Fair Computation with Rational Players

ApaMm GROCE* JoNaTHAN KATZ*

Abstract

We consider the problem of fair two-party computation, where fairness (informally) means
that both parties should learn the correct output. A seminal result of Cleve (STOC 1986) shows
that fairness is, in general, impossible to achieve for malicious parties. Here, we treat the parties
as rational and seek to understand what can be done.

Asharov et al. (Eurocrypt 2011) recently considered this problem and showed impossibility of
rational fair computation for a particular function and a particular set of utilities. We observe,
however, that in their setting the parties have no incentive to compute the function even in
an ideal world where fairness is guaranteed. Revisiting the problem, we show that rational fair
computation is possible (for arbitrary functions and utilities) as long as the parties have a strict
incentive to compute the function in the ideal world. This gives a new example where game
theory can be used to circumvent impossibility results in cryptography.

*Department of Computer Science, University of Maryland. Research supported by NSF-CCF #0830464. Email:
{agroce, jkatz}@cs.umd. edu.

1 Introduction

Cryptography and game theory are both concerned with understanding interactions between mu-
tually distrusting parties with potentially conflicting interests. Cryptography typically adopts a
“worst case” viewpoint; that is, cryptographic protocols are designed to protect the interests of
each party against arbitrary (i.e., malicious) behavior of the other parties. The game-theoretic per-
spective, however, views parties as being rational; game-theoretic protocols, therefore, only need
to protect against rational deviations by other parties.

Significant effort has recently been devoted to bridging cryptography and game theory; see [9, 21]
for surveys. This work has tended to focus on two general sets of questions:

“Using cryptography to implement games” (e.g., [7, 10, 4, 8, 25, 1, 19]). Given a game that
is played by parties relying an external trusted entity (a mediator), when can the mediator
be replaced by a cryptographic protocol executed by the parties themselves?

“Applying game-theoretic analysis to cryptographic protocols” (e.g., [17, 21, 13, 26, 1,
15, 16]). What game-theoretic definitions are appropriate for computationally bounded, ra-
tional players executing some protocol? Can impossibility results in the cryptographic setting
be circumvented if we are willing to take a game-theoretic approach?

Here, we turn our attention to the question of fair two-party computation in a rational setting,
where fairness means that both parties should learn the value of some function f evaluated on the
two parties’ inputs. Following recent work of Asharov et al. [2] (see further below), our goal is to
understand when fairness is achievable by rational parties running some cryptographic protocol,
without the aid of any external trusted entity. Our work touches on both the issues outlined above.
Our motivation was to circumvent the strong impossibility result of Cleve [6] for fair two-party
computation in a malicious setting. In this sense, our work is a significant generalization of results
on rational secret sharing [17, 13, 26, 1, 22, 23, 29, 27, 3, 11|, which can be seen as a special case
of fair computation for a specific function with parties’ inputs provided by a trusted dealer. But
it is also possible to view the problem of rational fair computation from a different perspective.
Specifically, one could define a natural “fairness game” involving a trusted mediator who computes
a function f on behalf of the parties (and gives both parties the result), and where parties can
choose whether or not to participate and, if so, what input to send to the mediator. One can
then ask whether there exists a real-world protocol (replacing the mediator) that preserves certain
equilibrium properties of the original mediated game. Our work demonstrates a close connection
between these two complementary viewpoints; see further in the next section.

1.1 Owur Results

Our setting is the same as that studied by Asharov, Canetti, and Hazay [2]. Informally, there are
two parties Py and P; who wish to compute a function f of their respective inputs g and x1, where
the distributions of z¢ and x; are common knowledge. (In [2] independent uniform distributions
were assumed but we consider an arbitrary joint distribution.) Following work on rational secret
sharing, the parties’ utilities are such that each party prefers to learn the correct answer f(zg,x1)
and otherwise prefers that the other party outputs an incorrect answer. Informally, a cryptographic
protocol computing f is fair if having both parties run the protocol is a (computational) Nash

equilibrium with respect to fail-stop deviations.! (IL.e., it is assumed that parties may abort the
protocol early, but cannot otherwise deviate from the protocol.)

The primary result of Asharov et al. in this context is a negative one: they show a function
f, a pair of distributions on the inputs, and a set of utilities for which there is no fair protocol
computing f that has correctness better than 1/2. The suggested implication of their result was
that the power of rational fair computation is relatively limited.

Looking more closely at the impossibility result or Asharov et al., we observe that for their
specific choices of f, the input distributions, and utility functions, the parties have no incentive to
run a protocol at all! Namely, the utility each party obtains by running any protocol that correctly
(and fairly) computes f is equal to the expected utility that each party obtains if it simply guesses
the input of the other party and computes the function on its own (without any interaction).? A
cleaner way of stating this is that even in an ideal world where there is a trusted entity computing f
with complete fairness, the parties would be indifferent between using the trusted entity or not.
In game-theoretic terms, computing f in this ideal world is not a strict Nash equilibrium for the
specific setting considered in [2]. Thus, if running a (real-world) protocol incurs any cost at all,
there is a priori no hope that parties will prefer to run any protocol for computing f!

It seems, then, that the impossibility result of Asharov et al. for rational fair computation is
not due to some inherent limits of rational fairness, but is instead due to the specific function, the
specific input distributions, and the specific utilities chosen by Asharov et al. In this work, we
ask: are there settings where rational fair computation (with complete correctness) is possible?
Assuming the existence of (standard) secure computation, we show a strong, general result for
when this is the case:

Main Theorem (Informal) Fiz f, a distribution on the inputs, and utility functions such that
computing f in the ideal world (with complete fairness) is a strict Nash equilibrium. Then, for
the same input distributions and utility functions, there exists a protocol I for computing f (where
correctness holds with all but negligible probability) such that following Il is a computational Nash
equilibrium. This holds in both the fail-stop and Byzantine settings.

