
Improved Anonymity for Key-trees⋆

Michael Beye1 and Thijs Veugen1,2

1 Information Security and Privacy Lab, Faculty of Electrical Engineering,
Mathematics and Computer Science, Delft University of Technology, The Netherlands

M.R.T.Beye@tudelft.nl
2 Security Group, TNO, The Netherlands

thijs.veugen@tno.nl

Abstract. Randomized hash-lock protocols for Radio Frequency IDen-
tification (RFID) tags offer forward untraceability, but incur heavy
search on the server. Key trees have been proposed as a way to reduce
search times, but because partial keys in such trees are shared, key com-
promise affects several tags. Buttyán et al. have quantified the resulting
loss of anonymity in the system, and proposed specific tree properties
in an attempt to minimize this loss. We will further improve upon these
results, and provide a proof of optimality. Finally, our proposals are com-
pared to existing results by means of simulation.

Key words: RFID, Hash-lock protocol, key-tree, anonymity, anonymity
set

1 Introduction

We consider the problem of authenticating many Radio Frequency IDentifica-
tion (RFID) tags through randomized hash-lock protocols, in an efficient way.
The tags are authenticated towards the reader through a challenge-response
mechanism. Each tag authenticates itself using some secret key combined with
a random value (nonce). To authenticate the tag, the reader will have to check
the keys of all tags combined with all possible random values, in order to find a
match. Since this task is very intensive for the reader, a key-tree is used. Each
leaf of the tree represents a tag, and each edge corresponds to a specific key.
Every tag is assigned the keys that lie on its path from the root of the tree (see
Fig. 1). During the authentication protocol, a tag is authenticated step by step,
i.e. edge by edge, such that the computational load of the reader, and thus the
total authentication time, is lowered.

However, the authentication mechanism should still remain secure. If hardware-
level tampering is taken into account, keys that were assigned to compromised
tags can become known to the adversary. Because partial keys are shared between
neighboring tags in the tree, several additional tags may be partially broken as

⋆ Part of this research was performed at TNO for a master’s thesis for the University
of Utrecht (UU). Special thanks go to Gerard Tel (UU) for his advice, and to Harry
Fluks (TNO) for his work on the simulation code.

2 Michael Beye and Thijs Veugen

well. How to construct the tree such that the number of (partially) broken tags
will be minimal in case of one or more compromises?

This paper considers the trade-off between efficiency (minimizing authenti-
cation time), and security (minimizing the impact of tag compromise on neigh-
boring tags), of such authentication mechanisms.

The layout of this paper is as follows: Section 2 will outline related work, with
an emphasis on Buttyán et al.’s previous work on the optimization of key-trees.
In Section 3, Buttyán’s optimization problem is rephrased, an improved solution
is suggested, and its effect is quantified. Finally, conclusions will be drawn in
Section 4.

2 Related Work

Hash-chain protocols are meant to provide forward untraceability, by updating
tag IDs in a one-way manner. This way, past IDs cannot be recovered, even
through tampering. Examples are OSK (by Ohkubo, Suzuki and Kinoshita in
[14]) and Yeo’s protocol [16]. In [1], Avoine et al. suggest applying time-memory
trade-offs (based on Hellmann tables [9]) to hash-chain protocols (namely OSK
and an improved version thereof). In [2] they extend this trade-off with so-
called rainbow tables and checkpoints to further improve efficiency. Hash-chain
protocols have weaknesses, including protocol exhaustion (when the end of a
chain is reached, tags can no longer update their IDs and become traceable) and
desynchronization (server and tag chains can become out of synch if tags are
queried by third parties).

A different class of hash-based authentication schemes called Hash-lock pro-
tocols (due to Weis et al.) was devised to solve the aforementioned problems.
Tags are locked and unlocked, using hashes of their ID as the key. The static
hash-lock scheme [15] is vulnerable to both replay attacks and tracking, but in
the same paper, Weis et al. offer the randomized hash-lock scheme as a solution
to such attacks: it adds tag freshness (a nonce generated by the tag) to pre-
vent reader impersonation and tracking. The nonce is used as a challenge, and
is hashed together with the tag’s ID to form a one-time-use authentication key
(the expected response). Juels and Weis [10] later added reader freshness to also
prevent tag impersonation.

Note that precomputation cannot be used in these protocols, because the
use of freshness makes the search space too large – one would need to compute
values not only for each tag, but for each tag ID in combination with all possible
nonces. Other solutions are required to reduce search complexity.

Molnar was the first to propose using a tree of secrets for RFID tags [11].
Although originally used for a system built around exclusive-OR and a pseudo-
random function, it can be applied to other challenge-response building blocks.
Damg̊ard and Østergaard Pedersen [5] use the same concept, but speak of cor-
related keys. Nohara et al. in their “K-steps protocol” ([12], also dubbed NIBY)
propose to apply trees to the hash-lock setting. They use the term group IDs

Improved Anonymity for Key-trees 3

rather than correlated keys, and their trees are unconventional (being of non-
uniform depth). Note that all these approaches use a sequence of group- and
sub-group IDs to quickly and gradually narrow down a tag’s identity. As Molnar
mentions, partial keys in such a tree should be chosen independently and uni-
formly from a key space of sufficient entropy. Failure to do so would make the
system vulnerable to attack. If partial keys are chosen properly, the adversary
will have a large key space to search, while the owner of the system can efficiently
search through a limited subspace (the actual tree).

