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Abstract. In this paper we partially determine the access structures of algebraic-
geometric secret sharing schemes from one point algebraic-geometric codes as-
sociated with a hyperelliptic curve of any genus. Our result includes the access
structures of elliptic secret sharing schemes as a special case.

1. Introduction

Secret sharing, which was independently invented by Shamir [Sh] and Blakley
[B], is an important cryptographic primitive. A secret sharing scheme is a method
to distribute a secret value among a group of participants in such a way that only
the qualified subsets of participants can recover the secret with their shares. The
family of the qualified subsets is the access structure of the scheme. One of the main
open problems in secret sharing is the characterization of the access structures of
ideal secret sharing schemes. Messey first used error-correcting codes to construct
linear secret sharing schemes [M1][M2]. Chen and Cramer [CC] proposed secret
sharing schemes based on algebraic-geometric codes as a natural generalization of
Shamir’s scheme. However, their schemes are so called ramp schemes in the sense
that any subset with fewer than t1 players is not in the access structure and any
subset with at least t2 players is in the access structure. The number t2 − t1 called
the threshold gap, is known to be at most 2g, where g is the genus of the underlying
curve, for an algebraic-geometric sharing scheme. Generally speaking, whether a
subset of t elements with t1 ≤ t < t2 is a qualified set or not is unknown. The
access structures of elliptic sharing schemes were recently completely determined
in [CLX].

In this paper, we extend the method of [CLX] and partially determine the
access structures of the algebraic-geometric secret sharing schemes from one point
algebraic-geometric codes associated with a hyperelliptic curve of any genus by
employing a property of the reduced divisor on the Jacobian of a hyperelliptic
curve. Our result includes the access structures of elliptic secret sharing schemes
as a special case.
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2. Preliminaries

Let Fq be a finite field of q elements and C be a linear [n+1, k, d] code over Fq

with code length n+1, dimension k and minimum Hamming distance d. Let G be a
generator matrix of C such that no column of G is a zero vector. Suppose a dealer
P0 shares a secret s ∈ Fq among players P = {P1, P2, . . . , Pn} in the following way:
Choose a u ∈ Fk

q randomly such that s =< u,g0 >, where < ∗, ∗ > is the usual
inner product of vectors and g0 is the 0th column of G. The dealer calculates the
codeword c = uG = (c0, c1, . . . , cn) with c0 = s and gives the player Pi the value
ci as his share. From a lemma in [M1] and [M2], {Pi1 , Pi2 , . . . , Pit} is a qualified

subset if and only if there is a codeword v = (1, 0, . . . , vi1 , . . . , vit , . . . , 0) ∈ C⊥

where C⊥ is the dual code of C.
Let X be an algebraic curve defined over Fq of genus g, D = {P0, P1, . . . , Pn}

be a subset of X(Fq), and G be an Fq-rational divisor of X with supp(G) ∩ D =
∅. The functional algebraic-geometric code CL(D,G) ⊆ Fn+1

q is defined as the
evaluations of L(G) at the points in the set D, where L(G) is the linear space of all
rational functions with divisor not smaller than −G, i.e., L(G) = {f : (f) + G ≥
0}

∪
{0}. The residual algebraic-geometric code CΩ(D,G) ⊆ Fn+1

q is defined as the
evaluations of Ω(G) at the points in the set D, where Ω(G) is the linear space of
all differentials with divisor not smaller than G, i.e., Ω(G) = {ω : (ω) ≥ G}. It is
well known that CL(D,G) and CΩ(D,G) are dual codes. For more details, readers
may consult [St] and [TV].

A genus g hyperelliptic curve defined over Fq with one point at infinity (denoted
by O) is a curve with an affine model X : y2 + h(x)y = f(x), where h(x), f(x) ∈
Fq[x], f(x) is a monic polynomial of degree 2g + 1 and h(x) is a polynomial of

degree at most g. It is assumed that there is no singular point on X(Fq), i.e., there

is no solution (x, y) ∈ Fq × Fq which simultaneously satisfy y2 + h(x)y = f(x),
2y + h(x) = 0 and h′(x)y − f ′(x) = 0. The canonical involution of X is defined

by P = (x, y) 7→ P̃ = (x,−y − h(x)). If P = O then define P̃ = O. A reduced
divisor is of the form D =

