
New Data-Efficient Attacks on Reduced-Round

IDEA

Eli Biham1, Orr Dunkelman2,3, Nathan Keller3, and Adi Shamir3

1 Computer Science Department
Technion

Haifa 32000, Israel
biham@cs.technion.ac.il

2 Computer Science Department
University of Haifa
Haifa 31905, Israel

orrd@cs.haifa.ac.il
3 Faculty of Mathematics and Computer Science

Weizmann Institute of Science
P.O. Box 26, Rehovot 76100, Israel

{nathan.keller,adi.shamir}@weizmann.ac.il

Abstract. IDEA is a 64-bit block cipher with 128-bit keys which is
widely used due to its inclusion in several cryptographic packages such
as PGP. After its introduction by Lai and Massey in 1991, it was sub-
jected to an extensive cryptanalytic effort, but so far the largest variant
on which there are any published attacks contains only 6 of its 8.5-rounds.
The first 6-round attack, described in the conference version of this pa-
per in 2007, was extremely marginal: It required essentially the entire
codebook, and saved only a factor of 2 compared to the time complexity
of exhaustive search. In 2009, Sun and Lai reduced the data complexity
of the 6-round attack from 264 to 249 chosen plaintexts and simultane-
ously reduced the time complexity from 2127 to 2112.1 encryptions. In this
revised version of our paper, we combine a highly optimized meet-in-the-
middle attack with a keyless version of the Biryukov-Demirci relation to
obtain new key recovery attacks on reduced-round IDEA, which dramat-
ically reduce their data complexities and increase the number of rounds
to which they are applicable. In the case of 6-round IDEA, we need only
two known plaintexts (the minimal number of 64-bit messages required to
determine a 128-bit key) to perform full key recovery in 2123.4 time. By
increasing the number of known plaintexts to sixteen, we can reduce the
time complexity to 2111.9 , which is slightly faster than the Sun and Lai
data-intensive attack. By increasing the number of plaintexts to about
one thousand, we can now attack 6.5 rounds of IDEA, which could not
be attacked by any previously published technique. By pushing our tech-
niques to extremes, we can attack 7.5 rounds using 263 plaintexts and
2114 time, and by using an optimized version of a distributive attack, we
can reduce the time complexity of exhaustive search on the full 8.5-round
IDEA to 2126.8 encryptions using only 16 plaintexts.

1 Introduction

IDEA (which is an acronym for International Data Encryption Algorithm) is one
of the best known and most well studied block ciphers. It was introduced by Lai
and Massey in 1991, and became widely deployed due to its inclusion in the PGP
package. Even though it has only nine relatively simple rounds which consist of
just XOR’s, additions, and multiplications of 16-bit values, it withstood more
than 20 years of cryptanalysis surprisingly well, and there is no known attack
on it which is faster than exhaustive search even in the extremely strong model
of related-key attacks.

All the attacks published so far deal with various reduced versions of IDEA.
The original version is usually said to have 8.5 rather than 9 rounds since the
last round is simplified by eliminating its MA structure (see below). When we
consider reduced versions of IDEA, it is customary to consider their size in incre-
ments of 0.5, depending on whether this component is used or not. In addition,
the scheme is slightly inhomogeneous due to the way its subkeys are derived from
the primary key, and thus attacks on reduced versions which have the same size
but different starting points can have very different complexities.

The best attack on IDEA published until 2006 was the improved Demirci-
Selçuk-Türe [2] attack on 5 rounds, whose 2124 time complexity is only slightly
better than exhaustive search. In the ASIACRYPT 2006 version of this paper [5],
we introduced the keyless Biryukov-Demirci relation and used it to reduce the
time complexity of the attack on 5-round IDEA to 2103. We improved this result
in our FSE 2007 paper [6], where we used the same technique to devise the first
attack on a 6-round variant of IDEA, which starts in the middle of round 2
and ends in the middle of round 8. However, the complexity of this attack was
extremely marginal, since it was only twice as fast as exhaustive search, and
required essentially the whole codebook of 264 plaintext/ciphertext pairs. This
6-round attack was considerably improved two years later by Sun and Lai [32],
who showed at ASIACRYPT 2009 how to reduce the data complexity from 264

to 249 chosen plaintexts, while at the same time reducing the time complexity
from 2126.8 to 2112.1.