The trade-off that exists between efficiency and security in tree-based pro-
tocols was already pointed out by Avoine [1], with respect to Molnar’s original
trees. Because tags share their partial keys, if one tag is compromised (i.e. has its
memory probed through invasive tampering), an adversary learns partial keys
for several other tags as well. This will enable him to decipher their responses
in some of the verification steps, resulting in reduced anonymity and facilitating
tracking. Nohl and Evans [13] try to quantify this more precisely. They distin-
guish between scenarios where compromised tags are chosen in a selective or a
random way, and compute the information leakage measured in bits.

A paper of particular interest is by Buttyán et al. [4], where the concept of
trees with variable branching factors is introduced, to better preserve anonymity
in case of attack. Our work provides an optimization of Buttyán’s solution.

In [8] Buttyán tries to further improve the balance between complexity and
privacy in a new “group-based” authentication protocol. In short, the tags are
divided into λ groups, where each group shares a group-key. Every tag also has
an ID. This group-based scheme can be seen as a tree of depth 2, where every
group-ID is tried, but the last stage (unique ID) only requires one decryption
instead of exhaustive search. This means that the tree can be even wider at the
top than a Buttyán tree, and thus attains a higher anonymity score. However,
we choose not to follow this example because we believe that the group-based
authentication protocol in [8] has inherent flaws, as will be explained in Section 4.

2.1 Notation

This paper bases its notation on that of Buttyán in [4], but makes minor exten-
sions:

– T = {t1, · · · , tN}: set of all tags in the system
– N : size of T , or actual number of tags in the system
– N ′: number of leaves in the tree (

∏

(B)), or maximum number of tags in the
system, N ′ ≥ N

– c: number of compromised tags
– P (ti): helper function that returns the anonymity set to which tag ti belongs
– Pj : anonymity set j, 0 ≤ j ≤ ℓ
– ℓ: number of anonymity sets in a given configuration
– S: size of a given anonymity set
– S̄: average size over all anonymity sets in a given configuration

4 Michael Beye and Thijs Veugen

– S̄〈−〉(c): expected values of S̄ (averaged over all configurations containing c
compromised tags, see Definition 2)

– S̄0(c): lower bound for S̄, in the worst-case configuration containing c com-
promised tags (Definition 3)

– B = (b1, . . . , bd): a “branching factor vector” (or tuple), representing a tree;
furthermore, B\{b1, · · · , bx} denotes the vector (bx+1, . . . , bd)

– d: depth of the tree
– R(B): resistance to single member compromise for a tree with branching factor

vector B. R(B) ≡
S̄〈−〉(1)

N
≡ S̄0(1)

N

– E(x): expected value of a variable x (weighted average of all possible values
that this random variable can take on)

–
∑

(B): shorthand for
∑d

i=1 bi, or the sum over all elements in B

–
∏

(B): shorthand for
∏d

i=1 bi, or the product over all elements in B

2.2 Buttyán Trees

Buttyán et al. observed the time-anonymity tradeoff and noted that narrow, deep
trees allow faster search; it is wide, shallow trees that provide more anonymity.
Obviously, if many tags share the same partial keys, many tags can be excluded
from the search space after each authentication stage, thus making search faster.
The increased anonymity can be intuitively explained by the fact that when
partial keys are shared between fewer tags, the amount of information gained
by compromising a single tag is limited. Buttyán uses the concept of anonymity
sets (Pfitzmann and Köhntopp [7], Dı́az [6]) to quantify matters.

Definition 1. Assume a tag ti sends a given message m (or participates in a
protocol execution). For an observer O, the anonymity set P (ti) contains all
tags that O considers possible originators of m. Because all tags in P (ti) are
indistinguishable to O, ti is anonymous among the other tags in the set.

Anonymity sets provide a sliding scale for anonymity, where belonging to a
larger set implies a greater degree of anonymity. Total anonymity holds if the set
encompasses all possible originators in the whole system (one is indistinguishable
among all N tags in T), and belonging to a singleton set implies a complete lack
of anonymity.

To measure the level of anonymity offered by a tree, Buttyán looks at the
level of anonymity provided for a randomly selected member. This expected size
of the anonymity set that a randomly selected member will belong to, is denoted
S̄. One could also view it as the average anonymity set size over all tags, as
shown in (1). Note that S̄ can be computed for any given scenario where a tree
is broken into anonymity sets. Note that, for c > 1, the sizes of anonymity sets
within the tree can vary, as different configurations of broken tags are formed.
Configurations containing the same (number and size of) anonymity sets are con-
sidered identical, because sets can always be ordered in ascending order without
loss of generality.

