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Abstract. We propose a new parallelization technique for Lanzos type al-
gorithms for solving sparse linear systems over finite fields on mesh cluster
architecture. The algorithm computation time scales as P−1 on P processors,
and the communication time scales as P−1/2 for reasonable choice of P .

1. Introduction

Most of the stages of the general number field algorithm [1], the best known
algorithm for factoring and discrete logarithms at the moment, are known to be
easily parallelized or even distributed between almost independent computation
units. But it is not exactly the case for the stage when the large sparse linear
system has to be solved.

Currently there are two major approaches to this problem: iterative algorithms
of Wiedeman [2] and Lanczos [3] type . The former is a two-stage algrithm and is
very popular among the specialists [4] due to its native distributability on the first
stage. The weakness of the Wiedeman type algorithms is the second stage when the
solution of the linear system should be constructed by redoing all the matrix-vector
multiplications.

Lanczos type algorithms on the other hand are known to be hard to parallelize.
But in the same time they don’t have any second stage and yield a solution without
extra matrix-vector multiplications.

There are few publications on how to parallelize Lanczos type algorthims [5],
[6], [7], [8]. All of them employ different matrix partitioning strategies and cluster
architectures. In this article we briefly describe the ideas behind these algortihms,
present our algorithm and compare their running times in terms of number of pro-
cessors. We notice that the parallelization techniques we describe are applicable
with minor changes to all Lanczos type algorithms over finite fields including ran-
domized Lanczos algorithms over GF (p) [9] and Montgomery version [10] of block
Lanczos over GF (2).

2. Lanczos algorithms

Let p be a prime. There is a linear system

(2.1) Cx = y, C ∈ GF (p)m×n, x ∈ GF (p)n, y ∈ GF (p)m,

with large n,m ∈ N. We call the matrix C sparse if there exists d ∈ N, d� n such
that the number of nonzero coefficients in each row of C is less than d.
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Suppose C is not symmetric, premultiply the system by Ct and change the
variables

(2.2) A = CtC ∈ GF (p)n×n, b = Cty ∈ GF (p)n.

If y = 0 let us select a random 0 6= z ∈ GF (p)n and set y = Cz. Now try to solve
a symmetric system (2.2) with nonzero b on the rigth side. When the solution of
(2.2) x is obtained we hope to be able to construct the solution x′ of (2.1) since
Ax− b = Ct(Cx− y) = 0. If y was zero we then obtain a solution of (2.1) as x′− z
since Cx′ − y = C(x′ − z) = 0.

The core of the Lanczos type algorithms for symmetric A is the following itera-
tion:

(2.3)
w0 = b, w1 = Aw0 − wt

0A
2w0

wt
0Aw0

w0,

wi+1 = Awi − wt
iA

2wi

wt
iAwi

wi − wt
iA

2wi−1

wt
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wi−1, i = 1, . . . , n− 1.

The iterations stop when wj : wt
jAwj = 0. If the last vector wj = 0, one could

construct the solution using the formula

x =

j−1∑
i=0

btwi

wt
iAwi

wi.

Block Lanczos type algorithms are slightly different as they use subspaces instead
of vectors wi and matrices instead of scalars in (2.3). But essensially the form of
the iteration stays the same.

2.1. Implementation remarks. A good implementation of the Lanczos type al-
gorithm should exploit its iterative nature in order to get rid of unnessesary time
consuming operations. For instance, one should remember wt

i−1Awi−1 from the
previous iteration and not recalculate it; or one could use the recurrent formula

btwi+1 = −wt
iA

2wi

wt
iAwi

(btwi)−
wt

iA
2wi−1

wt
i−1Awi−1

(btwi−1)

to avoid direct vector-vector multiplications.
But the two most important and time consuming operations on each iteration

– sparse matrix-vector (matvec) multiplication Awi and two vector-vector (vecvec)
multiplications wt

iAwi, w
t
iA

2wi – will always be present in any implementation.
If C is not symmetric it is crucial that the multiplication by A should be done

by first multiplicating by sparse matrix C and then by Ct. This (double) operation
is the most time consuming and is the first candidate to be parallelized.