In addition to the fact that we show a positive result, our work goes beyond the setting con-
sidered in [2] in several respects: we handle (deterministic) functions over arbitrary domains where
parties possibly receive different outputs, and treat arbitrary distributions over the parties’ inputs.
(In [2], only single-output functions under independent and uniform input distributions were consid-
ered.) Moreover, our results can be extended to handle the Byzantine setting where, in particular,
parties have the option of changing their inputs; Asharov et al. [2] only treat the fail-stop case.

1.2 Other Related Work

The most relevant prior work is that of Asharov et al. [2], already discussed extensively above.
Here we merely add that the primary focus of Asharov et al. was not to circumvent cryptographic
impossibility results, but rather to develop formal definitions of various cryptographic goals (with
fairness being only one of these) in a game-theoretic context. Their paper takes an important step
toward that worthy goal.

We will consider Byzantine deviations as well, but stick to fail-stop deviations here for simplicity.

2Specifically, using the input distributions and utility functions from [2], Py’s utility if both parties (run some
protocol and) output the correct answer is 0, whereas if both parties guess then each party is (independently) correct
with probability 1/2 and so the expected utility of Py is i 14 % (=) + % -0 = 0. A similar calculation holds for P;.

As observed earlier, work on rational secret sharing [17, 13, 26, 1, 22, 23, 29, 27, 3, 11] can
be viewed as a special case of fair secure computation, where the function being computed is the
reconstruction function of the secret sharing scheme being used, and the parties inputs are generated
by a dealer. Our results would give rational secret-sharing protocols where following the protocol
is a (computational) Nash equilibrium. In contrast, most of the work on rational secret sharing
has focused on achieving stronger equilibrium notions, in part because constructing Nash protocols
for rational secret sharing is trivial in the multi-party setting. (We stress that in the two-party
setting we consider here, constructing Nash protocols for rational secret sharing is not trivial.) We
leave for future work consideration of stronger equilibrium notions for rational fair computation of
general functions.

An analogue of our results is given by work of Izmalkov et al. [24, 25, 20, 18] who, essentially,
also show protocols for rational fair computation whenever parties would prefer to compute the
function in the ideal world. The main difference is that we work in the cryptographic setting where
parties communicate using standard channels, whereas the protocols of Izmalkov et al. require
strong physical assumptions such as secure envelopes and ballot boxes.

There has recently been a significant amount of work on fairness in the cryptographic setting,
showing functions that can be computed with complete fairness [12] and exploring various notions
of partial fairness (see [14] and references therein). The relationship between complete fairness
and rational fairness is not obvious and, in particular, completely fair protocols are not necessarily
rationally fair: if the distributions and utilities are such that aborting is preferable even in the
ideal world then no protocol can be rationally fair (with respect to the same distributions and
utilities) in the real world. In any case, relatively few functions are known that can be computed
with complete fairness. Partial fairness is similarly incomparable to rational fairness.

2 Model and Definitions

Given a deterministic function f : X x Y — {0,1}* x {0,1}*, we let fy (resp., f1) denote the
first (resp., second) output of f, so that f(x,y) = (fo(x,y), fi(z,y)). We consider two settings
where parties Py and P; wish to compute f on their respective inputs xg and x1, with Py receiving
fo(zo, 1) and Py receiving fi(xg,x1): an ideal world computation of f using a trusted third party,
and a real-world computation of f using some protocol II. In each setting, g and x; are chosen
according to some joint probability distribution D, and in each setting we consider both fail-stop
and Byzantine strategies.

The output of Py is correct if it is equal to fy(xg,x1) and incorrect otherwise; this is defined
analogously for P;. The utilities of the parties are given by the following table, where the first value
in each ordered pair is the utility of Py on the specified outcome, and the second is the utility P;:

Py’s output
correct | incorrect
correct | (ag,ay1) | (bo,c1)
incorrect | (co,b1) | (do,d1)

Py’s output

We will make the assumption that parties prefer to output the correct answer rather than an
incorrect answer, and otherwise prefer that the other party outputs an incorrect answer; that is, we
assume by > ag > dy > ¢o (and analogously for P;’s utilities). In [2] it is assumed that the parties’

utilities are symmetric, with b9 = b1 = 1,a90 = a1 = dy = d; = 0, and ¢y = ¢; = —1; we consider
more general utility functions here.

2.1 Execution in the Ideal World

Our ideal world includes a trusted third party who computes f with complete fairness. This defines
a natural game that proceeds as follows:

1. Inputs z¢ and z1 are sampled according to a joint probability distribution D over input pairs.
Then z¢ (resp., z1) is given to Py (resp., Pp).

2. Each player sends an input to the trusted third party. We also allow parties to send a special
input L denoting an abort. Let z{, (resp., z}) denote the value sent by Py (resp., Pp).

3. If x, =L or a) =1, the trusted party sends L to both parties. Otherwise, the trusted party
sends fo(z(, x}) to Py, and fi(z(,x}) to P;. Note that complete fairness is always ensured.

4. Each party outputs some value, and obtains a utility that depends on whether the parties’
outputs are correct or not. (We stress that correctness is defined with respect to the “real”
inputs g, 1, not the effective inputs (), 2} .)

In the fail-stop setting, we restrict z(, € {zo, L} and 2} € {z1, L}. In the Byzantine setting we
allow x(,] to be arbitrary.