Improved Anonymity for Key-trees 5

key 2 key 3

key A key B key C

key α

key D

key β

Tag 1Aα
(broken)

Anonymity
sets

key 1

Fig. 1: Buttyán tree with a single broken tag

S̄ =

N
∑

i=1

|P (ti) |

N
=

ℓ
∑

j=1

|Pj |

N
|Pj | =

ℓ
∑

j=1

|Pj |
2

N
, (1)

where P (ti) is a function that returns the anonymity set to which tag ti belongs,
Pj denotes an anonymity set and ℓ is the number of sets.

Buttyán then defines R, the resistance to single member compromise, as S̄
computed for a scenario where a single tag is broken, and then normalizing the
result (as in Dı́az [6]). Note that because we can freely order the anonymity
sets, c = 1 leads to a single unique configuration. With its range of [0, 1], R
is independent of N , allowing for easy comparison between systems of different
sizes.

R =
S̄

N
=

ℓ
∑

j=0

|Pj |
2

N2
=

d+1
∑

i=0

|Pj |
2

N2
, (2)

where Pj denotes an anonymity set, ℓ is the number of sets, d denotes tree depth,
and S̄ is computed for the (unique) scenario resulting from single member com-
promise. Verify that, in this scenario, the number of sets ℓ is indeed equal to d+1.

Buttyán proposes the use of trees with different, independent branching fac-
tors on each level, sorted in descending order (as shown in Fig. 1). We will refer
to such trees as “Buttyán trees”, and to trees with a constant branching factor
as “Classic trees”.

Trees will be described by their branching factor vectors B = (b1, . . . , bd),
where the variables bi (1 ≤ i ≤ d) are positive integers denoting the branching
factor at level i.

Buttyán et al. in [4] reach the conclusion that the branching factors near the
root contribute more to S̄ and R. For trees with variable branching factors this
means that a deep, top heavy Buttyán tree can potentially outperform a shallow
classic tree.

6 Michael Beye and Thijs Veugen

Theorem 1 rephrases Buttyán’s notion of an optimal R(B) using the term
“lexicographically largest”; the proof for the original version can be found in [4].

Theorem 1. Let B and B′ be two factor vectors, their elements sorted in de-
scending order, s.t.

∏

(B) =
∏

(B′) = N . If B is lexicographically larger than
B′, then R(B) > R(B′),

Similarly, we rephrase Buttyán et al.’s optimization problem, which is cen-
tered around Theorem 1, as:

Problem 1. Given the total number N of members and the upper bound Dmax

on the maximum authentication delay, find the lexicographically largest vector
B = (b1, . . . , bd) subject to the following constraints:

∏

(B) =

d
∏

i=1

bi = N , and
∑

(B) =

d
∑

i=1

bi ≤ Dmax . (3)

Buttyán et al. provide a greedy algorithm that solves this problem recursively.
It starts with the prime factorization of N and tries to combine prime factors as
long as the sum (authentication time) remains acceptable.

However, Buttyán recognizes that trees need to stand up to more than single
tag compromise. Without going into mathematical detail, Buttyán suggests to
express S̄ for the general case in two different ways:

Definition 2. S̄〈−〉(c) expresses S̄ as the average over all
(

N
c

)

possible distribu-
tions of c compromised members across the tag set T .

Our notation is a natural extension of Buttyán’s S̄〈−〉, directly incorporating
c. Depending on how each successive member is picked from the tree, different
anonymity sets are broken down. Buttyán notes that computing S̄〈−〉 is hard,
and therefore suggests an alternative measure:

Definition 3. S̄0(c) represents the worst-case value of S̄ for all
(

N
c

)

possible
distributions of c compromised members across the tag set T .

Although not stated explicitly in [4], this worst-case value is attained in (any
of) the most uniform distributions of c compromised tags across T .

Proof. Assume that we are allowed to choose tags to be compromised sequen-
tially, with the aim to minimize the average anonymity set size. The first com-
promised tag leads to a unique configuration. Each subsequent compromised tag
leads to a new configuration, with more anonymity sets (of varying, decreasing
size). To minimize the average set size in the resulting configuration, the next tag
to be compromised should be chosen from (one of) the largest anonymity set(s)
in the current configuration. When sorting anonymity sets in ascending order,
we observe that this is equivalent to choosing tags (as) uniformly (as possible
given the tree structure) across T . By induction, our claim holds for any c. ⊓⊔

Again, Buttyán’s notation S̄0 is generalized to directly incorporate c. Buttyán
correctly remarks that S̄0(c) is far easier to compute, and acts both as a lower
bound and an accurate approximation for S̄〈−〉(c).

Improved Anonymity for Key-trees 7

3 Improved Key-trees

When considering the optimization problem as phrased by Buttyán (Problem 1),
we first note that the condition

∏

(B) = N can lead to inferior solutions. Partic-
ularly when the number N has large prime factors, resulting in a small number
of candidate branching factor vectors. We prefer the condition

∏

(B) ≥ N , which
we will show leads to better results. An added advantage in practice is that it
allows to maintain a small buffer of extra keys (see discussion in Section 3.1).
Our optimization problem now becomes:

Problem 2. Given the total number N of members and the upper bound Dmax

on the maximum authentication delay, find the vector B = (b1, . . . , bd) that
maximizes R(B) subject to the following constraints:

∏

(B) =
d
∏

i=1

bi ≥ N , and
∑

(B) =
d

∑

i=1

bi ≤ Dmax . (4)

The anonymity measure R(B) used here refers to the full tree with
∏

(B) =
N ′ tags, of which exactly one is compromised, i.e. c = 1. Theorem 4 will later
show that the same holds for the anonymity measure of the partial tree with
N ≤ N ′ tags.