In this paper we combine the keyless Biryukov-Demirci relation with a highly
optimized meet-in-the-middle attack and obtain a new attack on 6-round IDEA
which dramatically reduces the data complexity (from an impractical value of 249

chosen plaintexts to the extremely practical value of 16 known plaintexts) while
remaining faster than the Sun and Lai attack. We can further reduce the data
complexity of our attack all the way to its information-theoretic lower bound of
2 known plaintexts, but then its time complexity increases to 2123.4, which is
worse than the Sun and Lai attack, but still faster than exhaustive search. This
is a very rare example of a seemingly secure version of a modern cryptosystem
which can be broken exactly at its Shannon’s unicity bound.

By using higher data complexities, we can attack larger variants of IDEA,
which could not be successfully attacked by any previously published technique.
By combining the keyless Biryukov-Demirci relation with the splice-and-cut vari-
ant of the meet-in-the-middle attack [1, 34], we can break 6.5 rounds using about

2

one thousand plaintexts in 2122 time. The time complexity can be reduced to
2112 (which is slightly faster than the Sun and Lai attack on 6 rounds) by using
a semi-practical number of 232 plaintexts. If we allow completely non-practical
data complexities, we can attack 7 rounds in 2112 time using 248 data, and 7.5
rounds in 2114 time using 263 data. Finally, we can use extreme variants of our
techniques to reduce the complexity of exhaustive key search on the full 8.5-
round IDEA from 2128 to 2126.8 encryptions, using only 16 plaintexts. However,
it is debatable whether such a marginal improvement in the time complexity
should be considered a real attack on full IDEA.

In the last part of the paper we compare the Meet-in-the-Middle Biryukov-
Demirci attack presented in this paper (which we call MitM-BD attack) with the
Zero-in-the-Middle attacks based on the keyless Biryukov-Demirci relation used
in the conference version of this paper and in Sun and Lai’s paper (which we
call ZitM-BD attacks). We show that while MitM-BD attacks are significantly
better in the standard model, there are scenarios in which ZitM-BD attacks
are advantageous. One such scenario is the stronger attack model of related-key
attacks, which assumes that the adversary has the power to modify the key
without knowing its value. We show that in this model, a ZitM-BD attack can
break a 7.5-round variant of IDEA with a practical data complexity of 225 chosen
plaintexts, and time complexity of 2103.5. Previous related-key attacks are either
applicable to at most 7 rounds [5], or require encryption of the entire codebook
under many different keys [7].

We have just learned (via private communication) that Khovratovich, Leurent,
and Rechberger have also developed marginal attacks on 7.5 and 8.5 round IDEA,
after hearing our presentation of the 6-round attack at the MSR workshop on
Symmetric Cryptography in August 2011. The techniques they use are different
(using their new biclique approach), and require much larger data complexities
to achieve slightly better time savings. For example, their attack on full IDEA
requires 252 chosen plaintexts in order to reduce the time complexity to 2126

time, whereas our attack needs only 16 chosen plaintexts to reduce the time
complexity to 2126.8.

Table 1 summarizes all the major previously published attacks on reduced
round IDEA, and compares them to the new attacks presented in this paper
and to the unpublished Khovratovich et al. results [24]. The results in the table
are divided into four groups. The first one contains previously published results
obtained by other researchers, which are inferior to our results. The second group
contains our original results from ASIACRYPT 2006 [5] and FSE 2007 [6]. The
third group describes the Khovratovich et al. results [24], and the last group
contains all the new results announced in this paper.

