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Abstract 
Predicate Encryption (PE) is a new encryption paradigm which provides more sophisticated and 

flexible functionality. PE is sufficient for some new applications, such as fine-grained control over 

access to encrypted data or search on encrypted data. We present an efficient construction of Predicate 

Encryption which is IND-AH-CPA secure by employing the dual system encryption without random 

oracle. We research on the relations between PE and Searchable Encryption in detail. The new notion 

of Public-Key Encryption with Fine-grained Keyword Search (PEFKS) is proposed. We prove that a 

IND-AH-CPA secure PE scheme implies the existence of a IND-PEFKS-CPA secure PEFKS scheme. 

We develop the transformation of PE-2-PEFKS and use the transformation to construct an efficient 

PEFKS scheme from our new PE scheme. 

Key Words: Predicate Encryption; Public-Key Encryption with Fine-grained Keyword Search; 

Composite Order Bilinear Groups; Dual Encryption System 

 

1. Introduction 
In traditional Public-Key encryption, most of the systems focus on the point to point secure 

communication. Data is encrypted to be read by a particular individual who has already established a 

public key. The ciphertext is decrypted to learn the entire plaintext or nothing about the plaintext. This 

characteristic is insufficient for new emerging applications, such as cloud computing. 

Recently, a new innovative class of encryption system, Predicate Encryption (PE), was proposed by 

Katz, Sahai and Waters [12]. PE enables one to evaluate more sophisticated and flexible functionality 

: {0,1}*f IF Key CT   given the ciphertext ICT  and secret key 
fKey . In a Predicate Encryption 

system, a key corresponds to a predicate and a ciphertext is associated with an attribute vector. The 

secret key 
fsk  corresponding to a predicate f  can be used to decrypt a ciphertext using key 

associated with attribute vector I  if and only if ( ) 1f I  . PE implies several recent works aimed at 

constructing different types of fine-grained encryption schemes, such as Identity-Based 

Encryption(IBE)[18,20,9], Attribute-Based Encryption (ABE)[17,11,7,6], Hidden-Vector Encryption 

(HVE)[5]. They also introduced attribute-hiding (AH) which is a stronger security notion than 

payload-hiding. Attribute-hiding requires that a ciphertext conceal the associated attribute as well as the 

plaintext, while payload-hiding only requires that a ciphertext conceal the plaintext. In some 

applications which require the privacy of encryption key, payload-hiding is unacceptable. The notion of 

attribute-hiding addresses the limitation. 

The dual system encryption which was introduced by Waters et.al [21,14] is a useful technique to 

obtain fully secure PE. In a dual encryption system, keys and ciphertexts can take on one of two forms: 

normal and semi-functional. The semi-functional keys and semi-functional ciphertexts are not used in 

the real system, only in the proof of security. The proof employs a sequence of security games which 

are shown to be indistinguishable. The first is the real security game in which both keys and ciphertext 

are normal. In the second game, the ciphertext is semi-functional and the keys remain normal. In 

subsequent games, the keys requested by the attacker are changed to be semi-functional one by one. By 

the final game, none of the keys given out are actually useful for decrypting a semi-functional 

ciphertext, and proving security becomes relatively easy. 

The Public-Key Encryption with Keyword Search (PEKS) scheme was proposed by Boneh et al[3] 

for some interesting applications. An email user may want the server to deliver his/her emails 

according to some keywords attached on the emails. The user generates some trapdoors for the 

keywords and sends them to the server in secretly. The server may test whether there are these 

keywords in the emails. If the test outputs true, the mail will be sent to the user according to the rule. A 



practical PEKS must meet two conditions, consistency and security [1]. The consistency is that the 

decryption will not work unless the trapdoor and the ciphertext are matched. The security is that the 

ciphertext does not reveal any information about the keywords unless given the trapdoor.  

There are many similar properties between the anonymous IBE and PEKS. In [3], Boneh et.al found 

that PEKS implied IBE. In [1], Abdalla et.al proved that an anonymous IBE could be transformed to a 

secure and consistent PEKS. 

 

Our Contribution 

In this paper, we do further work for PE and PEKS. The results are as follows. 