The “desired” play in this game is for each party to send its input to the trusted third party,
and then output the value returned by the trusted party. To fully define this “honest” strategy,
however, we must specify what each party does for every possible value (including 1) it receives
from the trusted third party. We formally define strategy (cooperate, Wp) for Py as follows:

Py sends its input zg to the trusted party. If the trusted party returns anything other
than L, then Py outputs that value. If the trusted party returns 1, then P, generates
output according to the distribution Wy(zo).

The strategy (cooperate,W;) for P; is defined analogously. The situation in which Py plays
(cooperate, W) and P; plays (cooperate, Wi) is a (Bayesian) strict Nash equilibrium if every (al-
lowed?) deviation that has xy # xo with nonzero probability results in a strictly lower expected
utility for Py, and analogously for P;. (The expectation is computed over the distribution of the
other party’s input.) Since the utility obtained by Py when the honest strategies are followed is
exactly ag, this means that the honest strategies form a Bayesian strict Nash equilibrium if, for
every possible input xy of Py, the expected utility of Py is strictly less than ag if it sends any
(allowed) z{, # xo to the third party (and similarly for P).

Note that as long as both parties follow honest strategies, Wy and W; are irrelevant (as they
are never used). They are important, however, insofar as they serve as “empty threats” in case of
an abort by the other party: namely, Py knows that if he aborts then P; will determine its own
output according to Wi(z1), and so Py must take this into account when deciding whether to abort
or not. We now define what it means for the parties to have an incentive to compute f.

31.e., in the fail-stop case the only allowed deviation is aborting, whereas in the Byzantine case parties are allowed
to send arbitrary inputs. A deviating party may determine its output any way it likes.

Definition 1 Fiz f, a distribution D, and utilities for the parties. We say these are incentive
compatible in the fail-stop (resp., Byzantine) setting if there exist Wy, W1 such that the strategy
profile ((cooperate, Wh), (cooperate, Wl)) is a Bayesian strict Nash equilibrium in the game above.

As discussed in the Introduction, we require the Nash equilibrium to be strict in order to ensure
that the parties have some incentive to use the trusted party in the expected way to compute the
function. If carrying out the computation with the trusted party is only a Nash (but not strict
Nash) equilibrium, then the parties may be indifferent between using the trusted party and just
guessing the output on their own.

The setting of Asharov et al. [2]. For completeness, we show that the setting considered by
Asharov et al. is mot incentive compatible. Recall that Asharov et al. fix the utilities such that
(1) getting the correct answer while the other party outputs an incorrect answer gives utility 1;
(2) getting an incorrect answer while the other party outputs the correct answer gives utility —1; and
(3) any other outcome gives utility 0. Furthermore (cf. [2, Definition 4.6]), f can be taken to be the
boolean XOR function, with inputs for each party chosen uniformly and independently. We claim
that there is no choice of Wy, Wi for which ((cooperate, Wh), (cooperate, Wl)) is a Bayesian strict
Nash equilibrium. To see this, fix Wy, W and note that playing ((cooperate, Wh), (cooperate, Wl))
gives utility 0 to both parties. On the other hand, if Py aborts and outputs a random bit, then
regardless of the guessing strategy W; employed by P;, we see that Py and P; are each correct
with independent probability 1/2 and so the expected utility of Py remains 0. This is an allowed
deviation that results in no change to the expected utility, and thus there cannot be a Bayesian
strict Nash equilibrium for this scenario.

In contrast, if the utilities are modified so that when both parties get the correct answer
they each obtain utility 1/2 (and everything else is left unchanged), then the setting is incen-
tive compatible. To see this, let Wy, W1 be the strategies that output a random bit. Playing
((cooperate, Wy), (cooperate, W1)) now gives utility 1/2 to both parties. If Py instead aborts, then
— no matter how Py determines its output — both Py and P, are correct with independent proba-
bility 1/2. (Recall that P; is assumed to guess according to W; when we consider possible deviations
by Py.) The expected utility of deviating is 1/8, which is strictly smaller than 1/2; thus, the strat-
egy vector ((cooperate,Wo), (cooperate, Wl)) is a Bayesian strict Nash equilibrium. Our results
will imply that a rational fair protocol can be constructed for this setting, in contrast to what the
negative results of [2] might suggest.

2.2 Execution in the Real World

In the real world there is no trusted party, and the players instead must communicate in order to
compute f. We thus have a real-world game in which inputs g and z; are jointly sampled according
to D; then xq (resp., x1) is given to Py (resp., P;); the parties each execute some strategy and then
decide on their respective outputs.

The goal here is to construct some protocol II such that running the protocol is a (compu-
tational) Nash equilibrium. The running times of the parties, as well as the protocol itself, are
parameterized in terms of a security parameter n; however, the function f as well as the parties’
utilities are fixed and independent of n. We will only consider protocols II where correctness holds
with all but negligible probability; namely, we assume that if II is executed honestly on any inputs
xg,x1 and security parameter n, then the output of the protocol is f(xg, 1) except with probability
negligible in n.

As in the ideal world, we again consider two types of deviations. In the fail-stop setting, each
party follows the protocol Il as directed except that it may choose to abort at any point. Upon
aborting, a party may output whatever value it likes (and need not output the value prescribed by
the protocol). We stress that in the fail-stop setting a party is assumed not to change its input when
running the protocol. In the Byzantine setting, parties may behave arbitrarily (and, in particular,
may run the protocol using a different input). In either setting, we will only be interested in players
whose strategies can be implemented in probabilistic polynomial-time.

We now define what it means for II to induce a game-theoretic equilibrium. We consider
computational Nash equilibria, rather than computational strict Nash equilibria, since the latter
are notoriously difficult to define; in any case, the goal of our work is only to construct real-world
protocols that induce a Nash equilibrium. (We define strict Nash equilibria in the ideal world only
because we use it for our results.) The following definition is equivalent to (a generalized version
of) the definition used by Asharov et al. [2, Definition 4.6].