One also could notice that in general case wt
iAwi, w

t
iA

2wi are ‘scalar squares’,
i.e. wt

iAwi = (Cwi)
t(Cwi), w

t
iA

2wi = (Awi)
t(Awi). This means that matvec Awi

and two vecvec wt
iAwi, w

t
iA

2wi could be seen as one matvec Cwi and one vecvec
(Cwi)

t(Cwi) followed by the transposed operation – one matvec Ct(Cwi) and one
vecvec (CtCwi)

t(CtCwi).

3. Parallelization techniques

There are few approaches to the parallel implementation of Lanczos type algo-
rithms [5], [6], [7], [8]. The main difference between them is in the matrix distri-
bution on the processors and the cluster architectures. All of the approaches aim
to effectively parallelize the matvec, some of them also parallelize the vecvecs and
other vector operations.
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Operation Data before Data after

a. Broadcast
1 · · · P
x1 · · ·

1 · · · P
x1 · · · x1

b. Reduce (+)
1 · · · P
x1 · · · xP

1 · · · P∑P
i=1 xi · · ·

c. Scatter
1 · · · P

x1, . . . , xP · · ·
1 · · · P
x1 · · · xP

d. Gather
1 · · · P
x1 · · · xP

1 · · · P
x1, . . . , xP · · ·

e. Allgather
1 · · · P
x1 · · · xP

1 · · · P
x1, . . . , xP · · · x1, . . . , xP

f. Allreduce (+)
1 · · · P
x1 · · · xP

1 · · · P∑P
i=1 xi · · ·

∑P
i=1 xi

g. Reduce-Scatter
1 · · · P

x1,1 . . . x1,P · · · xP,1 . . . xP,P

1 · · · P∑P
i=1 xi,1 · · ·

∑P
i=1 xi,P

Table 1. Global operations

3.1. Global operations. The major problem in the parallel matvec is a need
in global (collective) operations, the communication/calculation operations which
involve a group of processors.

There are four basic global operations in MPI [11]. These are: broadcast, reduce,
scatter and gather. There are also compound global operations which could be
implemented using the basic ones, among them allreduce, allgather, reduce-scatter.
Table 1 shows what each of them does.

Native MPI implementation of these operations uses a tree of processors, this
gives a factor of logP in the communications cost. But for a bigger data sizes there
are other implementations [12] of the global operations which run in time depending
only on the data size (linearly) and not the number of processors P . We assume one
of them, a bucketing algorithm, is used for global operations in the next sections.

3.2. Parallel version 1: per element matrix distribution. This approach is
described in [5], [6].

Each processor has a subset of nonzero elements of the matrix. The distribution
of elements between the processors is ballanced so each processor has approximately
the same number of matrix elements.

All the algorithm computations are performed by one master processor with full
length vectors, all the other processors are just helpers for the matvec operations.
The matvec is performed in three stages (table 2):
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a. Initial data placement
1 2 · · · P

(ci,j)I1×J1
; v (ci,j)I2×J2

· · · (ci,j)IP×JP

b. Vector sent
1 · · · P

(ci,j)I1×J1 ; (vj)J1 · · · (ci,j)IP×JP
; (vj)JP

c. Partial products/sums
1 · · · P

(
∑

j∈J1
ci,jvj)I1 · · · (

∑
j∈J1

ci,jvj)IP

d. Received partial sums
1 2 · · · P∑P

k=1(
∑

j∈Jk
ci,jvj) · · ·

e. Final data placement
1 2 · · · P

(ci,j)I1×J1
;Cv (ci,j)I2×J2

· · · (ci,j)IP×JP

Table 2. Parallel matvec for per element matrix distribution

(1) master decides which parts of the vector each helper processor needs for
the operation and sends it to him,

(2) each helper processor recieves the vector parts and computes the products
of matrix elements and appropriate vector coordinates and sends the results
to master,

(3) master recieves all the partial products and summs them between the pro-
cessors possessing the matrix elements of the same row.

The strength of this approach is in the ballance of the calculations: one could
use any sparse matrix partitioning software [13] to achieve perfect matrix ballance.
This gives a scale factor P−1 on P processors for each matvec of the algorthim. All
other calculations are done by master processor and therefore not parallelized.

On the other hand the communication time in this approach is either constant
in P or scales as P 1/2 depending on the implementation and cluster architecture.

a. Initial data placement
1 · · · P

C1;V1 · · · CP ;VP

b. (sub)Matvec
1 · · · P

C1V1 · · · CPVP

c. Reduce-Scatter (+)
1 · · · P

(
∑P

i=1 CiVi)1 · · · (
∑P

i=1 CiVi)P

d. Final data placemen
1 · · · P

(Cv)1 · · · (Cv)P

Table 3. Parallel matvec for per column matrix distribution
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3.3. Parallel version 2: per column matrix distribution. This approach is
good only when matrix C is symmetric and no second Ct matvec is required.