Theorem 2. The maximal R(B) under the constraints of Problem 2 is achieved
by the lexicographically largest vector B that satisfies the constraints.

The proof of Theorem 2 is given in the Appendix. The following theorem
shows how to optimize the product of a branching vector, while keeping the sum
constant and ignoring the lexicographic order. If

∑

(B) = b, let us write the
largest possible

∏

(B) as
∏max

b .

Theorem 3. Let b ≥ 2 be a constant. Consider the set of branching vectors B
(with elements in descending order) with

∑

(B) = b. Then
∏

(B) =
∏max

b holds
when B is of one of the following forms: (3∗), (4, 3∗) or (3∗, 2), where 3∗ denotes
a sequence of branching factors 3 of arbitrary (possibly zero) length.

Proof. Let B be a branching factor vector with
∑

(B) = b. The proof is given
by considering different cases.

Suppose B has a branching factor bi equal to 1. Since
∑

(B) ≥ 2, there must
be another branching factor bj . Then, we could add bi to bj to increase

∏

(B)
without modifying

∑

(B), meaning
∏

(B) 6=
∏max

b . Therefore, an optimal B
(with

∏max

b) contains no branching factor equal to 1.
Suppose B has a branching factor bi ≥ 5. Since (bi − 3) · 3 > bi, we can

increase
∏

(B) without modifying
∑

(B), by making an extra factor 3, meaning
∏

(B) 6=
∏max

b . Therefore, an optimal B contains only branching factors 2, 3 or
4.

Suppose B has two branching factors bi = bj = 4 (i 6= j). Since 3 · 3 · 2 =
18 > 16 = 4 · 4, we can increase

∏

(B) without modifying
∑

(B) by changing

8 Michael Beye and Thijs Veugen

bi and bj to 3 and adding an extra 2, meaning
∏

(B) 6=
∏max

b . Therefore, the
optimal B contains at most one branching factor 4.

Suppose B has two branching factors bi = bj = 2 (i 6= j). Since 2 · 2 = 4,
we could just as well substitute these branching factors by a single 4, making
B lexicographically larger. Therefore,

∏max

b can be attained by at most one
branching factor 2.

Suppose B has two branching factors bi = 2 and bj = 4. Since 2 · 4 = 8 <
9 = 3 · 3, we can increase

∏

(B) without modifying
∑

B by substituting both
factors by 3, meaning

∏

(B) 6=
∏max

b . Therefore, an optimal B will not contain
both branching factors 2 and 4.

By considering these five cases, it follows that
∏max

b will be attained in one
of the following cases:

1. B contains only 3’s;
2. B contains one 4 and an arbitrary number of 3’s;
3. B contains one 2 and an arbitrary number of 3’s.

Consequently when
∑

(B) = b, and we order the elements descendingly,
∏max

b

will be attained by:

1. B = (3∗), when b mod 3 = 0;
2. B = (4, 3∗), when b mod 3 = 1;
3. B = (3∗, 2), when b mod 3 = 2. ⊓⊔

When considering Problem 2, we know that when b = Dmax and
∏max

b < N ,
there can be no solution that satisfies both constraints. On the other hand, when
∏max

b ≥ N , there is at least one solution. The obvious way to find the branching
factors of the lexicographically largest solution, is to take a greedy approach. It
means that the first branching factor is optimized first, then the second, etc.
Algorithm 2 takes N and Dmax as input and solves this problem recursively.
Starting from b1 = Dmax, a branching factor b1 is allowed, if a suitable tail
(of one of three forms in Theorem 3) can be constructed with the remaining
Dmax − b1, such that the product of B is large enough. If such a tail exists, it is
optimized in recursion. If no suitable tail exists, b1 is decremented. If no proper
solution can be found at all (for 2 ≤ b1 ≤ Dmax), an error is returned. This
means that N is so large that even a binary tree does not allow search within
the imposed Dmax.

Note that because a tree is constructed only once, during a pre-computation
stage, the runtime efficiency of the optimization algorithm is neither essential
nor related to the authentication time. However, we note that the complexity of
both Buttyán’s algorithm and Algorithm 2 is linear (in N and/or Dmax).