Definition 2 Fiz f, a distribution D, and utilities for the parties, and fix a (polynomial-time)
protocol I1 computing f. We say II is a rational fair protocol (with respect to these parameters) in the
fail-stop (resp., Byzantine) setting if running the protocol a Bayesian computational Nash equilibrium
in the game defined above.

For example, if we let II; denote the algorithm that honestly implements P;’s role in II, then
IT is a rational fair protocol in the fail-stop setting if for all PPT fail-stop algorithms Ag there is a
negligible function p such that the expected utility of Ag(1™) (when running against IT; (1)) is at
most ag + p(n) (and analogously for deviations by P;). We stress that if 4y aborts here, then P;
determines its output as directed by II;.

Note that it makes no sense to speak of II being a rational fair protocol without regard to some
input distribution and utilities for the parties. In particular, it is possible for II to be rationally for
for one set of utilities but not another.

3 Positive Results for Rational Fair Computation

We show broad positive results for rational fair computation in both the fail-stop and Byzantine
settings. Specifically, we show that whenever computing the function honestly is a Bayesian strict
Nash equilibrium in the ideal world, then there exists a protocol II computing f such that running
IT is a Bayesian computational Nash equilibrium in the real world.

Our protocols all share a common structure. As in prior work on fairness (in the cryptographic
setting) [12, 28, 14], our protocols have two stages. The first stage is a “pre-processing” step that
uses any protocol for (standard) secure two-party computation, and the second stage takes place
in a sequence of n iterations. In our work, the stages have the following form:

First stage:

1. A value ¢* € {1,...} is chosen according to a geometric distribution. This represents the
iteration (unknown to the parties) in which both parties will learn the correct output.

2. Values 79,71, ...,70 rl are chosen, with the {r? *_ | intended for Fy and the {7‘21 | intended
for Py. For i > i* we have ¥ = fo(zo,71) and r} = fi(xo,21), while for i < i* the {r{} (resp.,
{r}) values depend on Py’s (resp., Pi’s) input only.

3. Each r? value is randomly shared as s? and ¢ (with r? = s? @ #?), and s? is given to P and
t? is given to P;.

Second stage: For n iterations, each consisting of two rounds, the parties alternate sending shares
to each other. In the ith iteration, P; sends t? to Py, enabling Py to learn r? ; then Py sends 51-1 to
Py, enabling P; to learn 1. When the protocol ends (either through successful termination or the
other party aborting) a party outputs the most-recently-learned r;.

The key difference with respect to prior work is how we set the distribution of the {r?} for
1 < i*. Here we use the assumption that f, D, and the utilities are incentive compatible, and thus
there are “guessing strategies” Wy(zo) and Wi(z1) for the parties (in case the other party aborts)
that are in equilibrium (see Section 2.1). We use exactly these distributions in our protocol.

3.1 The Fail-Stop Setting

We first present an analysis of the fail-stop setting. Recall that we let Wy (resp., Wi) denote the
distribution that Py (resp., P;) uses to determine its output in the ideal world in case P; (resp.,
Py) aborts, where this distribution may depend on Fy’s input z¢ (resp., Pi’s input z1). We say Wy
has full support if for every xg the distribution Wy(z¢) puts non-zero probability on every element
in the range of f; we define this notion analogously for Wi. We begin with a technical claim.

Lemma 1 Fiz a function f, a distribution D, and utilities for the parties that are incentive com-
patible in the fail-stop (resp., Byzantine) setting. Then there exist Wy, W1 with full support such
that ((cooperate, Wh), (cooperate, Wl)) is a Bayesian strict Nash equilibrium in the fail-stop (resp.,
Byzantine) setting.

Proof We focus on the fail-stop setting, though the proof follows along the same lines for the
Byzantine case. Incentive compatibility implies that there exist W, W] such that the strategy vec-
tor ((cooperate, W), (cooperate, W7)) is a Bayesian strict Nash equilibrium. Distributions W, W
may not have full support, but we show that they can be modified so that they do. Specifically,
we simply modify each distribution so that with some sufficiently small probability it outputs a
uniform element from the range of f. Details follow.

When Py and P; cooperate and both output the correct answer, Py obtains utility ag. Consider
now some input xg for Py, and let uj(zo) denote the maximum utility Py can obtain if it aborts on
input xg. (Recall that when Py aborts, Py chooses its output according to W{(z1). Here, Py knows
Wy as well as the marginal distribution of z; conditioned on Fy’s input z(.) Because cooperating
is a Bayesian strict Nash equilibrium, we must have uj(zo) < ag. Define

up f hax {ug(z)} < ap
x

(the maximum is taken over all z that have non-zero probability as input to Fp); i.e., uj denotes the
highest expected utility P can hope to obtain when aborting on some input. Define u] analogously
with respect to deviations by P;.

Set . i}
def . fap—uy ar —uj
A= — -min , > 0.
2 {bo—Co bl—Cl}

We define a distribution Wy(zp) as follows: with probability A output a uniform element from the
range of f, and with probability (1 —\) choose an output according to W((x(); define W similarly.

Functionality ShareGen

Inputs: ShareGen takes as input a value zg from P, and a value z; from P;. If either input is
invalid, then ShareGen simply outputs L to both parties.

Computation: Proceed as follows:

1. Choose i* according to a geometric distribution with parameter p.
2. Set the values of 7 and r} for i € {1,...,n} as follows:
e If i < i*, choose 1) «+ Wy(xo) and r} «— Wi(z1).
o If i >i* set r{ = fo(zo,71) and r} = fi(xo,z1).
3. For each 7%, choose two values s’ and t? as random secret shares of r?. (Le., s? is
random and s? @ t? = r?.)

e

Output: Send s?,s1,...,59 sl to Py, and 9,¢1,...,¢0 ¢! to Py.

