
Higher-Order Glitches Free Implementation of
the AES using Secure Multi-Party Computation

Protocols

– Extended Version –

Thomas Roche1? and Emmanuel Prouff2

1 ANSSI, 51 boulevard de La Tour-Maubourg 75700 Paris, France
thomas.roche(at)ssi(dot)gouv(dot)fr

2 Oberthur Technologies, 71-73, rue des Hautes Pâtures 92726 Nanterre, France
e.prouff(at)oberthur(dot)com

Abstract. Higher-order side channel attacks (HO-SCA) is a powerful
technique against cryptographic implementations and the design of ap-
propriate countermeasures is nowadays an important topic. In parallel,
another class of attacks, called glitches attacks, have been investigated
which exploit the hardware glitches phenomena occurring during the
physical execution of algorithms. Some solutions have been proposed to
counteract HO-SCA at any order or to defeat glitches attacks, but no
work has until now focussed on the definition of a sound countermea-
sure thwarting both attacks. We introduce in this paper a circuit model
in which side-channel resistance in presence of glitches effects can be
characterized. This allows us to construct the first glitches free HO-SCA
countermeasure. The new construction can be built from any Secure
Multi-Party Computation protocol and, as an illustration, we propose to
apply the protocol introduced by Ben’Or et al. at STOC in 1988. The
adaptation of the latter protocol to the context of side-channel analysis
results in a completely new higher-order masking scheme, particularly
interesting when addressing resistance in the presence of glitches. An
application of our scheme to the AES block cipher is detailed, as well as
an information theoretic evaluation of the new masking function that we
call polynomial masking.

1 Introduction

Higher-0rder Side-Channel Analysis is a class of physical cryptanalyses
against cryptosystems. They generalize the seminal attacks introduced in
the late nineties by Kocher et al. [15]. Contrary to the latter ones that
only exploit instantaneous leakages, HO-SCA attacks mix observations

? This work has been conducted when the author was Post-doc at the University of
Paris 8, Département de mathématiques, 2, rue de la Liberté; 93526 Saint-Denis,
France

of several leakages to recover information about the secret parameters.
The number of different leakages (e.g. corresponding to different times
during the processing or to different locations in a circuit implementing
the algorithm) defines the attack order.

A very common countermeasure to protect block cipher implementa-
tions against HO-SCA is to randomize the key-dependent variables by
masking (a.k.a. sharing) techniques [4, 12]. The masking can be charac-
terized by both the number n of random shares and the smallest number
d + 1 of them that are required to re-construct the variable. It is usu-
ally called a (n, d)-sharing. In most of masking techniques proposed until
now, the parameters verify n = d + 1 but they can sometimes differ as
in [24] and this paper. A scheme specifying how to apply (n, d)-sharing
to protect an operation, or more generally an algorithm implementation,
is called dth-order masking scheme. It aims at defining a modus operandi
that thwarts any SCA attack of order lower than or equal to d. Since
the complexity of mounting a HO-SCA increases exponentially with the
order (see e.g. [3]), a dth-order masking scheme will eventually bring sat-
isfying security when d grows. It certainly explains why they received
so much attention from the SCA community and this popularity led to
the construction of several dth-order masking schemes with formal secu-
rity proof [13, 28–30]. However proving resistance against dth-order SCA
is not sufficient alone to assess the practical security of an implemen-
tation. In [17], Mangard et al. have indeed pointed out the presence of
so-called hardware glitches — common in CMOS technology — that de-
teriorate the effect of masking and imply more information leakage than
the simple value of the variables specified by the implementation. Since
the seminal work [17], several papers have successfully applied so-called
glitches attacks against implementations that were secure in the classical
HO-SCA adversary model. This has raised the need for implementations
with proven security in the presence of glitches, but up to now, a unique
masking scheme has been presented with such a proof [24]. This masking
scheme is an interesting step forward but it is only resistant against 1st-
order SCA, which leaves open the problem of specifying cryptographic
implementations secure against higher-order SCA attacks in presence of
glitches.

1.1 Related Works

The problematic of specifying cryptosystem implementations thwarting
dth-order SCA attacks in presence of glitches is recent. Actually, to the
best of our knowledge, most of the work on this subject have been done

by Nikova et al. [22–24]. In those papers, a scheme is proposed with
proven 1st-order SCA resistance in presence of glitches. Unfortunately,
adapting it to also counteract SCA of order greater than 1 seems difficult
while keeping the efficiency and performance on acceptable level. On the
other hand, two implementations proven secure against dth-order SCA
attacks for any d have been proposed by Ishai et al. [13] and Rivain et
al. [29]. Ishai et al. ’s solution is dedicated to hardware implementations.
It clearly does not thwart glitches attacks and modifying it accordingly is
an (open) issue. Rivain et al. ’s solution is dedicated to software contexts.
When embedded in a physical device, there is no guaranty that no glitches
effects will occur during the processing. Providing such a guaranty would
impose that all the elementary operations are performed sequentially on
a circuit which is re-initialized between each operation. However, such a
process, if possible, would induce a prohibitive computational overhead.

1.2 Our Contribution

Our contribution is threefold. First, we introduce a generic framework for
the design of hardware or software implementations that counteract HO-
SCA in presence of glitches. This framework is built around the notion
of multi-party circuit which is defined as the composition of several sub-
circuits whose respective side-channel leakages are strictly independent.
We argue that this kind of circuit can be designed thanks to temporal or
spatial separation of the sub-circuits. Since the cost of such a separation is
very important when assessing the implementation efficiency on standard
CMOS platforms, our analysis raises the need for circuit separations that
minimize the number of sub-circuits. In a second part of the paper, we
draw a parallel between the construction of a HO-SCA resistant imple-
mentation inside our new framework and the classical problem of building
Secure Multi-Party Computation (SMC) protocols in the context of semi-
honest adversaries. As a matter of fact, starting from the seminal work
of Ben-Or et al. [1], we show how to design a multi-party circuit that can
implement any function with a minimum number of sub-circuits. As an
example, we specify such a circuit for the AES-128 algorithm. To the best
of our knowledge, our proposal is the first implementation that claims to
thwart dth-order SCA attacks in presence of glitches. To protect the ma-
nipulation of sensitive data, the method proposed in this paper involves
a new kind of masking which is straightforwardly deduced from Shamir’s
secret sharing scheme [31]. This masking seems to be a good alterna-
tive to the additive masking, which was, up to now, the only solution

to achieve dth-order security [13, 29] (or glitches freeness at the first or-
der [24]). Our last contribution is the comparison of the two masking
schemes in an information theoretic context (following the same outlines
as in [9,26]). We show that the algebraic complexity of the new masking
function makes it much stronger against SCA attacks.

1.3 Paper Organization

The paper is organized as follows: in Section 2 are formally introduced
the definitions of a dth-order secure implementation in both the classical
adversary model, and the adversary model in presence of glitches. Hence,
a framework is introduced inside which a cryptographic circuit ruled by
a SMC protocol can be proved to be glitches free. The SMC protocol
proposed in [1] is recalled in Section 3, as well as the transition elements
that make it a concrete dth-order masking scheme in the context of SCA.
In Section 4, a full description of the new masking scheme applied to the
AES-128 block cipher is exhibited. In Section 5, the so called polynomial
masking function is extracted from our scheme and compared through an
information theoretic evaluation to the classical additive masking func-
tion. Finally we conclude and propose future work.

2 Models and Multi-Party Circuits

In this section, we introduce a framework in which the resistance of a
(hardware or software) implementation against HO-SCA in presence of
glitches attacks can be stated. First, we give a formal definition of the
attacks. Then, in Sects. 2.2 and 2.3 we exhibit sufficient conditions and
general principles to thwart the attacks.

2.1 Computation and Adversary Models

SCA attacks exploit a dependency between a subpart of the secret param-
eter and the variations of a physical leakage as function of a known input.
This dependency results from the manipulation of some variables, called
sensitive, by the implementation. We say that a variable Z is sensitive if
it depends on both a known variable and a secret parameter. The physical
leakage on such a variable will be viewed as a noisy leakage function L(Z)
which returns a noisy information about Z . The noisy property of L(·)
is captured by assuming that the bias introduced in the distribution of Z
given the leakage L(Z) is bounded.

In this paper, we shall see the implementation targeted by a SCA
attack as a circuit, whose formal definition is given hereafter:

Definition 1 (Circuit Cf). Let f be a function and let O be a set of
elementary operations. A circuit Cf implementing f thanks to operations
in O is an oriented graph where each cell ci defines an elementary opera-
tion and each edge bears an intermediate variable Vij which is an output
of the operation ci and an input of the operation cj.

Remark 1. The above notion of circuit encompasses both hardware and
software implementations. In the hardware context, the set O may only
contain the logical binary operations XOR and AND. In the software context,
the set O may only contain field operations ⊕ and ⊗ in GF(2m), where
m is the architecture size.

Several adversary models have been proposed in the literature to cap-
ture a practical SCA attacker against a circuit Cf . Among them, the
probing adversary model is the most popular one. We give hereafter a
formal definition of this adversary in our framework.

Definition 2 (dth-order Probing Adversary Model). Let Cf be a
circuit with (Vij)(i,j)∈I as edges and let d be a positive integer. Let L be

a set of noisy leakage functions. A dth-order Probing Adversary against
Cf is an adversary that can choose a subset J of I with #J = d and can
observe the random variable (Lij(Vij))(i,j)∈J , where (Lij(·))ij is a d-tuple
of functions in L.

Remark 2. In the hardware context (when the circuit Cf is defined with
respect to operations XOR and AND), the Probing Adversary Model with L
reduced to the identity function exactly fits with the definition given by
Ishai et al. in [13]. In the software context (when the circuit Cf is defined
with respect to operations on m-bit words with m being the architecture
size), our definition corresponds to the classical notion of dth-order SCA
[2,14,19,25]. In this case, L is usually defined as the set of noisy leakage
functions L(·) = HW(·) + B(µ, σ), where B is a gaussian independent
noise with mean µ and standard deviation σ and where HW denotes the
Hamming weight function.

Notation. An attack performed by the adversary in Definition 2 is called
dth-order probing attack. A circuit secure against those attacks is said to
be d-probing secure.

