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Abstract. The ability to make meaningful comparisons between side-channel distinguishers is impor-
tant both to attackers seeking an optimal strategy and to designers wishing to secure a device against
the strongest possible threat. The usual experimental approach requires the distinguishing vectors to be
estimated: outcomes do not fully represent the inherent theoretic capabilities of distinguishers and do
not provide a basis for conclusive, like-for-like comparisons. This is particularly problematic in the case
of mutual information-based side channel analysis (MIA) which is notoriously sensitive to the choice of
estimator. We propose an evaluation framework which captures those theoretic characteristics of attack
distinguishers having the strongest bearing on an attacker’s general ability to estimate with practical suc-
cess, thus enabling like-for-like comparisons between different distinguishers in various leakage scenarios.
We apply our framework to an evaluation of MIA relative to its rather more well-established correlation-
based predecessor and a proposed variant inspired by the Kolmogorov-Smirnov distance. Our analysis
makes sense of the rift between the a priori reasoning in favour of MIA and the disappointing empirical
findings of previous comparative studies, and moreover reveals several unprecedented features of the at-
tack distinguishers in terms of their sensitivity to noise. It also explores—to our knowledge, for the first
time—theoretic properties of near-generic power models previously proposed (and experimentally verified)
for use in attacks targeting injective functions.

1 Introduction

A differential side-channel distinguisher is a statistic used to compare hypothesis-dependent predictions with
measured side-channel leakage in order to identify the hypothesis most likely to relate to the true internal state
of a cryptographic algorithm. For attackers and designers alike, it is desirable to make meaningful comparisons
between different such distinguishers in order to optimize an attack or (respectively) to secure a device against
the strongest possible threat (see [32]). This is problematic because of the many and varied factors determining
attack outcomes (target function, quality of power model, chosen distinguisher, noise), and the subtle and
sometimes unexpected ways in which these factors interplay.

In particular, there is a divide between the theoretical capabilities of a distinguisher and its outcome in practical
applications where the distinguishing vector must be estimated. Estimation is differentially problematic across
distinguishers, so that comparisons made on the basis of experimental results (whether from simulated or mea-
sured traces) are inconclusive: do the observed differences arise from inherent theoretical weaknesses/strengths
of the distinguishers or would different estimation procedures yield different relative performance?

Such experimental comparisons therefore only enable statements about the relative performance of different
estimators and not of the distinguishers (i.e. the estimands) themselves. Much of the literature (particularly that
pertaining to mutual information, which, as a nonparametric statistic, is notoriously problematic to estimate)
has focused on improving or varying estimation procedures in order to attain some sort of ‘best case’ basis for
comparison.



1.1 Our Contribution

This paper explains in greater depth, and applies in greater breadth, the alternative approach presented in [35]
and further used in [36]. The objective is to abstract away altogether from the confounding problem of estimation
by focussing on the theoretic properties of distinguishers as employed in various given leakage scenarios. This
addresses a shortcoming of the existing literature, which has tended to overlook the fact that by defining and
numerically evaluating possible leakage distributions and the corresponding attacker predictions, the estimands
for the distinguishing vectors can be directly computed according to their various definitions1. Thus we are
able to compare the distinguishers themselves on a like-for-like basis which is independent of choices about
estimators.

To this end are presented a selection of theoretic outcome measures which, taken together, are strongly indicative
of the efficiency with which an attack can be implemented practically. This ensures that the conclusions of our
comparisons are relevant. However, the differential burden and complexity of estimation associated with different
distinguishers does still mean that advantages observed in the theoretic realm will not always directly translate
into practice.

We subsequently apply our framework to an example question which is a ‘hot topic’ in the current litera-
ture: Mutual Information Analysis (MIA) was proposed in [11] as an ‘optimised’ and generic enhancement
to correlation-based DPA (CPA), but has disappointed in (most) subsequent comparisons (see [3] for a good
overview). By rigorously assessing the theoretic capabilities of MIA with respect to a range of leakage scenarios
we shed new light on the rift between the a priori reasoning and the empirical evidence, demonstrating when
and in what sense it does represent a superior attack methodology.

Our analysis reveals a surprising sensitivity to noise which resembles a type of stochastic resonance and can
even be critical in determining the theoretic success or failure of an MIA distinguisher in certain scenarios.
This is by contrast with CPA which is only affected by noise at the practical level—that is, the sample size
required for precise estimation increases but the underlying distinguishing ability of the theoretic vector remains
unchanged.

This noise sensitivity proves especially significant in the case of the ‘near-generic’ attacks described by the
authors of [11], who propose to use the 7 least significant bits (7LSB) as a power model against injective
target functions. Although experimentally verified in subsequent investigations such as [21], we provide (to our
knowledge) the first detailed theoretical level evaluation. We show that near-generic attacks actually require
a certain amount of noise in order to achieve theoretic success—failing comprehensively to recover the key
in strong-signal settings—and that even when they do succeed they do not supply the hoped-for advantages
displayed by generic attacks against non-injective targets.

Alongside the evaluation of MIA and CPA we present analogous results for a Kolmogorov-Smirnov inspired
distinguisher which was proposed in [34] to be conceptually similar to MIA but less problematic to implement.
The authors verified the effectiveness of the distinguisher in one typical attack scenario; the work of [36] presents
a more in-depth analysis which we further extend here—finding it to be a reasonable substitute for MIA in
first-order scenarios, with some evidence that it is more noise robust. Its adaptation to second-order scenarios
is less successful and it does not share MIA’s potential for higher-order adaptations.

1.2 Outline

The remainder of this paper is structured as follows: First, (Sect. 2) we explain (in greater depth) the background
to the motivating problem, by describing DPA attacks in general and our three distinguishers in particular,
and by discussing the difficulty of making meaningful comparisons when there are so many factors contributing
to outcomes. In Sect. 3 we introduce our framework for comparing attacks on a purely theoretic basis and

1 Whilst some previous work has taken theoretic distinguishing vectors into consideration (e.g. [25]), this approach has
not been applied systematically to an analysis of different types of distinguishers.



reason about the extent to which such comparisons are relevant to practical outcomes. Sect. 4 reports on the
comparative analysis, within the proposed framework, of MIA, CPA and KSA. We conclude in Sect. 5.

2 Background

2.1 Differential Power Analysis

We consider a ‘standard DPA attack’ scenario as defined in [17]. Suppose that the power consumption T of
the target cryptographic device depends on some internal value (or state) fk∗(X). The state is a function

of some part of the plaintext which is a random variable X
R
∈ X , as well as some part of the secret key

k∗ ∈ K. Consequently, we have that T = L ◦ fk∗(X) + ε, where L is some function which describes the data-
dependent component and ε comprises the remaining power consumption which can be modeled as independent
random noise. The attacker has N power measurements corresponding to encryptions of N known plaintexts
xi ∈ X , i = 1, . . . , N and wishes to recover the secret key k∗. The attacker can accurately compute the internal
values as they would be under each key hypothesis {fk(xi)}Ni=1, k ∈ K and uses whatever information he
possesses about the true leakage function L to construct a prediction model M : f(X ) −→M.