1N “n YV Yn

Figure 1: Functionality ShareGen. The security parameter is n. This functionality is parameterized
by a real number p > 0.

Note that Wy and Wi have full support. We claim that ((cooperate,Wo), (cooperate, Wl)) is a
Bayesian strict Nash equilibrium. To see this, assume the contrary; thus, without loss of generality,
there is an input x such that Py can obtain expected utility at least ag by aborting on input xzg.
(Note that now P; chooses its output according to Wy (x1) when Py aborts.) But then, by following
the same strategy, Py can obtain utility at least ag — A - (bp — ¢p) when playing against a P; who
chooses his output according to Wi (z1). Since ag — A - (bg — ¢o) > ug, this is a contradiction to the
way uy was defined. [|

Theorem 1 Fiz a function f, a distribution D, and utilities for the parties. If these are incentive
compatible in the fail-stop setting, then (assuming the existence of general secure two-party compu-
tation for semi-honest adversaries) there exists a protocol 11 computing f such that 11 is a rational
fair protocol (with respect to the same distribution and utilities) in the fail-stop setting.

Proof By definition of incentive compatibility, there exist distributions Wy, W; (that can depend
on zp and x1, respectively) for which the strategy profile ((cooperate, Wh), (cooperate, Wl)) is a
Bayesian strict Nash equilibrium. By Lemma 1, we may assume that Wy and W7 both have full
support. We define a functionality ShareGen (cf. Figure 1) that is based on these distributions;
this functionality is parameterized by a real number p > 0 that we will set later. We define our
protocol II, that uses ShareGen as a building block, in Figure 2.

Since p is a constant (independent of n), we have i* < n with all but negligible probability and
hence when II is run honestly then both parties obtain the correct answer with all but negligible
probability. In the analysis it is easiest to simply assume that ¢* < n. Since this fails to hold with
only negligible probability it does not affect our proof that the protocol is a computational Nash
equilibrium; alternately, one could simply modify ShareGen to enforce that i* < n always (namely,
by setting ¢* = n in case i* > n).

We will analyze II in a hybrid world where there is a trusted entity computing ShareGen on
behalf of the parties. One can show (following [5]) that if IT is a computational Nash equilibrium
in this hybrid world, then so is IT when executed in the real world (with a secure protocol imple-

Protocol II

Stage one: Both players use their inputs to execute a secure protocol for computing

ShareGen. This results in P, obtaining output s{,s},...,s% sl and P, obtaining output
19,1, 10 L.
Stage two: There are n iterations. In each iteration i € {1,...,n} do:

1. Py sends t? to Py, and Py computes ¥ :=t? @ 9.
1

i

2. Py sends s} to Py, and P, computes r} :=t! © s
Output: Players determine their outputs as follows:

e If P,_; aborts before P; has computed any r; value, then P; chooses its output ac-
cording to W;(z;).

e If P,_; aborts at any other point, or the protocol completes successfully, then no more
messages are sent and P; outputs the last r; value it received.

Figure 2: Formal definition of our protocol.

menting ShareGen). Once we have moved to this hybrid world, we may in fact take the parties to
be computationally unbounded.

Our goal is to show that there exists a p > 0 for which II (in the hybrid world described
above) is a rational fair protocol. We first observe that there are no profitable deviations for a
fail-stop Pj; this is because Py always “gets the output first” in every iteration. (More formally, say
P, aborts after receiving its iteration-i message. If ¢ > i* then P, will output the correct answer
and so P; cannot possibly get utility greater than a;. If ¢ < ¢* then Py has no information beyond
what it could compute from its input z;, and Py will generate output according to Wy(xo); by
incentive compatibility, P} will obtain utility strictly lower than a; regardless of how it determines
its output.) We are thus left with the more difficult case of analyzing deviations by Fj.

Before continuing, it is helpful to introduce two modifications to the protocol that can only
increase Py’s utility. First, in each iteration ¢ we tell Py whether ¢* < i. One can easily see that
Py cannot increase its utility by aborting when ¢* < 4, and so the interesting case to analyze is
whether Py can improve its utility by aborting when ¢* > 4. Second, if Py ever decides to abort the
protocol in some iteration ¢ (with ¢* > i), then we tell Py whether i* = ¢ before Py generates its
output. (P is not, however, allowed to change its decision to abort.)

So, let us fix some input x¢ for Py, and consider some iteration i < n. Say Py has just learned
that r; = y (for some y in the range of f) and is told that i* > 4. If Py does not abort, but instead
runs the protocol honestly to the end, then it obtains utility ag. If Py aborts, then with some
probability « it learns that ¢* = ¢; in that case, Py may possibly get utility bg. Otherwise, with
probability 1 — « it learns that ¢* > . In this latter case, Py has no information beyond what it
could compute from its input, and P; will output a value distributed according to Wj(z1); hence,
incentive compatibility implies that the maximum expected utility of Py is u§ < ag. (This u is
the same as defined in the proof of Lemma 1; for our purposes all that is important is that ug is
strictly less than ag.) That is, the expected utility of aborting is at most o - by + (1 — «) - u§. If

a< b=t (1)

bo —ué

then a - by + (1 — @) - uf < ag, implying that Py has no incentive to deviate. We show that p can
be set such that (1) holds.