In 2003, Ishai et al. have exhibited in [13] a way to transform any
circuit with elementary Boolean operations ({XOR, AND}) into a circuit se-

cured w.r.t. dth-order Probing Adversary, for any d. This work has been
extended in [29] by Rivain and Prouff to transform any circuit with oper-
ations in any finite field. The two works [13] and [29] show that achieving
perfect security in the Probing Adversary Model is possible. In paral-
lel however, several publications have shown that schemes secure in this
model can still be broken in practice (see e.g. [17] and [18]). The reason
for this is that in physical implementations (e.g. in CMOS), a lot of unin-
tended switching activities occur. These unintended switching activities
are usually referred to as dynamic hazards or glitches.

The effect of glitches on the side-channel resistance of masked circuits
has first been analyzed in [17]. The same year, a technique to model this
effect has been published in [33]. Hereafter, we apply the latter technique
to model an adversary which performs dth-order probing attacks against
a circuit susceptible to glitches. For such a purpose, we transform our
static definition of a circuit into a dynamic one. Actually, this simply
amounts to assume that the random variable Vij not only relies on the
pair (i, j) but also on a third time parameter t. We denote by Vij(t) the
dynamic version of Vij and call dynamic the corresponding circuit. The
main difference between the two models is that, in the probing model,
the value taken by Vij is assumed to be constant, whereas its dynamic
version Vij(t) can change over the time, even when the circuit input is
fixed. Example 1 illustrates a side effect of glitches (i.e. several switchings
of a single gate during a clock cycle).

Example 1 (Example of Glitches effects). The figure hereafter represents
a Boolean mask refreshing on a sensitive variable Z. The expected be-
haviour is the following sequential evaluation of the gates: Z ⊕M1 −→
Z ⊕M1 ⊕M2 −→ Z ⊕M2. However if, for some propagation delay rea-
sons, the mask M2 is late to arrive at the first XOR gate, the value
Z ⊕M1 will be XORed with a constant (let say 0) value before being
directed to the second XOR gate. This results in the following sequence:
Z ⊕M1 −→ Z ⊕M1 −→ Z. In this case, it can be noted that each XOR
gate switches twice during a clock cycle (before and after the arrival of
M2). Moreover there exists a period of time, inside the clock cycle, where
the manipulation of Z is not protected3.

3 The example is a simplified description of a device behaviour where a propagation
delay results in data unmasking. In practice, less obvious glitches effects can be
exploited. For instance, in [17, 33] attacks only exploit dependency between the
number of gate switchings and sensitive data. Since our concern is not to study
specific attacks but to build a model encompassing all glitches-based attacks, we

M1

Z ⊕M1 M2

Z ⊕M2

Notation. In the following, the internal state transition at time t′ of a
circuit Cf with (Vij)(i,j)∈I as edges refers to all the non-zero transitions
of the value taken by the (Vij(t))(i,j)∈I at time t = t′. It is denoted by
Cf (t′).

Definition 3 (dth-order Glitches Adversary Model). Let Cf be a
circuit and let d be a positive integer. Let L be a set of leakage functions.
A dth-order Glitches Adversary against Cf is an adversary that can choose
d times t1, t2, ..., td and can observe the internal state transition at the
d selected times (Li(Cf (ti))i≤d, where, for each i ≤ d, Li(·) is a function
in L.

Remark 3. Definition 3 implicitly makes the classical assumption that
only computation leaks information. This assumption introduced in 2004
independently by Blömer et al. [2] and Mikali and Reyzin [20] states that
the leakage at time t only leaks information on the internal state transi-
tion Cf (t). It is moreover assumed that the targeted circuit is implemented
on a single Hardware platform. If the circuit is executed over several plat-
forms leaking independently, then the glitches adversary must not only
choose a time t but must also select the platforms to spy at this time. In
this case, the order can be defined as the number of different times in the
attack, each time being itself weighted by the number of different platforms
spied at this time.

Remark 4. Definition 3 implies that, in presence of glitches, a unique
side-channel observation at time t can potentially give information about
the whole current computations. This adversary category is very powerful
and is actually much stronger than the current attackers of embedded
systems. By analyzing the security with respect to such kind of strong
adversaries, the purpose is to build a set of countermeasures with the
minimum of assumptions on the adversary capabilities.

chose to define a generic glitches Adversary as in Definition 3, namely w.r.t. to a
very favourable situation.

Notation. An attack performed by the adversary defined in Definition 3
is called dth-order glitches attack. A circuit secure against those attacks
is said to be d-glitches free.

Security in the glitches adversary model implies security in the probing
adversary model whereas the converse is obviously false. In the following
sections, we introduce the notions of d-probing security and of d-glitches
freeness. For both security notions, we exhibit generic construction prin-
ciples that enable to design circuits achieving them.

2.2 Security in the Probing Adversary Model

The following definition formalizes the notion of security w.r.t. dth-order
probing adversaries. Note that this definition corresponds to that involved
in numerous papers (e.g. [2, 5, 14,19,25,26]).

Definition 4 (d-probing Security). Let d be a positive integer. A cir-
cuit Cf with family of edges V is d-probing secure if and only if no family
of at most d elements in V is sensitive.

Remark 5. Definition 4 substantially states that a cryptographic circuit Cf
is secure against dth-order probing attacks if, for any sensitive variable Z
and any subset V ′ ⊆ V of size d, we have Pr(Z | V ′) = Pr(Z). It implicitly
refers to the most powerful dth-order probing adversary who works with a
family of leakage functions reduced to the identity.

To achieve d-probing security, the most widely used approach is to
split each sensitive variable appearing in the algorithmic description of
the cryptosystem into several shares and to replace operations on the
sensitive data by operations on the shares. We give hereafter a formal
description of this technique called (n, d)-sharing in the sequel.

Definition 5 ((n, d)-sharing). Let n and d be two positive integers such
that n > d. A (n, d)-sharing of a variable Z ∈ GF(2m) is a family of n
variables (Zi)1≤i≤n such that:

1. there exists a deterministic function F from GF(2m)n into GF(2m)
for which;

F (Z1, · · · , Zn) = Z ,

2. for every subset I ⊂ [1;n] with cardinality lower than or equal to d;

Pr(Z | (Zi)i∈I) = Pr(Z) .

In relation with the notion of (n, d)-sharing we will sometimes use the
notion of independent sharings. A formal definition is given hereafter.

Definition 6 (Independence of (n, d)-sharings). Let n and d be two
positive integers such that n > d. Two (n, d)-sharings (Zi)i≤n and (Z ′i)i≤n
of two (not necessarily distinct) variables Z and Z ′ are said to be inde-
pendent if for every pair of subsets (I, I ′) in [1;n], each of cardinality
lower than or equal to d, we have Pr((Zi)i∈I | (Z ′i)i∈I′) = Pr((Zi)i∈I).

Remark 6. Two (n, d)-sharings are independent if they involve indepen-
dent masking materials (i.e. different random values). The replacement
of a (n, d)-sharing of Z by a new independent one is sometimes called
re-randomization or masks refreshing in the literature [1, 29].

In the SCA literature, the family (Zi)1≤i≤n is usually called a masked
representation at order d of Z. The function F is usually simply defined as
the sum of the Zi and n is chosen equal to (d+1). Several ways have been
proposed to apply such a d-sharing to protect a circuit against probing
attacks. To the best of our knowledge, only the circuit implementations
proposed by Ishai et al. [13] and Rivain and Prouff [29] are d-probing
secure for any fixed value d. Unfortunately, those schemes are not by
construction secure in the Glitches Adversary Model (i.e. without further
assumption, such a d-probing secure implementation might be susceptible
to an adversary performing first-order glitches attacks)4

2.3 Security in The Gliches Adversary Model

To achieve security in the Glitches Adversary Model, we develop hereafter
a strategy that consists in hermetically separating some parts of the com-
putation. The idea is to split a circuit Cf implementing a function f into
several sub-circuits Cf i such that the observation of d or fewer sub-circuits
gives no information on the original circuit input. The security/pertinence
of this approach is essentially based on the following simple observation:
if n sub-circuits Cf i operate each on a single element of a (n, d)-sharing
and if their processing leaks independently, then the circuit composed of
the n sub-circuits is d-glitches free. Of course, this observation alone does
not directly permit to design a d-glitches free circuit implementing any
function f . Indeed, the above construction implies that each sub-circuit is
input with a single share of a sharing and cannot access the other shares.

4 Indeed, the construction of [13, 29] assume that some sequences of operations are
executed in a fixed order (otherwise the security is broken). In a glitches context
such assumption can be unvalidated as seen in Example 1.

By consequence, only a certain type of function f (homomorphic with re-
spect to the sharing) can be split into n independent computations, each
of them operating only a single share of f ’s input and returning a sharing
of f ’s output (see Figure 1).

Z

Z1 Z2 Z3 Z4

Cf1
Cf2 Cf3 Cf4

f1(Z1) f2(Z2) f3(Z3) f4(Z4)

f(Z)

Secret sharing

Secret re-construction

Fig. 1. Multi-party Circuit for a ho-
momorphic function f and n = 4

Cf1
Cf2

Cf3 Cf4

f1(Z1) f2(Z2)

f3(Z3) f4(Z4)

$13$31 $42 $24

$12

$21

$34

$43

$14

$41

Fig. 2. Multi-party Circuit for any
function f and n = 4

Secure Multi-Party Computation protocols extend the above idea (il-
lustrated in Fig. 1) to any function f (i.e. not only homomorphic function
for which, as we have seen, the solution is straightforward). For such an
extension to be possible, each sub-circuit Cf i is provided with the new
ability to send information about its intermediate results to the other sub-
circuits. To ensure that this has no impact on the d-glitches freeness of the
overall circuit (composed of the n sub-circuits), the sent information must
itself be shared between all the n sub-circuits. Under this constraint, each
sub-circuit can only be given a single share of a (n, d)-sharing of the inter-
mediate result of another sub-circuit. Moreover, to build a sound proof of
security we also must ensure that all the shares accessed by a sub-circuit
come from distinct and independent (n, d)-sharings. The hence obtained
construction can be formalized by extending each sub-circuit Cf i with a
family of n − 1 channels ($ij)j 6=i, the channel $ij being dedicated to the
communication between Cf i and Cf j and being not accessible by another
sub-circuit Cf k, k 6= i, j. Through those channels, each Cf i can access a
share of any intermediate result of another sub-circuit, each new accessed
share being related to a (n, d)-sharing independent of the previous ones.
The family of extended circuits (Cf i, ($ij)i 6=j)i is called a (n, d)-multi-party
circuit. We hereafter give a formal definition of it.