DPA is based on the intuition that the modeled power traces corresponding to the correct key hypothesis
should bear more resemblance to the true power traces than the modeled traces corresponding to incorrect
key hypotheses. An attacker is thus concerned with comparing the degree of similarity between the true and
modeled traces. A range of comparison tools—‘distinguishers’—can be used: Pearson’s correlation coefficient
[6] is a particularly popular choice and found to perform well in many tested scenarios, particularly when M
is a good approximation for L. Mutual Information Analysis (MIA) has been proposed as an enhancement
to correlation DPA (CPA) which relies less on M [11], and Kolmogorov-Smirnov Analysis (KSA) has been
suggested as an alternative enhancement, conceptually similar to MIA but less sensitive to choices made about
estimation procedure [34].

We describe these distinguishers in more detail in Sect. 2.3, but let us first consider what it means for a DPA
attack to be successful.

2.2 DPA Outcomes

We concentrate on the notion of key-recovery success as formalised by Standaert et al. in [32]. The theoretic
attack distinguisher is D = {D(k)}k∈K = {D(L◦fk∗(X)+ε,M ◦fk(X))}k∈K, where the plaintext input X takes
values in X according to some known distribution (usually uniform). We say the attack is theoretically successful
if D(k∗) > D(k) ∀k 6= k∗. We say it is o-th order theoretically successful if #{k ∈ K : D(k∗) ≤ D(k)} < o.

However, in practice D must be estimated. Suppose we have observations corresponding to the vector of inputs
x = {xi}Ni=1, and write e = {ei}Ni=1 to be the observed noise (i.e. drawn from the distribution of ε). Then the

size #K estimated vector is D̂N = {D̂N (k)}k∈K = {D̂N (L◦fk∗(x) +e,M ◦fk(x))}k∈K. We then say the attack
is successful if D̂N (k∗) > D̂N (k) ∀k 6= k∗ and o-th order successful if #{k ∈ K : D̂N (k∗) ≤ D̂N (k)} < o.

To avoid over-stating the physical security of a device it is important to take into account the most powerful
methods available to an attacker with access to side-channel measurements. Attempts to compare different
distinguishers in the search for the ‘most effective’ have thus received considerable attention in the literature
(see [31] for a particularly thorough empirical evaluation). Concurrent efforts such as [20,32] have addressed the
meta-challenge of developing a formal model for the notion of physical security. General statements about the
relative merits of particular methods are extremely hard to come by as attack outcomes are highly scenario-
specific. It is important to understand the multiple contributory factors and the way they interact if we want
to begin to make meaningful comparisons between side-channel distinguishers.



Factors Contributing to Theoretic Outcomes The target intermediate function f is known to play an
important role in determining DPA outcomes; some operations—most notably those which are designed to be
cryptographically secure—are particularly vulnerable [12,24]. This is because small changes in the input produce
big changes in the output, so that any wrong key hypothesis leads to predictions which are clearly distinguishable
from the true consumption. On the other hand, cryptographically weak functions such as AddRoundKey are
far more resilient to DPA, as similar keys produce similar predictions and the true key is thus identified by
a much smaller margin. The DES algorithm is a popular context for analysis because of its long-established
and widespread use, its general susceptibility to DPA (arising from the nonlinearity of its S-Boxes) and its
particular amenability to generic attacks (arising from the non-injectivity of its S-Boxes). In our example
application we therefore choose the first DES S-Box as a basis for a comprehensive evaluation over a range
of leakage assumptions; however, we also investigate the performance of our distinguishers against the AES
S-Box as representing an injective cryptographic function and (to demonstrate the contrast) against bitwise
exclusive-or (XOR), i.e. DES and AES AddRoundKey.

The characteristics of the device leakage—the functional form of the data-dependent component and the relative
size and shape of the independent noise—will substantially dictate how easily and effectively the side-channel
can be exploited. In particular, studies such as [8] have clearly demonstrated the central role of the attack power
model in determining distinguisher performance. In the case that an attacker has full control over an identical
device, profiling (as, for example, in [29]) can produce a very good approximation of the leakage function.
However, we restrict our focus to a weaker adversary, with access only to an unverifiable guess based on what
is known or assumed about the underlying technology of the device. Therefore the extent to which the device
leakage is ‘typical’ or predictable will have a significant bearing on the attack outcome.

Some devices, such as those built with CMOS technology, are well-known to consume power approximately
proportional to the Hamming weight of/Hamming distance between processed values. This has resulted in the
widespread popularity of Hamming weight/distance power models in side-channel research, in particular when
little is known about the true form of the leakage and the device cannot be profiled (i.e. the scenario to which
this study relates). However, not all technology conforms neatly to predictable behaviour. For example, the
authors of [28] show that power consumption in emerging nanoscale technologies is not consistent even between
identical devices, so that even an attacker with profiling capabilities has difficulties predicting the leakage of a
target device with confidence. Non-standard leakage can also be observed in typical hardware implementations
of substitution boxes [?].

In our example application in Sect. 4 we assume an uninformed attacker who can use either a ‘standard’ power
model, namely the Hamming weight, or, when appropriate to the distinguisher, a ‘generic’ (for non-injective
target functions) or ‘near-generic’ (for injective target functions) power model, namely the identity or the 7
least significant bits (7LSB) of the hypothesised processed value (both of which were proposed in [11] as suitable
for use in MIA). With this attacker in mind we consider three leakage scenarios: The first, and simplest, is an
optimistic scenario in which the data-dependent leakage really is proportional to the Hamming weight as per
the adversary’s standard model. The second we term realistic: as motivated by [1], we suppose that the true
leakage is actually an unevenly weighted sum of the bits.2 Lastly, as an example of a challenging (but still
realistic) scenario we suppose that the true leakage is a highly nonlinear function of the intermediate data.3

It is natural to expect the presence of noise to have an impact on practical outcomes: the weaker the signal-to-

noise ratio (SNR, defined as var(L◦fk∗ (X))
var(ε) ), the more data will be required to estimate the distinguishing vector

with sufficient precision to detect the true key (see Chap. 4 of [16]). However, less obvious is the fact that the
shape of the underlying theoretic vector can also be sensitive to noise; with the exception of correlation DPA,
noise impacts differentially by key hypothesis so that it actually plays a role in determining whether or not the
correct key is identified (and by what margin). In order to separately consider the roles of the leakage scenario

2 Specifically, we allow the least significant bit (LSB) to dominate with a relative weight of 10, since the experiments
of [34] identified this as sufficient distortion to enable MIA to outperform CPA.

