
An extended abstract of this paper appears in the Proceedings of the 14th Informa-

tion Security Conference (ISC 2011). This version is the full paper.

The n-Diffie-Hellman Problem

and its Applications

Liqun Chen∗ and Yu Chen†,‡

∗ Hewlett-Packard Laboratories, Bristol, UK

liqun.chen@hp.com
† School of Computer Science, Peking University, Beijing, China

‡ Institute of Information Engineering, Chinese Academy of Sciences

cycosmic@gmail.com

Abstract. The main contributions of this paper are twofold. On the
one hand, the twin Diffie-Hellman (twin DH) problem proposed by Cash,
Kiltz and Shoup is extended to the n-Diffie-Hellman (n-DH) problem for
an arbitrary integer n, and this new problem is shown to be at least
as hard as the ordinary DH problem. Like the twin DH problem, the
n-DH problem remains hard even in the presence of a decision oracle
that recognizes solution to the problem. On the other hand, observe that
the double-size key in the Cash et al. twin DH based encryption scheme
can be replaced by two separated keys each for one entity, that results
in a 2-party encryption scheme which holds the same security feature
as the original scheme but removes the key redundancy. This idea is
further extended to an n-party case, which is also known as n-out-of-n
encryption. As examples, a variant of ElGamal encryption and a variant
of Boneh-Franklin IBE have been presented; both of them have proved
to be CCA secure under the computational DH assumption and the
computational bilinear Diffie-Hellman (BDH) assumption respectively,
in the random oracle model. The two schemes are efficient, due partially
to the size of their ciphertext, which is independent to the value n.

Keywords: the (strong) n-DH assumption, the (strong) n-BDH as-
sumption, multiple public key encryption, multiple identity-based en-
cryption.

1 Introduction

In EUROCRYPT 2008 [6], Cash, Kiltz and Shoup proposed a new computational
problem and named it the twin Diffie-Hellman (twin DH) problem with the
meaning that given a random triple of the form (X1, X2, Y) ∈ G

3 for a cyclic
group G, compute dh(X1, Y) and dh(X2, Y), where dh is the DH function. They
also proposed the strong twin DH problem, which is the twin DH problem under

1

the condition that an adversary is given access to a corresponding decision twin
DH oracle. They proved that the strong twin DH problem is as hard as the
(ordinary) DH problem, i.e., given a random pair of the form (X,Y) ∈ G

2,
compute dh(X,Y).

The motivation of their introducing the (strong) twin DH problem is the fol-
lowing: it is well-known that there exist many cryptographic constructions (e.g.,
the Diffie-Hellman non-interactive key exchange protocol [16] and the Cramer-
Shoup encryption scheme [12]) which are based on the DH problem, but security
of these constructions can only be proved under the strong DH problem, i.e., the
adversary is given access to a decision DH oracle. The reason is that in the
security proof, the simulator need the help of the decision oracle to keep the
simulation coherent throughout the game. By employing the strong twin DH
problem in these constructions, they can successfully prove that the modified
constructions are secure under the DH problem, since the strong twin DH prob-
lem implies the DH problem. This is a clever trick.

However, their method is not cost free. In order to employ the twin DH
problem, their modified construction is “a bit less efficient” than the original
one; specifically, the modified construction doubles the key of the original one.
For example, in their twin Identity-Based Encryption (IBE) scheme, a master
key of a Key Generation Center (KGC) is twin private/public key pairs, written
as ((x1, X1), (x2, X2)), instead of one (x,X) in the original IBE scheme, and
accordingly, an user’s secret key associated with this user’s identity id (served
as a public key of the user) is also two secret values written as (S1, S2), each of
which is computed under one master key pair. Therefore, a key redundancy is
the cost of tighter security reduction.

Can we use this key redundancy to achieve some extra useful function with-
out imposing an efficiency penalty? Observe that in their twin IBE scheme, the
identity value id in computing S1 does not have to be the same as in comput-
ing S2; the two private/public master key pairs (x1, X1) and (x2, X2) can each
belong to an individual KGC. With this slight modification, a user can have
two independent identities each associated with one KGC. For example, Alice
has her working email address associated with her employer as one KGC and
her passport number associated with the government of her country as another
KGC. These two KGCs are independent authorities, and do not necessarily have
any trust relation or communication between them. Furthermore, the number
of the identities and KGCs in the IBE scheme does not have to be restricted to
two1.

This observation leads to the main contributions of our paper that the twin
DH problem can be extended to the n-DH problem for an arbitrary number
n, which enables us to build an efficient encryption scheme with multiple pub-
lic keys and an efficient IBE scheme with multiple KGCs and identities. This
type of encryption is also known as n-out-of-n encryption, in which a given

1 The multi-KGC IBE is not an unsolved problem and could be implemented from
extending an existing IBE scheme, but we want to show how we can do it efficiently
using n-out-of-n encryption.

2

message is encrypted under a set of n individual public keys, and the associ-
ated decryption operation makes use of the n corresponding secret keys. It is
relevant to other well-known encryption primitives with multi-receivers, such
as broadcast encryption [5, 15] (known as 1-out-of-n encryption) and threshold
cryptosystem [14] (known as t-out-of-n encryption). The latter has an attractive
application, namely attribute-based encryption (ABE) [3, 19]. Compared with
the well-explored t-out-of-n threshold encryption or ABE schemes, e.g. using a
secret sharing technique [23], an n-out-of-n encryption scheme seems a naive so-
lution. But we think it is worthy studying this type of schemes properly since it
has the advantage of simplicity in both algorithm implementation and security
analysis.

More specifically, there are a number of contributions in this paper. Here we
describe a brief overview of each contribution individually.

The n-DH problem. We present a modification of the twin DH problem [6]
by extending the number of the (ordinary) DH instances from 2 to an arbitrary
integer n, and name it the n-DH problem. Intuitively, the n-DH problem is that
given a random n+1 tuple of the form (X1, . . . , Xn, Y) ∈ G

n+1 for a cyclic group
G, compute (dh(X1, Y), . . . , dh(Xn, Y)) where dh is the DH function. We also
present the strong n-DH problem which is the n-DH problem under the condition
that an adversary is given access to a corresponding decision n-DH oracle. We
prove that the strong n-DH problem is just as hard as the DH problem.

The n-BDH problem. We present a modification of the twin Bilinear-DH
(twin BDH) problem [6, 11]. by extending the number of the (ordinary) BDH
instances from 2 to an arbitrary integer n, and name it the n-BDH problem.
Intuitively, the n-BDH problem is that given a random 2n+1 tuple of the form
(X1, . . . , Xn, Y, Z1, . . . , Zn) ∈ G

2n+1 for a cyclic group G, compute (bdh(X1, Y ,
Z1), . . . , bdh(Xn, Y, Zn)) where bdh is the BDH function. We also present the
strong n-BDH problem which is the n-BDH problem under the condition that an
adversary is given access to a corresponding decision n-BDH oracle. We prove
that the strong n-BDH problem is just as hard as the BDH problem.

Formalized description of a MPKE scheme. We formalize the concept of
an n-out-of-n public key encryption scheme and call it a Multiple Public Key
Encryption (MPKE) scheme. We present a formal definition of such a MPKE
scheme and a security model with the meaning that a MPKE scheme is secure
against adaptive chosen ciphertext attacks. This definition is a simple modifi-
cation of the usual definition of chosen ciphertext security for a public key en-
cryption scheme [21]. MPKE schemes can be used in those applications, which
requires that either a decryptor must be in the possession of n private keys (e.g.,
each can be bound with an particular attribute) or that n decryptors (each with
an individual key) must work together, in order to decrypt a given ciphertext.

Formalized description of a MIBE scheme. We formalize the concept of
a Multiple Identity-Based Encryption (MIBE) scheme, in which one encrypts
a given message under a set of n (an arbitrary integer) individual public keys,
where, unlike a MPKE scheme, each public key is presented as an identity of

3

someone who holds the corresponding private key. The decryption operation
makes use of the n associated secret keys, each of which is generated by a KGC
(the n KGCs can be independent to each other). We give a formal definition
of such a MIBE scheme and a security model with the meaning that a MIBE
scheme is secure against adaptive chosen ciphertext attacks. This definition is
a simple modification of the usual definition of chosen ciphertext security for
an identity-based encryption scheme [4]. This type of IBE schemes has already
been introduced in the literature, e.g. [7, 9, 10]. To the best of our knowledge,
the security of the schemes in [7, 9, 10] have not been rigorously analyzed.