The paper is organized as follows: In Section 2 we describe the structure of
IDEA and introduce our notation. In Section 3 we describe the basic idea of a
meet-in-the-middle attack, apply it to up to 4.5 rounds of IDEA, and optimize
it in many different ways. In Section 4 we describe a new keyless version of the
Biryukov-Demirci relation, which gets rid of all the subkeys in the equation. By
combining these two techniques, we show in Section 5 how to get for free 1.5

3

Rounds Attack Type Complexity Source
Data Time & Year

2 Differential 210 CP 240 [26], 1993
2.5 Differential 210 CP 2104.7 [26], 1993
3 Differential-Linear 229 CP 244 [11], 1997
3.5 Differential 256 CP 267 [11], 1997
3.5 Linear 103 KP 297 [22], 2005
4 Imppossible Differential 236.6 CP 266.6 [3], 1999
4 Linear 114 KP 2114 [29], 2004
4.5 Impossible Differential 264 KP 2110.4 [3], 1999
5 Demirci-Selçuk-Türe 224 CP 2126 [16], 2003
5 Demirci-Selçuk-Türe 224.6 CP 2124 [2], 2006
5.5 Key-dependent Linear 221 CP 2112.1 [32], 2009
6 Key-dependent Linear 249 CP 2112.1 [32], 2009

Our Original Results

2.5† Zero-in-the-Middle BD-relation 218 CP 218 [5], 2006
4.5 ZitM BD-relation 16 CP 2103 [5], 2006
5 ZitM BD-relation 218.5 KP 2103 [6], 2007
5 ZitM BD-relation 16 KP 2114 [6], 2007
5.5 ZitM BD-relation 232 CP 2126.85 [6], 2007
6 ZitM BD-relation 264 KP 2126.8 [6], 2007

The Independently Discovered Results in [24]

7.5 Biclique BD-relation 218 CP 2126.5 [24], 2011
7.5 Biclique BD-relation 252 CP 2123.9 [24], 2011
8.5 Biclique BD-relation 252 CP 2126.0 [24], 2011

Our New Results

4.5 MitM 2 KP 2103 Sect. 3, 2011
6 MitM BD-relation 2 KP 2123.4 Sect. 5, 2011
6 MitM BD-relation 16 KP 2111.9 Sect. 5, 2011
6.5 SaC MitM BD-relation 210 CP 2122 Sect. 6, 2011
6.5 SaC MitM BD-relation 223 CP 2113 Sect. 6, 2011
6.5 SaC MitM BD-relation 232 CP 2111.9 Sect. 6, 2011
7 SaC MitM BD-relation 238 CP 2123 Sect. 6, 2011
7 SaC MitM BD-relation 248 CP 2112 Sect. 6, 2011
7.5 SaC MitM BD-relation 16 CP 2125.9 Sect. 7, 2011
7.5 SaC MitM BD-relation 263 CP 2114 Sect. 6, 2011
8.5 SaC MitM BD-relation 16 CP 2126.8 Sect. 7, 2011

ZitM – Zero in the Middle, MitM – Meet in the Middle, SaC – Splice and Cut.
KP/CP – Known/Chosen plaintext. Time complexity is measured in encryptions
† – This attack is a distinguishing attack

Table 1. Comparing Other Single-Key Attacks on IDEA with our New Results

additional rounds, which increases the size of the attacked variant of IDEA to
6 rounds. In Section 6 we show how to get up to 1.5 additional rounds at the

4

expense of increasing the data complexity, using the splice-and-cut technique.
In Section 7 we show how to use our techniques to speed up exhaustive search
on the full IDEA (as well as discuss the applicability of such speed ups to other
cryptosystems). In Section 8 we introduce a different technique called zero-in-
the-middle, and show how to use it to devise a related-key attack on 7.5 rounds
of IDEA with a practical data complexity. We conclude with a short summary
and discussion in Section 9.

2 Description of IDEA and the Notations Used in the

Paper

IDEA [25] is a 64-bit, 8.5-round block cipher with 128-bit keys. It uses a com-
position of XOR operations, additions modulo 216, and multiplications over
GF (216 + 1).