3 Specifically, we map the target value to the Hamming weight of the AES S-Box output. There is no significance to
this choice other than that it is well-known and specially fitted with the nonlinearity properties useful to produce our
hypothetical degraded leakage scenario.



(f, L) and of the noise we will initially consider the behaviour of our distinguishers in a pure-signal setting and
then go on to show how Gaussian noise of varying size impacts on distinguisher outcomes.

Theoretic Outcomes vs. Practical Outcomes Supposing, then, that the attacker has chosen a distinguisher
which is theoretically capable of determining the correct key in a given setting (i.e. a given combination of
(f, L, ε)), distinguishing it from the incorrect hypotheses by a margin of a certain size. The practical outcome
of the attack will ultimately depend on the attacker’s ability to estimate the distinguishing vector sufficiently
precisely so as to detect a difference of that size. The theory behind statistical power analysis [14] tells us
that the amount of data needed to do this depends on the effect size and on the sampling distributions of the
estimator under the true and rival hypotheses. Since these sampling distributions depend on the true underlying
trace distribution (which is unknown), the overlapping tasks of choosing a ‘good’ estimator and of computing
the sample size required by an estimator (a desirable metric in the evaluation of physical security) are usually
extremely difficult, at least under reasonable assumptions. (The sample correlation coefficient is a somewhat
exceptional case, as we explain in section 2.3).

In short, there is no such thing as a universal ‘ideal’ estimator for any given distinguisher, by which to fairly
measure its best case capabilities in a given leakage scenario. This rather undermines attempts to compare
distinguishers on the basis of practical experiments with simulated or measured traces: perceived advantages/
disadvantages are inconclusive as we do not know if they truly indicate inherent strengths/weaknesses of the
distinguishers or merely arise from the choice of estimation procedure. A common theme of the research into
MIA, for example, has been the attempt to establish whether by improved estimation techniques it can achieve
the much-sought-after advantage over CPA [2,34]. By abstracting away from the estimation problem in order
to focus on theoretic distinguisher values we are able to make like-for-like comparisons, but with the drawback
that our results will not necessarily translate into the practical realm due to the differential burden of estimation
incurred by different statistics. However, we are keen to stress that our theoretic outcome measures are indicative
of practical performance—as we explain in Sect. 3.

2.3 Background to the Distinguishers

We now introduce the correlation coefficient, mutual information, and the Kolmogorov-Smirnov test statistic,
and explain how they can be used to construct DPA distinguishers.

Pearson’s Correlation Coefficient-Based Distinguisher Pearson’s correlation coefficient measures the

total linear dependency between two random variables A and B. It is defined as ρ(A,B) = cov(A,B)√
var(A)

√
var(B)

. It

takes values from -1 to 1 and is zero whenever A and B are independent. However, the converse is not true;
namely, A and B may be (non-linearly) dependent with a (linear) correlation of 0.

It is estimated from samples {ai}ni=1, {bi}ni=1 via the sample correlation coefficient:

r(A,B) =
∑n
i=1(ai−ā)(bi−b̄)√∑n

i=1(ai−ā)2
√∑n

i=1(bi−b̄)2
. This is a consistent estimator for ρ(A,B) and, moreover, is asymptotically

unbiased and efficient if A and B have a joint Normal distribution. Under the same assumptions, we can even
approximate the sampling distribution which, in the context of DPA, leads to ‘nice’ results such as the number
of trace measurements required for attacks to be successful (see Chap. 6.4 of [16]).

Because we are primarily interested in the magnitude (as opposed to the direction) of the relationship between
the true and modeled leakage we base our distinguisher on the absolute value of the correlation, comparing
measured traces T = L+ ε with the hypothesis-dependent predictions Mk as follows:

Dρ(k) = |ρ(T,Mk)| =

∣∣∣∣∣ cov(T,Mk)√
var(T )

√
var(Mk)

∣∣∣∣∣ . (1)



If the model M adequately approximates the data-dependent leakage L (up to proportionality) then we expect
(1) to be maximised for the correct key hypothesis k = k∗.

The impact of noise on the distinguisher is straightforward. In fact, as derived in Chap. 6.3 of [16], ρ(L +

ε,Mk) = ρ(L,Mk)√
1+

σ2ε
Var(L)

, where σε is the noise standard deviation. Thus, the larger the noise, the more diminished

are the correlations. But—crucially—the denominator does not depend on the key hypothesis; the theoretic
distinguisher vector is thus scaled in such a way that the rankings and other relative features (such as the
standard score and distinguishability measures defined in 3) are preserved. This does not at all imply that
practical CPA attacks are immune to noise: As the sample variance of the estimator increases, the number of
traces required to reach a sufficient level of precision also increases (see Chap. 4 of [16]).

Multivariate Extensions Pearson’s correlation coefficient has no natural multivariate extension, but it has
been adapted for use in higher-order DPA attacks against masked implementations by introducing a data
pre-processing step in which multivariate trace measurements are mapped to a univariate trace which is then
compared with the model predictions in the usual way [19]. A second-order CPA distinguisher takes the form:

D2Oρ(k) = |ρ(P (T1, T2),Mk)| =

∣∣∣∣∣ cov(P (T1, T2),Mk)√
var(P (T1, T2))

√
var(Mk)

∣∣∣∣∣ , (2)

where P : T1×T2 7−→ TP is the pre-processing function. We choose P to be the normalised product: P (T1, T2) =
(T1 − E(T1))× (T2 − E(T2)), as representing the best available in the literature (at least in the case of known
Hamming weight leakage—see [26]).

Mutual Information-Based Distinguisher The appeal of mutual information (MI) for use in DPA is that,
rather than measuring linear dependencies only, it quantifies the total information shared between two random
variables. It is measured in bits and is most intuitively expressed in terms of entropies via Shannon’s formula:
I(A;B) = H(A)−H(A|B).4

As a functional of probability distributions, MI is notoriously problematic to estimate [5,13,22,30,33]. All
estimators are biased, and further no ‘ideal’ estimator exists—that is to say, different estimators perform
differently depending on the underlying structure of the data. The usual approach is to first estimate the
underlying marginal and conditional densities and then to substitute these into Shannon’s formula via a ‘plug-
in’ estimator for discrete entropy. There are many different ways to estimate densities and the quality of
the resulting estimator for MI is very sensitive to the methods and parameters chosen. If we have a good
understanding of the underlying distributions we can fit a parametric model such as a Gaussian mixture (see
Veyrat-Charvillon et al. [34]). However, since MIA has been proposed for use in scenarios where our usual
assumptions do not hold we are generally more interested in nonparametric methods, which are somewhat
sensitive to user approach and known to incur an overhead in terms of estimation costs.