Definition 7. Let f be a function and let Z denote its input. Let (Zi)i
be a (n, d)-sharing of Z. A circuit Cf composed of (a minimum of5) n
extended sub-circuits (Cf 1, ($1j)j 6=1), ..., (CfN , ($Nj)j 6=N) is a (n, d)-multi-
party circuit iff:

– every Cf i is input with a share Zi only,
– each Cf i can access, through $ij, to a share of an (n, d)-sharing of an

intermediate result of the sub-circuit Cf j,
– all the shares accessed by a sub-circuit Cf i relate to mutually indepen-

dent (n, d)-sharings,
– the Cf i outputs form a (n, d)-sharing of f(Z).
– for i 6= j, Cf i leaks independently to Cf j.

We give in Fig. 2 an example of a (n, d)-multi-party circuit for n = 4.
The following proposition states on the security of our construction

against glitches attacks.

Proposition 1. A (n, d)-multi-party circuit is secure in the dth-order
Glitches Adversary Model.

Sketch of proof. The most powerful dth-order glitches attack an adversary
can perform against a circuit can only allow him to recover the entire
input of the circuit. By definition of a (n, d)-sharing, each sub-circuit op-
erates on a single element Zi of a (n, d)-sharing of Z. Then the adversary
needs to attack at least d + 1 sub-circuits to recover information on a
shared variable Z. The other variables manipulated by a circuit come
from channels $ij and (by definition) they rely on independent (n, d)-
sharings. By consequence, the adversary cannot combine them to recover
more information than a single share of the input Zj of another circuit.
Eventually, since the sub-circuits are assumed to leak independently, we
deduce that the adversary has to perform at least a (d+1)th-order glitches
attack to break the scheme. �

Remark 7. To define a multi-party circuit we implicitly assumed that it
was possible to separate the sub-circuits executions. It is out of the scope
of this paper to propose such execution separation but we give in Ap-
pendix A two separation models. The cost of the sub-circuit separation
may seem expensive with respect to a block cipher implementation, but we
believe that it is mandatory in order to develop sound resistance against
glitches effects (without relying on ad-hoc logic styles). The construction
we propose in the sequel aims at minimizing the sub-circuits number.

5 By definition the number of sub-circuits in a (n, d)-multi-party circuit is lower-
bounded by n but is not limited.

In the next section we recall the basics about Secure Multi-party Com-
putation and, in particular, a protocol introduced by Ben Or et al. in [1].
Then, we argue that this protocol can be adapted to our context in order
to design (n, d)-multi-party circuits as long as n is greater than 2d. Even-
tually, in Section 4, the construction is applied to define, for any d > 1,
d-glitches free implementations of the AES.

3 Secure Multi-Party Computation

Secure Multi-Party Computation represents a rich area of research ini-
tiated by the seminal work of Yao in 1986 [34]. For a n-ary function f
and a family of n players (Ii)i≤n, each holding a private value Zi, a secure
multi-party computation is a joint protocol enabling the players Ii to com-
pute f(Z1, · · · , Zn) while under attack by an external adversary and/or
by a subset of malicious players (also called the colluding players). The
attack purpose is to learn the private information of the – non-colluding
– honest players or to cause the computation to be incorrect. To study
the resistance of a protocol against those threats, two kinds of adversaries
are usually introduced. The first one, usually called active, is allowed to
let the malicious parties deviate from the protocol in arbitrary ways. It is
out of the scope of this paper. The second kind of adversary, called pas-
sive or semi-honest, is only allowed to create collusions of players to gain
information about the secret. The corrupted players still follow the proto-
col and never forge wrong data. A security threshold parameter d ≤ n is
used to indicate the maximum number of players the adversary is allowed
to corrupt. A SMC protocol secure against a passive or active adversary
with threshold d is called a d-private protocol. We show in this section how
the problem of designing SMC protocols secure for this adversary model
is related to the problem of designing multi-party circuits secure in the
Glitches Adversary Model. Before that, we recall in the next section the
main aspects of the SMC protocol introduced by Ben Or et al. in [1] on
the basis of an idea proposed by Shamir in 1979.

3.1 Shamir’s Secret Sharing Scheme and BGW’s protocol

In a seminal paper [31], Shamir has introduced a simple and elegant
way to share a secret Z (considered here in a field K ≡ GF(2m)) be-
tween n < 2m players such that no collusion of d < n players can re-
trieve information about Z. In Shamir’s protocol, an entity called the
Dealer generates a degree-d polynomial PZ(X) ∈ K[X] with constant

term Z and secret coefficients ai (i.e. PZ(X) = Z +
∑d

i=1 aiX
i). Then,

he chooses n distinct non-zero elements α1, · · · , αn in K, makes them
publicly available and distributes to each player Ii the value Zi = PZ(αi).
To re-construct the secret Z, the players publish their private values Zi,
reconstruct PZ by polynomial interpolation (always possible since n > d)
and evaluate PZ(X) in 0 (we have Z = PZ(0)). It can be easily checked
that Shamir’s sharing fits with the notion of (n, d)-sharing given in Def-
inition 5 with reconstruction function F defined s.t. F (Z1, · · · , Zn) =∑n

i=1 Zi
∏n

k=1,k 6=i−αk(αi − αk)−1. Indeed, by definition of the Zi and
due to Lagrange’s Interpolation, the value F (Z1, · · · , Zn) equals PZ(0)
that is Z.

Remark 8. The products
∏n

k=1,k 6=i−αk(αi−αk)−1 for all i can be precom-
puted once for all. They actually correspond to the first row (λ1, · · · , λn)
of the inverse of the Vandermonde (n× n)-matrix (αj

i)1≤i,j≤n. We hence
have F (Z1, · · · , Zn) =

∑n
i=1 λiZi.

Remark 9. An example of algorithm specifying how to generate the (n, d)-
sharing of an element along with an example of algorithm specifying how
to reconstruct it are given in Sect. 4 (Algorithms 9 and 10 respectively).

Starting from Shamir’s secret sharing, Ben Or et al. have defined
in [1] a d-private SMC protocol in the case where the number of players n
satisfies n > 2d. This construction, called BGW’s protocol in the following,
is in fact a constructive proof of the following theorem (see [1, Theorem
1]):

Theorem 1. For every (probabilistic) function f and n > 2d, there exists
a d-private protocol.

In BGW’s protocol, the input (Z1, · · · , Zn) of the function f whose com-
putation must be made d-private is assumed to correspond to Shamir’s
sharing of a secret variable Z. Namely, they correspond to the evaluation
of a degree-d secret polynomial PZ(X) in n distinct non-zero public points
α1, ..., αn. It is moreover assumed that each player Ii has been initially
provided with a share Zi which is unknown to the others. Then, the func-
tion f is modelled as a sequence of computations operating either an affine
transformation on an intermediate state V or additions/multiplications
between two intermediate states V and V ′. Let us denote by C such a
(univariate or bivariate) computation. BGW’s protocol ensures that the
intermediate states V and V ′ at input of a bivariate operation C have been
shared w.r.t. two random polynomials PV and PV ′ which are independent

but evaluated in the same public points α1, ..., αn (i.e. Vi and V ′i satisfy
Vi = PV (αi) and V ′i = P ′V ′(αi) respectively). Moreover, for each C to
process, BGW’s protocol is designed such that each player Ii has either a
single share Vi (if C is univariate) or a single pair of shares (Vi, V

′
i) (if C is

bivariate). Eventually, BGW’s protocol describes a d-private multi-party
computation for each kind of field operation C depending on its nature.
We recall them hereafter, where it is assumed that the polynomials PV

and P ′V are defined over K[X].
If C is an affine transformation over K applied on a shared

variable V , then the protocol consists in asking each player Ii to ap-
ply C on its private share Vi. After this step, each player owns a new
share C(Vi) and the family (C(Vi))i is a (n, d)-sharing of C(V). Indeed,
since C is affine, C(PV (X)) is a degree-d polynomial PC(V)(X) such that
PC(V)(0) = C(V) and each C(Vi) corresponds to the evaluation of PC(V) in
αi (i.e. PC(V)(αi) = C(Vi)).

If C is the addition operation ⊕ over K applied on two shared
intermediate states V and V ′, then the protocol consists in asking each
player Ii to compute C(Vi, V

′
i) = Vi⊕V ′i . After this step, each player owns

a new share C(Vi, V
′
i) and the family of shares (C(Vi, V

′
i))i is a (n, d)-

sharing of C(V, V ′). Indeed, by construction of the Vi and V ′i , we have
C(Vi, V

′
i) = PV (αi)⊕ PV ′(αi) which implies that C(Vi, V

′
i) corresponds to

the evaluation of the polynomial PV (X)⊕PV ′(X) in αi. This polynomial
is of degree at most d and satisfies (PV (0)⊕PV ′(0)) = V ⊕V ′ = C(V, V ′).

If C is the multiplication operation ⊗ over K applied on two
shared intermediate states V and V ′, then the protocol is more complex
than the previous ones. Actually, since this operation is not homomorphic
with respect to sharing law, the protocol must involve communication
between the players. Also, it will involve the first row (λ1, · · · , λn) of the
inverse of the Vandermonde (n×n)-matrix (αj

i)1≤i,j≤n and it is composed
of three steps6.

1. Each player Ii computes C(Vi, V
′
i) = Vi ⊗ V ′i = PV (αi)⊗ PV ′(αi).

2. Each player Ii randomly generates a degree-d polynomial Qi such that
Qi(0) = C(Vi, V

′
i) and for every j 6= i, sends the value Qi(αj) to player

Ij .
3. Each player Ii computes the linear combination Q(αi) =

∑n
j=1 λjQj(αi).

The shares C(Vi, V
′
i) computed by the players at Step 1 correspond to

the degree-2d polynomial PV (X)×PV ′(X). As desired, the constant term

6 The protocol described in this paper is an improved version of the protocol originally
proposed by Ben-Or et al. [1]. It has been introduced by Gennero et al. in [10].

of this polynomial is C(V, V ′). However, the family (C(Vi, V
′
i))i built by

Step 1 is not a (n, d)-sharing since the corresponding polynomial is firstly
not of degree d and secondly, is not a random polynomial (its distribution
over the set of degree-2d polynomials with constant term C(V, V) is not
uniform). To overcome this issue, Steps 2 and 3 perform both a degree
reduction and a re-randomization of the shares. More precisely, Step 2 al-
lows player Ii to compute the (n, d)-sharing (Qi(αj))j of its share C(Vi, V

′
i)

thanks to a random polynomial Qi, and to send those shares to the other
players. Then, in Step 3 each player Ii computes Q(αi) =

∑n
j=1 λjQj(αi).