Every round of IDEA is the concatenation of two layers. The input of round
i, denoted by X i, consists of four 16-bit words, denoted by (X i

1, X
i
2, X

i
3, X

i
4). In

the first layer (denoted by KA for Key Addition), the first and the fourth words
are multiplied by subkey words (mod 216 + 1) where a 0 operand is replaced
by 216, and an outcome of 216 is replaced by 0, and the second and the third
words are added to subkey words (mod 216). The intermediate value after this
half-round is denoted by Y i = (Y i

1 , Y
i
2 , Y

i
3 , Y

i
4). Formally, let Zi

1, Z
i
2, Z

i
3, and Zi

4

be the four subkey words, let ⊞ denote addition modulo 216 and let ⊙ be IDEA’s
special multiplication, i.e.,

Y i
1 = Zi

1 ⊙X i
1; Y i

2 = Zi
2 ⊞X i

2; Y i
3 = Zi

3 ⊞X i
3; Y i

4 = Zi
4 ⊙X i

4

Then, (pi, qi) = (Y i
1 ⊕Y i

3 , Y
i
2 ⊕Y i

4) enters the second layer, a structure composed
of multiplications and additions denoted by MA. Denoting the subkey words
that enter the MA function by Zi

5 and Zi
6, the computation is performed as

follows:
si = pi ⊙ Zi

5;
ti = (qi ⊞ si)⊙ Zi

6;
ui = ti ⊞ si;

The output of the MA function is (ui, ti), which we note are related through
ui = ti ⊞ si, a fact which is later used.

The structure of a single round of IDEA is shown in Figure 1. The output of
the i-th round is X i+1 = (Y i

1 ⊕ ti, Y i
3 ⊕ ti, Y i

2 ⊕ui, Y i
4 ⊕ui). In the last round the

MA layer is removed (i.e., the ciphertext is Y 9 = (Y 9
1 ||Y

9
2 ||Y

9
3 ||Y

9
4)), and thus

we refer to the full IDEA as an 8.5-round rather than as a 9-round scheme.
IDEA’s key schedule is extremely simple, and turns out to be the source of

many attacks. It is completely linear, and each subkey is a subset of 16 consec-
utive bits selected from the key. Since the exact structure of the key schedule is
crucial for our attacks, the entire key schedule is described in Table 2. In this
table and the remainder of this paper, we denote the first bit of the key by 0 and
the last bit of the key by 127, and use a cyclic interval notation such as 121–8
to denote the 16 bits 121, 122, ..., 127, 0, 1, ..., 7, 8.

5

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

X i+1

1 X i+1

2 X i+1

3 X i+1

4

X i

1 X
i

2 X i

3 X i

4

Z i

1 Z i

2 Z i

3 Z i

4

Z i

5

Z i

6

pi qi

tiui

si

Fig. 1. One Round of IDEA

Round Zi

1 Zi

2 Zi

3 Zi

4 Zi

5 Zi

6

i = 1 0–15 16–31 32–47 48–63 64–79 80–95
i = 2 96–111 112–127 25–40 41–56 57–72 73–88
i = 3 89–104 105–120 121–8 9–24 50–65 66–81
i = 4 82–97 98–113 114–1 2–17 18–33 34–49
i = 5 75–90 91–106 107–122 123–10 11–26 27–42
i = 6 43–58 59–74 100–115 116–3 4–19 20–35
i = 7 36–51 52–67 68–83 84–99 125–12 13–28
i = 8 29–44 45–60 61–76 77–92 93–108 109–124
i = 9 22–37 38–53 54–69 70–85

Table 2. The Key Schedule Algorithm of IDEA. Each cell describes the bits of the
secret key used in the corresponding subkey.