 We present a Predicate Encryption system for the class of inner-product predicates that is fully 

secure without random oracles. There are several advantages over previous systems. We adopt dual 

system encryption to prove the security of our construction based on simple assumptions. The cost 

of our scheme is nearly a half of the existed scheme [12]. There is only one group element for 

each attribute in the ciphertext and user’s key. It only requires one pairing operation for each 

attribute in the decrytion algorithm. 
 In previous searchable encryption, the server only can test whether one keyword was present in the 

ciphertext. We extern the notion of PEKS to Public-Key Encryption with Fine-grained Keyword 

Search(PEFKS). PEFKS not only can test whether mutiple kewords were present in the ciphertext, 

but aslo can evaluate the relations of the keywords, such as equal, disjunction/conjunction. These 

complicated relations can’t be formulated only from single keyword search by adding some 

relations of keywords, since it leaks unnecessary information to the server [10]. We discuss the 

consistency via an experiment involving adversary and define the security of PEFKS through the 

game between the challenge and the adversary. 

 We prove that IND-AH-CPA secure PE implies the existence of IND-PEFKS-CPA secure PEFKS 

and develop a transformation of PE to PEFKS, PE-2-PEFKS. The transformation is efficient. We 

also use it to construct a PEFKS scheme from our PE. 

 

1.1. Related Work 
Predicate encryption was presented by Katz, Sahai and Waters in [12] as a generalized notion of 

IBE. In their predicate encryption scheme, a predicate f  was associated with a vector \{0}n

pv Z  

and the key was associated with attribute \{0}n

px Z , where if 0x v   then ( ) 1vf x  , else ( ) 0vf x  . 

Their construction provided attribute-hiding property. However their construction was inefficient and 

was proved to be selectively secure in the IND-AH-CPA game. 

Shi and Waters [19] defined delegation in predicate encryption systems, and proposed a new 

security definition for delegation. They presented an efficient construction supporting conjunctive 

queries. Their system also was only proved selective and CPA security. 

Okamoto and Takashima [15] presented a hierarchical predicate encryption (HPE) scheme for 

inner-product predicates that is secure in the standard model based on new assumptions in dual pairing 

vector spaces (DPVS). But this system was selectively secure. In Crypto2010, they presented a fully 

secure scheme [16]. 

Lewko et.al [13] proposed a fully secure (H)PE scheme for inner-product predicates in the standard 

model by employing the dual system methodology. There scheme was proven to be CPA secure but 

their scheme was inefficient. 

Boneh et al [3] first studied the problem of public-key encryption with keyword search (PEKS). 

They gave several constructions of PEKS and proved that a PEKS implied a secure IBE. They claimed 

that it was hard to construct PEKS from IBE. 

In [1], Abdalla et.al did further work for PEKS. They made two important contributions. First, they 

defined computational, statistical and perfect consistency which is formulated via an experiment 

involving an adversary. Second, they provided a transformation from an anonymous IBE to a secure 

PEKS that guaranteed consistency and security. 

Most of previous work focused on single keyword search. However, in many situations, the search 

will be on multiple keywords. In [2], Joonsang et.al proposed a PEKS scheme that encrypts multiple 

keywords that are connected through conjunctive or disjunctive logical connectives. 

 

1.2. Organization 
In Section 2, we give the definition for the rest of this paper. We present our construction of PE and 

prove its security in section 3. In section 4, PEFKS is presented and the PE-2-PEFKS transformation is 

described. In Section 5 we make our conclusion. 



 

2. Definition 
In this section we introduce the notion of Predicate Encryption for the class of inner-product 

predicates and PEFKS. We also give the necessary background on composite order bilinear groups and 

our complexity assumptions. 

 

2.1. Predicate Encryption 
A Predicate Encryption scheme for the class of inner-product predicates supports 

functionality : {0,1}*
vf xF Key CT  , where \{0}n

px Z  and \{0}n

pv Z . If 0x v  , then 

( ) 1vf x  , else ( ) 0vf x  . The ciphertext space is  and the message space is . 

PE scheme consists of four fundamental algorithms: Setup, KeyGen, Encrypt, and Decrypt. 

Setup given the security parameter1 , outputs the public parameters PK  and master key MK ; 

KeyGen given the master key MK  and a predicate vector v , outputs a user key vsk ; 

Encrypt given the public parameters PK  and an attribute vector x  and a message m , 

outputs a ciphertext c ; 

Decrypt given the user key vsk  and a ciphertext c , outputs the plaintext m  if and only if 

( ) 1vf x  . 