The family (Q(αi))i corresponds to the evaluation in (αi)i of the poly-
nomial Q(X) =

∑
j λjQj(X), which, by construction, is of degree d and

admits C(V, V ′) as constant term. It is therefore a (n, d)-sharing of C(V, V ′)
(see [10] for more details).

All the previous operations are defined over the field K. In a block
cipher algorithm, they are often combined with GF(2)-affine transforma-
tions. The latter ones are rarely affine over K since they do not sat-
isfy C(λV) = λC(V) for every λ ∈ K. Of course, any such GF(2)-affine
function can be represented as a field transformation f taking the form
y ∈ K 7→ f(y) = b−1 +

∑m−1
k=0 bky

2k for some bk ∈ K. If one denotes by ψ
the natural mapping GF(2)m 7→ GF(2m), we have C(V) = ψ−1f(ψ(V)).
Thanks to this representation, any GF(2)-affine transformation can be
securely evaluated thanks to the BGW protocol recalled previously. How-
ever, such a processing implies numerous secure multiplications. In the
following, we propose an alternative scheme which allows us to process
any GF(2)-affine transformation without secure multiplications. For this
purpose we introduce a new condition on the public points αi involved in
Shamir and BGW schemes. Then, the idea is to perform the evaluation of
each monomial bky

2k separately. Thanks to the new condition on the αi,
we show that this processing can be done without secure multiplication
and just needs a subsequent re-indexing of the players.

Improved processing for a transformation C in the form V 7→
bkV

2k (GF(2)-affine but not linear over K). For such a processing,
a special attention must be paid in order to avoid the need for costly
multiplication operations. To this end, we need the public points αi to
satisfy the following conditions:

– Distinct and Non-zero Condition. The elements αi are all distinct and
non-zero.

– Stability Over Frobenius Automorphism. For every αi, there exists αj

such that αj = α2
i .

The first constraint is already a prerequisite for Shamir’s sharing scheme.
As the security of the latter scheme, as well as that of Ben-Or et al.
scheme, stands for any choice of distinct and non-zero αi, the second
condition induces no flaw. Moreover, we prove in Appendix D that it is
always possible to find such a set of {αi} in GF(28) and we exhibit a
construction (an analysis for any m is let for further research).

Similarly to the other operations, we assume that each player Ii owns
the ith element of the (n, d)-sharing of V . The only additional assump-
tion is that the αi satisfy the stability condition. To securely execute the
transformation C : V 7→ bkV

2k , we propose that each player processes
separately the transformation PV (αi) 7→ C(PV (αi)) = bk(PV (αi))

2k to
its share. Let us denote by P ′ the degree-d polynomial built from PV

by applying the transformation C to its coefficients. By construction, we
have P ′(α2k

i) = C(PV (αi)) and the set of shares {P ′(α2k
i)}i≤n is a (n, d)-

sharing of C(V). From now, we can hence change the notation P ′ for PC(V).
If the αi do not satisfy the stability condition, then the (n, d)-sharings

{PV (αi)}i≤n and {PC(V)(α
2k
i)}i≤n correspond to different sets of public

points (one being the image of the other by Frobenius transformation).
Such a situation is not favourable since it implies a supplementary pro-
cessing to update the set of public points. On the opposite, when the
αi do satisfy the stability condition, then the sets {α2k

i }i and {αi}i are

the same and we get
{
PC(V)(α

2k
i)
}
i≤n

=
{
PC(V)(αi)

}
i≤n. In other terms,

the multi-party computation proposed above enables the definition of a
(n, d)-sharing of C(V) with unchanged set of public points. Moreover,

since the processing C : y 7→ bky
2k can be tabulated, the overall compu-

tation only involves n look-up table accesses (one for each player) and no
costly multiplication.

Remark 10. The Frobenius operation in GF(2m) may be seen as a special

case of the transformation C(V) = bkV
2k and shall be treated similarly. A

detailed description of the first-order masking scheme for the Frobenius
operation and for the GF(2)-affine transformation of the AES is provided
in Appendix E.

Remark 11. Contrary to the other methods listed in this section (e.g. the
secure computations of field additions and multiplications), the improved
processing proposed for GF (2)-affine transformations does not directly
benefit from the security proofs given in [1]. To make those latter proofs
still applicable for the improved processing, the following supplementary
hypothesis must be verified by the players: each player must have the abil-
ity to erase some part of its memory. This assumption is not compatible

with the traditional Secure Multi-Party Computation context but is ac-
ceptable in the context of multi-party circuits.

3.2 SMC protocol and Multi-Party Circuits

The design of a (n, d)-multi-party circuit from BGW’s protocol is merely
based on the following remark: the d-privacy for a set of n semi-honest
players evaluating a function f coincides with the d-probing security for
a set of n circuits implementing f . Hence, if each player Ii in BGW’s
protocol is replaced by an extended sub-circuit (Cf i, ($ij)j 6=i), then the
previous description specifies a (n, d)-multi-party circuit. Moreover, such
a design can be specified for any function f as long as n and d satisfy
n > 2d. If f is defined over the finite field GF(2m) with addition and mul-
tiplication laws ⊕ and ⊗, the sub-circuits Cf i are defined with respect to
the elementary operations {A(m),⊕,⊗}, where A(m) denotes the set of
affine functions over GF(2m). By construction, each extended sub-circuit
(Cf i, ($ij)j 6=i) always operates on a single share of a sensitive variable and
has never access to the other shares nor a function of them (cf. defini-
tion 7). Consequently, the observation of an extended sub-circuit cannot
give more information than a single share of a (n, d)-sharing. Hence, since
the sub-circuit executions do not overlap, and by definition of a (n, d)-
sharing, a glitches adversary must observe the behavior of at least d+ 1
extended sub-circuits (Cf i, ($ij)j 6=i) to recover sensitive information.

Eventually, to fully specify how to put BGW’s protocol into practice
for a (n, d)-multi-party circuit, it just remains to clarify the following
practical points:

– Messages exchange between sub-circuits (a.k.a. players) dur-
ing Step 2 of the secure processing of ⊗. The exchange of mes-
sages is done thanks to the channels $ij . In software, each channel $ij
between a pair of sub-circuits (Cf i, Cf j) may simply consist in a RAM
space which is not accessed by another circuits Cf k with k 6= i, j. In
hardware, the designer can code a unique communication channel for
each pair of circuits running sequentially. Another solution could be
to run each sub-circuit in a different environment (e.g. different plat-
forms) and to implement a channel between each pair of them (see
Appendix A).

– Messages exchange with erasure during processing of GF(2)-
affine function (non-linear over K). A second routine must be
specified to enable two extended sub-circuits to exchange data fol-
lowed by partial erasure of their memory. Actually, each sub-circuit

Cf i is provided with a procedure that enables it to write data on $ij
and to erase those data from its own memory. This procedure is called
write-then-erase in the following.

– The initial shares distribution by a honest entity (the Dealer).
In our context, the role of the Dealer is played by a special procedure
run before processing the multi-party circuit. This procedure shares
the sensitive variable as usually done in the literature to counteract
dth-order probing attacks. To also achieve security in the dth-order
Glitches Adversary Model, the computation is split into elementary
operations that are processed sequentially. Although expensive this
strategy can always be followed to go from probing attack security
to glitches attacks security (see next section on the comparison with
state of the art solutions). The actual algorithm is presented in next
Section (Algorithm 9).

Because it is the most tricky part in BGW’s protocol, we develop
hereafter the algorithm processed by each sub-circuit Cf i when computing
the (n, d)-sharing of the product of two shared values over a field GF(2m).
It exactly corresponds to the multiplication operation discussed in the
previous section when developed in the context of extended sub-circuits
instead of players.

Notation. Instruction read(X, $ij) reads the content of $ij (viewed as a
channel or a memory address) and updateX with it. Instruction write(X, $ij)
writes the value X on $ij .

Algorithm 1 Secure Multiplication Part Dedicated to a Sub-Circuit (Cf i, ($ij)j 6=i)
Input: the ith element PV (αi) of a (n, d)-sharing of V , the ithelement PV ′(αi) of a
(n, d)-sharing of V ′ and a set of channels ($ij)j 6=i.
Output: the ith element QV⊗V ′(αi) of a (n, d)-sharing of V ⊗ V ′.
Public: the n distinct points αi, the first row (λ1, · · · , λn) of the inverse of the matrix
(αji)1≤i,j≤n

1. do Wi ← PV (αi)⊗ PV ′(αi)
*** Randomly generate a d-tuple (aj) of coefficients in GF(2m)

2. for j = 1 to d

do aj ← rand(GF(2m))
*** Compute a (n, d)-sharing (Qi(α1), · · · , Qi(αn)) of Wi.

3. for j = 1 to n

do Qi(αj)←Wi ⊕
⊕d

k=1 akα
k
i

*** Send the shares of Wi to the other sub-circuits Cf j through $ij.

4. for j = 1 to n, j 6= i

write(Qi(αj), $ij)
*** Receive a share Qj(αi) from each sub-circuit Cj through $ji.

5. for j = 1 to n, j 6= i

read(Qj(αi), $ij)
*** Compute the share QV⊗V ′(αi)

6. do QV⊗V ′(αi)←
⊕n

j=1 λjQj(αi).

Steps 2 enables to randomly generate a degree-d polynomial Qi(X) =
Wi +

⊕d
j=1 ajX

j . Step 3 evaluates Qi(X) in each public point αj to
construct a (n, d)-sharing (Qi(αj))j of Wi. Step 4 sends those shares to
the other sub-circuits and Step 5 enables Cf i to receive the shares Qj(αi)
computed by the other sub-circuits Cf j . Eventually, Step 6 computes a

share of V ⊗ V ′ for sub-circuit Cf i.

3.3 Complexity of the Scheme and Comparison

Complexity Evaluation Except the multiplication, the proposed scheme
replaces each operation of a given function by n similar operations (see
Section 4 for an application of the scheme to AES-128 block cipher). Con-
cerning the multiplication ⊗ over GF(2m), it is performed by asking each
of the sub-circuits to run Algorithm 1. As a consequence, the multiplica-
tion ⊗ is replaced by n2(d+1)+n multiplications, n2(d+1)−n additions
and 2(n − 1) read/write operations. In the following table, we develop
this complexity for n = 2d + 1 (which is the smallest value n allowed in
BGW’s protocol). For comparison purpose, we also give the complexity
of the secure multiplication proposed in [29]. We recall that when applied
with n = 2d + 1, the multiplication algorithm proposed in Algorithm 1
offers the same (perfect) resistance against d-probing attacks than the
method proposed in [29].