A concrete MPKE scheme and a rigorous security analysis. We pro-
pose a new modification of the hashed ElGamal encryption scheme [1], and name
it the n-ElGamal encryption scheme. Here is a summary of this scheme. Let H
be a hash function and SE = (E,D) be a symmetric cipher. Let (X1, . . . , Xn) be
n random group elements served as n public keys and (x1, . . . , xn) be n random
integers served as n secret keys, where Xi = gxi for i = 1, . . . , n and g is a
group generator. To encrypt a message m, one chooses a random integer y and
computes

Y := gy, Zi := Xy
i for each i, k := H(Y, Z1, . . . , Zn), c := E(k,m).

To decrypt the ciphertext (Y, c), one computes

Zi := Y xi for each i, k := H(Y, Z1, . . . , Zn), m := D(k, c).

Observe that the ciphertext for this scheme is extremely compact, and its size
is independent to the number n. Based on the strong n-DH assumption (that
implies based on the ordinary DH assumption), we prove that the n-ElGamal
encryption scheme has chosen ciphertext security, provided that SE is secure
against chosen ciphertext attacks and that H is modeled as a random oracle [2].

A concrete MIBE scheme and a rigorous security analysis. We pro-
pose a new modification of the Boneh-Franklin IBE scheme [4] and name it the
n-IBE scheme. The following is a summary of this scheme. Let H and G be two
hash functions, SE = (E,D) be a symmetric cipher, and e be a bilinear map
function. Let (X1, . . . , Xn) be n random group elements served as n master pub-
lic keys, and (x1, . . . , xn) be n random integers served as n master secret keys,
where Xi = gxi for each i and g is a group generator. Let (id1, . . . , idn) be n ar-
bitrary data strings served as n identities, and (S1, . . . , Sn) be n group elements
served as n secret keys, where Si = G(Xi, idi)

xi for each i. To encrypt a message
m, one chooses a random integer y and computes

Y := gy,Wi := e(G(Xi, idi), Xi)
y for each i,

k := H(id1, . . . , idn, Y,W1, . . . ,Wn), c := E(k,m).

To decrypt the ciphertext (Y, c), one computes

Wi := e(Si, Y) for each i, k := H(id1, . . . , idn, Y,W1, . . . ,Wn), m := D(k, c).

4

Note that the length of the ciphertext in this scheme is also very short, and it is
independent to the value n. Based on the strong n-BDH assumption (that implies
based on the ordinary BDH assumption), we prove that the n-IBE scheme has
chosen ciphertext security, provided that SE is secure against chosen ciphertext
attacks and that G and H are modeled as random oracles.

The rest of this paper is organized as follows. We describe definitions of the
(strong) n-BDH assumption in Section 2 and of the (strong) n-BDH assumption
in Section 3. After that, we present definitions of security models for MPKE
schemes and MIBE schemes in Section 4, followed by a concrete MPKE scheme
with a rigorous security analysis in Section 5, and a concrete MIBE scheme with
a rigorous security analysis in Section 6. We end the paper with conclusions and
some open questions for future work in Section 7.

2 The n-DH Assumption

Let G be a cyclic group of prime order p and with generator g, and let dh be
the DH function defined as

dh(X,Y) := Z, where X = gx, Y = gy and Z = gxy.

Recall that the DH assumption states it is hard to compute dh(X,Y) given
random X,Y ∈ G. We define the function

ndh : Gn+1 → G
n

(X1, . . . , Xn, Y) 7→ (dh(X1, Y), . . . , dh(Xn, Y)),

and call this the n-DH function. We also define a corresponding n-DH predicate
by

ndhp(X1, . . . , Xn, Ŷ , Ẑ1, . . . , Ẑn) := ndh(X1, . . . , Xn, Ŷ)
?
= (Ẑ1, . . . , Ẑn).

The n-DH assumption states that it is hard to compute ndh(X1, . . . , Xn, Y) given
random X1, . . . , Xn, Y ∈ G. Accordingly, the strong n-DH assumption states
that it is hard to compute ndh(X1, . . . , Xn, Y) given random X1, . . . , Xn, Y ∈ G

along with access to the predicate ndhp(X1, . . . , Xn, ·, ·, . . . , ·), which returns
ndhp(X1, . . . , Xn, Ŷ , Ẑ1, . . . , Ẑn) on input (Ŷ , Ẑ1, . . . , Ẑn). We have the follow-
ing theorem to address the relation between the DH assumption and the (strong)
n-DH assumption:

Theorem 2.1 (DH via strong n-DH) The (ordinary) DH assumption holds
if and only if the strong n-DH assumption holds.

It is clear that the DH assumption implies the n-DH assumption. We now
prove that the DH assumption implies the strong n-DH assumption. To do this,
by following the trapdoor test technique of [6], we first create a trapdoor test.

5

Theorem 2.2 (Trapdoor Test for n-DH) Let G be a cyclic group of prime
order p with generator g. Let I = {2, . . . , n}, and suppose X1, ri, si for all
i ∈ I are mutually independent random variables, where X1 is randomly taken
in G, and each of ri and si is uniformly distributed over Zp, and define the

random variables Xi := gsi/Xri
1 . Further suppose that Ŷ , Ẑ1, · · · , Ẑn are random

variables taking values in G, each of which is defined as some function of Xi for
all i ∈ {1} ∪ I. Then we have:

1. Each Xi for i ∈ I is uniformly distributed over G;
2. All Xi for i ∈ {1} ∪ I are mutually independent;
3. If Xi = gxi for i ∈ {1} ∪ I, then the probability that the truth value of

Ẑ1

r2
Ẑ2 = Ŷ s2 ∧ · · · ∧ Ẑ1

ri
Ẑi = Ŷ si ∧ · · · ∧ Ẑ1

rn
Ẑn = Ŷ sn (1)

does not agree with the truth value of

Ẑ1 = Ŷ x1 ∧ · · · ∧ Ẑi = Ŷ xi ∧ · · · ∧ Ẑn = Ŷ xn (2)

is at most (1/p)n−1; moreover if (2) holds, then (1) certainly holds.

Proof. Observe that si = rix1 + xi for i ∈ I where I = {2, . . . , n}. It is not
difficult to verify that each Xi for i ∈ I is uniformly distributed over G, and
that all Xi for i ∈ {1}∪ I and ri for i ∈ I are mutually independent, from which
the items 1 and 2 follow. To prove the item 3, condition on fixed values of Xi

for i ∈ {1} ∪ I. In the resulting conditional probability space, each ri for i ∈ I
is uniformly distributed over Zp, while all xi, Ŷ , Ẑi for i ∈ {1} ∪ I are fixed. If
(2) holds, (1) certainly holds, because si = rix1 + xi for i ∈ I. Conversely, if (2)
does not hold, we show that (1) holds with probability at most (1/p)n−1. We
take the n−1 equations of (1) separately. Each of them uses the same argument
as in the proof of the trapdoor test of [6]. Observe that (1) is equivalent to

(Ẑ1/Ŷ
x1)r2 = Ŷ x2/Ẑ2∧· · ·∧(Ẑ1/Ŷ

x1)ri = Ŷ xi/Ẑi∧· · ·∧(Ẑ1/Ŷ
x1)rn = Ŷ xn/Ẑn.