In [13], Lewko et.al defines IND-AH-CPA security for PE systems via the following game. In 

section 4.1, we will see that this security definition is sufficient for the construction of IND-PKES-CPA 

scheme. 

Security Model for PE 

Setup The challenger runs the Setup algorithm and gives the public parameters to the adversary; 

Phase1 The adversary is allowed to adaptively issue queries for private keys for many 

predicates vector v ; 

Challenge The adversary submits two equal length messages m0 and m1 and two attribute vectors 

0 1,x x  where 0( ) 1vf x  and 1( ) 1vf x   for all the key queried in Phase1. The challenger flips a 

random coin b and encrypts mb with bx . The challenge ciphertext *c  is passed to the adversary; 

Phase2 The adversary may continue to issue adaptively queries like Phase1, except the key 

query for predicate 0( ) 1vf x  and 1( ) 1vf x  ; 

Guess The adversary outputs a guess 'b  of b . 

The advantage of an IND-AH-CPA adversary in this game is defined as
1

Pr[ ' ]
2

b b  . 

Definition 1 A Predicate Encryption scheme is IND-AH-CPA secure if all polynomial time 

adversaries have at most a negligible advantage in the above security game. 

 

2.2. PEFKS 
In practice, one may need to append multiple keywords to one message and describe the relations 

between them, e.g. “urgent and business”, “family or company”. A Public-key Encryption with 

Fine-grained Keywords Search (PEFKS) is sufficient for this request. PEFKS allows a user to define 

the relations of keywords which makes it more appropriate in practice. 

PEFKS consists of the following algorithms. 

KG (1 ) ( , )pk sk  , the key generation algorithm, which takes in security parameter   and 

outputs a secret key sk and a public key pk ; 

Td ( , ) wsk w t , the trapdoor generation algorithm, which outputs wt  for keywords vector w ; 

PEFKS ( , )pk x  , the encryption algorithm, which outputs ciphertext   for keywords 

vector x ; 

Test ( , ) {0,1}wt   , the verification algorithm, which outputs 1 if 0w x  , otherwise outputs 0. 

We will discuss the consistency and security of the PEFKS. 

Consistency. By analogy with the definition of [1], we define the consistency notion via an 

experiment involving an adversary. The experiment is as follows: 



, ( ) :

( , ) (1 );

( , ) ( ), 0;

( , );

( , );

if 0 and ( , ) 1 then return 1 else return 0

PEFKS

PEFKS CONSISTENCY

w

w

Exp

pk sk KG

w x pk w x

t Td sk w

PEFKS pk x

w x Test t

 

The advantage of  is defined as 
, ,( ) Pr[ ( ) 1]

PEFKS PEFKS

PEFKS CONSISTENCY PEFKS CONSISTENCYAdv Exp . 

The scheme is said to be perfectly consistent if this advantage is 0 for all adversaries  

(computationally unrestricted), statistically consistent if it is negligible for all adversaries  

(computationally unrestricted), computational consistent if it is negligible for all polynomial time 

adversaries . Computational consistency is weaker than statistical consistency and perfect 

consistency but still adequate in practice. 

Security. We define the semantic security notion (IND-PKFES-CPA) for the PEFKS. 

Security Model for PEFKS 

Setup The challenger runs the KG algorithm to get ( , )pk sk  and gives pk  to the adversary; 

Phase1 The adversary is allowed to adaptively issue queries for trapdoors wt  for many 

keywords vector w ; 

Challenge The adversary submits two keywords vectors 0 1,x x  where 0 0x w  and 1 0x w   

for all keys queried in Phase1. The challenger flips a random coin b and gives the 

adversary * ( , )bPEFKS pk x  ; 

Phase2 The adversary may continue to issue adaptively queries like Phase1, except that 

0 0x w  and 1 0x w  ; 

Guess The adversary outputs a guess 'b  of b . 

The advantage of an IND-PEFKS-CPA adversary in this game is defined as
1

Pr[ ' ]
2

b b  . 

Definition 2 A PEFKS scheme is IND-PEFKS-CPA secure if all polynomial time adversaries 

have at most a negligible advantage in the above security game. 