∑
miPi such that mi ≥ 0,

∑
mi ≤ g, and Pi’s are

finite points such that when Pi ∈ supp(D) then P̃i /∈ supp(D), unless Pi = P̃i, in
which case mi = 1. In hyperelliptic setting, a reduced divisor can be expressed in
Mumford representation. Using Cantor’s algorithm [C], two reduced divisors can
be added efficiently [MWZ]. Note that there is not a group law on the points of
a hyperelliptic curve; instead we use the divisor class group of the curve, called
Jacobian. The Jacobian of X is defined by JX = D0

X/PX , where D0
X (resp. PX)

denotes the group of degree 0 divisors (resp. principal divisors). Its Fq-rational
part is denoted by JX(Fq). If two divisors D1 and D2 are linearly equivalent then

write D1 ∼ D2. Let P0 = (x0, y0) ∈ X(Fq) and u(x) = (x− x0) is a function on X,

then div(u(x)) = P0 + P̃0 − 2O (cf [G]), i.e., P0 −O ∼ −(P̃0 −O). Each element of
the jacobian has a unique representative of the form D − nO, where D is reduced.

3. The Access Structures of Hyperelliptic Secret Sharing Scheme

In this section we will give an characterization to determine explicitly whether
a set of shares with size in [n − deg(G), n − deg(G) + g] is qualified for the secret
sharing schemes from the algebraic-geometric codes C = CΩ(D,G) associated with
a genus g hyperelliptic curve.
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Theorem 3.1. Let X be a hyperelliptic curve over Fq of genus g. Let D =
{P0, P1, . . . , Pn} be any given subset of finite elements of X(Fq) and let G = mO.
Consider the hyperelliptic secret sharing scheme obtained from X with the set of
players P = {P1, P2, . . . , Pn}.

Let A = {Pi1 , Pi2 , . . . , Pit} be a subset of P with t elements. Let the group

sum of P̃i1 −O, P̃i2 −O, · · · , P̃it −O in JX(Fq) is a reduced divisor B − kO with
B = Q1 + Q2 + · · · + Qk (where the same point can appear more than once and
k ≤ g). Let Ac := P \A and Γ is the access structure of the secret sharing scheme
from C = CΩ(D,G) associated with X, then we have the following:

1) If #Ac ≤ n−m− 1 (i.e. t ≥ m+ 1), then Ac /∈ Γ;
2) If #Ac ≥ n−m+ 2g (i.e. t ≤ m− 2g), then Ac ∈ Γ;
3) When n−m ≤ #Ac ≤ n−m+ g (i.e. m− g ≤ t ≤ m), if Ac is a minimal

1qualified subset, then supp(B)∩D ⊂ A and deg(B) ≤ m− t (i.e. k ≤ m− t), and
conversely, if supp(B)∩D ⊂ A and deg(B) ≤ m− t, then Ac is a qualified subset.

Proof. The divisor B can be calculated by Cantor’s algorithm. The first and
second part follow from the general result on the algebraic geometric secret sharing
scheme. For completeness the details are given below.

1) Assume Ac is a qualified subset, that is equal to say there is a codeword
(1, v1, v2, . . . , vn) ∈ CL(D,G) with vi1 = vi2 = · · · = vit = 0. Then there exists
f ∈ L(G), s.t., f(P0) ̸= 0, f(Pi1) = · · · = f(Pit) = 0. As G is of degree m < t, it
is impossible for a function of L(G) to have more than m zeros.

2) If #Ac ≥ n − m + 2g, then deg(G − A) ≥ 2g. By the Riemann-Roch
theorem, L(G−A− P0) ̸= L(G−A) (here we identify the set A with the divisor
Pi1 +Pi2 + · · ·+Pit). Hence there exists a function f ∈ L(G−A) \L(G−A−P0)
which corresponds to a codeword (1, v1, v2, . . . , vn) ∈ CL(D,G) with vi1 = vi2 =
· · · = vit = 0. This proves 2).

3) Suppose m− g ≤ t ≤ m. If Ac is a minimal qualified subset of P, there is a
function f ∈ L(G) such that f(Pi1) = · · · = f(Pit) = 0 and f(P ) ̸= 0 for P ∈ P\A.
Suppose that div(f) = Pi1 + · · ·+Pit +Q′

1+ · · ·+Q′
k′ − (t+k′)O, where Q′

j /∈ P\A
and k′ ≤ m− t ≤ g. Thus we have: Q′

1+ · · ·+Q′
k′ ∼ −Pi1 −· · ·−Pit +(t+k′)O and

Q1+· · ·+Qk ∼ P̃i1+P̃i2+· · ·+P̃it−(t−k)O, which imply that Q1+· · ·+Qk−kO ∼
Q′

1 + · · ·+Q′
k′ − k′O.