(3)
Let us take a look at the (i−1)th equation of (3). We can see that if Ẑ1 = Ŷ x1

and Ẑi 6= Ŷ xi no matter whether the other equations of (2) holds or not, then
this equation certainly does not hold. This leaves us with the case Ẑ1 6= Ŷ x1 .
In this case, the left hand side of the equation is a random element of G (since
ri is uniformly distributed over Zp), but the right hand side is a fixed element
of G. So this equation holds with probability 1/p. (3) holds if and only if n− 1
different equations all hold. Now, we argue that these n−1 equations are mutually
independent, because each ri for i ∈ I is uniformly distributed over Zp, therefore,
the probability that (3) holds is at most (1/p)n−1. ⊓⊔

Using this trapdoor test as a tool, we can prove Theorem 2.1. Let B be a DH
adversary. Denote its advantage by AdvDHB,G with the meaning of the proba-
bility that B computes dh(X,Y), given random X,Y ∈ G. Let A be a strong
n-DH adversary. Denote its advantage by AdvnDHA,G with the meaning of the

6

probability that A computes ndh(X1, . . . , Xn, Y), given random Xi, Y ∈ G for
i ∈ {1, . . . , n}, along with access to the predicate ndhp(X1, . . . , Xn, ·, ·, . . . , ·),
which on input (Ŷ , Ẑ1, . . . , Ẑn), returns ndhp(X1, . . . , Xn, Ŷ , Ẑ1, . . . , Ẑn). Theo-
rem 2.1 is a special case of the following:

Theorem 2.3 Suppose A is a strong n-DH adversary that makes at most Qd

queries to its decision oracle, and runs in time at most τ . Then there exists a
DH adversary B with the following properties: B runs in time at most τ , plus
the time to perform O(Qd log q) group operations and some minor bookkeeping;
moreover,

(

1−
Qd

pn−1

)

AdvnDHA,G ≤ AdvDHB,G.

In addition, if B does not output “failure”, then its output is correct with prob-
ability at least 1−Qd/p

n−1.

Proof. The DH adversary B works as follows, given a challenge instance (X,Y)
of the DH problem. First, B chooses ri, si ∈ Zp for i ∈ I and I = {2, ..., n}
at random, sets X1 := X and Xi := gs/Xri

1 , and gives A the challenge in-

stance (X1, . . . , Xn, Y). Second, B processes each decision query (Ŷ , Ẑ1, . . . , Ẑn)
by testing if

Ẑ1

r2
Ẑ2 = Ŷ s2 ∧ · · · ∧ Ẑ1

ri
Ẑi = Ŷ si ∧ · · · ∧ Ẑ1

rn
Ẑn = Ŷ sn

holds. Finally, if and when A outputs (Z1, . . . , Zn), B tests if this output is
correct by testing whether

Zr2
1 Z2 = Y s2 ∧ · · · ∧ Zri

1 Zi = Y si ∧ · · · ∧ Zrn
1 Zn = Y sn

holds; if this does not hold, then B outputs “failure”, and otherwise, B outputs
Z1.

Provide the oracle simulation is perfect, adversary A’s view is identical to
its view in the real environment. It remains to calculate the accuracy of the
trapdoor test. Note that the probability of the trapdoor test returning a wrong
decision result for a query is at most (1/p)n−1, and this happens at most Qd

times. Therefore the trapdoor test can simulate the decision oracle perfectly with
probability at least 1−Qd/p

n−1. Theorem 2.3 follows immediately. ⊓⊔

3 The n-BDH Assumption

In groups equipped with a pairing e : G × G → GT where G and GT are cyclic
groups of prime order p and G is with generate g, we recall that the BDH function
is defined as

bdh(X,Y, Z) :=W, where X = gx, Y = gy, Z = gz, and W = e(g, g)xyz.

The BDH assumption states that computing bdh(X,Y, Z) for random X,Y, Z ∈
G is a hard problem. The strong BDH assumption [20] states that the BDH
problem remains hard even with the help of a corresponding decision oracle.

7

Note that for the purpose of describing our main results as simply as possible,
without loss of the generality, we make use of symmetric pairings (also called
Type-1 pairings). It does not mean that our proposed assumptions and schemes
only work with symmetric pairings. Without changing the main results of this
paper, this symmetric pairing representation can be modified to the asymmetric
pairing one (i.e., e : G1 × G2 → GT where G1, G2 and GT are cyclic groups of
prime order p). More specifically, one may use Type-2 pairings, where there is
an efficiently computable group isomorphism ψ : G2 → G1 mapping g2 ∈ G2

to g1 ∈ G1, or Type-3 pairings, where there is no known efficiently computable
group isomorphism ψ : G2 → G2 mapping g2 to g1. We refer readers to [18] for
the details of these three types of pairings.

We define the function

nbdh : G2n+1 → G
n
T

(X1, . . . , Xn, Y, Z1, . . . , Zn) 7→ (bdh(X1, Y, Z1), . . . , bdh(Xn, Y, Zn)),

and call this the n-BDH function. We also define a corresponding n-BDH pred-
icate by

nbdhp(X1, . . . , Xn, Ŷ , Ẑ1, . . . , Ẑn, Ŵ1, . . . , Ŵn) :=

nbdh(X1, . . . , Xn, Ŷ , Ẑ1, . . . , Ẑn)
?
= (Ŵ1, . . . , Ŵn).

The n-BDH assumption states that it is hard to compute nbdh(X1, . . . , Xn, Y ,
Z1, . . . , Zn) given random X1, . . . , Xn, Y, Z1, . . . , Zn ∈ G. The strong n-BDH
assumption states that it is hard to compute nbdh(X1, . . . , Xn, Y, Z1, . . . , Zn),
given random X1, . . . , Xn, Y, Z1, . . . , Zn ∈ G, along with the access to the predi-
cate nbdh(X1, . . . ,Xn, ·, ·, . . . , ·, ·, . . . , ·), which on input (Ŷ , Ẑ1, . . . , Ẑn, Ŵ1, . . . ,
Ŵn), returns nbdhp(X1, . . . , Xn, Ŷ , Ẑ1, . . . , Ẑn, Ŵ1, . . . , Ŵn).

We have the following result to address the relation between the BDH as-
sumption and the (strong) n-BDH assumption:

Theorem 3.1 (BDH via strong n-BDH) The (ordinary) BDH assumption
holds if and only if the strong n-BDH assumption holds.

It is clear that the BDH assumption implies the n-BDH assumption. We
prove that the BDH assumption implies the strong n-BDH assumption. Again,
by following the technique developed in [6], we first create a trapdoor test.

Theorem 3.2 (Trapdoor Test for n-BDH) Let G be a cyclic group of prime
order p with a generator g and a pairing e : G×G→ GT , where GT is another
cyclic group of order p. Let I = {2, . . . , n}, and suppose X1, ri, si for i ∈ I are all
mutually independent random variables, where X1 is randomly taken in G, and
each of ri and si is uniformly distributed over Zp, and define the random vari-

ables Xi := gsi/Xri
1 for i ∈ I. Further suppose that (Ŷ1, . . . , Ŷn, Ẑ, Ŵi, . . . , Ŵn)

are random variables taking values in G, each of which is defined as some func-
tion of Xi for all i ∈ {1} ∪ I. Then we have:

8

1. Each Xi for i ∈ I is uniformly distributed over G;
2. All Xi for i ∈ {1} ∪ I are mutually independent;
3. If Xi = gxi for i ∈ {1} ∪ I, the probability that the truth value of

Ŵ1

r2
Ŵ2 = e(Ŷ2, Ẑ)

s2∧· · ·∧Ŵ1

ri
Ŵi = e(Ŷi, Ẑ)

si∧· · ·∧Ŵ1

rn
Ŵn = e(Ŷn, Ẑ)

sn

(4)
does not agree with the truth value of

Ŵ1 = e(Ŷ1, Ẑ)
x1 ∧ · · · ∧ Ŵi = e(Ŷi, Ẑ)

xi ∧ · · · ∧ Ŵn = e(Ŷn, Ẑ)
xn (5)

is at most (1/p)n−1; moreover if (5) holds, then (4) certainly holds.