 

2.3. Assumption 
Our systems are constructed in composite order bilinear groups. Composite order bilinear groups 

was first introduced by Boneh, Goh, and Nissim [4]. The only known instantiations of composite order 

bilinear groups use elliptic curves over finite fields. Since the elliptic curve group order N  must be 

infeasible to factor, it must be at least (say) 1024 bits [8]. 

We define a group generator , an algorithm which takes in a security parameter 1  and 

output 1 2 3( , , , )TN p p p G G e , where 1 2 3, ,p p p  are distinct primes, G and TG  are cyclic groups of 

order N , and : Te G G G   is a map that: 

1. Bilinear: for all ,u v G  and , pa b Z , we have ( , ) ( , )a b abe u v e u v . 

2. Non-degeneracy: their exist g , s.t. ( , )e g g  has order N  in TG . 

We say that G  is a bilinear group if the group operation in G  and the bilinear map 

: Te G G G   are both efficiently computable. Let
1pG , 

2pG , 
3pG  denote the subgroups of G . We 

can see that they have the orthogonality property[14], namely, when 
i pih G ，

j pjh G ， i j , 

( , )i je h h  is the identity element in TG . We will implement this property in our construction. 

We now state the complexity assumptions that we will rely on to prove security of our systems. 

These assumptions are an extension of [14]. Introducing the additional term 
1ph G  still does not 

help to add advantage to , since h  is independent of the challenge. 

Assumption 1: Given a group generator , we define the following distribution: 

1 2 3( , , , )TN p p p G G e   , 

1 33, ,p pg h G X G  , 

3( , , , )D g h X , 



1 1 20 1,p p pT G T G  . 

We define the advantage of an algorithm  in breaking Assumption 1 to be: 

, 0 11 ( ) : | Pr[ ( , ) 0] Pr[ ( , ) 0] |Adv D T D T      

Definition 3: We say that  satisfies Assumption 1 if 
,1 ( )Adv   is a negligible function of 1  

for any polynomial time algorithm . 

Assumption 2: Given a group generator , we define the following distribution: 

1 2 3( , , , )TN p p p G G e   , 

1 2 31 2 2 3 3, , , , , , ,p p pg h X G X Y G X Y G    

3 1 2 2 3( , , , , , )D g h X X X Y Y , 

1 30 1,p pT G T G  . 

We define the advantage of an algorithm  in breaking Assumption 2 to be: 

, 0 12 ( ) : | Pr[ ( , ) 0] Pr[ ( , ) 0] |Adv D T D T      

Definition 4: We say that  satisfies Assumption 2 if 
,2 ( )Adv   is a negligible function of 

1  for any polynomial time algorithm . 

Assumption 3: Given a group generator , we define the following distribution: 

1 2 3( , , , )TN p p p G G e   ， Nr Z , 

1 32 2 2 2 3, , , , , ,p p pg h G X Y Z G X G    

3 2 2 2( , , , , , )rD g X Z g X hY , 

0 1( , ) ,r

TT e g h T G  . 

We define the advantage of an algorithm  in breaking Assumption 3 to be: 

, 0 13 ( ) : | Pr[ ( , ) 0] Pr[ ( , ) 0] |Adv D T D T      

Definition 5: We say that  satisfies Assumption 3 if 
,3 ( )Adv   is a negligible function of 

1  for any polynomial time algorithm . 

 

3. Efficient PE 
In this section, we present an IND-AH-CPA secure Predicate Encryption system that support 

inner-product predicates. The class of predicates is { | \{0}}n

v pf v Z  , with ( ) 1vf x   if 

0x v  mod N . In our construction, subgroup 
1pG will be used for encryption and decryption; 

3pG  

will be used for key randomizing; 
3pG will be used for semi-functional keys and semi-functional 

ciphertext, which is not used in real encryption system. The attributes of the ciphertext and predicate of 

the user are expressed as a vector. We define that each element of the vector must not be 0，and 

1, ,
0ii n

x . 

Setup(1 ) The KGC first runs (1 )  to get 1 2 3( , , , )TN p p p G G e  . It then choose random 

generators
1

, pg h G , 
33 pX G , and random Na Z , i Nt Z , 1, ,i n , where ia t . The public 

parameters and master key are given as 

1 1, ,{ , , ,{ } }ita

i i nPK g h g g T g     

1, ,{ ,{ } }i i nMK a t   

KeyGen( MK , v ) The KGC runs this algorithm to generate a user key for user who is qualified 

with predicate vector v . First, it choose a random value Ns Z , and 
3i pW G , 1, ,i n . 