Split a set of the matrix columns between the processors so that each processor
has approximately the same number of columns. The matrix should be preprocessed
so each processor also has approximately the same number of non zero elements.

All the algorithm computations are performed by all the processors, each having
its own 1/P part of the vector. The matvec is performed in two stages (table 3):

(1) each processor computes matvec with its column submatrix and its part of
the vector,

(2) reduce-scatter operation is applied so all the processors have their own parts
of the sum of the previous stage results.

Each processor does the vecvec by first vecvecing its own parts and then allre-
ducing (summing) the results between all the processors.

Since each processor does all the calculations with only a part of the vector,
the scaling factor for the vector calculations is P−1. Assuming the matrix column
distibution was ballanced one could see that matvec and vecvec times also scale as
P−1. So all the computations are perfectly parallelized.

The communication time is in the same time still a problem – the reduce-scatter
operation on the second stage of the matvec takes a constant time independently
of the number of processors P .

a. Initial data placement

1 · · · Q
1 C1,1;V1 · · · C1,Q;VQ

...
...

. . .
...

Q CQ,1;V1 · · · CQ,Q;VQ

b. (sub)Matvec

1 · · · Q
1 C1,1V1 · · · C1,QVQ

...
...

. . .
...

Q CQ,1V1 · · · CQ,QVQ

c. Allreduce (+) in rows

1 · · · Q
1

∑Q
i=1 C1,iVi · · ·

∑Q
i=1 C1,iVi

...
...

. . .
...

Q
∑Q

i=1 CQ,iVi · · ·
∑Q

i=1 CQ,iVi

d. Final data placement

1 · · · Q
1 C1,1; (Cv)1 · · · C1,Q; (Cv)1
...

...
. . .

...
Q CQ,1; (Cv)Q · · · CQ,Q; (Cv)Q

Table 4. Parallel matvec for per submatrix matrix distribution



6 ILYA POPOVYAN MOSCOW STATE UNIVERSITY, RUSSIA

3.4. Parallel version 3: per submatrix matrix distribution. This approach
is described in [8] and also implemented in msieve [7], one of the best open source
tools for factoring.

The approach requires mesh architecture on the cluster (we will assume that
P = Q2 and we have Q×Q mesh) and is suitable for any kind of matrix C.

Split a matrix into P submatrices of approximately the same size and scatter
them between the processors according to the row-column index in the mesh. The
matrix should be preprocessed so each processor also has approximately the same
number of non zero elements.

All the algorithm computations are performed by all the processors, each having
its own 1/Q part of the vector. All the processors of the same mesh column share
the part of the vector and duplicate the calculations of each other. The matvec is
performed in two stages (table 4):

(1) each processor computes matvec with its submatrix and its part of the
vector,

(2) allreduce operation is applied in each mesh row in parallel so all the pro-
cessors in the row share the sum of the results of the previous stage.

Notice that the resulting vector parts distribution is transposed (now each mesh
row has the same part). This fact is used in the subsequent Ct matvec operation
performed in the same manner bringing back the initial vector parts distribution.

Each processor does the vecvec operation by first vecvecing its own parts and
then allreducing (summing) the results within the mesh column (row, after the Ct

matvec) in parallel.
Since each processor does all the calculations with only a part of the vector, the

scaling factor for the vector calculations is Q−1, also the vecvecs time scales as Q−1.
Assuming the submatrix distibution was ballanced one could see that matvec time
scales as P−1.

As to the communication time, all the allreduce operations are performed with
1/Q parts of the vectors in parallel, so its time scales as Q−1. The scalar allreduce
operation time required for the vecvecs scales as logQ.

All this gives the total algorithm running time scale factor P−1/2 for the reason-
able range of mesh sizes P .

4. Our parallel version

Our parallel approach employs the per submatrix distribution on the Q×Q mesh
as described above.