Proof. Observe that si = rix1 + xi for i ∈ I where I = {2, . . . , n}. It is not
difficult to verify that each Xi for i ∈ I is uniformly distributed over G, and
that all Xi for i ∈ {1}∪ I and ri for i ∈ I are mutually independent, from which
the items 1 and 2 follow. To prove the item 3, condition on fixed values of Xi

for i ∈ {1}∪ I. In the resulting conditional probability space, each ri for i ∈ I is
uniformly distributed over Zp, while all xi, Ŷi, Ẑ and Ŵi for i ∈ {1}∪I are fixed.
If (5) holds, (4) certainly holds, because si = rix1 + xi for i ∈ I. Conversely, if
(5) does not hold, we show that (4) holds with probability at most (1/p)n−1.
We take the n − 1 equations of (4) separately. Each of them uses the same
argument as in the proof of the trapdoor test [6]. Observe (4) is equivalent to

(Ŵ1/e(Ŷ1, Ẑ)
x1)r2 = e(Ŷ2, Ẑ)

x2/Ŵ2 ∧ · · · ∧ (Ŵ1/e(Ŷ1, Ẑ)
x1)rn = e(Ŷn, Ẑ)

xn/Ŵn.
(6)

Let us take a look at the (i − 1)th equation of (6). We can see that if Ŵ1 =
e(Ŷ1, Ẑ)

x1 and Ŵi 6= e(Ŷi, Ẑ)
xi no matter whether the other equations of (5)

holds or not, then this equation certainly does not hold. This leaves us with the
case Ŵ1 6= e(Ŷ1, Ẑ)

x1 . In this case, the left hand side of the equation is a random
element of GT (since ri is uniformly distributed over Zp), but the right hand
side is a fixed element of GT . So this equation holds with probability 1/p. (6)
holds if and only if n− 1 different equations all hold. Now, we argue that these
n− 1 equations are mutually independent, because each ri for i ∈ I is uniformly
distributed over Zp, therefore, the probability that (6) holds is at most (1/p)n−1.

⊓⊔

Using this trapdoor test as a tool, we can prove Theorem 3.1. Let B be a
BDH adversary. Denote its BDH advantage by AdvBDHB,G with the meaning
of the probability that B computes bdh(X,Y, Z), given random X,Y, Z ∈ G.
Let A be a strong nbdh adversary. Denote its advantage by AdvnBDHA,G with
the meaning of the probability that A computes ndh(X1, . . . , Xn, Y, Z1, . . . , Zn),
given random Xi, Y, Zi ∈ G for i ∈ {1, . . . , n}, along with access to a decision
oracle for the predicate nbdhp(X1, . . . , Xn, ·, ·, . . . , ·, ·, . . . , ·), which on input
(Ŷ , Ẑ1, . . . , Ẑn, Ŵ1, . . . , Ŵn), returns nbdhp(X1, . . . , Xn, Ŷ , Ẑ1, . . . , Ẑn, Ŵ1, . . . ,
Ŵn). Theorem 3.1 is a special case of the following:

9

Theorem 3.3 Suppose A is a strong n-BDH adversary that makes at most Qd

queries to its decision oracle, and runs in time at most τ . Then there exists a
BDH adversary B with the following properties: B runs in time at most τ , plus
the time to perform O(Qd log q) group operations and some minor bookkeeping;
moreover,

(

1−
Qd

pn−1

)

AdvnBDHA,G ≤ AdvBDHB,G.

In addition, if B does not output “failure”, then its output is correct with
probability at least 1−Qd/p

n−1.

Proof. The BDH adversary B works as follows, given a challenge instance (X,Y, Z)
of the BDH problem. First, B chooses ri, si, ti ∈ Zq for i ∈ I and I = {2, . . . , n}
at random, sets X1 := X and Xi := gs/Xri

1 , Y = Y and Zi = Zti , and gives
A the challenge instance (X1, . . . , Xn, Y, Z1, . . . , Zn). Second, B processes each
decision query (Ŷ , Ẑ1, . . . , Ẑn, Ŵ1, . . . , Ŵn) by testing if

Ŵ1

r2
Ŵ2 = e(Ŷ , Ẑ2)

s2 ∧ · · · ∧ Ŵ1

ri
Ŵi = e(Ŷ , Ẑi)

si ∧ · · · ∧ Ŵ1

rn
Ŵn = e(Ŷ , Ẑn)

sn

holds. Finally, if and when A outputs (W1, . . . ,Wn), B tests if this output is
correct by testing if

W r2
1 W2 = e(Y, Z2)

s2∧· · ·∧W ri
1 Wi = e(Y, Zi)

si∧· · ·∧W rn
1 Wn = e(Y, Zn)

sn (7)

holds; if this does not hold, then B outputs “failure”, and otherwise, B outputs
W1. The proof is completed using the trapdoor test in Theorem 3.2. ⊓⊔

4 Definitions of MPKE and MIBE

In this section we present formal definitions of a Multiple Public Key Encryption
(MPKE) scheme and of a Multiple Indentity-Based Encryption (MIBE) scheme,
including their security notion: chosen ciphertext security, which are based on
the usual definitions of chosen ciphertext security for a public key encryption
scheme [21] and an identity-based encryption scheme [4]. Recall that these two
types of encryption schemes are n-out-of-n encryption schemes. In the security
model an adversary is not allowed to corrupt any decryption key from the entirely
n set of the keys.

4.1 Multiple Public Key Encryption

A Multiple Public Key Encryption scheme (say MPKE), with a security parame-
ter 1κ and associated system parameters params (include a description of a finite
key space K, a description of a finite message space M, and a description of a
finite ciphertext space C), is specified by three algorithms: KeyGen, Encrypt, and
Decrypt:

10

KeyGen: takes 1κ and params as input, and generates a set n of public and secret
key pairs, written as (pki, ski) ∈ K for i = 1, . . . , n. We also denote the n public
keys by pk = (pk1, . . . , pkn) and the n secret keys by sk = (sk1, . . . , skn).

Encrypt: takes as input params, pk, and a message M ∈M. It returns a cipher-
text C ∈ C.

Decrypt: takes as input params, a ciphertext C ∈ C and sk, and returns M .

These algorithms must satisfy the standard consistency constraint, namely when
(pk, sk) ← KeyGen(1κ, params), then

∀M ∈M : Decrypt(params, C, sk) =M where C = Encrypt(params,pk,M).

Chosen ciphertext security of the scheme MPKE is defined by the following cho-
sen ciphertext attack game, played between a challenger CH and an adversary
A:

Setup. The challenger takes a security parameter 1κ and associated params, and
runs the KeyGen algorithm. It gives the resulting pk together with params to A,
and keeps the corresponding sk to itself.

Phase 1. A makes a number of decryption queries to the challenger, where the
input to each query is a ciphertext, say Ĉ. To answer such a query, the challenger
decrypts Ĉ and sends the result to A. These queries may be asked adaptively,
that is, each query may depend on the replies to previous queries.

Challenge. Once the adversary decides that Phase 1 is over, it outputs two
equal length plaintexts M0,M1 ∈ M on which it wishes to be challenged. The
challenger picks a random bit β ∈ {0, 1}, encrypts Mβ , and sends the resulting
ciphertext C∗ as the challenge to A.

Phase 2. A issues more decryption queries as in Phase 1, but with the restriction
that Ĉ 6= C∗. These queries may be asked adaptively as in Phase 1.

Guess. Finally, A outputs a guess β′ ∈ {0, 1} and wins the game if β = β′.

We refer to such an adversary A as an IND-CCA adversary. We define adversary
A’s advantage over the scheme MPKE by AdvCCAA,MPKE(κ) =

∣

∣Pr[β = β′]− 1
2

∣

∣ .
The probability is over the random bits used by the challenger and the adversary.

Definition 4.1 We say that a multiple public key encryption scheme MPKE is
IND-CCA secure if for any probabilistic polynomial time IND-CCA adversary A
the advantage AdvCCAA,MPKE(κ) is negligible2.

When we analyze the scheme MPKE in the random oracle model, then hash
functions are modeled as random oracles, and both the challenger and adversary
are given access to the random oracles in the above attack game. In that case,
we write AdvCCAro

A,MPKE(κ) for the corresponding advantage.

2 We say that a function f(κ) is negligible if for every c > 0 there exists a value κc

such that f(κ) < 1/κc for all κ < κc.