Since our search space is larger than Buttyán’s, our optimal branching vector
will either be equal to, or lexicographically larger than the output of Buttyán’s
algorithm, thus providing better anonymity. The potential difference in output
can be illustrated with the help of the following examples:

– Buttyán’s own example in Set 1 shows that Buttyán’s algorithm is not optimal
in the setting of Problem 2. The output of Algorithm 2 is lexicographically

Improved Anonymity for Key-trees 9

int N, int Dmax, vector B, vector B′

g(N,Dmax)
{

for (int b1 = Dmax; b1 ≥ 2; b1−−) do

{
h = ⌊(Dmax − b1)/3⌋
if ((Dmax − b1) mod 3 == 0) then B = (b1, 3

h)
else if ((Dmax − b1) mod 3 == 1) then B =

(

b1, 4, 3
h
)

else / ∗ ∗((Dmax − b1) mod 3 == 2) ∗ ∗/ B =
(

b1, 3
h, 2

)

if (
∏

(B) ≥ N) then return B′ = (b1, g(N/b1, Dmax − b1))
}
return ‘‘Error: N too large for Dmax; no solution exists!’’

}
where 3h denotes a sequence of h 3’s.

Algorithm 2: Finding an optimal B for Problem 2

larger, although not much. Here, we also see that the tail of our B may contain
a single element of 5; this shows that recursion is indeed required for our
algorithm to always find an optimal solution.

– In Set 2, the input contains relatively large primes. Buttyán’s algorithm cannot
improve upon the Classic tree at all, leaving much room for improvement by
Algorithm 2. The difference in performance is about as large as between the
Classic and Buttyán trees in Set 1.

– For Set 3, Buttyán’s algorithm and Algorithm 2 perform similarly and yield
the same output.

Table 1. Test cases

Input Classic Buttyán Optimized Buttyán

Set 12: N = 27000, (30, 30, 30) (72, 5, 5, 5, 3) (73, 5, 3, 3, 3, 3)
Dmax = 90 R = 0.9355 R = 0.9725 R = 0.9729(N ′ = 29565)

Set 23: N = 24389, (29, 29, 29) (29, 29, 29) (84, 4, 3, 3, 3, 3),
Dmax = 100 R = 0.9333 R = 0.9333 R = 0.9764(N ′ = 27216)

Set 34: N = 1728, (12, 12, 12) (24, 4, 3, 3, 2) (24, 4, 3, 3, 2)
Dmax = 36 R = 0.98462 R = 0.9194 R = 0.9194

2 Buttyán’s example
3 Example with prime numbers
4 Relatively small tree; note that Buttyán’s algorithm produces an optimal output in
this case

10 Michael Beye and Thijs Veugen

3.1 Consequences of Larger Trees

Algorithm 2 can lead to trees that exceed the strictly required number of leaves
(with N ′ > N). We argue that this has practical advantages, but should also be
taken into account when judging the anonymity of such trees.

A larger tree will allow for addition of tags at a later time, which may be
desirable in practice. Ideally, creating and balancing a tree should be done only
once, and therefore the tree should accommodate all the tags ever expected to
enter the system. In systems where growth is anticipated, having a larger tree
that is ready for the future is good practice.

Also, since we are defending against tampering attacks, replacement of com-
promised tags should be taken into consideration. Replacement tags should con-
tain new key material, lest they be reintroduced with keys that are already fully
disclosed (immediately limiting their anonymity). Having unused leaves in the
tree seems ideal for this purpose.

When choosing which leaves to actually use as tags (initially and for replace-
ments), we suggest to select a sufficient number of branches at the level d − 1
at random, and to randomly initialize tags from these branches. This to create
a subtree of initialized tags that is as close to the original (optimal) shape as
possible, without introducing order in the system which might be exploited.

Finally note that tags corresponding to unused leaves in the tree cannot be
encountered by adversaries in the field. For this reason, they do not contribute
to the size of the set among which targets need to be distinguished. This means
that (some) anonymity sets will appear larger than they are in actuality. Because
our anonymity measures are all based on set sizes, to prevent overestimating the
results of our solution, we apply corrections as detailed below.

Theorem 4. If N tags are placed uniformly at random in a tree with
∏

(B) =
N ′ > N , then the expected resistance to c member compromise (Rc) equals
N
N ′Rc(B).

Proof. Consider a particular choice of N tags within the set {ti | 1 ≤ i ≤ N ′}.
Consider a particular choice of c compromised tags within the N tags. Let 1 ≤
i ≤ N ′. Then P (ti) denotes the anonymity set of tag ti, considering only the N
chosen tags. Note that P (ti) will be empty when tag ti is not one of the N chosen
tags. On the other hand, P ′(ti) denotes the anonymity set of tag ti, considering
all N ′ elements.

It is clear that, when averaging over all possible choices of N tags, and all
possible choices of c compromised tags,

E[|P ′(ti)|] =
N ′

N
· E[|P (ti)|]

Therefore,Rc = S̄〈−〉(c)/N = E[1
N

∑N

i=1
|P (ti)|

N
], which equals E[1

N

∑N ′

i=1
|P (ti)|

N
],

because P (ti) is empty when tag ti was not chosen. Consequently, Rc =

E[1
N

∑N ′

i=1
|P ′(ti)|

N ′] = N
N ′Rc(B). ⊓⊔

Improved Anonymity for Key-trees 11

3.2 Simulation for c > 1

Section 3 has already shown that our proposal can yield lexicographically larger
B than Buttyán’s approach, and consequently better anonymity measures when
c = 1. For c > 1, the theoretical analysis becomes very complex, so we compare
our approach to Classic and Buttyán trees by means of computer simulations.
Both Buttyán and our proposal assume a maximum allowed authentication delay,
and try to provide optimal privacy within this boundary. Therefore, it is sensible
to compare the anonymity of the two solutions, but not their efficiency (in terms
of authentication delay), because both solutions are constructed based on the
same maximum authentication delay Dmax.