Method multiplications additions random bytes

This paper 4d3 + 8d2 + 3d 4d3 + 8d2 + 7d+ 2 d(2d+ 1)

[29] 2d2 + 2d d2 + d+ 1 d(d+ 1)/2
Table 1. Complexity of the secure processing of a field multiplication.

Comparison With Other State Of The Art Solutions The con-
struction proposed in the paper has similarities with the works [24], [13]
and [29].

In [24], Nikova et al. have already attempted to apply the multi-party
computation theory in the context of hardware implementations, with 1-
glitches freeness in mind. Contrary to our proposal where data are shared
thanks to Shamir’s scheme, Nikova et al. ’s construction relies on the
classical additive sharing (namely the circuit’s input is additively masked
with several, say n − 1, random variables). To secure the processing on
the masked input and the masks, they propose to split the computation
according to a set of security rules. The obtained circuit sharing differs
from ours in the two following main points. First, the security is only
proven against first-order attacks, which implies that Nikova et al. ’s
construction cannot be used to design (n, d)-multi-party circuits for d > 1.
Secondly, the sharing is not explicit and involves an exhaustive search that
becomes impossible when the size m of the circuit input is greater than 5.
Moreover, there is no guaranty that the approach works for any circuit.
In particular, Moradi et al. [21] discuss the difficulty of applying Nikova
et al. ’s scheme to the AES s-box. In [24], the scheme has been applied
to the block cipher Noekeon [6]. Instead of taking the direction proposed
in the present paper where the circuit is divided into several sub-circuits
leaking independently, they take an opposite position where the different
shares of a variable are manipulated simultaneously by the same circuit.
Our scheme could also be implemented in such a way but the resulting
security against dth-order attacks would be significantly reduced. Indeed
the manipulation of all the shares at the same time makes the overall
leakage at this time dependent on all the shares altogether. This enables
— at least theoretically — to mount a 1st-order SCA attack. This fact
is clearly pointed out in [24] but assumed to only lead to unpractical
attacks. This has actually been validated in practice by Moradi et al. ,
who exhibit in [21] a first-order MIA on their AES implementation based
on Nikova’s scheme.

On the opposite side, the constructions proposed in [13] (operations
in GF(2)) and in its extension [29] (operations in GF(2m)) are d-probing
secure but not 1-glitches free. The cost of the secure multiplication in
BGW’s protocol is greater than that of the d-probing secure multiplica-
tion proposed in [29] (see Tab. 1). The overhead between the two methods
is essentially explained by the fact that BGW’s multiplication is designed
to achieve d-glitches freeness whereas Rivain-Prouff’s one is not. As a mat-
ter of fact and as far as we know, the only sound way to induce glitches
freeness in Rivain-Prouff’s multiplication would be to implement it on
a multi-party circuit such that each elementary operation is processed
on a separate sub-circuit. This implies the use of O(d2) sub-circuits when

BGW’s protocol, and then our scheme, was designed to minimize the num-
ber of players (thus the number of sub-circuits here) to 2d + 1. Hence,
even though the overall bit-complexity of our scheme is one order of mag-
nitude more expensive than Rivain-Prouff’s scheme, its limited cost in
sub-circuits number makes it competitive when the design of sub-circuits
is prohibitive (see remark 7 and Appendix A).

4 Glitches Free HO-Masking of the AES

We apply here the construction proposed in Section 3.2 to design a multi-
party circuit implementing the AES-128 block cipher. The AES-128 block
cipher iterates 10 times a round transformation on a 16-bytes internal
state initially filled with the plaintext. The transformation is composed
of a key addition AddRoundKey, a nonlinear layer SubBytes which applies
the same substitution-box (s-box) to every byte of the internal state and
a linear layer composed of the so-called transformations ShiftRows and
MixColumns. The s-box S is defined as the left-composition of a trans-
formation ηA affine over GF(2)8, with the power function y 7→ y254 over
the field GF(256) ' GF(2)[X]/(X8 + X4 + X3 + X + 1). In the follow-
ing, we propose a (n, d)-multi-party circuit (Cf 1, · · · , Cfn) implementing
the AES-128 algorithm. First, for each of the four AES transformations
listed above we detail in Algorithms 3 to 7 the processing done by each
sub-circuit. To specify the algorithms, we exactly applied the protocols
discussed in Section 3.1. Eventually, we combine them to specify the pro-
cessing that must be done by each sub-circuit Cf i in order to ensure that
the family (Cf 1, · · · , Cfn) is a d-glitches free implementation of the AES-
128.

Let us start our description with the exponentiation computation y 7→
y254 which is the most tricky part to protect. As shown in [29], it can be
split in a sequence of raisings to powers in the form 2j (which will be

treated as operations in the form V 7→ bkV
2k – see Sect. 3.1 –) and of 4

field multiplications. For any j, let us denote by ηj the power function y 7→
y2

j
, the exponentiation algorithm proposed in [29] is recalled hereafter:

Algorithm 2 Exponentiation to the 254

Input: V

Output: Y = V 254

1. Z ← η1(V) [Z = V 2]

2. Y ← Z ⊗ V [Y = V 2V = V 3]

3. W ← η2(Y) [W = (V 3)4 = V 12]

4. Y ← Y ⊗W [Y = V 3V 12 = V 15]

5. Y ← η4(Y) [Y = (V 15)16 = V 240]

6. Y ← Y ⊗W [Y = V 240V 12 = V 252]

7. Y ← Y ⊗ Z [Y = V 252V 2 = V 254]

Starting from Algorithm 2 and applying Algorithm 1 to securely pro-
cess the multiplications ⊗, we develop hereafter the s-box computation
routine processed by each extended sub-circuit (Cf i, ($ij)j 6=i). We split the
description in two algorithms dedicated to the exponentiation y 7→ y254

and to the GF (2)-affine function ηA respectively.

Algorithm 3 Secure Exponentiation Routine Dedicated to an Extended Circuit
(Cf i, ($ij)j 6=i)
Input: the ith element PV (αi) of a (n, d)-sharing of V and a family of channels
($ij)j 6=i.
Output: the ith element PV 254(αi) of a (n, d)-sharing of V 254.
Public: the n distinct points αi, the first row (λ1, · · · , λn) of the inverse of the matrix
(αji)1≤i,j≤n

1. do PZ(αj)← η1(PV (αi)) (where j is s.t. αj = η1(αi)) [Z = η1(V)]

do write-and-erasure (PZ(αj),$ij)

2. for j s.t. αi = η1(αj) do

read (PZ(αi),$ji)

3. do PY (αi)← Algorithm 1(PV (αi), PZ(αi), ($ij)j 6=i) [Y = V ⊗ Z]

4. do PW (αj)← η2(PY (αi)) (where j is s.t. αj = η2(αi)) [W = η2(Y)]

do write-and-erasure (PW (αj),$ij)

5. for j s.t. αi = η2(αj) do

read (PW (αi),$ij)

6. do PY (αi)← Algorithm 1(PY (αi), PW (αi), ($ij)j 6=i) [Y = Y ⊗W]

7. do PY (αj)← η4(PY (αi)) (where j is s.t. αj = η4(αi)) [Y = η4(Y)]

do write-and-erasure (PY (αj),$ij)

8. for j s.t. αi = η4(αj) do

read (PY (αi),$ij)

9. do PY (αi)← Algorithm 1(PY (αi), PW (αi), ($ij)j 6=i) [Y = Y ⊗W]

10. do PY (αi)← Algorithm 1(PY (αi), PZ(αi), ($ij)j 6=i) [Y = Y ⊗ Z]

11. return PY (αi)

Before presenting the secure processing of the GF(2)-affine part ηA of
the AES s-box, we recall that for every y ∈ GF(2)[X]/(X8 +X4 +X3 +
X + 1) it is defined by:

ηA(y) = 0x63 + 0x05⊗ y + 0x09⊗ y2 + 0xf9⊗ y4 + 0x25⊗ y8

+ 0xf4⊗ y16 + 0x01⊗ y32 + 0xb5⊗ y64 + 0x8f⊗ y128 . (1)

In the rest of the paper, the constant terms 0x63, 0x05, ..., 0x8f are
denoted by a−1, a0, ..., a7 respectively.

For efficiency reasons, we apply hereafter the alternative scheme pro-
posed in Sect. 4 to process GF(2)-affine functions. This implies that the
public points αi have been chosen to satisfy the stability condition stated
in Sect. 4 (the construction proposed in Appendix D can for instance be
used for this purpose).

Algorithm 4 Secure ηA Processing Routine Dedicated to an Extended Circuit
(Cf i, ($ij)j 6=i)
Input: the ith element PV (αi) of a (n, d)-sharing of V and a family of channels
($ij)j 6=i.
Output: the ith element PηA(V)(αi) of a (n, d)-sharing of ηA(V).
Public: the n distinct points αi, the first row (λ1, · · · , λn) of the inverse of the matrix
(αji)1≤i,j≤n

1. do Pa0V (αi)← a0 ⊗ PV (αi)

2. for t = 1 to 7 do

3. do P
atV 2t (α2t

i)← at ⊗ PV (αi)
2t

4. for j s.t. αj = α2t

i do

write-and-erasure (P
atV 2t (α2t

i),$ij) [P
atV 2t (α2t

i) = P
atV 2t (αj)]

5. for j s.t. α2t

j = αi do

read (P
atV 2t (α2t

j),$ij) [P
atV 2t (α2t

j) = P
atV 2t (αi)]

6. do PηA(V)(αi)← Pa−1(αi)⊕ Pa0V (αi)⊕ ...⊕ Pa7V 27 (αi)

7. return PηA(V)(αi)

We now develop hereafter the routines AddRoundKey, ShiftRows and
MixColumns processed by each extended sub-circuit (Cf i, ($ij)j).

Algorithm 5 AddRoundKey Processing Routine Dedicated to an Extended Circuit
(Cf i, ($ij)j 6=i)
Input: the ith share (Psj (αi))j≤16 of a (n, d)-sharing of the AES state (sj)j≤16 and

the ith share (Pkj (αi))kj≤16 of a (n, d)-sharing of the round key (kj)j≤16.