11

4.2 Multiple Identity-Based Encryption

A Multiple Identity-Based Encryption scheme, denoted by MIBE, is specified by
four algorithms: Setup, Extract, Encrypt and Decrypt:

Setup: takes a security parameter 1κ, and returns system parameters params

and a set n of master public and secret key pairs, written as (mpki,mski) for
i = 1, . . . , n; without loss of generality, each key pair (mpki,mski) is associated
with the i-th of a set n KGCs. We denote the n master public keys by mpk =
(mpk1, . . . ,mpkn) and the n master secret keys by msk = (msk1, . . . ,mskn).
The parameters params include a description of a finite message spaceM, and
a description of a finite ciphertext space C.

Extract: takes as input params, a master key mski and an arbitrary identity idi ∈
{0, 1}∗ for i ∈ {1, . . . , n}. It returns a secret key ski. By repeating the Extract

algorithm n times with different i values, one can obtain sk = (sk1, . . . , skn)
associated with id = (id1, . . . , idn). Note that mski and idi do not have to
uniquely match to each other. Theoretically speaking, any arbitrary identity can
bind with any master key, and therefore, the case idi = idj for i 6= j is allowed.

Encrypt: takes as input params, pk, id and a message M ∈ M. It returns a
ciphertext C ∈ C.

Decrypt: takes as input params, a ciphertext C ∈ C and sk, and returns M .

These algorithms must satisfy the standard consistency constraint, namely when
(mpk, msk, params)← Setup(1κ) and sk← Extract(params,msk, id), then

∀m ∈M : Decrypt(params, C, sk) =M where C = Encrypt(params,mpk, id,M).

Chosen ciphertext security of scheme MIBE is defined by the following chosen
ciphertext attack game, played between a challenger CH and an adversary A:

Setup. The challenger takes the security parameter 1κ and runs the Setup al-
gorithm. It gives the adversary the resulting params and mpk, and keeps the
associated msk to itself.

Phase 1. The adversary issues queries q1, . . . , qm where query qi is one of:

– Extraction query 〈i, îdi〉. The challenger responds by running algorithm

Extract to generate the private key ŝki associated with îdi and mski. It
sends ŝki to A.

– Decryption query 〈îd, Ĉ〉. The challenger responds by running algorithm

Extract n times to generate the private key ŝk corresponding to îd. It then
runs algorithm Decrypt to decrypt the ciphertext Ĉ. It sends the resulting
plaintext to A.

These queries may be asked adaptively, that is, each query qi may depend on
the replies to q1, . . . , qi−1.

Challenge. Once the adversary decides that Phase 1 is over it outputs two equal

length plaintextsM0,M1 ∈M and a set of identities îd
∗
on which it wishes to be

challenged. The only constraint is that each element id∗i of îd
∗
did not appear in

12

any private key extraction query associated withmski in Phase 1. The challenger

picks a random bit β ∈ {0, 1} and set C∗ = Encrypt(params,mpk, îd
∗
,Mβ). It

sends C∗ as the challenge to the adversary.

Phase 2. The adversary issues more queries qm+1, . . . , qr where qi is one of:

– Extraction query 〈i, îdi〉, where îdi 6= the i-th element of îd
∗
. Challenger

responds as in Phase 1.

– Decryption query 〈îd, Ĉ〉 6= 〈îd
∗
, C∗〉. Challenger responds as in Phase 1.

These queries may be asked adaptively as in Phase 1.

Guess. Finally, the adversary outputs a guess β′ ∈ {0, 1} and wins the game if
β = β′.

We refer to such an adversary A as an IND-ID-CCA adversary. We define A’s
advantage over the scheme MIBE by AdvCCAA,MIBE(κ) = |Pr[β = β′] − 1

2
|. The

probability is over the random bits used by the challenger and the adversary.

Definition 4.2 We say that a Multiple IBE scheme MIBE is IND-ID-CCA secure
if for any probabilistic polynomial time IND-ID-CCA adversary A the advantage
AdvCCAA,MIBE(κ) is negligible.

When we analyze such a scheme MIBE in the random oracle model, we write
AdvCCAro

A,MIBE(κ) for the corresponding advantage.

5 The n-ElGamal Encryption Scheme

In this section, we present details of the n-ElGamal encryption scheme. The
scheme makes use of a hash function H and a symmetric cipher SE = (E,D).
Let G be a cyclic group of prime order p and with generator g. A set of pub-
lic keys for this scheme is denoted by a n-tuple of random group elements
pk = (X1, . . . , Xn), with a set of corresponding secret keys denoted by sk =
(x1, . . . , xn), where Xi = gxi for i ∈ I and I = (1, . . . , n). To encrypt a message
m ∈M, one chooses a random y ∈ Zp, and computes

Y := gy, Zi := Xy
i for i ∈ I, k := H(Y, Z1, . . . , Zn), C := E(k,M).

The ciphertext is (Y, c). Decryption works accordingly: given (Y, c) and secret
key sk, one computes

Zi := Y xi for i ∈ I, k := H(Y, Z1, . . . , Zn),M := D(k, C).

As mentioned earlier, the size of the ciphertext in this scheme is independent
to the number of public and secret keys n. Like the twin ElGamal encryption
scheme [6], the scheme does not add redundancy in the ciphertext in order to
achieve CCA security, as in the Fujisaki-Okamoto transformation [17].

Following the arguments in [1, 6, 13], we now show that the n-ElGamal en-
cryption scheme is secure against chosen ciphertext attack, under the strong

13

n-DH assumption, and the assumption that SE is secure against chosen cipher-
text attack, if H is modeled as a random oracle. By Theorem 2.1, the same
holds under the (ordinary) DH assumption. Formally speaking, we denote the
n-ElGamal encryption scheme MPKEndh, and analyze security of this scheme
with the following theorem, under the security model previously defined in Sec-
tion 4.1.

Theorem 5.1 Suppose H is modeled as a random oracle, SE is secure against
chosen ciphertext attack, and the DH assumption holds in G. The MPKEndh is
secure against chosen ciphertext attack. In particular, suppose A is an adversary
that carries out a chosen ciphertext attack against MPKEndh in the random oracle
model, and A runs in time τ , and makes at most Qh hash queries and Qd

decryption queries. Then there exists an adversary Bdh against the DH problem
and an adversary Bsym against the chosen ciphertext security of SE, such that
both Bdh and Bsym run in time at most τ , plus the time to perform O((Qh +
Qd) log p) group operations; moreover,

AdvCCAro
A,MPKEndh

≤

(

pn−1

pn−1 −Qh

)

AdvDHBdh,G
+ AdvCCABsym,SE

.

Proof. We proceed with a sequence of games.
Game 0. Let Game 0 be the original chosen ciphertext attack game for a MPKE
scheme as defined in Section 4.1, and let S0 be the event that β′ = β in this
game.

Setup: To start the game, the challenger generates the secret key set sk =
(x1, . . . , xn) and their corresponding public key set pk = (X1, . . . , Xn). The
challenger gives pk to the adversary.

Hash oracle query 〈Ŷ , Ẑ1, . . . , Ẑn〉: The challenger maintains a list of tuples
(Y, Z1, . . . , Zn, k) as explained below. We refer to this list as the L list, which
is initially empty and indexed by elements of Gn+1. Whenever the adversary
makes a query 〈Ŷ , Ẑ1, . . . , Ẑn〉, if there is already a tuple on the L list indexed

by it then the challenger responds with L[Ŷ , Ẑ1, . . . , Ẑn] = k̂. Otherwise, the

challenger picks a random symmetric key k̂, adds the tuple 〈Ŷ , Ẑ1, . . . , Ẑn, k̂〉 to

the L list and responds the adversary with k̂.

Phase 1 - Decryption query 〈Ŷ , Ĉ〉: The challenger answers the decryption
queries using its secret key sk. The challenger need to call the H query in this
operation.

Challenge: Once the adversary decides that Phase 1 is over it outputs two
messages M0,M1 on which it wishes to be challenged. The challenger chooses
a random y ∈ Zp, sets Y := gy, Zi = Xy

i for i = 1, . . . , n, then fetches the
symmetric key k by querying H with 〈Y, Z1, . . . Zn〉, and computes c := Ek(Mβ),
and returns the ciphertext (Y,C) to A.

Phase 2. The decryption queries in Phase 2 are processed just as in Phase 1.

Guess: The adversary A outputs its guess β′ for β.