We will calculate S̄0(c) and S̄〈−〉(c).Using code written in C++, we iterate
over all possible scenarios in an efficient way, making use of the fact that many
scenarios are equivalent with regard to set sizes. The minimum and (weighted)
average of S̄ taken over all these scenarios is stored as output. Because the
number of scenarios grows rapidly as the number of compromised tags increases,
we limit ourselves to cases with 1 ≤ c ≤ 100.

For trees with N ′ > N , results are corrected by scaling down as discussed in
Section 3.1.

Table 1 shows the three input sets for which we have evaluated the Classic,
Buttyán and Optimized Buttyán trees. The following figures provide a graphical
comparison of the performance of different trees under various conditions. A
selection of the most relevant datasets was made, and some of the figures show
partial graphs to provide the required level of detail. We will discuss how these
results relate to our hypotheses and claims.

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3
x 10

4

number of compromised members c

a
v
er

a
g
e

se
t

si
ze

S̄
0

Classic
Buttyan
Optimized Buttyan (scaled)

Fig. 3: S̄0(c) for Set 1

12 Michael Beye and Thijs Veugen

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5
x 10

4

number of compromised members c

a
v
er

a
g
e

se
t

si
ze

S̄
0

Classic / Buttyan
Optimized Buttyan (scaled)

Fig. 4: S̄0(c) for Set 2

20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

300

350

number of compromised members c

a
v
er

a
g
e

se
t

si
ze

S̄
<
−

>

Classic
(Optimized) Buttyan

Fig. 5: S̄〈−〉(c) for Set 3

For Set 1, the Optimized Buttyán trees seemed to outperform the regular
Buttyán tree significantly in terms of S̄0(c). However, after correction (to ac-
count for the fact that N ′ > N), there is little difference in actual performance
(Figure 3). The same trend was observed for S〈−〉(c), and the result for Set 3
(not displayed here). We note that the performance of the Optimized Buttyán
trees in no case drops below that of the original Buttyántrees.

Results for Set 2 differ, because the Buttyán tree there is strongly suboptimal
in shape, with Figure 4 clearly showing the advantage of the Optimized Buttyán
tree. This is due to the fact that the chosen N has too few prime factors for
Buttyán’s algorithm to work with. In similar cases, the same problem will occur
to a greater or lesser extent.

Based on Figure 5, we observe a turning point where the classic tree starts to
outperform the (Optimized) Buttyán trees. This occurs in all graphs, at c = b1
for S̄0 and at c ≈ b1 for S〈−〉. At these points, the decrease of S̄ slows causing
the graph to seemingly settle into a steady minimum. We can explain this by
the fact that at [around] this point, the last very large anonymity set has been

Improved Anonymity for Key-trees 13

[is expected to have been] broken down, because each top-level branch contains
[can be expected to contain] at least one compromised tag. Because subsequent
compromised tags then fall into smaller sets, the adversary will learn little new
information; he has obtained the most important keys in the tree already. In
such a worrying scenario, what little anonymity tags have left depends upon the
keys in lower branches. Classic trees retain slightly more anonymity, because
they have larger branching factors at the bottom levels. However, given the (by
then) minimal values of S̄ overall, the absolute advantage is not large.

4 Conclusions and Future Work

Our proposed Algorithm 2 yields better results than Buttyán’s original approach,
when it comes to finding the lexicographically largest B. We have provided proof
that the solution is optimal in terms of optimization problem 2. The output is at
least as good (often superior, in some cases identical) to Buttyán trees in terms
of R, S̄0(c) and S̄〈−〉(c).

Algorithm 2 can result in trees with N ′ ≥ N , which may be advantageous in
growing systems or when replacing compromised tags. It also means that care
must be taken not to overestimate the anonymity, leading us to apply corrections
to our simulation results. The corrected results still clearly show the advantage
of our tree construction to both Classic and Buttyán trees.

Future work:
We wish to expand our current results, by taking side-channel knowledge and
adaptive adversaries into consideration. A paper detailing the results of this
has recently been accepted at the SecureComm2011 Conference [3]. Defending
against adaptive attacks leads to a different optimization problem (and a differ-
ent optimal tree shape), and thus to a trade-off between defending against naive
and adaptive adversaries. This is related to our observation that anonymity is
mostly lost when c ≈ b1, and the fact that this process may be accelerated by
adversaries who are able to accurately choose which tags they compromise.

As is evident from our examples, Algorithm 2 provides results that are much
better, better, or identical to Buttyán’s results, depending on the exact inputs
N and Dmax. Additional experimentation could show what the expected gain
in anonymity is in the average case (for randomly chosen N and Dmax), thus
better illustrating the actual performance of Algorithm 2 in practice.