Let 1{ , , }nv v v , It creates the private key as 

1/( )

1, ,{{ ( ) } }i isv a t

v i i i nsk d hg W


   

Encrypt( PK , x , m ) To encrypt m  with attribute vector x  the sum of which must not be 

0, the sender chooses random Nr Z  then it sets 



1, , 1

0 1 1, ,{ ( , ) ,{ ( ) } }
ii n i

r x rx

i i i nc c m e g h c g T
 




     

Decrypt( vsk , c ) The receiver downloads the ciphertext. It computes 

0 1, ,
( , )i ii n

c e c d


  

Correctness To see that correctness holds, we assume the ciphertext is well-formed: 

0 1, ,
( , )i ii n

c e c d


  

1, ,( , )
ii n

r x

m e g h 
 

 
1/( )

11, ,
(( ) , ( ) )i i ix s v a tr r

i ii n
e g T hg W

 

  

1, ,( , )
ii n

r x

m e g h 
 

  1, , 1, ,( , ) ( , )
i i ii n i n

r x sr x v

e g h e g g 
 

  

1, ,( , )
i ii n

s r x v

m e g g 
 

   

If 10modx v p  , then the decryption algorithm evaluates to a random element in the group of TG . 

If 10modx v p  , namely ( ) 1vf x  , the receiver can get the message. 

 

3.1. Efficiency 
We now consider the efficiency of the scheme in terms of ciphertext size, private key size, and 

computation time for decryption and encryption as compared with[12,13]. 
Table 1 Comparisons of Efficiency 

Schemes Key Size Ciphertext Size 
Encryption 

time 

Decryption 

time 
Security 

Katz[12] (2n+1) g  (2n+1) g +1
Tg  (4n+2) p   (2n+1) e  selective 

Lewko[13] N g  N g +1
Tg  N p  N e  adaptive 

Ours n g  n g +1
Tg  (1+n) p  n e  adaptive 

Note: N>2n+3. g denotes one group element in G  and 
Tg  denotes one group element in TG . p  and 

e  are the power operation and pairing operation. 

As we can see, the cost of our construction is only a half of [12,13]. The ciphertext size will be 

approximately one group element in G  for each attribute, while two in [12,13]. User's private keys 

will consist of one group elements in G  for each attribute, while two in [12,13]. In the encryption 

procedure, ( , )e g h and 1

1( )ig T   can be pre-computed, so it doesn’t need any pairing operation. It only 

requires one power operation for each attribute, while four in [12] and more than two in [13]. The 

decryption procedure needs one pairing operation for every each attribute, while two in[12] and more 

than two in [13]. 

We can conclude that, comparing with other typical PE scheme, our construction is also more 

efficient. 

 

3.2. Security 
To prove the security, we will adopt the dual system encryption methodology which was used 

in[21,14]. We define two additional structures: semi-functional ciphertexts and keys. These will not be 

used in the real system, but will be needed in our proof. 

Semi-functional Ciphertext Let 2g  denote a generator of 
2pG . Nc Z , and 

1, ,{ }i N i nz Z   

are random values. A semi-functional ciphertext is formed as follows. 
1

2 1, ,{ ( ) }i i ir x cz a t

i i nc g g


  

Semi-functional Key Let 2g  denote a generator of 
2pG . Nd Z  and 

1, ,{ }i N i ny Z   are 

random values. A semi-functional key is formed as follows. 
1/( )

2 1, ,{ ( ) }i i isv dy a t

i i i nd hg W g


  

A normal key can decrypt both normal and semi-functional ciphertexts, while a normal ciphertexts 

can be decrypted by both normal and semi-functional keys. When we use a semi-functional key to 

decrypt a semi-functional ciphertext, we are left with additional term 1, ,

2 2( , )
i ii n

cd y z

e g g 


. Notice that if 

a semi-functional key which is satisfy that 
1, ,

0i ii n
y z


   is used to decrypt a semi-functional 

ciphertext, decryption will still work. 



Based on the assumptions, we will prove the security of our system using a sequence of games. 