14

That finishes the description of Game 0. Despite the syntactic difference, it is
clear that

AdvCCAro
A,MPKEndh

= |Pr[S0]− 1/2|. (8)

Game 1. We now describe Game 1, which is the same as Game 0, but with the
following difference: the challenger will abort the game if the adversary query H

at 〈Y, Z1, . . . , Zn〉 either in Phase 1 or Phase 2. Everything else remains exactly
the same as Game 0. Let S1 be the event that β′ = β in Game 1 and F be the
event that the adversary queries the random oracle at 〈Y, Z1, . . . Zn〉 in Game 1.
Since Game 0 and Game 1 proceed identically unless F occurs, we have

|Pr[S1]− Pr[S0]| ≤ Pr[F]. (9)

We claim that

Pr[F] ≤ AdvnDHBndh,G
, (10)

where Bndh is an efficient strong n-DH adversary that makes at most Qh decison
oracle queries. Next we detail how Bndh plays the role of the challenger in Game
1 to gain the advantage as claimed.

Setup: Bndh is given (X1, . . . , Xn, Y) as the n-DH challenge instance. Bndh
gives the adversary pk = (X1, . . . , Xn). Note that the only difference between
Bndh and the challenger in Game 1 is that the former does not know the sk =
(x1, . . . , xn).

Hash oracle queries: Except processes the queries the same way as the chal-
lenger does in Game 1, for every random oracle query (Ŷ , Ẑ1, . . . , Ẑn), Bndh sends
this tuple to its own decision oracle, and marks it “good” or “bad” accordingly.

Phase 1 - Decryption queries: Bndh can process the decryption queries with-
out using the secret key: given a ciphertext (Ŷ , ĉ), it checks if it has already seen
a “good” tuple of the form (Ŷ , ·, . . . , ·) in L; if so, it uses the key associated with
that tuple; if not, it generates a random key, and it will stay on the lookout for a
“good” tuple of the form (Ŷ , ·, . . . , ·) in future random oracle queries, associating
this key with that tuple to keep things consistent.

Challenge: Once the adversary decides that Phase 1 is over it outputs two
messages M0,M1 on which it wishes to be challenged. Bndh checks if there is a
“good” tuple of the form (Y, ·, . . . , ·), if so, it aborts; if not, it generates a random
key k (it will stay on the lookout for a “good” tuple of the form (Ŷ , ·, . . . , ·) in
future random oracle queries, associating this key with that tuple to keep things
consistent), and computes c := Ek(Mβ), and returns the ciphertext (Y, c) to A.

Phase 2 - Decryption queries: The decryption queries in Phase 2 are pro-
cessed just as in Phase 1. If the adversary issues a “good” tuple of the form
(Y, ·, . . . , ·), Bndh aborts.

Guess: The adversary A outputs its guess β′ for β.

At the end of the game, Bndh checks if it has seen a “good” tuple of the form
(Y, ·, . . . , ·); if so, it outputs the last n components. According to the definition

15

of event F , Equation (10) follows immediately. Theorem 2.3 gives us an efficient
DH adversary Bdh with

AdvnDHBndh,G
≤

pn−1

pn−1 −Qh
AdvDHBdh,G

.

Finally, it is easy to see that in Game 1, the adversary is essentially playing the
chosen ciphertext attack game against SE. Thus, there is an efficient adversary
Bsym such that

|Pr[S1]− 1/2| = AdvCCABsym,SE
. (11)

Theorem 5.1 now follows by combining (8)-(11). ⊓⊔

6 The n-IBE scheme

We now present details of the n-IBE scheme. Let G and GT be two cyclic groups
of prime order p and G with generator g, and further let the two groups be
equipped with a pairing e : G × G → GT . A master public key set is a tu-
ple of n group elements mpk = (X1, . . . , Xn), where Xi = gxi for i ∈ I and
I = {1, . . . , n}. The corresponding master private key set is a tuple msk =
(x1, . . . , xn), which are selected at random from Zp. We treat the secret/public
master key set (msk,mpk) as n separate key pairs (x1, X1), . . . , (xn, Xn), which
belong to n Key Generation Centers (KGCs) respectively. This scheme uses a
symmetric cipher SE = (E,D) and two hash functions H and G, where the hash
function G is defined as G× {0, 1}∗ → G, and the hash function H is defined as
({0, 1}∗)n×G×G

n
T× → {0, 1}

λ (λ is the length of a symmetric key in algorithm
SE).

A private key set associated with n individual identities, denoted by id =
(id1, . . . , idn) for idi ∈ {0, 1}

∗ and i ∈ I, is a tuple of n group elements sk =
(S1, . . . , Sn). The i-th element of sk is Si = G(Xi, idi)

xi . To encrypt a message
M ∈M for id, one chooses y ∈ Zp at random and sets

Y := gy,Wi := e(G(Xi, idi), Xi)
y for i ∈ I,

k := H(id1, . . . , idn, Y,W1, . . . ,Wn), C := E(k,M).

The ciphertext is (Y,C). To decrypt using sk for id, one computes

Wi := e(Si, Y) for i ∈ I, k := H(id1, . . . , idn, Y,W1, . . . ,Wn),M := D(k, C).

Similar to the n-ElGamal encryption scheme in Section 5, the length of the
ciphertext in the n-IBE scheme is independent to the number of KGCs and
identities n. Like the twin IBE scheme of [6], the n-IBE scheme does not add
redundancy to the ciphertext as in the Fujisaki-Okamoto transformation [17],
which, e.g., is used in the Boneh-Franklin IBE scheme [4] and the Sakai-Kasahara
IBE scheme [8,22]. Now we essentially follow the security analysis approach for

16

the twin IBE scheme in [6] (the approach was originally proposed in [20]), to
rigorously analyze security of the n-IBE scheme. We denote our n-IBE scheme
by MIBEnbdh. We prove that MIBEnbdh is secure against the chosen ciphertext
attack under the strong n-BDH assumption. By Theorem 3.1, MIBEnbdh have
been eventually proved to be IND-ID-CCA secure under the BDH assumption
if the symmetric cipher is chosen ciphertext secure and the hash functions are
treated as random oracles.

Theorem 6.1 Suppose H and G are modeled as random oracles. Further, sup-
pose the BDH assumption holds with (G,GT , e), and that the symmetric cipher
SE = (E,D) is secure against chosen ciphertext attack. Then MIBEnbdh is secure
against the chosen ciphertext attack.
In particular, suppose A is an adversary that carries out a chosen ciphertext
attack against MIBEnbdh, and that A runs in time τ , and makes at most Qh

hash H queries, Qg hash G queries, Qd decryption queries, and Qe secret key
ski extraction queries associated with idi, where ski (idi) is an element of id
(sk). Then there exist a BDH adversary Bbdh and an adversary Bsym against
the chosen ciphertext security of SE, such that both Bbdh and Bsym run in time at
most τ , plus that time to perform O((Qe+Qh+Qg+Qd) log p) group operations;
moreover3

AdvCCAro
A,MIBEnbdh

≤

(

eQe

n

)n

·

(

qn−1

qn−1 −Qh
· AdvBDHBbdh,G

+ AdvCCABsym,SE

)

.

Proof. We proceed with a sequence of games.

Game 0. Let Game 0 be the original MIBE chosen ciphertext attack game as
defined in Section 4.2, and let S0 be the event that β′ = β in this game.

Setup. The challenger keeps the master secret key set msk = (x1, . . . , xn)
to itself and gives the adversary the corresponding public key set mpk =
(X1, . . . , Xn).

Hash oracle queries: To track random oracle responses, the challenger uses
two lists L and K to process G and H oracle queries, respectively. Both lists
are initially empty. L list is used to process G queries, whose tuples are of
the form (Xi, id,Qi), where Qi = G(Xi, id) can be viewed as the the public
key for identity id associated with the i-th KGC. The tuples in L are indexed
by (Xi, id). K list is used to process H queries, whose tuples are of the form
(id1, . . . , idn, Y,W1, . . . ,Wn, k), k = H(id1, . . . , idn, Y,W1, . . . ,Wn) is the corre-
sponding symmetric key. The tuples in K are indexed by (id1, . . . , idn, Y). When
processing a G query or H query, the challenger returns the corresponding entry
if it is defined, and otherwise initialize it with an appropriate random value and
return that value.