Output: the ith share (Psj⊕kj (αi))j≤16 of a (n, d)-sharing of (sj ⊕ kj)j≤16.

1. for i = 1 to 16

do Psj⊕kj (αi)← Psj (αi)⊕ Pkj (αi)

2. return (Psj⊕kj (αi))j≤16

Algorithm 6 ShiftRows Processing Routine Dedicated to an Extended Circuit
(Cf i, ($ij)j 6=i)
Input: the ith share (Psj (αi))j≤16.

Output: the ith share (Psj (αi))j≤16 of a (n, d)-sharing of (sj)j≤16 = ShiftRows((sj)j≤16).

1. (Psj (αi))j≤16 ← ShiftRows((Psj (αi))j≤16)

2. return (Psj (αi))j≤16

The following MixColumns processing starts from the implementation
recalled in Appendix B.

Algorithm 7 MixColumns Processing Routine Dedicated to an Extended Circuit
(Cf i, ($ij)j 6=i)
Input: the ith share (Psj (αi))j≤16.

Output: the ith share (Psj (αi))j≤16 of a (n, d)-sharing of (sj)j≤16 = MixColumns((sj)j≤16).

1. for ` = 0 to 3

do Ptmp(αi)← Ps1+`(αi)⊕ Ps5+`(αi)⊕ Ps9+`(αi)⊕ Ps13+`(αi)

do Ps1+`(αi)← 02⊗ (Ps1+`(αi)⊕ Ps5+`(αi))⊕ Ptmp(αi)⊕ Ps1+`(αi)

do Ps5+`(αi)← 02⊗ (Ps5+`(αi)⊕ Ps9+`(αi))⊕ Ptmp(αi)⊕ Ps5+`(αi)

do Ps9+`(αi)← 02⊗ (Ps9+`(αi)⊕ Ps13+`(αi))⊕ Ptmp(αi)⊕ Ps9+`(αi)

do Ps13+`(αi)← Ps1+`(αi)⊕ Ps5+`(αi))⊕ Ps9+`(αi)⊕ Ptmp(αi)
2. return (Psj (αi))j≤16

The AES key-scheduling function can itself be split into only affine
transformations and s-box computations. Hence, the same strategy can
be followed to split its processing between the Cf i as we did with the AES
round transformation. The KeyScheduling secure processing routine ded-
icated to the extended circuit (Cf i, ($ij)j 6=i) is denoted by KeyScheduling sec.

We now propose an algorithmic description of the computations im-
plemented by each extended sub-circuit (Cf i, ($ij)j 6=i) such that the family
(Cf i, ($ij)j 6=i)i is a (n, d)-multi-party circuit implementing the AES. We
stress here that all these algorithms are a direct expression of BGW’s
secure protocol and that there is no need for a special treatment due
to the context. The correctness/security of these algorithms is hence not
discussed here and the reader can refer to Section 3 or directly to the
original paper [1] to convince him/herself about it.

Algorithm 8 Secure AES Processing Routine Dedicated to an Extended Circuit
(Cf i, ($ij)j 6=i)
Input: the ith share (Psj (αi))j≤16 of a (n, d)-sharing of the AES state (sj)j≤16 and

the ith share (Pkj (αi))kj≤16 of a (n, d)-sharing of the master key (kj)j≤16.

Output: the ith element PV (αi) of a (n, d)-sharing of S(V).
Public: the n distinct points αi, the first row (λ1, · · · , λn) of the inverse of the matrix
(αji)1≤i,j≤n

*** All but last rounds ***

1. for r = 1 to 10

2. do (Psj (αi))j≤16 ←Algorithm-5 ((Psj (αi))j≤16, (Pkj (αi))j≤16)[AddRoundKey Part]

3. for j = 1 to 16

do Psj (αi)← Algorithm-3(Psj (αi), ($ij)j 6=i) [SubBytes Exp. Part]

do Psj (αi)← Algorithm-4(Psj (αi), ($ij)j 6=i) [SubBytes ηA. Part]

4. do (Psj (αi))j≤16 ← Algorithm-6((Psj (αi))j≤16) [ShiftRows Part]

5. do (Psj (αi))j≤16 ← Algorithm-7((Psj (αi))j≤16) [MixColumns Part]

6. do (Pkj (αi))j≤16 ← KeyScheduling sec ((Pkj (αi))j≤16, ($ij)j 6=i)[KeyScheduling Part]

*** Last round ***

7. do (Psj (αi))j≤16 ←Algorithm-5 ((Psj (αi))j≤16, (Pkj (αi))j≤16)[AddRoundKey Part]

8. for j = 1 to 16

do Psj (αi)← Algorithm-3(Psj (αi), ($ij)j 6=i) [SubBytes Part]

9. do (Psj (αi))j≤16 ← Algorithm-6((Psj (αi))j≤16) [ShiftRows Part]

10. do (Pkj (αi))j≤16 ← KeyScheduling sec ((Pkj (αi))j≤16, ($ij)j 6=i)[KeyScheduling Part]

11. do (Psj (αi))j≤16 ←Algorithm-5 ((Psj (αi))j≤16, (Pkj (αi))j≤16)[AddRoundKey Part]

12. return (Psj (αi))j≤16

By construction, the family of extended sub-circuits (Cf i, ($ij)j 6=i)i,
each of them processing Algorithm 8, implements the AES-128 block ci-
pher. It is moreover a (n, d)-multi-party circuit since it is an instance of
BGW’s protocol.

To construct the (n, d)-sharings of the plaintext and the master key
which are distributed to the sub-circuits, the following algorithm is ap-
plied:

Algorithm 9 (n, d)-sharing Construction
Input: a 16-byte vector (Vj)j≤16

Output: a (n, d)-sharing ((PVj (α1))j≤16, · · · , (PVj (αn))j≤16) of (Vj)j≤16 .
Public: n distinct points αi.

1. for j = 1 to 16

Randomly generate a family (ai)i≤d of coefficients in GF(256).

2. for t = 1 to d

do at ← rand(GF(256))

Compute PVj (αi) = m+
∑
j≤d aj · α

j
i

3. for i = 1 to n

do PVj (αi)← Vj

4. for t = 1 to d

do PVj (αi)← PVj (αi) + aj · αti

5. return ((PVj (α1))j≤16, · · · , (PVj (αn))j≤16)

Eventually, the following algorithm is applied to reconstruct the AES
output from the (n, d)-sharing
((Psj (α1))j≤16, · · · , (Psj (αn))j≤16) returned by the sub-circuits Cf i at the
end of Algorithm 8.

Algorithm 10 Reconstruction
Input: a (n, d)-sharing ((Psj (α1))j≤16, · · · , (Psj (αn))j≤16)
Output: the un-shared value (sj)j≤16.
Public: the first row (λ1, · · · , λn) of the inverse of the matrix (αji)1≤i,j≤n.

1. for j = 1 to 16
Process Lagrange’s Interpolation.

2. for i = 1 to n

do sj ←
∑n
i=1 λiPsj (αi)

3. return (sj)j≤16)

This concludes the full algorithmic description of a d-glitches free
AES-128 implementation. We will now focus on the study of Shamir’s
secret sharing scheme as a masking scheme.

5 The Polynomial Masking Function

In previous sections we have used Shamir’s sharing scheme to secure the
sensitive data manipulations and we have applied SMC protocols to en-
able secure elementary computations on the shared variables. This section
focusses on Sharing’s scheme and studies it as a masking technique, here-
after referred as polynomial masking. In particular, we compare its SCA
resistance w.r.t. the classical Boolean masking [12] which is up to now
the only masking which has been applied to define d-probing resistant
implementations for any d [13, 29].

Since the efficiency of a dth-order SCA decreases exponentially when
d grows (see Sect. 1), the amount of information leaking on a shared
sensitive variable when targeting all the shares, is a sound way to compare
two (n, d)-sharings [9,32]. To quantify this amount, we need to model the
relationship between the physical leakage and the value of the variable
manipulated at the time of the leakage. For such a purpose, we associate
each d-tuple of shares (Z0, · · · , Zd) with a (d + 1)-tuple of leakages L =
(L0, · · · , Ld) s.t. Li = HW (Zi) + βi, with βi an independent Gaussian
noise with mean 0 and standard deviation σ2. We shall use the notation

L ← (Z0, · · · , Zd) to refer to this association. Since we assumed that
the variable Z and the masking material are uniformly distributed over
their definition sets, the signal-to-noise ratio (SNR) of the leakage can be
defined as Var [HW(Zi)] /Var [βi] (that is 2/σ2 if we assume that Zi is
8-bit long).

To evaluate the information revealed by each tuple of shares for Boolean
and polynomial masking techniques, we computed the mutual informa-
tion7 I(Z,L) between the sensitive variable Z and L. We list hereafter
the leakages we considered and the underlying leaking variables:

1st-order Boolean masking: L← (Z ⊕B,B) . (2)

2nd-order Boolean masking: L← (Z ⊕B1 ⊕B2, B1, B2) . (3)

1st-order Poly. masking: L← (PZ(α1), PZ(α2)) . (4)

2nd-order Poly. masking: L← (PZ(α1), PZ(α2), PZ(α3)) . (5)

Remark 12. The polynomial PZ considered in (4) and (5) is an otherwise
random polynomial with constant coefficient Z and degree at most 1 and
2 respectively. The αi are distinct public values.

Figure 3 summarizes the information theoretic evaluation for each
leakage (1) to (4). For d equal to 1 or 2, it can be observed that the amount
of information revealed by the d+ 1 elements of the Boolean masking is
greater than that revealed by the d+ 1 elements of the polynomial mask-
ing. Moreover, the gap between the two amount of information gets wider
as the noise increases and, apparently, when the order d increases. This
can be explained by the greater algebraic complexity of the polynomial
masking function compared to the Boolean one. Indeed, the algebraic de-
gree of polynomial masking increases with the masking order d whereas
Boolean masking stays linear. Eventually, it can also be observed that,
at a fixed order (1 or 2 here), the difference in the amount of informa-
tion retrieved on the sensitive variable between Boolean and polynomial
maskings is exponential in the square root of the noise standard deviation
σ.

Following the same reasoning as in [9, 32], we deduce from the ob-
servations above that polynomial masking offers a better resistance to
HO-SCA attacks. Our analysis also suggests that difference between the

7 As shown in [32], the number of measurements required to achieve a given success-
rate in a maximum likelihood attack can be expressed as a function of the mutual
information evaluation and equals c × I(Z,L)−1, where c is a constant related to
the chosen success-rate.

two resistance levels increases with the noise standard deviation and the
order.