Let ¢ o ming, , { Pr[Wo(xo) = y]}, where the minimum is taken over all inputs zo for Py and
all ¢ in the range of f. Since Wy has full support, we have ¢ > 0. We thus have:

Prli* — i Aps — o |5+ > i
e A N e ri* =iAmi ,y“,—“
Pr[ri =y | i* > i

Prji* =i |i* > 1] -Prlry =y | i* =4 + Pr[i* > ¢ | i* > 4] - Pr[r; =y | i* > 1]

p-Prlr =y | =i
p-Prlri=y|i* =14+ 1 —p) Prlri=y|i* >
N
p+(1—-p)q
. pr P
p-(l-q)+q = ¢

IN

9

and we see that by setting p < ¢ - (ap — ug)/(bo — u) we ensure that (1) holds. We stress that the
right-hand side of this inequality is a constant, independent of n.

Assuming p is set as just discussed, the above analysis shows that in any iteration ¢ < n and
for any value r; = y received by Py in that iteration, Py has no incentive to abort. (In fact, Py has
strict incentive not to abort.) The only remaining case to analyze is when i = n. In this case it
would indeed be advantageous for Py to abort when ¢* > ¢; however, this occurs with only negligible
probability and so does not impact the fact that we have a computational Nash equilibrium (which
is insensitive to negligible changes in the utility). |

Although security notions other than fairness are not the focus of our work, we note that the
protocol II presented in the proof of the previous theorem is private in addition to being rationally
fair. That is, the parties learn the function output only, but nothing else regarding the other party’s
input. We omit formal definitions and the straightforward proof.

3.2 The Byzantine Setting

We next consider the Byzantine setting, where in the ideal world a deviating party can change the
input it sends to the trusted third party (or may choose to abort, as before), and in the real world
a deviating party may behave arbitrarily.

The protocol and proof of fairness in the Byzantine setting are similar to those of the fail-stop
setting. We must modify our protocol to ensure that it will work in the Byzantine setting. In
particular, we require ShareGen to now apply a message-authentication code (MAC) to each s? and
tf value so that parties can detect if these values have been modified. The remaining issue to deal
with is the effect of changing inputs; however, we show that if incentive compatibility holds — so
parties have disincentive to change their inputs in the ideal world — then parties have no incentive
to change their inputs in the real world either.

Theorem 2 Fiz a function f, a distribution D, and utilities for the parties. If these are incentive
compatible in the Byzantine setting, then (assuming the existence of general secure two-party com-
putation for malicious adversaries) there exists a protocol I computing f such that 11 is a rational
fair protocol (with respect to the same distribution and utilities) in the Byzantine setting.

10

Functionality ShareGen

Inputs: ShareGen takes as input a value zg from P, and a value z; from P;. If either input is
invalid, then ShareGen simply outputs L to both parties.

Computation: Proceed as follows:

1. Choose i* according to a geometric distribution with parameter p.
2. Choose MAC keys k%, k' «— {0,1}".
3. Set the values of 7 and r} for i € {1,...,n} as follows:
o If i <i*, choose r? « Wy(zo) and r} «— Wi (x).
o If i >i* set r) = fo(zo,21) and 7} = f1(z0, 21).
4. For each 7%, choose two values s® and ! as random secret shares of 7°. (ILe., s¥ is
random and s? @ t? = r?.)

5. Fori=1,...,n, compute tag; <« MAC;.1(i||s}) and tag? « MACyo(i]|?).

Output: Send k°,s), 51, tagl, ..., s0, sl tagl to Py, and k', 19, tag?, t1,...,t9 tagh tl to P;.

Figure 3: Functionality ShareGen. The security parameter is n. This functionality is parameterized
by a real number p > 0.

Proof By definition of incentive compatibility, there exist distributions Wy, W; (that can depend
on zo and x1, respectively) for which the strategy profile ((cooperate, Wo), (cooperate, Wl)) is a
Bayesian strict Nash equilibrium. By Lemma 1, we may assume that Wy and Wj both have full
support. We define a protocol II based on a functionality ShareGen (cf. Figures 3 and 4), where the
latter is parameterized by a real number p > 0. These are largely identical to the protocols used
in the proof of Theorem 1, with the exception that the secret shares exchanged by the parties are
authenticated by a message-authentication code (MAC) as part of the computation of ShareGen,
and the resulting tags are verified by the parties (as part of IT). For our proof, we assume the MAC
being used is an information-theoretically secure, n-time MAC; a computationally-secure MAC
would also be fine, however.

Since p is a constant (independent of n), it is again easy to check that correctness holds with
all but negligible probability. As in the proof of Theorem 1, in our analysis we assume that i* < n
always and this does not affect our results.

The proof that II is rationally fair in the Byzantine setting is similar to the proof of Theorem 1,
and we assume familiarity with that proof here. Once again, we analyze Il in a hybrid world where
there is a trusted entity computing ShareGen on behalf of the parties. We also ignore the possibility
of a MAC forgery, and treat a party who sends a different share/tag from the one it received from
ShareGen as if that party had simply aborted. This is justified by the fact that a successful forgery
occurs with only negligible probability.

Our goal, as in the proof of Theorem 1, is to show that there exists a p > 0 for which IT (in
the hybrid world described above, and ignoring the possibility of a MAC forgery) is a rational fair
protocol. As in the preceding proof, there are again no profitable deviations for P;. Note that here,
P; may either abort early or change its input to ShareGen. The former does not help because P
always “gets the output first” in every iteration; incentive compatibility in the Byzantine setting
implies that the latter — whether in combination with aborting early or not — cannot help, either.

We are thus left with analyzing deviations by FPy. We again introduce two modifications to the

11

Protocol II

Stage one: Both players use their inputs to execute a secure protocol for computing ShareGen.

