− 1

t
− min{i+ 1, t̂− k}

N − (i + 1−min{i+ 1, t̂− k})
)

× min{i+ 1, t̂− j + 1}
N − (i+ 1−min{i+ 1, t̂− j + 1})

≈ exp
(

− j

t

)min{i+ 1, t̂− j + 1}
N

.

Since pD keeps a record of the complete online chain (the 6-th extension to
DP), if the online chain merges with the pre-computation chain at distance j
from the starting point of the pre-computation chain, regeneration of the pre-
computation to resolve alarms can be stopped at the j-th iteration. Also recall
that the regeneration of a pre-computation chain need not exceed (t̂ − i + 1)
iterations (the 5-th extension to DP). The expected cost of resolving alarms
which may or may not occur from an online DP chain of length i can be written
as

t̂
∑

j=1

min{j, t̂− i + 1} m

1− e−t̂/t
exp

(

− j

t

)min{i+ 1, t̂− j + 1}
N

≈ m

1− e−t̂/t

t3

N

∫ t̂/t

0

min
{

x,
t̂

t
− i

t

}

exp(−x) min
{ i

t
,
t̂

t
− x

}

dx

=
Dmsc

1− e−t̂/t
t
{ i

t

(

1− e−t̂/t
)

− t̂

t

(

ei/t − 1
)

e−t̂/t
}

. (7)

We are finally ready to write down the cost of dealing with alarms. It suffices
to combine the above expected work with the probability for other tables not to
produce the correct answer up to the (i− 1)-st iteration and the probability for
the online chain we are focusing on to become a DP chain of length i. Recalling
that the cost must be added over all ℓ tables, the cost of dealing with alarms
can be written as

ℓ

t̂
∑

i=1

(

1−
∑i−1

j=1
←

mj

N

)ℓ−1

·
(

1− 1

t

)i−11

t
· Dmsc

1− e−t̂/t
t
{ i

t

(

1−e−t̂/t
)

− t̂

t

(

ei/t−1
)

e−t̂/t
}

.
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After using Lemma 1 to replace the
∑i−1

j=1
←

mj , this can be approximated by the
integral expression

Dmsc ℓt

∫ t̂/t

0

exp
(

− DpcDcr(1 − e−x)
)

e−x
(

x− t̂

t

ex − 1

et̂/t − 1

)

dx.

By applying change of variables to the first term Dmsc ℓt
∫ t̂/t

0
exp

(

− DpcDcr(1−
e−x)

)

e−x x dx of this expression, we can rewrite it as

−Dmsc ℓt

∫ 1

e−t̂/t

exp
(

− DpcDcr(1− u)
)

(− lnu) (−du).

The formula stated in the lemma is a tweaked version of this equation that can
be obtained by applying the relations Dmscl = Dpct, Dps = 1 − e−DpcDcr , and

e−t̂/t ≈ 0.
It only remains to deal with the second term. One can easily check that

0 ≤ Dmsc ℓt

∫ t̂/t

0

exp
(

− DpcDcr(1− e−x)
)

e−x
( t̂

t

ex − 1

et̂/t − 1

)

dx

= Dmsc ℓt
t̂/t

et̂/t − 1

∫ t̂/t

0

1− e−x

exp
(

DpcDcr(1 − e−x)
) dx ≤ Dmsc ℓt

(t̂/t)2

et̂/t − 1
,

where the final inequality follows from the observation that the integrand is less
than 1. The upper bound we have obtained for the second term is clearly negli-

gible in comparison to the previously computed first term, when t̂
t is sufficiently

large.

25