But unlike the previous case all the algorithm computations are performed by
all the processors, each having its own 1/P part of the vector. The matvec is
performed in three stages (table 5):

(1) allgather operation is performed in each mesh column in parallel so all the
processors of the columns construct the same 1/Q part of the vector from
1/P pieces

(2) each processor computes matvec with its submatrix and the 1/Q part of
the vector built on the previous stage,

(3) reduce-scatter vector operation is applied in each mesh row in parallel so
all the processors in the row has an appropriate 1/P part of the vector sum
of the results from the previous stage.
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a. Initial data placement

1 · · · Q
1 C1,1;V1,1 · · · C1,Q;V1,Q

...
...

. . .
...

Q CQ,1;VQ,1 · · · CQ,Q;VQ,Q

b. Allgather in columns

1 · · · Q
1 C1,1;V1 · · · C1,Q;VQ

...
...

. . .
...

Q CQ,1;V1 · · · CQ,Q;VQ

c. (sub)Matvec

1 · · · Q
1 C1,1V1 · · · C1,QVQ

...
...

. . .
...

Q CQ,1V1 · · · CQ,QVQ

d. Reduce-Scatter (+) in rows

1 · · · Q
1 (

∑Q
i=1 C1,iVi)1 · · · (

∑Q
i=1 C1,iVi)Q

...
...

. . .
...

Q (
∑Q

i=1 CQ,iVi)1 · · · (
∑Q

i=1 CQ,iVi)Q

e. Final data placement

1 · · · Q
1 C1,1; (Cv)1,1 · · · C1,Q; (Cv)Q,1

...
...

. . .
...

Q CQ,1; (Cv)1,Q · · · CQ,Q; (Cv)Q,Q

Table 5. Parallel matvec in our version

The data distribution transposition is used to perform the subsequent Ct matvec
in the very same manner.

After the matvec each processor does the vecvec operation by first vecvecing its
own parts of the vector and then allreducing (summing) the results between all the
processors.

Since each processor does all the calculations with only a part of the vector,
the scaling factor for the vector calculations is P−1, also the vecvecs scale as P−1.
Assuming the submatrix distibution was ballanced one could see that matvec scales
as P−1.

The communication time in our version of the algorithm is defined by three
global operations: allgather, reduce-scatter and a scalar allreduce. The first two
are performed with 1/Q parts of the vectors in parallel, so their time scales as Q−1.
The latter scales as logQ.

The difference of our version from the version described in paragraph 3.4 is in
the scaling factor of the calculations. Basically, our version works Q times faster in
calculations while takes the same time for communications.
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4.1. Communication/calculation interleaving. Our version could also employ
communication/calculation interleaving.

Split each submatrix in Q column sets (subsubmatrices) in the same way a
bigger 1/Q vector part is split into 1/P parts. Now each processor does matvec
of the subsubmatrix and the appropriate 1/P vector part while sending/receiving
the other 1/P vector part during allgather operation. The calculations should be
arranged in such a way that all the subsubmatrix matvec results are accumulated.
After the last 1/P part of the vector is received the processor performs the last
subsubmatrix matvec with it. It’s easy to see that the accumulated result will be
exactly the result of matvec of submatrix and a a bigger 1/Q vector part combined
by allgather.

This technique allows to combine matvec and allgather, two very time consum-
ing operations, resulting in the max of their running times instead of their sum.
Although an effective implementation of it may require extra processor memory for
different matrix values layout.

4.2. Experimental results. We implemented our algorithm for the classic version
of Lanczos algorithm over a finite field of big characteristic and tested it on MSU
‘Lomonosov’ cluster. We solved a system of size 369669 × 185401 variables over
GF (p) with 64 bit p. The experiments showed that the algorithm running time
scales in number of processors as predicted.

Also the experiments showed that a good matrix ballance is very important.
We used a simple greedy algorithm randomly permuting columns and rows of the
matrix and got the running time almost two times less.

Although our experiments with communication/calculation interleaving showed
almost no acceleration, we believe this can be explained by increased overhead due
to extra data conversions. We expect the communication/calculation interleaving
to be more efficeint in the Mongomery version of block Lanczos algorithm over
GF (2) where no conversion is required.

5. Conclusions

We proposed a new parallel approach for Lanczos type algorithms. This ap-
proach yields a scale factor of P−1 in computation and P−1/2 in communication
time for the reasonable number of processors P . This is probably the best time that
can be achieved with planar matrix partitioning. Currently we investigate other
matrix partitioning strategies with a better communication time scale factor.
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