This results in Py obtaining output &%, s{, s1,tagl,..., s, sl tagl and P; obtaining output
k', tagh, tl, ...) tag), 1.
Stage two: There are n iterations. In each iteration i € {1,...,n} do:

1. P; sends t{ and tag? to Py. If Vrfy,o(i||t9, tag)) = 1, then Py computes 79 :=t? & s¥.

[[[
Otherwise, this is treated as if P; had aborted.
2. Py sends s} and tag} to Py. If Vrfy,: (il|s!, tag}) = 1, then P, computes r} =t} & s}.
Otherwise, this is treated as if Py had aborted.
Output: Players determine their outputs as follows:
e If P,_; aborts before P; has computed any r; value, then P; chooses its output ac-
cording to W;(x;).

e If P;_; aborts at any other point, or the protocol completes successfully, then no more
messages are sent and P; outputs the last r; value it received.

Figure 4: Formal definition of our protocol.

protocol that can only increase Py’s utility. First, in each iteration ¢ we tell Py whether i* < 1.
It follows immediately from incentive compatibility that Py cannot increase its utility by aborting
when i* < i (regardless of what input it sends to ShareGen), and so we assume that Py never does
so. Second, if Py ever decides to abort the protocol in some iteration i, then we tell Py whether
i* =i before Py generates its output. (P is not, however, allowed to change its decision to abort.)
There are two cases to analyze: either Py sends its actual input xzg to ShareGen, or P, sends
a different input z{; #L. In the former case, the analysis is exactly the same as in the proof of
Theorem 1, and one can show that p can be set such that Py has no incentive to abort the protocol
at any point. It remains to show that, in the second case, Py can never increase its expected utility
beyond ay, i.e., the utility it would obtain if it ran the protocol honestly using its actual input zg.
If Py substitutes its input and then runs the protocol to the end, then (by incentive compati-
bility) Py’s expected utility is strictly less than ag. Can Py do better by aborting early? Fix some
input xo for Py, let 2, #.L be the input that Py sends to the trusted entity computing ShareGen,
and consider some iteration i < n. (The case of i = n is handled as in the proof of Theorem 1.)
Say Py has just learned that r; = y (for some y in the range of f) and is told that ¢* > 4. If
Py aborts, then with some probability « it learns that ¢* = 4; in that case, Py may possibly get
utility bg. Otherwise, with probability 1 — « it learns that ¢* > ¢. In this latter case, Py has no
information beyond what it could compute from its input, and P; will output a value distributed
according to Wi(x1); hence, incentive compatibility implies that the maximum expected utility
of Py is uf < ap. (This v is the same as in the proof of Theorem 1.) That is, the expected utility
of aborting is at most a - by + (1 — a) - uf. If
ap — ug

a <
bo — ug

then a - by + (1 —) - u§ < ag, implying that Py did not gain anything beyond what it could have

12

obtained by running the protocol honestly with its actual input.* A calculation exactly as in the
proof of Theorem 1 shows that p can be set in such a way that this condition holds. |

4 Conclusions and Future Work

Given the stark impossibility results for fairness in a purely malicious context [6], it is natural
to understand whether, or to what extent, fairness is achievable in a rational context. Recent
work of Asharov et al. [2] had appeared to give a negative answer to this question, showing a
specific case where rational fairness cannot be achieved (if correctness better than 1/2 is desired).
Our work, in contrast, shows broad feasibility results for rational fairness: roughly, we show that
whenever computing the function is a strict Nash equilibrium in the ideal world, then it is possible
to construct a rational fair protocol computing the function in the real world.

Within the broader context of research at the intersection of game theory and cryptography,
our result can be interpreted in two ways:

e We show a new setting in which cryptographic impossibility results can be circumvented
by assuming rational behavior. Viewed in this light, our results can be seen as a strong
generalization of the extensive line of work on rational secret sharing.

e Given a “fairness game” defined in an ideal world where there is a trusted entity (i.e., a
“mediator”) computing some function on behalf of the parties, a natural question to ask is
when a game-theoretic equilibrium in the ideal world can be implemented via a real-world
protocol. While we do not provide a complete answer to this question, we show a partial
characterization: roughly, whenever there is a strict Nash equilibrium in the ideal world,
there is a protocol that induces a computational Nash equilibrium in the real world.

Our work suggests several interesting directions for future research. First, it would be interesting
to prove a converse of our result. Fix some f, a distribution on the inputs, and utility functions
for the parties. We conjecture that if there exists a rational fair protocol IT for computing f (with
respect to this distribution and utilities) in the Byzantine setting, then either f can be computed
with complete fairness, or else incentive compatibility holds (in the Byzantine setting).

It will also be interesting to explore stronger game-theoretic solution concepts in the real world.
We construct real-world protocols that induce a computational Nash equilibrium, but one could
also aim to construct protocols satisfying some of the stronger equilibrium notions proposed, e.g.,
in [17, 22, 23, 11].

Finally, one could consider even more complex settings of the players’ utilities, e.g., where the
utilities depend on the true output and the actual output of the parties and not just on whether
the outputs are correct or incorrect. This would model situations where being “closer” to the right
answer is better, or where some answers are more important to get right than others.

Tt is conceivable that, conditioned on the fact that Py sent input x{ # xo to ShareGen, party Py can now obtain
better expected utility by aborting than by running the protocol to the end. What we claim here is that, regardless
of this, Py will never obtain better expected utility than it would have obtained by running the protocol to the end
using its actual input xo.

13

References

1]

8]

[9]

I. Abraham, D. Dolev, R. Gonen, and J. Halpern. Distributed computing meets game theory:
robust mechanisms for rational secret sharing and multiparty computation. In 25th Annual
ACM Symposium on Principles of Distributed Computing (PODC), pages 53-62. ACM Press,
2006.

G. Asharov, R. Canetti, and C. Hazay. Towards a game theoretic view of secure computation.
In Advances in Cryptology — Eurocrypt 2011, volume 6632 of LNCS, pages 426—445. Springer,
2011. Full version available at http://eprint.iacr.org/2011/137.