Gamereal  is the real security game in which both keys and ciphertext are normal. In the second 

game, 0Game , the ciphertext is semi-functional and all keys are normal. In game Gamek , the first k  

key queries are semi-functional and the rest are normal. By the final game, Game final
, all of the key 

queries are semi-functional and the challenge ciphertext is a semi-functional encryption of a random 

message. We will prove these games are indistinguishable in the following lemmas. 

Lemma 1 Assume there is an a polynomial time adversary such that 

0Game GamerealAdv Adv   . Then we can construct a polynomial time simulator  with advantage   

in breaking Assumption 1. 

Proof.  is given a challenge sample of Assumption 1, 3( , , , , )g h X T , which is used as an input 

of the Setup algorithm.  chooses random value Na Z , i Nt Z , 1, ,i n . The public 

parameters are set the same as Setup algorithm.  will simulate Gamereal  and 0Game  with . 

As to the key queries v ,  can generate normal key by using the KeyGen algorithm, since it 

knows the MK . 

As to the challenge (m0, m1) and ( 0 1,x x ),  will imbeds the Assumption 1 into the challenge 

ciphertext. It first flips a random coin b, and sets: 

1, , ( )

0 1, ,* { ( , ) ,{ } }
b

bii n i i
x x a t

b i i nc c m e T h c T
 




     

If 
1pT G , namely rT g , it is clearly that this is a properly distributed normal ciphertext. 

If
1 2p pT G , namely 

2

r cT g g , we implicitly set i iz x . However, the values of 1modix p  are 

uncorrelated from 2modiz p  by the Chinese Remainder Theorem. This is a properly distributed 

semi-functional ciphertext. 

 can use the output of  to gain advantage   in breaking Assumption 1 after all. 

Lemma 2 Assume there is an a polynomial time adversary such that -1Game Gamek kAdv Adv   . 

Then we can construct a polynomial time simulator  with advantage   in breaking Assumption 2. 

Proof.  is given a challenge sample of Assumption 2, 3 1 2 2 3( , , , , , , )g h X X X Y Y T . The public 

parameters are generated just like that in the proof of Lemma 1.  will simulate 1Gamek  and 

Gamek  with . 

As to the key queries v , forms normal keys for queries>k, semi-functional keys queries<k, and 

either normal or semi-functional for kth query.  

To the queries>k,  can generate normal key by using the KeyGen algorithm by using its 

knowledge of MK . To the queries<k, chooses random value , Ns d Z , then the semi-functional 

key can then be defined as: 
1/( )

2 3 1, ,{ ( ( ) ) }i i isv dy a t

i i i nd hg W Y Y


  

To the kth key,  uses the value of T  in the challenge, and choose random value. The key will 

be set as: 
1/( )

1, ,{ ( ) }i iv a t

i i i nd hT W


  

If 
1 3p pT G G , it is clearly that this is a properly distributed normal key. If 

1 2 3p p pT G , namely 

2 3

s d fT g g g , we implicitly set i iy v . According to the Chinese Remainder Theorem, this is a 

properly distributed semi-functional key. 

Now, we will discuss whether  can distinguish the simulated kth query which is semi-functional 

in Gamek and normal in Gamek-1 by himself. Assuming that  has constructed a valid semi-functional 

ciphertext by itself, namely 0x v  , the simulated ciphertext must contain the element 1 2X X , since 

it is the only one can be used for semi-functional ciphertext and doesn’t know the factor of N . It 

implies that i iz x . Then we have 0z y x v    . Decryption still work. Therefore,  can’t 

distinguish the simulated kth key by itself and it only can rely on the output of  to solve the 

Assumption. 

As to the challenge (m0, m1) and ( 0 1,x x ),  flips a random coin b, and sets: 

1, ,

0 1 2* { ( , ) ,
b
ii n

x

bc c m e X X h 


   ( )

1 2 1, ,{ ( ) } }
b
i ix a t

i i nc X X


  



Let
1 2 2

r cX X g g , we implicitly set i iz x , but these values are also actually uncorrelated in the 

subgroups 1 2,p p  according to the Chinese Remainder Theorem. This is a properly distributed 

semi-functional ciphertext. 

 can use the output of  to gain advantage   in breaking Assumption 2. 

Lemma 3 Assume there is a polynomial time adversary such that
Game Gameq finalAdv Adv   . 

Then we can construct a polynomial time simulator  with advantage   in breaking Assumption 3. 