3 Meet-in-the-Middle Attacks on IDEA

In this section we show how to apply the standard meet-in-the-middle (MitM)
technique to reduced round IDEA using a surprisingly small number of known
plaintexts. Our simplest example (described below) is a complete key recovery
attack on 4.5-round IDEA which is 225 times faster than exhaustive search,
using only 2 known plaintexts and 225 memory. Note that this is the most data-

6

efficient attack possible, since the unicity distance of a 64-bit block cipher with
a 128-bit key is 2. We were surprised by the fact that this extremely simple
attack breaks more rounds of IDEA with so little data compared with numer-
ous previously published sophisticated attacks, including the differential [26],
differential-linear [11], Square [22], and impossible differential [3]1 attacks. In
Section 5 we show that the combination of the standard MitM technique with
the keyless Biryukov-Demirci relation allows us to enhance the attack signifi-
cantly, resulting in an attack on 6-round IDEA which requires only 16 known
plaintexts.

3.1 Basic Meet-in-the-Middle Attack on 3.5-round IDEA

The standard MitM attack on a block cipher uses the observation that some
intermediate value V can be computed from the plaintext given only part of
the secret key material (denoted by Kt, where t stands for “top”), and on the
other hand, can also be computed from the ciphertext given a (possibly different)
part of the key material (denoted by Kb, where b stands for “bottom”). In the
attack, the adversary considers several known plaintext/ciphertext pairs and for
each guess of Kt, she computes from the plaintexts the corresponding V values
and stores them in a hash table. Then, for each guess of Kb, she computes the
V values from the ciphertexts, and searches for a match in the hash table. If
|Kt| > |Kb|, it is more efficient to swap the roles of Kt and Kb. The memory
complexity of such a generic attack is 2min(|Kt|,|Kb|), where |K| is the size of
K in bits, and the time complexity is 2max(|Kt|,|Kb|). The data complexity is
D = (|Kt|+ |Kb|)/|V | plaintext/ciphertext pairs, required for discarding all the
wrong values of (Kt,Kb).

2

Consider a reduced-round variant of IDEA which consists of its first 3.5
rounds. We concentrate on the intermediate value p2, i.e., the left input to the
MA layer of round 2. This p2 can be computed from the plaintext given only
bits 0–111 of the secret key (the entire subkey of round 1, and the subkeys Z2

1 and
Z2
3), and thus, |Kt| = 112. On the other hand, by the structure of IDEA, we have

p2 = X3
1 ⊕X3

2 , and hence, p2 can be computed from the ciphertext given only
bits 50–17 of the secret key (the entire subkeys of the KA layer of round 4 and
the MA layer of round 3, and the subkeys Z3

1 and Z3
2). Thus, |Kb| = 96. Since

|V | = |p2| = 16, one can mount a trivial MitM attack on 3.5-round IDEA with
data complexity of (112+ 96)/16 = 13 known plaintexts, memory complexity of
296, and time complexity of 2112.

1 The impossible differential attack of [3] can break the same number of rounds, but
with a significantly higher data, memory, and time complexities.

2 Note that the memory complexity is given in units of D · |V |-bit blocks, and the time
complexity is given in units of D partial encryptions. The exact complexity of our
attack on IDEA is computed after incorporating all the suggested improvements of
the basic attack.

7

3.2 Several Improvements

In this subsection we show how to simultaneously reduce the time, memory, and
data complexities of the basic MitM attack:

1. Reducing the memory complexity from 296 to 216. Note that the
“subkeys” Kt and Kb in the attack share 80 bits of the secret key (bits 0–
17 and 50–111). This makes it possible to reduce the memory complexity
of the attack from the impractical value of 296 to a very practical value
of 216, without increasing the time complexity. This is done as follows. The
adversary starts with guessing these common 80 key bits, and for each guess,
performs the MitM procedure assuming that these bits are known constants.
Thus, in each such “inner loop”, |Kt| is reduced to 32, and |Kb| is reduced to
16. As a result, for each guess of these 80 key bits, the memory complexity of
the attack is 216 and the time complexity is 232. The total time complexity
remains 280 · 232 = 2112 (as in the basic attack), but the memory complexity
of the entire attack is reduced from 296 to 216 since the same memory slots
can be re-used for constructing the hash tables for each application of the
“inner loop” of the attack.