-25

-20

-15

-10

-5

 0

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

1st-order Boolean
2nd-order Boolean

1st-order Polynomial
2nd-order Polynomial

Fig. 3. Mutual information (log10) between the leakage and the sensitive variable over
an increasing noise standard deviation (x-axis).

6 Conclusion

Thanks to the notion of multi-party circuit, we have shown in this paper
that it is possible to prove, under realistic assumptions, the resistance of
a dth-order masking scheme in the presence of glitches. This new frame-
work enables to convert any classical dth-order secure scheme into an
implementation immune to glitches effects. The complexity of the new
implementation greatly depends on the number of sub-circuits in which
the initial scheme has been shared. To reduce the complexity, the latter
scheme must therefore be carefully chosen. Here, we have proposed to
adapt the SMC protocol proposed in [1] to define a circuit sharing that is
particularly well suited to our problematic. We have applied it to exhibit
a full description of a d-glitches free AES-128 implementation. As a side
effect of basing our security on a SMC scheme, the protocol is intrinsically
immune against fault injection attacks when fewer than 1/3 of the sub-
circuits are corrupted. This is a real asset of our proposal compared to
the existing ones when both active and passive attacks must be thwarted
by the implementation. Finally, we have formally studied the effectiveness

of Shamir’s secret sharing which is a core primitive of [1]. In particular,
we have argued that it is much more robust that the classical Boolean
sharing.

The multi-party circuit model permits the systematic use of SMC
protocols for building d-glitches free schemes. As a first approach, we
based our study on very strong hypotheses on the attacker power. Even
if such brutal approach allows us to develop sound proofs of security, the
resulted secure implementation is costly. Future works could investigate
more realistic (weaker) adversary models in order to build lighter secure
implementations, or, to the same purpose, study alternative SMC proto-
cols, less generic than BGW’s protocol but more efficient. Another avenue
could be to study some existing optimizations of BGW’s protocol (e.g.
the optimization based on Franklin and Yung’s trick [8] that is based on
efficient parallel computations).

References

1. M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In STOC ’88: Proceedings of
the twentieth annual ACM symposium on Theory of computing, pages 1–10, New
York, NY, USA, 1988. ACM.

2. J. Blömer, J. G. Merchan, and V. Krummel. Provably Secure Masking of AES.
In M. Matsui and R. Zuccherato, editors, SAC 2004, volume 3357 of LNCS, pages
69–83. Springer, 2004.

3. S. Chari, C. Jutla, J. Rao, and P. Rohatgi. A Cautionary Note Regarding Evalu-
ation of AES Candidates on Smart-Cards. In Second AES Candidate Conference
– AES 2, Mar. 1999.

4. S. Chari, C. Jutla, J. Rao, and P. Rohatgi. Towards Sound Approaches to Coun-
teract Power-Analysis Attacks. In M. Wiener, editor, Advances in Cryptology –
CRYPTO ’99, volume 1666 of LNCS, pages 398–412. Springer, 1999.

5. J.-S. Coron. A New DPA Countermeasure Based on Permutation Tables. In
R. Ostrovsky, R. D. Prisco, and I. Visconti, editors, SCN 2008, volume 5229 of
LNCS, pages 278–292. Springer, 2008.

6. J. Daemen, M. Peeters, G. Assche, and V. Rijmen. The Noekeon Block Cipher. In
Proceedings of first NESSIE Workshop, 2000. http://cryptonessie.org.

7. T. Eisenbarth, C. Paar, and B. Weghenkel. Building a side channel based dis-
assembler. In M. Gavrilova, C. Tan, and E. Moreno, editors, Transactions on
Computational Science X, volume 6340 of Lecture Notes in Computer Science,
pages 78–99. Springer Berlin / Heidelberg, 2010.

8. M. Franklin and M. Yung. Communication complexity of secure computation
(extended abstract). In STOC ’92: Proceedings of the twenty-fourth annual ACM
symposium on Theory of computing, pages 699–710, New York, NY, USA, 1992.
ACM.

9. G. Fumaroli, A. Martinelli, E. Prouff, and M. Rivain. Affine masking against
higher-order side channel analysis. In A. Biryukov, G. Gong, and D. R. Stinson,
editors, Selected Areas in Cryptography, volume 6544 of Lecture Notes in Computer
Science, pages 262–280. Springer, 2010.

10. R. Gennaro, M. O. Rabin, and T. Rabin. Simplified vss and fact-track multiparty
computations with applications to threshold cryptography. In PODC, pages 101–
111, 1998.

11. Goldack. Side-channel based reverse engineering for microcontrollers, 2008. Mas-
ter’s thesis, Ruhr-Universität, Bochum, Germany.

12. L. Goubin and J. Patarin. DES and Differential Power Analysis – The Duplication
Method. In Ç. Koç and C. Paar, editors, CHES ’99, volume 1717 of LNCS, pages
158–172. Springer, 1999.

13. Y. Ishai, A. Sahai, and D. Wagner. Private circuits: Securing hardware against
probing attacks. In D. Boneh, editor, CRYPTO, volume 2729 of Lecture Notes in
Computer Science, pages 463–481. Springer, 2003.

14. M. Joye, P. Paillier, and B. Schoenmakers. On Second-order Differential Power
Analysis. In Rao and Sunar [27], pages 293–308.

15. P. Kocher, J. Jaffe, and B. Jun. Introduction to Differential Power Analysis and
Related Attacks. Technical report, Cryptography Research Inc., 1998.

16. R. Lidl and H. Niederreiter. Finite fields, volume 20 of Encyclopedia of Mathematics
and its Applications. Cambridge University Press, seconde edition, 1997. Avec une
introduction de P. M. Cohn.

17. S. Mangard, T. Popp, and B. M. Gammel. Side-Channel Leakage of Masked CMOS
Gates. In A. Menezes, editor, Topics in Cryptology – CT-RSA 2005, volume 3376
of LNCS, pages 351–365. Springer, 2005.

18. S. Mangard and K. Schramm. Pinpointing the Side-Channel Leakage of Masked
AES Hardware Implementations. In L. Goubin and M. Matsui, editors, CHES
2006, volume 4249 of LNCS, pages 76–90. Springer, 2006.

19. T. Messerges. Using Second-order Power Analysis to Attack DPA Resistant Soft-
ware. In Ç. Koç and C. Paar, editors, CHES 2000, volume 1965 of LNCS, pages
238–251. Springer, 2000.

20. S. Micali and L. Reyzin. Physically Observable Cryptography (Extended Ab-
stract). In M. Naor, editor, Theory of Cryptography Conference – TCC 2004,
volume 2951 of Lecture Notes in Computer Science, pages 278–296. Springer, 2004.

21. A. Moradi, A. Poschmann, S. Ling, C. Paar, and H. Wang. Pushing the limits: A
very compact and a threshold implementation of aes. In K. G. Paterson, editor,
EUROCRYPT, volume 6632 of LNCS, pages 69–88. Springer, 2011.

22. S. Nikova, C. Rechberger, and V. Rijmen. Threshold implementations against side-
channel attacks and glitches. In P. Ning, S. Qing, and N. Li, editors, IICICS’06,
volume 4307 of LNCS, pages 529–545. Springer, 2006.

23. S. Nikova, V. Rijmen, and M. Schläffer. Secure Hardware Implementation of Non-
linear Functions in the Presence of Glitches. In P. J. Lee and J. H. Cheon, editors,
ICISC 2008, volume 5461 of LNCS, pages 218–234. Springer, 2008.

24. S. Nikova, V. Rijmen, and M. Schläffer. Secure hardware implementation of non-
linear functions in the presence of glitches. J. Cryptology, 24(2):292–321, 2011.

25. G. Piret and F.-X. Standaert. Security Analysis of Higher-Order Boolean Masking
Schemes for Block Ciphers (with Conditions of Perfect Masking). IET Information
Security, 2:1–11, 2008.

26. E. Prouff and T. Roche. Attack on a higher-order masking of the aes based on
homographic functions. In G. Gong and K. Gupta, editors, Progress in Cryptology
- INDOCRYPT 2010, volume 6498 of Lecture Notes in Computer Science, pages
262–281. Springer Berlin / Heidelberg, 2010.

27. J. Rao and B. Sunar, editors. CHES 2005, volume 3659 of LNCS. Springer, 2005.

28. M. Rivain, E. Dottax, and E. Prouff. Block Ciphers Implementations Provably
Secure Against Second Order Side Channel Analysis. Cryptology ePrint Archive,
Report 2008/021, 2008. http://eprint.iacr.org/.

29. M. Rivain and E. Prouff. Provably secure higher-order masking of aes. In S. Man-
gard and F.-X. Standaert, editors, CHES, volume 6225 of LNCS, pages 413–427.
Springer, 2010.

30. K. Schramm and C. Paar. Higher Order Masking of the AES. In D. Pointcheval,
editor, CT-RSA 2006, volume 3860 of LNCS, pages 208–225. Springer, 2006.

31. A. Shamir. How to Share a Secret. Commun. ACM, 22(11):612–613, Nov. 1979.

32. F.-X. Standaert, N. Veyrat-Charvillon, E. Oswald, B. Gierlichs, M. Medwed,
M. Kasper, and S. Mangard. The world is not enough: Another look on second-
order dpa. In M. Abe, editor, Advances in Cryptology - ASIACRYPT 2010, volume
6477 of Lecture Notes in Computer Science, pages 112–129. Springer Berlin / Hei-
delberg, 2010.

33. D. Suzuki, M. Saeki, and T. Ichikawa. DPA Leakage Models for CMOS Logic
Circuits. In Rao and Sunar [27], pages 366–382.

34. A. C.-C. Yao. How to generate and exchange secrets. In Proceedings of the 27th
Annual Symposium on Foundations of Computer Science, pages 162–167, Wash-
ington, DC, USA, 1986. IEEE Computer Society.

A Sub-circuits Separation Models

– Temporal Separation (suited to sequential execution): the sub-circuits
are processed sequentially without overlapping. Depending on the
platform, it may need a state re-initialization step between each sub-
circuit execution, such that an operation has no influence on the side-
channel leakage of the next operation (owned by the next sub-circuit).
Indeed, glitches attacks may be related to the notion of persistence of
an operation. In Software for instance, when considering a pipelined
processor, the power consumption of the current executed instruction
can be influenced by previous or next instructions (see for instance
Goldack Master Thesis on SCA based Retro-Engineering [11] and the
recent paper of Eisenbarth et al. [7]).