Finally, to get back to Buttyán’s group-based proposal in [8], its suspected
weakness lies in the fact that the final stage of narrowing down IDs is essentially
skipped (the unique ID can be simply decrypted and read). Especially adaptive
attackers that can choose their tags with some confidence, could very quickly
remove all anonymity within the system by choosing one tag from each group.
Tree-based systems still preserve some measure of anonymity in these cases.
A formal analysis of this problem (both for naive and adaptive attacks) forms
another direction for future work.

14 Michael Beye and Thijs Veugen

References

1. Gildas Avoine, Etienne Dysli, and Philippe Oechslin. Reducing Time Complexity
in RFID Systems. In Bart Preneel and Stafford Tavares, editors, Selected Areas
in Cryptography – SAC 2005, volume 3897 of LNCS, pages 291–306, Kingston,
Canada, August 2005. Springer-Verlag.

2. Gildas Avoine, Pascal Junod, and Philippe Oechslin. Time-Memory Trade-Offs:
False Alarm Detection Using Checkpoints, Extended Version. Technical report,
2005. LASEC-REPORT-2005-002.

3. Michael Beye and Thijs Veugen. Anonymity for key-trees with adaptive adver-
saries, 2011. Accepted at SecureComm2011, 7th International ICST Conference
on Security and Privacy in Communication Networks.

4. Levente Buttyán, Tamás Holczer, and István Vajda. Optimal Key-Trees for Tree-
Based Private Authentication. In In Proceedings of the International Workshop on
Privacy Enhancing Technologies (PET), June 2006. Springer.

5. Ivan Damg̊ard and Michael Østergaard Pedersen. RFID Security: Tradeoffs be-
tween Security and Efficiency. Cryptology ePrint Archive, Report 2006/234, 2006.

6. Claudia Dı́az. Anonymity Metrics Revisited. In Shlomi Dolev, Rafail Ostrovsky,
and Andreas Pfitzmann, editors, Anonymous Communication and its Applications,
number 05411 in Dagstuhl Seminar Proceedings. Internationales Begegnungs- und
Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl, Germany, 2006.

7. Hannes Federrath, editor. Anonymity, Unobservability, and Pseudonymity - A
Proposal for Terminology, volume 2009 of LNCS. Springer-Verlag, 2001.

8. Tamas Holczer Istvan Vajda Gildas Avoine, Levente Buttyán. Group-based private
authentication. In IEEE International Symposium on a World of Wireless, Mobile
and Multimedia Networks, pages 1–6, 2007.

9. M. Hellman. A cryptanalytic time-memory trade-off. In Information Theory, IEEE
Transactions on, volume 26, pages 401–406, July 1980.

10. Ari Juels and Stephen A. Weis. Defining Strong Privacy for RFID. In PERCOMW
’07: Proceedings of the Fifth IEEE International Conference on Pervasive Com-
puting and Communications Workshops, pages 342–347, Washington, DC, USA,
2007. IEEE Computer Society.

11. David Molnar and David Wagner. Privacy and security in library RFID: issues,
practices, and architectures. In CCS ’04: Proceedings of the 11th ACM conference
on Computer and communications security, pages 210–219, New York, NY, USA,
2004. ACM.

12. Yasunobu Nohara, Toru Nakamura, Kensuke Baba, Sozo Inoue, and Hiroto Ya-
suura. Unlinkable identification for large-scale rfid systems. Information and Media
Technologies, 1(2):1182–1190, 2006.

13. Karsten Nohl and David Evans. Quantifying information leakage in tree-based
hash protocols (short paper). In Peng Ning, Sihan Qing, and Ninghui Li, editors,
ICICS, volume 4307 of LNCS, pages 228–237. Springer, 2006.

14. Miyako Ohkubo, Koutarou Suzuki, and Shingo Kinoshita. Cryptographic Ap-
proach to “Privacy-Friendly” Tags. In RFID Privacy Workshop, MIT, MA, USA,
November 2003.

15. Stephen A. Weis, Sanjay E. Sarma, Ronald L. Rivest, and Daniel W. Engels.
Security and Privacy Aspects of Low-Cost Radio Frequency Identification Systems.
In Dieter Hutter, Günter Müller, Werner Stephan, and Markus Ullmann, editors,
SPC, volume 2802 of LNCS, pages 201–212. Springer, 2003.

Improved Anonymity for Key-trees 15

16. Sang-Soo Yeo and Sung Kwon Kim. Scalable and Flexible Privacy Protection
Scheme for RFID Systems. In Refik Molva, Gene Tsudik, and Dirk Westhoff, edi-
tors, European Workshop on Security and Privacy in Ad hoc and Sensor Networks
– ESAS’05, volume 3813 of LNCS, pages 153–163, Visegrad, Hungary, July 2005.
Springer-Verlag.