Phase 1 - Private key queries: The challenger answers the private key queries
using the master secret key set msk.

3 Here e ≈ 2.71 is the base of the natural logarithm.

17

Phase 1 - Decryption queries: The challenger uses the master secret key
set msk to extract the private key, then answers the decryption query with the
corresponding private key. In this operation, the challenger may need to call the
hash oracles.

Challenge: Once the adversary decides that Phase 1 is over it outputs two equal
length plaintext M0,M1 ∈ M and a set of identities id∗ on which it wishes to
be challenged. The challenger randomly picks y ∈ Zp and sets Y = gy, and
randomly picks β ∈ {0, 1}, then encrypts Mβ and sends it to A.

Phase 2: The challenger proceeds in the same way it did in Phase 1.

Guess: A outputs its guess β′ for β.

Accord to the definition, we have

AdvCCAro
A,MIBEnbdh

= |Pr[S0]− 1/2|. (12)

Game 1: Game 1 resembles Game 0, but now we change how the challenger
processes queries to G, private key queries, and challenge query.

Setup: Same as in Game 0.

Hash oracle queries: In addition to inserting oracle responses into L as in
Game 0, the challenger also “marks” some entries in the L list used to store
G responses. On querying G(Xi, id), in addition to the normal processing, with
probability δ the challenger marks L[Xi, id] (the value of δ will be determined
later). The challenger completely hides the marks from the adversary.

Phase 1 - Private key query: If the corresponding tuple L[Xi, id] is marked,
the challenger aborts the game. Otherwise, the challenger responds the same
way as in Game 0.

Phase 2 - Decryption query: The challenger processes decryption query in
the same way as in Game 0.

Challenge: Once the adversary decides that Phase 1 is over it outputs two
equal length plaintext M0,M1 ∈ M and a set of identities id∗ = (id∗1, . . . , id

∗
n)

on which it wishes to be challenged. If one or more L[Xi, id
∗
i] are not marked,

then the challenger aborts. Otherwise it proceeds normally (i.e., it picks y ∈ Zq,
sets Y = gy, then encrypts Mβ and sends the result to the adversary).

Phase 2: The challenger proceeds the private key queries and the decryption
queries the same way as it did in Phase 1.

Guess: The adversary outputs its guess β′ for β.

Let S1 be the event that β′ = β and F1 be the event that the challenger aborts
in Game 1. Since the coins that determine F1 are independent of the rest of the
game, it follows that

Pr[S1]/Pr[S0] = Pr[¬F1] = δn · (1− δ)Qe . (13)

Here δn · (1 − δ)Qe features the reduction tightness, we denote it by reduction
factor r. For sufficiently large n and relatively small x, we know

(

1 +
x

n

)n

≈ ex.

18

By applying the Inequality of Arithmetic and Geometric Means, we have

δn · (1− δ)Qe =

(

n

Qe

)n (
Qe

n
δ

)n

· (1− δ)Qe

≤

(

n

Qe

)n (

1−
n

n+Qe

)n+Qe

(14)

≈

(

n

Qe

)n

e−n.

The equality of (14) holds when δ = n/(n + Qe). Thus the lower bound of the

reduction factor is rmin =
(

n
Qe

)n

e−n. If the adversary makes less queries the

reduction factor r will only be greater. Thus we have

rmin · Pr[S0] ≤ r · Pr[S0] = Pr[S1], (15)

that gives us

Pr[S0] ≤
1

rmin

Pr[S1] = en ·

(

Qe

n

)n

Pr[S1]. (16)

Game 2. Game 2 will be like Game 1, except that the challenger will aborts for
some hash H oracle queries.

Hash oracle query: The same as in Game 1.

Phase 1 - Private key queries: The same as in Game 1.

Phase 1 - Decryption queries: The same as in Game 1.

Challenge: Once the adversary decides that Phase 1 is over it outputs two equal
length plaintext M0,M1 ∈M and a set identities id∗ = (id∗1, . . . , id

∗
n) on which

it wishes to be challenged. If one or more L[Xi, id
∗
i] are not marked, then the

challenger aborts. Otherwise, the challenger computes Wi := e(G(Xi, id
∗
i), Xi)

y,
then it checks whether (id∗1, . . . , id

∗
n, Y,W1, . . . ,Wn) has been asked in Phase 1.

If so, the challenger aborts. Otherwise the challenger proceeds normally (i.e., set-
ting H(id∗1, . . . , id

∗
n, Y,W1, . . . ,Wn) := k, computes C := E(k,Mβ), and returns

(Y,C)).

Phase 2. The challenger proceeds in the same way as in Phase 1, except that the
challenger will aborts if the adversary queries H at (id∗1, . . . , id

∗
n, Y,W1, . . . ,Wn).

Guess. The adversary outputs its guess β′ for β.

Let S2 be the event that β′ = β in Game 2. Let Fnbdh be the event that the
adversary queries H at H(id∗1, . . . , id

∗
n, Y, Z1, . . . , Zn) either in Phase 1 or Phase

2. Since Game 1 and Game 2 are exactly the same when Fnbdh does not occur,
it follows that

|Pr[S2]− Pr[S1]| ≤ Pr[Fnbdh]. (17)

We claim that

Pr[Fnbdh] ≤ AdvnBDHBnbdh,G
, (18)

19

for an efficient strong n-BDH adversary Bnbdh that makes Qh decision oracle
queries.

Next we details how Bnbdh plays the role of the challenger in Game 2 to gain
the claimed advantage.

Setup: Bnbdh is given a n-BDH instance (X1, . . . , Xn, Y, Z1, . . . , Zn) as input
and begins to run Game 2, acting as the challenger for the adversary. It sets the
public key set (X1, . . . , Xn).

Hash oracle queries: When the adversary requests G(Xi, id), if L[Xi, id] gets
marked, Bnbdh chooses a random r ∈ Zp, sets Qi := Zr

i , stores it at L[Xi, id]
and gives it to the adversary. If the entry does not get marked, Bnbdh stores
and returns Qi := gr instead. In either case, r is remembered for later use.
For every query H(îd1, . . . , îdn, Ŷ , Ŵ1, . . . , Ŵn), Bnbdh looks up each Q̂i stored

at L[Xi, îdi] (if some Q̂i has not been created yet, the challenger queries the

G oracle with (Xi, îdi) by itself), and then queries its n-BDH decision oracle
with (X̂1, . . . X̂n, Ŷ , Q̂1, . . . , Q̂n, Ŵ1, . . . , Ŵn), and marks the tuple as “good” or
“bad” depending the answer.

Phase 1 - Private key queries: When the adversary requests private key for
an identity îd associated with the i-th KGC, if L[Xi, îd] is not marked, Bnbdh
retrieves the r used to generate the entry gr in L[Xi, îd], and returns Ŝi = Xr

i .

If L[Xi, îd] is marked, Bnbdh immediately aborts.

Phase 1 - Decryption queries: Upon receiving the decryption query (Ŷ , ĉ)

with îd = (îd1, . . . , îdn), Bnbdh responds as follows:

1. If all L[Xi, îd] tuples are unmarked, Bnbdh retrieves the corresponding private
key (Ŝ1, . . . , Ŝn) and computes Ŵi := e(Ŝi, Ŷ). Bnbdh queries the H oracle at

(îd1, . . . , îdn, Ŷ , Ŵ1, . . . , Ŵn), obtains the symmetric key k̂.

2. If one or more L[Xi, îd] are marked, Bnbdh check whether there is a “good”

tuple on K list indexed by (îd1, . . . , îdn, Ŷ). If so, Bnbdh retrieves the asso-

ciated k̂. If not, the challenger generates a random key k̂, and it will stay on
the lookout for a “good” tuple indexed by (îd1, . . . , îdn, Ŷ) in future random
oracle queries, associating this key with that tuple to keep things consistent.

In either way, the challenger can get the symmetric key k̂ and decrypts the
ciphertext.