G. Asharov and Y. Lindell. Utility dependence in correct and fair rational secret sharing. In
Advances in Cryptology — Crypto 2009, volume 5677 of LNCS, pages 559-576. Springer, 2009.
A full version containing additional results is avalable at http://eprint.iacr.org/209/373.

I. Barany. Fair distribution protocols, or how the players replace fortune. Mathematics of
Operations Research, 17:327-340, 1992.

R. Canetti. Security and composition of multiparty cryptographic protocols. Journal of Cryp-
tology, 13(1):143-202, 2000.

R. Cleve. Limits on the security of coin flips when half the processors are faulty. In 18th Annual
ACM Symposium on Theory of Computing (STOC), pages 364-369. ACM Press, 1986.

V. Crawford and J. Sobel. Strategic information transmission. Econometrica, 50:1431-1451,
1982.

Y. Dodis, S. Halevi, and T. Rabin. A cryptographic solution to a game theoretic problem. In
Advances in Cryptology — Crypto 2000, volume 1880 of LNCS, pages 112—130. Springer, 2000.

Y. Dodis and T. Rabin. Cryptography and game theory. In N. Nisan, T. Roughgarden,
E. Tardos, and V. Vagzirani, editors, Algorithmic Game Theory, pages 181-207. Cambridge
University Press, 2007.

F. Forges. Universal mechanisms. Econometrica, 58:1342—-1364, 1990.

G. Fuchsbauer, J. Katz, and D. Naccache. Efficient rational secret sharing in standard com-
munication networks. In 7th Theory of Cryptography Conference — TCC 2010, volume 5978
of LNCS, pages 419-436. Springer, 2010.

S. D. Gordon, C. Hazay, J. Katz, and Y. Lindell. Complete fairness in secure two-party
computation. In 40th Annual ACM Symposium on Theory of Computing (STOC), pages 413~
422. ACM Press, 2008.

S. D. Gordon and J. Katz. Rational secret sharing, revisited. In 5th Intl. Conf. on Security
and Cryptography for Networks, volume 4116 of LNCS, pages 229-241. Springer, 2006.

S. D. Gordon and J. Katz. Partial fairness in secure two-party computation. In Advances in
Cryptology — Eurocrypt 2010, volume 6110 of LNCS, pages 157-176. Springer, 2010.

14

[15]

[16]

[17]

[21]

[22]

23]

[24]

R. Gradwohl. Rationality in the full-information model. In 7th Theory of Cryptography Con-
ference — TCC 2010, volume 5978 of LNCS, pages 401-418. Springer, 2010.

R. Gradwohl, N. Livne, and A. Rosen. Sequential rationality in cryptographic protocols. In
51st Annual Symposium on Foundations of Computer Science (FOCS), pages 623-632. IEEE,
2010.

J. Halpern and V. Teague. Rational secret sharing and multiparty computation. In 36th Annual
ACM Symposium on Theory of Computing (STOC), pages 623-632. ACM Press, 2004.

S. Izmalkov, M. Lepinski, and S. Micali. Verifiably secure devices. In 5th Theory of Cryptog-
raphy Conference — TCC 2008, volume 4948 of LNCS, pages 273-301. Springer, 2008.

S. Izmalkov, M. Lepinski, and S. Micali. Perfect implementation. Games and Economic
Behavior, 71(1):121-140, 2011. Available at http://hdl.handle.net/1721.1/50634.

S. Izmalkov, S. Micali, and M. Lepinski. Rational secure computation and ideal mechanism
design. In 46th Annual Symposium on Foundations of Computer Science (FOCS), pages 585—
595. IEEE, 2005. Full version available at http://dspace.mit.edu/handle/1721.1/38208.

J. Katz. Bridging game theory and cryptography: Recent results and future directions. In
5th Theory of Cryptography Conference — TCC 2008, volume 4948 of LNCS, pages 251-272.
Springer, 2008.

G. Kol and M. Naor. Cryptography and game theory: Designing protocols for exchanging
information. In 5th Theory of Cryptography Conference — TCC 2008, volume 4948 of LNCS,
pages 320-339. Springer, 2008.

G. Kol and M. Naor. Games for exchanging information. In 40th Annual ACM Symposium
on Theory of Computing (STOC), pages 423-432. ACM Press, 2008.

M. Lepinski, S. Micali, C. Peikert, and A. Shelat. Completely fair SFE and coalition-safe cheap
talk. In 23rd Annual ACM Symposium on Principles of Distributed Computing (PODC), pages
1-10. ACM Press, 2004.

M. Lepinski, S. Micali, and A. Shelat. Collusion-free protocols. In 87th Annual ACM Sympo-
sium on Theory of Computing (STOC), pages 543-552. ACM Press, 2005.

A. Lysyanskaya and N. Triandopoulos. Rationality and adversarial behavior in multi-party
computation. In Advances in Cryptology — Crypto 2006, volume 4117 of LNCS, pages 180-197.
Springer, 2006.

S. Micali and A. Shelat. Truly rational secret sharing. In 6th Theory of Cryptography Confer-
ence — TCC 2009, volume 5444 of LNCS, pages 54—71. Springer, 2009.

T. Moran, M. Naor, and G. Segev. An optimally fair coin toss. In 6th Theory of Cryptography
Conference — TCC 2009, volume 5444 of LNCS, pages 1-18. Springer, 2009.

S. Ong, D. Parkes, A. Rosen, and S. Vadhan. Fairness with an honest minority and a rational
majority. In 6th Theory of Cryptography Conference — TCC 2009, volume 5444 of LNCS,
pages 36-53. Springer, 2009.

15