Unfortunately, estimators for MI do not behave so ‘nicely’ as the sample correlation coefficient; in fact, there
are no universal rates of convergence [22], so that whatever estimator we pick, we can always find a distribution
for which the error vanishes arbitrarily slowly. In the absence of general results about the sampling distribution
of the estimators, we cannot compute (for example) the number of traces needed for an attack to be successful,
except under the strongest of assumptions5.

Its application as an attack distinguisher is as follows:

DMI(k) = I(T ;Mk) = H(T )−H(T |Mk) = H(T )− E
m∈M

[H(T |Mk = m)] , (3)

4 The original (but equivalent) definition is I(A;B) =
∑

a∈A
∑

b∈B pA,B(a, b) log2

(
pA,B(a,b)

pA(a pB(b)

)
, where pA,B is the joint

probability density of A and B and pA, pB are the marginal densities.
5 Under strong simplifying assumptions, estimating an MIA parametrically can be shown to be equivalent to conducting

a correlation attack [17].



and because the ‘unexplained’ entropy (the second term) is smallest when the predictions are good, we expect
(3) to be maximised for the correct key hypothesis k = k∗.

Unlike CPA the impact of noise on the MIA distinguishing vector is complex (see, for example, [15]). In
particular, whilst I(L+ε;Mk) ≤ I(L;Mk) (L, ε independent), nonetheless I(L;Mk)−I(L+ε;Mk) 6= I(L;Mk′)−
I(L+ ε;Mk′). Hence, the vector elements are differentially affected so that theoretic outcomes in a pure-signal
setting do not directly generalise to theoretic outcomes in the presence of noise.

Multivariate Extensions MI generalises quite naturally to higher-order statistics via several different meaningful
extensions. The authors of [3] presented three such notions and explored how each could be adapted to the
purposes of DPA. They subsequently demonstrated that the three were essentially (theoretically) equivalent in
the case of a perfectly implemented masking scheme (i.e. ensuring that I(T1;Mk∗) = I(T2;Mk∗) = 0). As this is
precisely the scenario we consider for our second-order attacks, we only need pursue one formulation. We pick
that which most intuitively relates to the DPA problem—namely, the information shared between the pair of
trace points taken jointly and the model prediction, as follows:

D2OMI(k) = I((T1, T2);Mk) = H(T1, T2)−H(T1, T2|Mk). (4)

Another opportunity presented by multivariate extensions of MI is the possibility of simultaneously targeting
multiple functions in a standard unprotected scenario, in order to see if the incorporation of more information
can help to further optimise an attack. To test this idea we compute the MI between the pair of trace values
and a corresponding pair of predictions:

DMMI(k) = I((T1, T2); (M1,M2)k) = H(T1, T2)−H(T1, T2|(M1,M2)k). (5)

This formulation relates intuitively to the problem we are trying to address. Whilst alternative quantities such
as I(T1;T2;M1,k;M2,k) are meaningful in the context of information theory generally, it is not clear that such
an approach would be meaningful in the specific context of DPA. For completeness, we did test this 4-variate
notion, confirming that it is far less effective than the distinguisher in (5); we omit the detailed results as not
adding particular insight beyond this summary observation.

Kolmogorov-Smirnov-Based Distinguisher The Kolmogorov-Smirnov (KS) distance between the distri-
butions of random variables A and B is defined as K(A||B) = supx∈A∪B |FA(x)−FB(x)| where FA, FB are the
cumulative distribution functions (CDFs) of A and B, i.e. FA(x) = P(A ≤ x). In a two-sample KS test designed
to test the null hypothesis that A and B share the same distribution, the empirical CDFs are estimated from
samples {ai}ni=1, {bi}ni=1, e.g. F̂A(x) = 1

n

∑n
i=1 I{ai≤x} (I{ai≤x} is the indicator function, taking the value 1 if

ai ≤ x and 0 otherwise). The fact that the KS test statistic does not require explicit density estimation is what
makes it appealing as an alternative to MI.

Just as MIA can be understood to operate by comparing the global traces T with the hypothesis-dependent con-
ditional traces T |Mk—via the expected change in entropy—a KS-inspired distinguisher measures the maximum
distance between the global and the conditional trace distributions, as averaged over the prediction space:

DKS(k) = E[K(T ||T |Mk)] = E
m∈M

[
sup
y
|FT (y)− FT |Mk=m(y)|

]
. (6)

In case of the correct key hypothesis we expect the test statistic to return a large difference.

Multivariate Extensions Multivariate extensions of the KS test are somewhat more difficult to achieve, as we
first need to formulate an appropriate notion of a multivariate CDF. In the one-dimensional case there are only
two ways of ordering the data, namely P(A ≥ x) and P(A ≤ x). As we have that P(A ≥ x) = 1− P(A ≤ x) the
choice turns out to be arbitrary.



In higher dimensions the choice of ordering is no longer inconsequential: there is no direct way to map (e.g.)
between P(A1 ≤ x,A2 ≤ y) and P(A1 ≥ x,A2 ≤ y). In fact for d different random variables, there are 2d

possible orderings we need to consider. Peacock (in [23]) proposes to define the KS distance as the maximum
distributional difference taken over all the orderings, so that (for example) in the bivariate case:

K(A1, A2||B1, B2) = max

{
sup

(x,y)∈(A1∪B1)×(A2∪B2)

∣∣∣F (i)
A1,A2

(x, y)− F (i)
B1,B2

(x, y)
∣∣∣}4

i=1

,

where S = (A1 ∪B1)× (A2 ∪B2) and F (1) to F (4) are the CDFs based on all four possible orderings. He shows
that a bivariate KS test statistic according to this approach is close enough to being distribution-free to be
useful in practice. Inevitably, this impacts not just the data complexity of estimation but also the computational
costs; in spite of various optimisations proposed in [9], extensions to dimensions greater than 2 quickly become
infeasible.

For second-order attacks against a masked implementation we adapt the KSA distinguisher to compare the
global joint CDF of the traces with the joint CDFs as partitioned by the model predictions under each key
hypothesis (this is conceptually comparable to our second-order MIA distinguisher):

D2OKS(k) = E[K(T1, T2||T1, T2|Mk)] = E
m∈M

[
max

{
sup
y1,y2

∣∣∣F (i)
T1,T2

(y1, y2)− F (i)
T1,T2|Mk=m(y1, y2)

∣∣∣}4

i=1

]
. (7)

Similarly, following the construction of our two-target MIA distinguisher we consider a KSA analogue whereby
the global joint CDFs are compared with the joint CDFs as conditioned on the bivariate predictions:

DMKS(k) = E[K(T1, T2||T1, T2|(M1,M2)k)]

= E
(m1,m2)∈M1×M2

[
max

{
sup
y1,y2

∣∣∣F (i)
T1,T2

(y1, y2)− F (i)
T1,T2|(M1,M2)k=(m1,m2)(y1, y2)

∣∣∣}4

i=1

]
.