Challenge: Once the adversary decides that Phase 1 is over it outputs two
equal length plaintextM0,M1 ∈M and a set of identities id∗ = (id∗1, . . . , id

∗
n) on

which it wishes to be challenged. If one or more L[Xi, id
∗
i] are not marked, Bnbdh

aborts. Otherwise, Bnbdh looks for a “good” tuple indexed by (id1, . . . , idn, Y)
on K, if there is one, Bnbdh aborts. If there is no such a “good” tuple indexed by
(id∗1, . . . , id

∗
n, Y), Bnbdh generates a random key k̂ associated to (id∗1, . . . , id

∗
n, Y),

and it will stay on the lookout for a “good” tuple indexed by (id∗i , . . . , id
∗
n, Y) in

future random oracle queries, associating this key with that tuple to keep things
consistent. B computes C∗ := E(k,Mβ), and returns (Y,C∗) to A.

20

Phase 2: Bnbdh proceeds the same way as it did in Phase 1, except that it
will abort if the adversary queries H at (id∗1, . . . , id

∗
n, Y,W1, . . . ,Wn), where

Wi = e(G(Xi, id
∗
i), Xi). Note that Bnbdh identify such query with the help of

its decision oracle.

Guess. The adversary outputs its guess β′ for β.

After the game ends, Bnbdh examines K and looks for a good entry of the form
(id∗1, . . . , id

∗
n, Y ,W1, . . . ,Wn). If it finds one (Fnbdh happens), it outputs (Wi)

1/r.
According to the definition of event of Fnbdh, Equation (18) holds immediately.

Finally, in Game 2 the adversary is essentially playing the chosen ciphertext
game against SE. Thus there is an adversary Bsym such that

|Pr[S2]− 1/2 · Pr[¬F1]| = AdvCCABsym,SE
. (19)

Theorem 6.1 follows by combining (12)-(19). ⊓⊔

Remark 1. We have two methods to answer the G query with (Xi, id) when
L[Xi, id] is marked:

1. Choose a random r, set G(Xi, id) = Zr
i . The corresponding answer to the

underlying problem is (Wi)
1/r.

2. Choose a random r, set G(Xi, id) = Zi ·g
r. The corresponding answer to the

underlying problem is Zi/e(Xi, Y)r.

7 Conclusions

We have proposed a new computational problem called the n-DH problem, which
is an extension of the twin DH problem of [6], and also proposed the associated
strong n-DH problem and the (strong) n-BDH problem. We have shown that the
strong n-DH (n-BDH) problem is as hard as the ordinary DH (BDH) problem.
We have introduced a formal definition of n-out-of-n encryption which has two
versions, namely MPKE and MIBE for the conventional public key setting and
identity-based key setting respectively. We have also proposed an efficient MPKE
(MIBE) scheme and proved it is CCA secure under the DH (BDH) assumption.

In our security model for an MPKE (MIBE) scheme, the adversary is not
allowed to corrupt any individual key in the whole set of n keys, which is used in
the challenge phase. This security model suits our target applications of multiple
key encryption very well, where the decryption process requires that either a
decryptor must holds n keys or that n decryptors much work together. However,
whether this model can be strengthened and whether there is any practical
motivation to any enhancement of the model might be an interesting topic for
further investigation. Whether there are other applications which can benefit
from the (strong) n-DH/n-BDH problem is another question which could lead
to some future research.

21

References

1. Michel Abdalla, Mihir Bellare, and Phillip Rogaway, The oracle diffie-hellman as-
sumptions and an analysis of DHIES, Topics in Cryptology - CT-RSA 2001, LNCS,
vol. 2020, 2001, pp. 143–158.

2. Mihir Bellare and Phillip Rogaway, Random oracles are practical: A paradigm for
designing efficient protocols, the 1st ACM Conference on Computer and Commu-
nications Security, ACM Press, 1993, pp. 62–73.

3. John Bethencourt, Amit Sahai, and Brent Waters, Ciphertext-Policy Attribute-
Based Encryption, IEEE Symposium on Security and Privacy 2007 (SP’ 2007)
(2007), 321–334.

4. Dan Boneh and Matthew Franklin, Identity-based encryption from the weil pairing,
Advances in Cryptology - CRYPTO 2001, LNCS, vol. 2139, 2001, pp. 213–229.

5. Dan Boneh, Craig Gentry, and Brent Waters, Collusion resistant broadcast encryp-
tion with short ciphertexts and private keys, Advances in Cryptology - CRYPTO
2005, LNCS, vol. 3621, Springer, 2005, pp. 258–275.

6. David Cash, Eike Kiltz, and Victor Shoup, The twin diffie-hellman problem and
applications, Advances in Cryptology - EUROCRYPT 2008, LNCS, vol. 4965, 2008,
pp. 127–145.

7. Liqun Chen, An interpretation of identity-based cryptography, Foundations of Se-
curity Analysis and Design IV, FOSAD 2006/2007 Tutorial Lectures, LNCS, vol.
4677, 2007, pp. 183–208.

8. Liqun Chen and Zhaohui Cheng, Security proof of sakai-kasahara’s identity-based
encryption scheme, Cryptography and Coding, 10th IMA International Conference,
LNCS, vol. 3796, 2005, pp. 442–459.

9. Liqun Chen and Keith Harrison, Multiple trusted authorities in identifier based
cryptography from pairings on elliptic curves.

10. Liqun Chen, Keith Harrison, David Soldera, and Nigel Smart, Applications of mul-
tiple trust authorities in pairing based cryptosystems, In Proceedings of Infrastruc-
ture Security Conference 2002, LNCS, vol. 2437, 2003, pp. 260–275.

11. Yu Chen and Liqun Chen, Twin bilinear diffie-hellman inversion problem and its
application, The 13th Annual International Conference on Information Security
and Cryptology, ICISC 2010, LNCS, Springer, 2010, p. to appear.

12. Ronald Cramer and Victor Shoup, A practical public key cryptosystem provably se-
cure against adaptive chosen ciphertext attack, Advances in Cryptology - CRYPTO
1998, LNCS, vol. 1462, 1998, pp. 13–25.

13. , Design and analysis of practical public-key encryption schemes secure
against adaptive chosen ciphertext attack, SIAM Journal on Computing 33 (2001),
167–226.

14. Ivan Damg̊ard and Mads Jurik, A length-flexible threshold cryptosystem with ap-
plications, Information Security and Privacy, 8th Australasian Conference, ACISP
2003, LNCS, vol. 2727, Springer, 2003, pp. 350–364.

15. Cécile Delerablée, Pascal Paillier, and David Pointcheval, Fully collusion secure
dynamic broadcast encryption with constant-size ciphertexts or decryption keys,
Pairing-Based Cryptography - Pairing 2007, LNCS, vol. 4575, 2007, pp. 39–59.

16. Whitefield Diffie and Martin E. Hellman, New directions in cryptograpgy, IEEE
Transactions on Infomation Theory 22(6) (1976), 644–654.

17. Eiichiro Fujisaki and Tatsuaki Okamoto, Secure integration of asymmetric and
symmetric encryption schemes, Advances in Cryptology - CRYPTO 1999, LNCS,
vol. 1666, 1999, pp. 537–554.

22

18. Steve Galbraith, Kenny Paterson, and Nigel P. Smart, Pairings for cryptographers,
Discrete Applied Mathematics 156(16) (2008), 3113–3121.

19. Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters, Attribute-based en-
cryption for fine-grained access control of encrypted data, ACM Conference on
Computer and Communications Security, ACM CCS 2006, ACM, 2006, pp. 89–98.

20. Benóıt Libert and Jean-Jacques Quisquater, Identity based encryption without re-
dundancy, ACNS 2005, LNCS, vol. 3531, pp. 285–300.

21. Charles Rackoff and Daniel R. Simon, Non-interactive zero-knowledge proof of
knowledge and chosen ciphertext attack, Advances in Cryptology - CRYPTO 1991,
LNCS, vol. 576, 1991, pp. 433–444.

22. Ryuichi Sakai and Masao Kasahara, Id based cryptosystems with pairing on elliptic
curve, Cryptology ePrint Archive, Report 2003/054, 2003, http://eprint.iacr.
org/.

23. Adi Shamir, How to share a secret, Commun. ACM 22 (1979), no. 11, 612–613.

23