2. Reducing the time complexity from 2112 to 2103. Note that both mod-
ular addition (modulo 216) and bitwise XOR have the property that the k
LSBs of the output depend only on the k LSBs of the inputs. This allows
to reduce the size of |Kt| (and thus, the time complexity of the attack) by
restricting our attention to the k LSBs of the value V . First, we need to alter
the attack procedure a little. Instead of taking V = p2, we consider V = q2

(i.e., the right input of the MA layer of round 2). It turns out that q2 can be
computed from the plaintext given bits 0–95 and 112–127 of the secret key,
and from the ciphertext given bits 50–24 of the secret key. Thus, |Kt| = 112
and |Kb| = 103, which is inferior to the attack presented above. However, if
we restrict our attention to the k LSBs of q2 then we need only the k LSBs
of the addition subkey Z2

2 (composed of bits 112–127 of the secret key), and
hence |Kt| is reduced to 96 + k. Taking k = 7, we obtain |Kt| = |Kb| = 103,
and thus the time complexity of the attack is reduced to 2103. However,
the memory complexity in this case is slightly increased to 225 (which is
still completely practical), since Kt and Kb share only 78 secret key bits
which can be enumerated in an external loop, and the data complexity is
also slightly increased to ⌈(103 + 103)/7⌉ = 30 known plaintexts.

3. Reducing the Data Complexity to 4 known plaintexts. Note that
there is no need to discard all the possible (Kt,Kb) values during the MitM
procedure. It is sufficient to discard all but 2103 values, since exhaustively
searching the remaining values can be done within an additional time com-
plexity of at most 2103. Specifically, if the adversary considers only 4 known
plaintexts (which provide a filtering of 4 · |V | = 28 bits), then for each guess
of the 78 common secret key bits, only 250 · 2−28 = 222 suggestions for the
remaining bits of Kt and Kb are expected to remain. Each such suggestion
(together with the 78 common bits) yields a suggestion for the entire secret

8

key that can be checked by a single trial encryption. Hence, the complexity
of the second step of the attack (i.e., discarding the remaining suggestions)
is 278 · 222 = 2100 encryptions, which is smaller than the complexity of the
MitM phase of the attack.

By combining all the improvements described so far, we can get an attack on
the first 3.5 rounds of IDEA which has data complexity of 4 known plaintexts,
memory complexity of 225, and time complexity of 2103.3

4. Increasing the number of rounds of IDEA to 4.5. We can attack a
larger version of IDEA and get even better complexities by attacking some
intermediate rounds instead of the initial rounds of IDEA.4 Specifically, con-
sider the 4.5-round variant of IDEA which starts at the beginning of round 4
and ends after the KA layer of round 8. It turns out that the value V = p5

can be computed from the “plaintext” (i.e., the input of round 4) given only
bits 75–49 of the key, and from the “ciphertext” (i.e., the value after KA of
round 8) given only bits 125–99 of the key. Hence, |Kt| = |Kb| = 103, which
allows us to attack this larger variant with the same time complexity of 2103.
The memory complexity also remains 225, since Kt and Kb share 78 key bits.
However, the data complexity is reduced to just 2 known plaintexts, since
each value of V = p5 supplies a 16-bit filtering, and thus for each 78-bit
key guess, only 250 · 2−32 = 218 suggestions are left after the MitM phase.
The total number of suggested keys is thus 278 · 218 = 296, and they can
be checked via trial encryption in a small fraction of the total time of the
attack.
It is interesting to note that two plaintexts is the information-theoretic lower
bound for any key-recovery attack on IDEA, since each plaintext/ciphertext
pair supplies only 64 bits of information, and hence at least two such pairs
are needed in order to discard all the 2128 − 1 wrong key guesses.

The algorithm of the 4.5-round attack is presented in Figure 2.
For the sake of completeness, we considered other reduced-round variants

of IDEA based on all the possible choices of consecutive intermediate rounds.
We found two other 4.5-round variants that can be attacked using the standard
MitM technique:

– A variant that starts after the KA layer of round 2 and ends at the end of
round 6 — the complexity of the attack on this variant is identical to the
complexity of the attack described above.