A Proof of Theorem 2

The first observation is that for an optimal B,
∑

(B) = Dmax, otherwise Dmax−
∑

(B) could be added to any element of B without violating the constraints
while increasing R(B). So we assume

∑

(B) = Dmax in the proof, which uses
four Lemmas, similar to the Lemmas of Buttyán’s work [4]. It’s also clear that
an optimal B will have branching factors at least 2. The first Lemma, Lemma 1,
shows that a branching vector can always be improved by ordering its elements in
decreasing order. Lemma 3, using some bounds from Lemma 2, shows that given
two branching factor vectors, the one with the larger first element is always at
least as good as the other. Lemma 4 generalizes Lemma 3 by stating that given
two branching factor vectors the first j elements of which are equal, the vector
with the larger (j + 1)-st element is always at least as good as the other.

These Lemma’s together show that a lexicographically larger branching factor
vector will always be at least as good as the lexicographically smaller branching
factor vector (in case

∑

(B) = Dmax), so indeed the solution with maximal R(B)
to Problem 2 is achieved by the lexicographically largest vector that satisfies the
constraints.

Lemma 1. Let B be a branching factor vector, and let B∗ be the vector that
consists of the sorted permutation of the elements of B in decreasing order. If B
satisfies the constraints of Problem 2, then B∗ satisfies them too, and R(B∗) ≥
R(B).

Proof. Since
∏

(B) is not altered by the permutation, we can refer to Buttyán’s
proof [4] of Lemma 1. ⊓⊔

Lemma 2. Let B = (b1, . . . , bd) be a sorted branching vector (i.e. b1 ≥ b2 ≥
. . . ≥ bd). We can give the following lower and upper bounds on R(B):

(

1−
1

b1

)2

≤ R(B) ≤ R(b1) =
1 + (b1 − 1)2

b21

Proof. The lower bound is identical to Buttyán, hence the proof [4] is as well.
The upper bound is an improvement w.r.t. Buttyán, and is proven as follows.
Let M =

∏

(B), then
∏

(B\bd) = M/bd. We derive for d > 1:

R(B) =
1

M2

1 + (bd − 1)2 +
d−1
∑

i=1

(bi − 1)2
d
∏

j=i+1

b2j

16 Michael Beye and Thijs Veugen

=
1

M2

1 + (bd − 1)2 +

d−2
∑

i=1

(bi − 1)2
d
∏

j=i+1

b2j + (bd−1 − 1)2b2d

= R(B\bd)−
b2d
M2

(

1 + (bd−1 − 1)2
)

+
1

M2

(

1 + (bd − 1)2 + (bd−1 − 1)2b2d
)

= R(B\bd) +
2− 2bd
M2

< R(B\bd)

and by recursively applying this inequality also R(B) ≤ R(b1). ⊓⊔

Lemma 3. Let B = (b1, . . . , bd) and B′ = (b′1, . . . , b
′
d′) be two sorted branching

factor vectors (i.e. b1 ≥ b2 ≥ . . . ≥ bd, b′1 ≥ b′2 ≥ . . . ≥ b′d′) that satisfy the
constraints of Problem 2. Then, b1 > b′1 implies R(B) ≥ R(B′).

Proof. We first prove the statement for b′1 ≥ 3. From Lemma 2 we know that

R(B′) ≤
1 + (b′1 − 1)2

b′1
2

and

R(B) ≥

(

1−
1

b1

)2

>

(

1−
1

b′1 + 1

)2

which follows from the fact that b1 > b′1. A straightforward calculation shows

that (1− 1
b′
1
+1)

2 ≥
1+(b′

1
−1)2

b′
1

2 whenever b′1 ≥ 3, and thus R(B) ≥ R(B′).

So the remaining case is b′1 = 2. Since B′ is ordered, each element of B′ will
equal 2. If d′ = 1 then by our previous assumption Dmax =

∑

(B′) = 2, but
this contradicts Dmax =

∑

(B) ≥ 3, so we know d′ ≥ 2. The resistance R(B′)
is readily computed as R(B′) = 1

3 (2 · 4
−d + 1), which will be at most 3

8 (when
d′ = 2). Since R(B) ≥ (1− 1

b1
)2 > (1− 1

3)
2 = 4

9 , it follows that also in this case
R(B) ≥ R(B′). ⊓⊔

Lemma 4. Let B = (b1, . . . , bd) and B′ = (b′1, . . . , b
′
d′) be two sorted branching

factor vectors (i.e. b1 ≥ b2 ≥ . . . ≥ bd, b′1 ≥ b′2 ≥ . . . ≥ b′d′) that satisfy the
constraints of Problem 2. Let j, 1 ≤ j < min(d, d′), be such that bi = b′i for all
i, 1 ≤ i ≤ j, and bj+1 > b′j+1, then R(B) ≥ R(B′).

Proof. It is easy to show that R(B) =
(

b1−1
b1

)2

+ 1
b2
1

·R(B\b1). Therefore, since

b1 = b′1, R(B) ≥ R(B′) whenever R(B\b1) ≥ R(B′\b′1). By recursively ap-
plying this rule, and using Lemma 3, which shows that R(B\{b1, . . . , bj}) ≥
R(B′\{b′1, . . . , b

′
j}), the proof is complete. The proof is identical to the proof of

Buttyán’s Lemma 4 [4]. ⊓⊔