(8)

3 Comparison Framework

As mentioned above, a useful measure of physical security would be the number of traces needed for an attack
to be successful. We can compute this for a given estimator using the techniques of statistical power analysis
[14], provided the sampling distribution can be approximated—but this is not achievable in general (see Sect.
2.3), besides which we are seeking to avoid estimator-specific comparisons. Our solution, as first introduced
in [35], is to choose measures based on those characteristics of the theoretic vectors which have the greatest
bearing on the trace efficiency of a practical attack. The first needs little explanation:

1. Correct key ranking : The position of the correct key when ranked by distinguisher value. If the correct key
is ranked joint first the ranking order is the number of keys sharing position 1, so that an attack with a
ranking order of o is oth-order theoretically successful as defined in Sect. 2.2. The relationship with practical
efficiency is obvious: attacks which are not first-order successful will not be able to uniquely extract the
correct key from any number of trace measurements (except by random chance).

Rank(D) = 1 +
∑
k∈K

I{D(k)>D(k∗)};

RankOrder(D) =
∑
k∈K

I{D(k)=D(k∗)}.

The theory behind statistical power analysis tells us that, when estimating population quantities, the sample
size required to detect a statistically significant difference increases as the actual magnitude of the true difference
decreases. Therefore, of crucial practical relevance to practical attack outcomes are the theoretical margins by
which the true key is isolated from the remaining keys. Such is the motivation for the next three measures:



2. Relative distinguishing margin: The distance between the correct key distinguisher value and the value for
the highest ranked alternative, normalised by the standard deviation of the distinguishing vector so that
scale-free comparisons can be made between different distinguishers in different leakage scenarios. (Note
that it is zero for attacks with success orders greater than 1, and negative for failed attacks, where it gives
further indication of the extent of the failure).

RelMarg(D) =
D(k∗)−max{D(k)|k 6= k∗}√

Var{D(k)|k ∈ K}
.

3. Absolute distinguishing margin: The relative margin allows us to summarise the shape of a distinguishing
vector and how this responds to noise or scenario degradation. However, it disguises changes in the actual
magnitude of the margin and the fact that this is more sensitive for some methodologies than for others.
We need some way to take into account raw margin size as well as size relative to the vector as a whole,
which is still scale-independent so that we can make like-for-like comparisons between distinguishers. We
therefore report the ratio between the nearest-rival margin and that of the corresponding ‘optimal’ vector:
the univariate equivalent in an optimistic (i.e. known Hamming weight power model) noise-free setting.
This will allow us to comment meaningfully on the impact of model degradation and noise on the real size
of the margins to be estimated.

AbsMarg(D) =
D(k∗)−max{D(k)|k 6= k∗}

D(L ◦ fk∗(X), L ◦ fk∗(X))−max{D(L ◦ fk∗(X), L ◦ fk(X))|k 6= k∗}
.

4. Standard score: This is the same as the “DPA signal-to-noise ratio” described by [12]: the number of
standard deviations above (or below) the mean, for the correct key distinguisher value. It provides a more
general measure of the sensitivity of an attack in isolating the correct key. A theoretically ‘unsuccessful’
attack may still be able to return a small candidate subset containing the correct key if the standard score
is high.

StdScore(D) =
D(k∗)− E{D(k)|k ∈ K}√

Var{D(k)|k ∈ K}
.

By computing the above measures for uniformly drawn plaintexts X
unif.← X , we are able to compare theoretic

behaviour of attacks when provided with full information. We propose to explore the sensitivity of attacks to
incomplete information by inspecting theoretic attack vectors as restricted on reduced subsets of the plaintext
space: D|X ′ where X ′ ⊆ X . These vectors depend not only on the size but also on the composition of the
input set X ′; we cannot perform the computations exhaustively over the entire space of possible subsets (it
is too large), but by repeated random draws of increasing size we can estimate the support size needed for
theoretic success. We argue that this provides insight into the relative data complexity of distinguishers and
their particular limitations in small samples. We thus add the following measures (defined for theoretically
successful distinguishers only):

5. Average critical support : On average, the required support size of the input distribution for the attack to
achieve oth-order success (where o is the ranking order).

AveSupp(D) = Ê[min{#X ′|X ′ ⊆ X ∧ Rank(D|X ′) = 1}].

6. Critical support for 100×p% success rate: The support size for which the rate of success (of the appropriate
order) is at least 100× p per cent.

PctSupp(D, p) = min{#X ′|X ′ ⊆ X ∧ Ê[I{Rank(D|X′ )=1}] = p}.

Our criteria are best viewed in conjunction with one another rather than in isolation, and trade-offs between
them will interplay differently with practical considerations. For instance, a methodology which achieves only
oth-order success (where o > 1) might be preferable to one achieving 1st-order success if the distinguisher
vector can be estimated more precisely and/or efficiently. Likewise, nearest-rival distinguishability may be
more important than average critical support in the presence of high noise.



Computing the Theoretic Vectors For each possible input x ∈ X to the cryptographic function we obtain a
vector evaluating the Gaussian density centred at the corresponding data-dependent leakage value L ◦ fk∗(x)
and having variance Var(ε). The average of these vectors, weighted by the input probabilities P(X = x),
then gives the probability density of the power consumption evaluated over the full range of possible leakage
values. Conditional densities, corresponding to each possible prediction value m ∈M under each key hypothesis
k ∈ K, are constructed similarly. From these probability densities we are able to directly compute (via numerical
integration) the moments, entropies and cumulative probabilities comprising the formulae for our distinguishers
(as detailed in Sect. 2.3).

4 Example Application

In this section we apply our proposed framework to an evaluation of MIA relative to its (less optimal?) precursor,
CPA, and its (more user-friendly?) relative, KSA.

4.1 Evaluation Scenarios

Recall that we consider a non-profiling adversary who is limited to ‘standard’, ‘generic’ and ‘near-generic’ power
models (i.e., the Hamming weight, identity and 7LSB functions, respectively). We evaluate the theoretic capa-
bilities of such an adversary—using CPA, MIA and KSA distinguishers—in optimistic, realistic and challenging
leakage scenarios, as defined in Sect. 2.2.

To this end we examine the theoretical vectors underlying DPA attacks against the DES and AES block
ciphers. Within each scenario we will first consider the behaviour of our distinguishers in a noise-free setting—
to demonstrate the role of data-dependent leakage in determining attack outcomes—and then go on to show
how Gaussian noise of varying size impacts on the distinguisher outcomes.