Proof. is given a challenge sample of Assumption 3, 
3 2 2 2( , , , , , , )rg X Z g X hY T .  chooses 

random values Na Z , i Nt Z , 1, ,i n . The public parameters are set as: 

2 1 1, ,{ , , ,{ } }ita

i i nPK g hY g g T g    . 2hY  will seem undistinguishable from h  to , since it is 

hard to find a non-trivial factor of N.  will simulate Gameq
 and Game final

 with . 

As to the key queries v , chooses random , 'i Ns y Z , and sets the semi-functional key as: 

' 1/( )

2 2 1, ,{ ( ) }i i isv y a t

i i i nd hY g Z W


  

Let
2 2

fY g , 
2 2

dZ g , we implicitly set ' /i iy y f d  . Thus, this is a properly distributed 

semi-functional ciphertext. 

As to the challenge (m0, m1) and ( 0 1,x x ),  will imbeds the Assumption 3 into the challenge 

ciphertext. It flips a random coin b, and sets: 

1, , ( )

0 2 1, ,* { ,{ ( ) } }
b

bii n i i
x x a tr

b i i nc c m T c g X
 




     

If ( , )rT e g h , it is a valid semi-functional ciphertext. If TT G , this will be a semi-functional 

encryption of a random message and it is a perfect simulation of Game final
. 

 can use the output of  to gain advantage   in breaking Assumption 3. 

Theorem 1 If Assumptions 1, 2, and 3 hold, then our PE system is IND-AH-CPA secure. 

Proof. If Assumptions 1, 2, and 3 hold, the real security game is indistinguishable from Game final
 

according to the previous lemmas. In Game final
, the challenge ciphertext will give no information 

about b . Therefore,  only can attain negligible advantage in breaking our construction. This is 

clear that the PE system is IND-AH-CPA secure. 

 

4. PE-2-PEFKS Transformation 
In[3], Boneh et.al proved that an IND-ID-CCA secure IBE could rise from a secure PEKS, but they 

claimed that it was hard to construct a PEKS from a secure IBE. In[1], Abdalla et.al found that 

IND-ANO-CPA secure IBE implied the existence of IND-PEKS-CPA secure PEKS. They also 

proposed a general way to transform any IND-ANO-CPA secure IBE into an IND-PEKS-CPA secure 

and computationally consistent PEKS. But this kind of PEKS only can test whether the keyword in the 

ciphertext is match to that in the trapdoor. According to the definition of PEFKS in section 2.2, we will 

propose a general way to transform IND-AH-CPA secure PE into a PEFKS. 

The PE-PEFKS transformation consists of the following steps: 

a) Setup(1 ) can be used as KG (1 )  to generate ( , )pk sk ; 

b) KeyGen algorithm can be used as Td ( , )sk w  to get wt  which will be delivered to server; 

c) Choosing a random element R , Encrypt( PK , x , R ) c  can be used as PEFKS ( , )pk x  to 

encrypt keywords x , and set ( , )R c  ; 

d) If Decrypt( vsk , c ) R , Test ( , ) 1wt   . Otherwise Test ( , ) 0wt   . 

The consistency and security of our scheme may be reduced to the security of PE. If an adversary 

can ruin the consistency and security of PEFKS, we can construct an algorithm to break the PE scheme. 

In theorem 2, we give the formal result and proof. 

Theorem 2 If PE is IND-AH-CPA secure, then PEFKS is computational consistency and 

IND-PEFKS-CPA secure. 

Proof.  Assuming there is a polynomial time adversary  that can break the computational 

consistency of PEFKS. Let  be a polynomial time adversary of PE. In the key queries phase,  

runs (pk) to get predicate vector 'v and attribute vector x  such that ' 0x v   but Test still 

output 1.  also get (R0, R1) that is used to break the computational consistency by .  then 

issue the challenge query, (R0, R1) and x , and is given the challenge ciphertext *c encrypting Rb 



under x .  makes key query for 'v , and runs Decrypt( 'vsk , *c ) to find b. It is easy to see that we 

can construct an algorithm to break the data privacy property of PE scheme, namely 

, ,( ) ( )
PEFKS PE

PEFKS CONSISTENCY PE IND CPAAdv Adv   

  . 