– Spacial Separation (suited to distributed computations): the sub-circuits
are processed on different hardware platforms. The platforms shall
be connected through a communication channel but shall have com-
pletely independent side-channel leakage. In a Software context, one
can for instance use a Multiprocessors System-on-Chip (MPSoC),
where each processor executes a different sub-circuit and communi-
cates through a bus with restricted read/write access. In a Hardware
context, a similar distributed setup can be designed with n devices
(e.g. FPGA) that implement the n different sub-circuits.

B MixColumns Processing

In the paper, we will assume that MixColumns is implemented as
s′0,c ← O2(s0,c ⊕ s1,c)⊕ tmp ⊕ s0,c
s′1,c ← O2(s1,c ⊕ s2,c)⊕ tmp ⊕ s1,c
s′2,c ← O2(s2,c ⊕ s3,c)⊕ tmp ⊕ s2,c
s′3,c ← s′0,c ⊕ s′1,c ⊕ s′2,c ⊕ tmp

where tmp = s0,c⊕ s1,c⊕ s2,c⊕ s3,c and where O2 denotes a look-up table
for the function x 7→ 02 · x.

C First-Order Glitches Free Masking Scheme of The
Product in GF(2m)

In this annexe, we give a block diagram description of the execution of
a product in GF(2m) following the scheme presented in Section 3.2 for a
masking order equal to 1. We denote by A and B the two values to be
multiplied. The Shamir’s secret sharing of A (resp. B) is denoted by
{PA(α1), PA(α2), PA(α3)} (resp. {PB(α1), PB(α2), PB(α2)}), where PA

(resp. PB) is a random polynomial of degree at most 1 with constant
coefficient equal to A (resp. B) and where {α1, α2, α3} are public fixed
elements of GF(2m)?.
On Figure C, the {λi} denote the elements of the first row of the in-
verse of the Vandermonde (n × n)-matrix (αj

i)1≤i,j≤n, these values are
fixed and considered pre-computed once for all. Moreover, the notation
PX ← (X,RNG) means the generation of a polynomial PX of degree at
most 1 such that its constant coefficient is equal to X and the other one
is random (i.e. generated by ”RNG”).

D Design of Sub-Sets in GF(28) Stable By Frobenius
Transformation

Theorem 2. For any integer d < 28, there exists a sub-set S ⊆ GF (28)?

with cardinality d and such that x ∈ S implies x2 ∈ S.

Proof. In the following, we will denote by β a primitive element of GF(28).
For some s ∈ {0, · · · , 28−1}, let us consider the set Cs = {s, 2s, · · · , 2ms−1s}
where ms is the smallest integer such that 2mss ≡ s mod (28−1) (the set
Cs is usually called 2-class cyclotomic of s modulo 28 − 1). By construc-
tion, the set Cs = {βi}i∈Cs is stable by the Frobenius transformation (i.e.

Cf1 Cf2 Cf3
PA(α3), PB(α3)

W3 = PA(α3)⊗ PB(α3)

PW3 ← (W3, RNG)

PW1(α3)PW1(α1) PW1(α2) PW3(α3)PW3(α1) PW3(α2)

PA(α2), PB(α2)

W2 = PA(α2)⊗ PB(α2)

PW2 ← (W2, RNG)

PA(α1), PB(α1)

W1 = PA(α1)⊗ PB(α1)

PW1 ← (W1, RNG)

PW2(α3)PW2(α1) PW2(α2)

PW3(α1)PW1(α1) PW2(α1) PW3(α2)PW1(α2) PW2(α2) PW3(α3)PW1(α3) PW2(α3)

PA⊗B(α1) =
∑
λjPWj

(α1) PA⊗B(α2) =
∑
λjPWj

(α2) PA⊗B(α3) =
∑
λjPWj

(α3)

squaring in GF(28)). Moreover, it is well known that Cs is the set of the
roots of the βs’s minimal polynomial, which degree divides 8. Hence, the
cardinal of Cs, denoted Ns, also divides 8.

Using Moebius Inversion Formula, it is possible to enumerate all sets
Cs of fixed cardinal Ns that divides 8 (see, for instance, [16, Theorem
3.25]), we then have:

– 2 sets of 1 element

– 1 set of 2 elements

– 3 sets of 4 elements

– 30 sets of 8 elements

Finally it can be checked that for any d < 28 it is possible to construct
a set S of cardinality d by union of some of the sets enumerated above
(minus the set containing 0). Such a set S would contain distinct and non-
zero elements. Moreover it would be stable by the Frobenius operation.

E First-order Glitches Free Masking of the AES S-Box

Hereafter we detail the masking of the AES s-box for d = 1 (i.e. three
shares). As recalled in Sect. 4, this function takes the form ηA ◦ Inv where
ηA is a GF(2)-affine function and Inv is the function v 7→ v254 where

multiplications are computed over GF(2)[X]/(X8 + X4 + X3 + X + 1).
We first focus on the field inversion computation (Algorithm 3) and then
we detail how to process the affine part of the s-box. We assume that the
secure s-box processing is done for a variable V that is split into n = 3
shares V0 = PV (α0), V1 = PV (α1) and V2 = PV (α2) where PV (X) is
a random degree-1 polynomial with constant term V and where α0, α1

and α2 satisfy the two conditions given in Sect. 3.1. In the following, we
assume that PV (X) equals V + aX and we chose α0 = 1, α1 = 0xbc and
α2 = 0xbd.

– By definition of PV , at the beginning of Algorithm 3, we have:

V0 = V + aα0 , (6)

V1 = V + aα1 , (7)

V2 = V + aα2 . (8)

– After the first squaring (Step 1 in Algorithm 3), the three sub-circuits
Cf i have a (3, 1)-sharing (Z0, Z1, Z2) of the variable Z = V 2. By con-
struction, the shares satisfy:

Z0 = V 2 + (aα0)
2 = V 2 + a2α0 (9)

Z1 = V 2 + (aα1)
2 = V 2 + a2α2 (10)

Z2 = V 2 + (aα2)
2 = V 2 + a2α1 , (11)

since α2
1 = α2. Reordering of the shares is needed since Z1 relates to

public points α2 whereas Z2 relates to α1. Circuits Cf 1 and Cf 2 are
hence up to now assumed to exchange their roles for the remaining of
the protocol.

– After Algorithm 3 next step, the Cf i have built shares Y0, Y1 and Y2
such that:

Y0 = V 3 + bα0 (12)

Y1 = V 3 + bα1 (13)

Y2 = V 3 + bα2 , (14)

where b is some new coefficient.
– Then comes the rising to the power 4 and the sub-circuits have three

new shares W0, W1 and W2 such that:

W0 = V 12 + (bα0)
4 = V 12 + b4α0 (15)

W1 = V 12 + (bα1)
4 = V 12 + b4α1 (16)

W2 = V 12 + (bα2)
4 = V 12 + b4α2 (17)

In this case, no re-ordering is needed. In fact, for all (linear) exponen-
tiations by a power in the form 2i with i even, the re-ordering is not
needed. It is only needed for exponentiations by a power in the form 2i

with i odd. As a consequence, all the remaining steps of Algorithm 3
(which correspond to the even case) can be performed as in the CHES
paper, with no need for re-ordering.

Let us now consider the affine part ηA of the AES s-box. Since ηA is
GF(2)-affine, then for any polynomial representation F2[X]/p(X) ∼= F256

there exists a unique tuple of coefficients (a0, · · · , a7) ∈ (F2[X]/p(X))8

such that ηA can be defined for every x ∈ F2[X]/p(X) by:

ηA(x) = 0x63 +

7∑
i=0

ai · x2
i
. (18)

Actually, for AES the function ηA has been designed such that it takes
the simplest form ηA(x) = a0 + a1x when considered on a particular
polynomial representation F2[X]/p′(X) of F256. However, the latter rep-
resentation differs from that used to describe the AES sbox inverse part.
For the latter representation, which is F2[X]/(X8 + X4 + X3 + X + 1),
the general form (18) becomes:

ηA(x) = 0x63 + 0x05 · x+ 0x09 · x2 + 0xf9 · x4 + 0x25 · x8

+ 0xf4 · x16 + 0x01 · x32 + 0xb5 · x64 + 0x8f · x128 . (19)

From now, we do not consider the constant term 0x63 (with which it is
easy to deal when applying the masking scheme) and we assume that a0,
a1, ..., a7 denote 0x05, 0x09, ... and 0x8f respectively. We have seen that
the exponentiations by powers in the form 2i (which are GF(2)-linear)
imply a re-ordering of the shares when i is odd. Based on this remark,
we split the computation of ηA(x) as described in (19) into two sub-sums
(one for the even i and one for the odd i): we get ηA(x) = A1(x) +A2(x)
with A1(x) =

∑3
i=0 a2i+1x

22i+1
and A2(x) =

∑3
i=0 a2ix

22i . The two sub-
sums can be processed on each share separately (without taking care of
shares re-ordering). Once this is done, we just need to exchange the roles
of players 1 and 2 at the end of the first sub-sum processing and then
to add the obtained three shares with the three shares at output of the
second sub-sum. Eventually, the constant term 0x63 is added to each
share. We sum-up the secure ηA processing hereafter when applied to
the (3, 1)-sharing (Z1, Z2, Z3) of Z (by construction, we recall that they
satisfy Z0 = Z + aα0, Z1 = Z + aα1 and Z2 = Z + aα2).

1. Compute the first sub-sum A1:

Z ′0 = A1(Z0) (20)

Z ′1 = A1(Z1) (21)

Z ′2 = A1(Z2) (22)

Note that this processing can be done thanks to a look-up table.
2. Exchange the two last shares (e.g. thanks to an index change):

Z ′1 ↔ Z ′2 (23)

3. Compute the second sub-sum A2:

Z ′′0 = A2(Z0) (24)

Z ′′1 = A2(Z1) (25)

Z ′′2 = A2(Z2) (26)

Note that this processing can be done thanks to a look-up table.
4. Final processing:

Z0 ← Z ′0 + Z ′′0 + 0x63 (27)

Z1 ← Z ′1 + Z ′′1 + 0x63 (28)

Z2 ← Z ′2 + Z ′′2 + 0x63 (29)

The 3-tuple (Z0, Z1, Z2) is a sharing of A(Z−1) that is of AES-SBOX(Z).