4.2 Univariate Attacks Targeting the First DES S-Box

The Noise-Free Setting The first two blocks of Table 1 report the outcomes of standard and generic univariate
attacks on an unprotected DES S-Box with noise-free data-dependent leakage. In the optimistic scenario, the
MIA distinguishers exhibit substantially larger relative margins than standard CPA, confirming that in some
sense MIA does meet the a priori expectation of enhanced data exploitation. However, it also requires a larger
support to be successful, and it is this initial ‘information overhead’, combined with the relative efficiency of
estimating the correlation coefficient, which accounts for the consistently reported CPA advantage in practical
attacks with a good power model. Unsurprisingly, when the standard Hamming weight power model is a good
fit to the true leakage, generic MIA offers no advantage, exhibiting a substantially reduced margin in absolute
terms and requiring a larger input support to succeed.

As the true leakage diverges from the standard power model, the advantage to MIA increases. In the challenging
scenario, CPA actually fails whilst MIA continues to identify the correct key. Moreover, the generic capabilities
of the latter become apparent as the distinguishing margins and the critical support size are remarkably robust
to the deterioration of the leakage. Hence it appears that the ability of generic attacks to recover the key is in
some sense independent of the true leakage: whilst it is always preferable to use a power model when a good
one is available, a generic model will work just as well however typical or unusual an unknown leakage function
really is.

Generic KSA performs very similarly to generic MIA in each scenario, with slightly diminished relative margins.
Standard Hamming weight KSA performs similarly to its MIA counterpart in the optimistic scenario but is less
robust to model degradation.



The Impact of Noise on Distinguishing Margins Figure 1 shows the impact of noise on distinguishing margins.
As we know already (from Sect. 2.3), the CPA vector is merely scaled by a constant as the SNR varies, so
that the relative distinguishing margin is unchanged. By contrast, the relative margins for MIA are affected by
noise, and in such a way that the relationships are not monotonic. In each leakage scenario there seems to be
an optimal SNR at which the margin reaches a maximum, subsequently diminishing to that of the noise-free
setting. Such a phenomenon is a type of stochastic resonance [4], which can (in principle) occur in any nonlinear
measurement system. The impact on KSA margins is less marked.

In the optimistic scenario, standard MIA exhibits the largest relative margins across the tested noise range (in
particular maintaining an advantage over generic MIA). Generic KSA gains an advantage over its standard
power model counterpart in the presence of sufficient noise, but the margins of each reduce to below those of
CPA when the SNR is less than around 0.5. In the realistic scenario the impact of noise is more marked, and
with greater implications for the relative effectiveness of the distinguishers. For one, it can now be seen that
the advantages exhibited by the generic attacks are actually far more substantial in low-signal settings, so that
they may well prove more practically efficient than their standard counterparts. Note also that convergence to
the noise-free setting occurs (for all distinguishers) at a larger SNR threshold, hence the different x-axes. In
the challenging scenario the generic attacks remain clearly favourable throughout the tested range; in fact the
standard MIA and KSA attacks are actually rendered unsuccessful by high levels of noise, only achieving key
recovery once the signal begins to dominate in the leakage.

The lower part of the figure shows absolute margins as the SNR varies. These are most robust for CPA, in such
cases that the attack is theoretically successful (i.e. the optimistic and realistic scenarios). Since the actual
size of the margins to be estimated has a bearing on the amount of data needed for estimation (in addition to
the size relative to the variation in the vector), this is likely only to enhance its proven advantage in practical
attacks in the presence of noise. It is interesting to note that KSA absolute margins are more robust to noise
than those of MIA, so that the former method may actually prove the preferable of the two in (noisy) practical
settings. This is particularly relevant, for example, in the challenging scenario where the generic MIA and KSA
attacks are the only two which remain successful across the tested range.
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Fig. 1: Theoretic relative and absolute distinguishing margins as SNR varies, for standard and generic univariate
attacks against the first DES S-Box.



The Impact of Noise on Critical Support Size Within each scenario, we tested the strongest MIA and KSA
variants (standard in the optimistic scenario, generic in the realistic and challenging scenarios) to see whether
or not noise had any detrimental effect on the support size required for key recovery. We found that it did
not—i.e. the outcome measures relating to support size remained constant across the tested SNR range. (For
CPA we do not need to test this because of the noise-invariance of the shape of the distinguishing vector). Thus
the advantages of MIA and KSA in terms of distinguishing margin size and (in the generic case) scenario and
noise robustness are not undermined by any increased support size costs as noise varies.

4.3 Multi-Target Attacks Against Unprotected DES

The Noise-Free Setting To put our multi-target attacks in context we first consider standard Hamming weight
attacks against DES AddRoundKey. The outcomes in the noise-free setting (block 3 of Table 1) nicely illustrate
the reduced effectiveness of DPA against linear target functions. Even in the optimistic scenario the distinguish-
ers are no longer able to uniquely identify the correct key, instead ranking it equally with its bitwise complement
k̄∗. The standard scores are reduced relative to those reported for the S-Box attacks with the standard power
model; MIA and KSA again seem to have an advantage over CPA but are no longer robust to severe model
degradation. Note that, since AddRoundKey is injective, there is no opportunity for the generic strategy.

Block 4 relates to multivariate extensions of MIA and KSA by which we attempt to enhance outcomes by
jointly targeting AddRoundKey and the first S-Box. Although we are exploiting a larger amount of information,
this increase applies across the range of key hypotheses so that distinguishing margins are not automatically
increased. In fact, even in the optimistic scenario the true key is less strongly distinguished (in relative and even
absolute terms) than in the attacks against the S-Box alone, and with a substantial increase in the support size
required.

The attacks moreover appear less robust to model degradation, and, as with the AddRoundKey attacks, they
actually fail in the challenging scenario.

The Impact of Noise on Distinguishing Margins Figure 2 confirms that, in each of our three leakage scenarios, the
advantage of the univariate attacks over the multivariate persists across the tested noise range, thus reinforcing
our conclusion that more information does not necessarily imply greater attack effectiveness.

This discovery appears counter-intuitive alongside what is known about other classes of multivariate attack.
Template attacks, in particular, are known to be enhanced by the incorporation of multiple data points (see
[7,27]). Careful investigation into the subtle conceptual differences between the two approaches is clearly needed
to explain this apparent incongruity.

4.4 Second-Order Attacks Against the First DES S-Box With Masking

The Noise-Free Setting We next consider an implementation in which the outputs of the first DES S-Box are
XOR-ed with a uniformly distributed random mask of the same length as the S-Box outputs (i.e. 4 bits).

In the optimistic scenario the relative distinguishing margins for all three second-order attacks do not appear
greatly reduced from those of their first-order counterparts; the penalty in absolute terms is more evident.
Second-order MIA is the most robust to the masking with an absolute margin of 57% compared with 45%
for second-order CPA and just 14% for second-order KSA. The critical support sizes for MIA and CPA are
comparable and modest compared with the substantially inflated requirements for KSA (note that the full
support set comprises all the possible input-mask pairs—64× 16 = 1024 in total).