If Q′
i ̸= Q̃′

j for any 1 ≤ i, j ≤ k′, then B = Q′
1+ · · ·+Q′

k′ due to the uniqueness
of the reduced form. Clearly, we have supp(B)∩D ⊂ A and deg(B) ≤ k′ ≤ m−t as

Q′
j /∈ P\A. Otherwise we may assume there exists Q′

i = Q̃′
j for some 1 ≤ i, j ≤ k′,

then B is linearly equivalent to Q′
1+ · · ·+Q′

k′ −Q′
i−Q′

j+2O. Continue this process
till we reach the reduced form of B with support included in {Q′

1, · · · , Q′
k′}. Again,

we have supp(B) ∩D ⊂ A and deg(B) ≤ k′ ≤ m− t.
Conversely, assume supp(B) ∩ D ⊂ A and deg(B) ≤ m − t. As the divisor

Pi1 + Pi2 + · · ·+ Pit +Q1 +Q2 + · · ·+Qk is linearly equivalent to (t+ k)O, there
exists a function f ∈ L((t + k)O) ⊂ L(G) with div(f) = Pi1 + Pi2 + · · · + Pit +
Q1 + Q2 + · · · + Qk − (t + k)O and f(P0) ̸= 0. This implies that there exists a
codeword (1, v1, . . . , vn) ∈ CL(D,G) with vi1 = · · · = vit = 0. Hence Ac is a
qualified subset. �

1A qualified set is said to be minimal if none of its proper subsets is qualified.
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Remark 3.2. The characterization of hyperelliptic sharing scheme is not com-
plete as it is still unclear for the sets of shares with size in [n−m+g+1, n−m+2g−1.
The underlying reason lies in that uniqueness of reduced divisors does not extend
to semi-reduced divisors of degree at most 2g in the setting of hyperelliptic curves.
It looks like a complete characterization of hyperelliptic sharing scheme is not prac-
tical and helpful.

Remark 3.3. From the main theorem whether a subset A is a qualified set
can be determined unless n − m + g + 1 ≤ #Ac ≤ n − m + 2g − 1. Thus the
access structure of an elliptic secret sharing scheme (g = 1 hyperelliptic curve) is
completely determined. Therefore we re-discovered the result in [CLX].

We illustrate the theorem by completely determine the access structure of the
following hyperelliptic sharing scheme.

Example 3.4. Let X be the hyperelliptic curve y2 + y = x5 + x3 + x of genus
2 defined over F5, which has six rational points P0 = (0, 0), P1 = (0, 4), P2 =
(2, 1), P3 = (2, 3), P4 = (4, 1), P5 = (4, 3) and an infinite point O. Let D =
{P0, P1, . . . , P5}, P = {P1, . . . , P5}, G = 3O. Consider the hyperelliptic secret
sharing scheme obtained from CΩ(D,G).

1) In the case where A has at least four elements (i.e., Ac has at most one
element), then Ac is not a qualified subset from 1).

2) In the case where A has three elements (i.e., Ac has two elements), Ac

is a minimal qualified subset if and only if B is the zero element from 3). Di-
rect calculation gives the minimal qualified subsets of two elements are: {P2, P3},
{P4, P5}.

3) In the case where A has two elements (i.e., Ac has there elements), direct
calculation shows that candidates satisfying supp(B)∩D ⊂ A and deg(B) ≤ 1 are:
Ac = {P2, P3, P4}, {P2, P3, P5}, {P2, P4, P5} or {P3, P4, P5}, we have supp(B)∩D ⊂
A and deg(B) ≤ 1. From 2), all of them are qualified subsets, but not minimal
qualified subsets.

4) In the case where A has one element (i.e., Ac has four elements), the only
subset satisfying supp(B)∩D ⊂ A and deg(B) ≤ 2 is Ac = {P2, P3, P4, P5}, which
is not a minimal qualified subset.

Combining the above results, the access structure of the secret sharing scheme
is {{P2, P3}, {P4, P5}}.

4. Conclusion

In this paper, we partially determined the access structure of the secret sharing
schemes from algebraic-geometric codes associated with a hyperelliptic curve of
arbitrary genus. Our result includes the elliptic secret sharing schemes [CLX] as a
special case.
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