Assuming there is a polynomial time adversary  that can break the IND-PEFKS-CPA security of 

PEFKS. Let  be a polynomial time adversary of PE. In the key queries phase,  runs (pk) to 

get challenge attribute vectors 0 1,x x  with R. Given the challenge ciphertext *c encrypting R under bx , 

 runs  to find b. During this phase,  answers any trapdoor query of  via its key queries. 

It is clear that we can construct an algorithm to break the attribute hiding property of PE scheme, 

namely 

, ,( ) ( )
PEFKS PE

PEFKS IND CPA PE IAH CPAAdv Adv    

  . 

 

4.1. Our PEFKS 
Based on the efficient PE and theorem 2, we can construct an IND-PEFKS-CPA secure PEFKS. 

The PEFKS works as follows: 

KG(1 ) KG(1 )=Setup(1 )  

1 1, ,{ , , ,{ } }ita

i i npk PK g h g g T g     , 

1, ,{ ,{ } }i i nsk MK a t   ; 

Td ( , )sk w  Td ( , )sk w = KeyGen( MK , w )   

1/( )

1, ,{{ ( ) } }i isw a t

w i i i nt d hg W


  ; 

PEFKS ( , )pk x  To encrypt keyword vector x , the sender first Chooses a random element R , 

then runs the Encrypt( PK , x , R ) to get c  

1, , 1

0 1 1, ,{ ( , ) ,{ ( ) } }
ii n i

r x rx

i i i nc c R e g h c g T
 




     

The ciphertext is set as ( , )R c  ; 

Test ( , )wt   The server computes 
0 1, ,

( , )i ii n
c e c d


 . If it values to R , namely 0w x  , the 

server sets Test ( , ) 1wt   . Otherwise it sets Test ( , ) 0wt   . 

 

4.2. Application of PEFKS 
Previous PEKS scheme only support for equal relation. The new notion of PEFKS opens up a much 

larger world for searchable encryption. It can provide more sophisticated and flexible relations 

between the encryption-keyword and trapdoor-keyword.  
Previous PEKS could be seem as a subclass of PEFKS. It means that PEFKS support equal relation. 

E.g. For the keyword w  in previous PEKS, the keyword vector is set as (1, )w w  and the encrypted 

keyword vector is set as ( ', 1)x w  . If 'w w , namely 0w x  , correctness and security follow. 

PEFKS artfully provides multiple keywords search that are connected through conjunctive or 

disjunctive logical connectives. 

- For a disjunctive logical connective, “ 1w  and 2w ” which corresponds to the polynomial 

evaluation 1 1 2 2( ) ( )p r w x w x    , the keyword vector is set as 1 2( , , , 1)w rw r w   . If 

1 2(1, ,1, )x x x  and 0p  , the Test will be evaluated to 1. 

- For a conjunctive logical connective, “ 1w  or 2w ” which corresponds to the polynomial 

evaluation 1 1 2 2( )( )p w x w x   , the keyword vector is set as 2 1 1 2( , , , 1)w w w w w    . If 

1 2 1 2(1, , , )x x x x x  and 0p  , the Test will be evaluated to 1. 

Conjunctive or disjunctive logical connectives can extend to more complex combinations for 

boolean formulas. The above polynomial evaluation also can extend to more general polynomial 

evaluation 0 1p w w x   d

dw x . 

We will give a simple application of PEFKS. An email user wants the server to deliver his\her 

email immediately if the email is appended with keywords “urgent and business”. “urgent” and 

“business” may be denote as some value defined by the system. The user set the trapdoor wt  as 

2 1 1 2( , , , 1)w w w w w    , where 1w  denotes “urgent” and 2w  denotes “business”. If the email is 



“urgent and business”, a sender send ciphertext of the email and append with the ciphertext   of 

keywords vector 1 2 1 2(1, , , )x w w w w . The server then can test wether this email is “urgent and 

business” by running Test ( , )wt  . 

 

5. Conclusion 
We present an Inner-product Predicate Encryption system that is practical based on composite order 

bilinear groups. The security of our construction is proven IND-AH-CPA secure by adopting the dual 

system encryption, which is sufficient for PE-2-PEFKS transformation. PEFKS is proposed in this 

paper. The new notion will be more useful for applications. 

There are still some interesting directions. One is to design more sophisticated and flexible 

functionality : {0,1}*F Key CT   which will be more expressive than inner-product. Another is the 

possibility of transformation of PEFKS to PE. 
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