Although MIA is rivaled by CPA in the optimistic scenario, and that the latter continues to succeed even
in the challenging scenario (as does second-order KSA), it is decidedly the most robust to degradation of
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Fig. 2: Theoretic relative and absolute distinguishing margins as SNR varies, for multivariate attacks against
AddRoundKey and the first S-Box in an unprotected implementation of DES.

the model. On that basis it appears that (theoretically) MIA could be the most well suited of the tested
distinguishers to exploiting masked leakage in unusual leakage scenarios. Its advantage over CPA—which relies
on pre-processing—has been anticipated in the literature (in particular, [10]) but it is interesting to note that
second-order KSA no longer achieves close performance in spite of its conceptual similarity and consistently
similar behaviour in first-order scenarios.

The Impact of Noise on Distinguishing Margins Figure 3 indicates that the impact of noise on second-order
attacks can be quite profound. In the optimisticscenario the relative margin of second-order MIA is enhanced
by noise, whilst in the realistic scenario noise works to the substantial detriment of MIA until the SNR is at
least 8. In the challenging scenario noise appears to enhance the relative margins of both MIA and KSA.

In absolute terms the MIA margins are substantially reduced by noise, requiring a strong signal before they
begin to approach their pure-signal capabilities. CPA and KSA appear more robust, so that in spite of their
inferiority in noise-free settings they may yet be preferable in certain noisy settings.

4.5 Univariate Attacks Targeting the AES S-Box

The Noise-Free Setting We next consider attacks against the AES algorithm. Block 6 of Table 1 reports
outcomes of standard attacks against the AES S-Box with noise-free data-dependent leakage. As was the case
for DES, the MIA attacks with the Hamming weight power model have substantially larger relative margins
than CPA, with KSA falling only slightly behind. However, all three standard attacks are less robust to severe
model degradation and fail in the challenging scenario.

Block 7 summarises the theoretic outcomes of ‘near-generic’ attacks in the absence of noise; it is immediately
apparent that these are not comparable to the generic variants as used against DES. In fact, MIA with a
7LSB power model fails dramatically, with the correct key appearing last in the ranked vector (by a substantial
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Fig. 3: Theoretic relative and absolute distinguishing margins as SNR varies, for second-order attacks against the first
DES S-Box in a masked implementation.

margin). The equivalent KSA attack succeeds, but with greatly reduced distinguishing power and requiring
almost half of the total input support space.

This is surprising—and even concerning—given the reported effectiveness of the attack in practical scenarios
(for example in the experiments of [21]). For clues to this apparent incongruity we must look beyond the
noise-free setting.

The Impact of Noise on Distinguishing Margins Examining the first panel of Figure 4 it becomes clear that it
is only in the strong-signal setting (SNR > 10, approx.) that the attack fails to distinguish the correct key. As
the data-dependent signal weakens, the attack becomes theoretically distinguishing, though with consistently
smaller relative and absolute margins than CPA.6

The relative margins of the distinguishers using the standard Hamming weight power model are less affected
by noise than in the attacks against DES. In absolute terms (see top right panel of Figure 4) KSA once more
appears more robust to noise than MIA, with CPA the most robust of all.

6 A closer inspection of Shannon’s formula in the noise-free setting (I(L;Mk) = H(L)−H(L|Mk)) reveals the reason for
the eventual failure: except for the correct key hypothesis, certain model predictions induce conditional distributions
which are supported on a single point and therefore contribute zero entropy to the overall (expected) conditional
entropy component H(L|Mk). All other conditional distributions, including all those induced under the correct key
hypothesis, are supported on two values and thus contribute entropy of one bit. So the expected conditional entropy
is 1 for the correct key and less than 1 everywhere else; since the global entropy H(L) does not change, I(L;Mk) is
minimal for the correct key.
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Fig. 4: Theoretic relative and absolute distinguishing margins as SNR varies, for standard and generic univariate
attacks against the AES S-Box.

4.6 Multi-Target Attacks Against Unprotected AES

The Noise-Free Setting Block 8 of Table 1 shows theoretic outcomes against AES AddRoundKey in the absence
of noise. In the optimistic and realistic scenarios we observe the same reduction in effectiveness relative to S-Box
attacks that we reported for DES; in the challenging scenario all three attacks fail.

However, block 9—reporting outcomes for the multivariate attacks against AddRoundKey and the S-Box
jointly—reveals something interesting. Whilst in the optimistic and realistic scenarios these exhibit smaller
margins and greater support requirements than univariate S-Box attacks, in the challenging scenario we actu-
ally observe successful multivariate attacks where the separate univariate attacks failed.

The Impact of Noise on Distinguishing Margins Figure 5 confirms that the diminished distinguishing margins
exhibited by multivariate MIA and KSA persist across all tested noise settings in the optimistic and realistic
scenarios. In the challenging scenario the margins of (unanticipated) success demonstrate good robustness to
noise. Thus we arrive at further evidence that attacks against multiple targets can sometimes be useful in special
circumstances where the true leakage is sufficiently non-standard. But—given the failure of the corresponding
attack against DES—this clearly depends also on the target functions chosen and it is hard to make any general
concrete statements.
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Fig. 5: Theoretic relative and absolute distinguishing margins as SNR varies, for multivariate attacks against
AddRoundKey and the S-Box in an unprotected implementation of AES.



Table 1: Theoretic outcomes in optimistic, realistic and challenging scenarios with noise-free data-dependent leakage.

Optimistic Realistic Challenging

CPA MIA KSA CPA MIA KSA CPA MIA KSA

1. Standard attacks against DES S-Box
Correct key ranking (order) 1 1 1 1 1 1 12 1 1
Standard score 5.14 6.59 5.95 3.21 6.38 5.49 0.74 5.23 2.66
Relative margin 3.56 5.61 4.24 1.22 5.12 3.61 -2.38 3.22 0.40
Absolute margin 1.00 1.00 1.00 0.30 0.86 0.66 -0.28 0.21 0.04
Average critical support 6 8 8 17 10 12 – 26 39
Critical support for 90% SR 8 11 11 32 14 20 – 37 61
Critical support for 100% SR 16 19 19 49 21 34 – 46 64

2. Generic attacks against DES S-Box
Correct key ranking (order) 1 1 1 8 1 1 64 1 1
Standard score 5.39 6.35 6.20 1.45 6.66 5.77 -1.29 6.48 5.94
Relative margin 3.61 5.08 4.60 -0.81 5.45 4.12 -3.95 5.30 4.41
Absolute margin 0.85 0.68 0.74 -0.14 0.86 0.80 -0.55 0.77 0.80
Average critical support 9 16 16 – 15 15 – 15 15
Critical support for 90% SR 14 19 19 – 17 17 – 18 18
Critical support for 100% SR 27 24 24 – 21 21 – 25 25

3. Standard attacks against DES AddRoundKey
Correct key ranking (order) 1 (2) 1 (2) 1 (2) 1 (2) 1 (4) 1 (2) 27 51 9
Standard score 2.62 4.48 3.76 2.24 3.44 4.14 0.37 -0.80 0.93
Relative margin 0.00 0.00 0.00 0.00 0.00 0.00 -1.85 -3.33 -1.41
Absolute margin – – – – – – – – –
Average critical support 6 9 9 26 10 14 – – –
Critical support for 90% SR 8 12 12 47 15 24 – – –
Critical support for 100% SR 14 21 21 58 23 51 – – –

4. Multivariate attacks against DES
Correct key ranking (order) – 1 1 – 1 1 – 4 8
Standard score – 6.04 4.70 – 5.08 4.51 – 1.60 1.04
Relative margin – 3.66 1.93 – 2.62 1.91 – -0.53 -2.12
Absolute margin – 0.64 0.41 – 0.28 0.27 – -0.02 -0.17
Average critical support – 14 14 – 28 23 – – –
Critical support for 90% SR – 16 16 – 39 33 – – –
Critical support for 100% SR – 25 25 – 53 47 – – –

5. Second-order attacks against DES S-Box
Correct key ranking (order) 1 1 1 1 1 1 1 1 1
Standard score 5.14 6.16 5.39 2.46 5.90 2.31 3.57 5.23 3.19
Relative margin 3.56 4.55 3.72 0.35 4.48 0.30 1.34 3.67 1.42
Absolute margin 0.45 0.57 0.14 0.07 0.62 0.02 0.08 0.13 0.04
Average critical support 28 29 115 75 44 195 207 140 292
Critical support for 90% SR 50 46 219 189 72 449 503 247 574
Critical support for 100% SR 137 74 385 894 117 953 913 434 909

6. Standard attacks against AES S-Box
Correct key ranking (order) 1 1 1 1 1 1 186 193 214
Standard score 12.24 15.60 13.91 9.61 15.49 12.69 -0.77 -0.75 -1.03
Relative margin 10.14 14.88 11.95 7.00 14.61 10.30 -4.98 -3.62 -3.98
Absolute margin 1.00 1.00 1.00 0.49 0.94 0.58 -0.26 -0.04 -0.13
Average critical support 5 9 9 22 12 18 – – –
Critical support for 90% SR 6 11 11 39 16 30 – – –
Critical support for 100% SR 9 15 15 71 23 47 – – –

7. Near-generic attacks against AES S-Box
Correct key ranking (order) 1 256 1 1 256 1 153 212 164
Standard score 11.23 -5.75 6.12 3.86 -3.98 10.23 -0.44 -1.08 -0.42
Relative margin 8.88 -7.74 3.50 0.70 -6.79 7.96 -3.87 -4.06 -3.72
Absolute margin 0.57 -0.11 0.11 0.03 -0.08 0.26 -0.19 -0.06 -0.11
Average critical support 21 – 125 153 – 76 – – –
Critical support for 90% SR 35 – 155 234 – 89 – – –
Critical support for 100% SR 73 – 186 255 – 110 – – –

8. Standard attacks against AES AddRoundKey
Correct key ranking (order) 1 (2) 1 (2) 1 (2) 1 (2) 1 (4) 1 (2) 193 185 187
Standard score 3.24 7.06 5.18 2.65 5.68 5.50 -0.91 -0.51 -0.74
Relative margin 0.00 0.00 0.00 0.00 0.00 0.00 -3.34 -2.93 -3.83
Absolute margin – – – – – – – – –
Average critical support 7 11 11 59 14 23 – – –
Critical support for 90% SR 9 14 14 117 20 41 – – –
Critical support for 100% SR 15 25 25 193 40 96 – – –

9. Multivariate attacks against AES
Correct key ranking (order) – 1 1 – 1 1 – 1 1
Standard score – 13.81 9.69 – 13.44 9.59 – 13.24 12.65
Relative margin – 10.44 4.05 – 10.49 4.87 – 11.31 10.38
Absolute margin – 0.81 0.40 – 0.48 0.27 – 0.36 0.57
Average critical support – 19 19 – 45 46 – 57 35
Critical support for 90% SR – 22 22 – 62 68 – 80 47
Critical support for 100% SR – 28 28 – 86 97 – 105 67



5 Conclusion

We have discussed the many interacting factors contributing to the outcomes of a differential side-channel
attack, and explained how these make it difficult to draw meaningful, like-for-like comparisons between different
methodologies and/or different leakage scenarios. We proposed a solution to this problem whereby comparisons
are made based on the theoretic performance of distinguishers in well-defined hypothetical settings, abstracting
away from the confounding problem of practical estimation.

Our methodology entails summarising the key features of a distinguishing vector which contribute to an at-
tacker’s ability to estimate it with sufficient precision to achieve practical success. This is something which has
not hitherto been explored in the side-channel literature: the difference between estimating attack outcomes
from simulated traces and numerically approximating the theoretical quantities directly from the density func-
tions has largely been overlooked.

We subsequently showed how our framework could be applied to the current ‘hot topic’ question of whether
and in what sense MIA distinguishers ever have an advantage over CPA distinguishers, and extended this to
include a comparison with a conceptually similar but implementationally ‘simpler’ distinguisher based on the
Kolmogorov-Smirnov distance.

We found that MIA has theoretic advantages (in some senses) even in scenarios which are particularly favourable
to CPA (i.e. when the attacker has a good power model), so confirming that the underperformance frequently
observed in practical experiments can be largely attributed to estimation overheads. It gains in superiority as
the true leakage diverges from the attacker’s power model, especially when the ‘generic’ (power model-free)
approach can be used, as when targeting non-injective functions (such as the first DES S-Box). It can therefore
be seen as a practically useful alternative to CPA in unusual leakage scenarios.

However, the ‘near-generic’ approach using the 7LSB power model does not, as hoped, supply an equivalent
functionality against injective targets (such as the AES S-Box)—rather it produces some very unexpected results
and actually fails quite catastrophically in strong-signal settings. Whether or not the generic capabilities of MIA
can be exploited against injective targets remains an open question.

The noise dependency of theoretic outcomes is itself a very new result: whilst it has always been expected that
the presence of noise affects an attack at the practical stage—i.e. the precision with which the distinguishing
vector can be estimated—it has not, to our knowledge, been hitherto observed that the underlying ability of
a distinguisher to recover the key can itself vary, and to a substantial degree. CPA distinguishers inherently
do not possess this property, which accounts for the fact that it has not been previously investigated. KSA
distinguishers, whilst consistently inferior to MIA in noise-free settings, do exhibit a similar adaptability to
non-standard leakage and moreover appear to be more robust to increasing noise so that they may become
practically useful alternatives to CPA and MIA when the side-channel leakage is both unusual and noisy.
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