3 We note that the attack on the first 3.5 rounds of IDEA can be improved to use
only 2 known plaintexts, by meeting in the middle on the value of the third and
fourth words after the KA layer of round 2. This follows from the fact that in the
103 bits guessed at the bottom half, cover the bits required for a full decryption of
two rounds, including the MA layer of the second round. From the top side, it is
sufficient to guess 96 bits to obtain the values of these words after the KA layer of
the second round.

4 We note that a similar strategy of attacking the middle rounds in a round-reduced
block cipher was used in many previously published attacks [12, 32].

9

Input: Two “plaintext”/“ciphertext” pairs (P1, C1), (P2, C2).
for any key guess of key bits 0–49, 75–99, 125–127 do

Initialize a empty hash table H .
for any key guess of key bits 100–124 do

Compute p51 and p52 from P1 and P2, respectively (and the known key), and
store in H the value (p51, p

5

2,K[100–124]).
end for

for any key guess of key bits 50–74 do

Compute p′51 and p′52 from C1 and C2, respectively (and the known key), and
check whether (p′51 , p

′5
2) is in H .

If so, perform trial encryption under the key bits 0–49, 75–99, 125–127, the
current guess of key bits 50–74, and the bits suggested in the corresponding
entry of H .

end for

end for

Fig. 2. The Algorithm for Meet-in-the-Middle Attack on 4.5 Rounds of IDEA (starting
at round 4)

– A variant that starts after the KA layer of round 1 and ends at the end of
round 5 — the time complexity of the attack on this variant is increased to
2112 encryptions, whereas the memory complexity is decreased to 215 64-bit
blocks.

4 The Keyless Biryukov-Demirci Relation

In this section we present a keyless variant of the Biryukov-Demirci (BD) re-
lation — a linear equation involving the plaintext, the ciphertext, and several
intermediate values computed during the IDEA encryption process. In the fol-
lowing sections we combine this keyless BD-relation with the MitM technique
and with other techniques to mount improved attacks on larger reduced-round
variants of IDEA.

We start with the basic observation made by Biryukov. Let us examine the
second and the third words in all the intermediate stages of the encryption.
There is a relation between the values of these words and the outputs of the MA
layers in the intermediate rounds, that uses only XOR and modular addition,
but not multiplication. Let P = (P1, P2, P3, P4) be a plaintext and let C =
(C1, C2, C3, C4) be its corresponding ciphertext. Then:

(((((((((((((((((P2 ⊞ Z1
2)⊕ u1)⊞ Z2

3)⊕ t2)⊞ Z3
2)⊕ u3)⊞ Z4

3)⊕ t4)⊞ Z5
2)⊕ u5)

⊞Z6
3)⊕ t6)⊞ Z7

2)⊕ u7)⊞ Z8
3)⊕ t8)⊞ Z9

2) = C2.
(1)

10

Similarly,

(((((((((((((((((P3 ⊞ Z1
3)⊕ t1)⊞ Z2

2)⊕ u2)⊞ Z3
3)⊕ t3)⊞ Z4

2)⊕ u4)⊞ Z5
3)⊕ t5)

⊞Z6
2)⊕ u6)⊞ Z7

3)⊕ t7)⊞ Z8
2)⊕ u8)⊞ Z9

3) = C3.
(2)

If we restrict our interest to the values of the least significant bits (LSB) of
the words, modular addition is equivalent to XOR and we can simplify the above
equations into:

LSB(P2 ⊕ Z1
2 ⊕ u1 ⊕ Z2

3 ⊕ t2 ⊕ Z3
2 ⊕ u3 ⊕ Z4

3 ⊕ t4 ⊕ Z5
2 ⊕ u5 ⊕ Z6

3 ⊕ t6 ⊕ Z7
2

⊕u7 ⊕ Z8
3 ⊕ t8 ⊕ Z9

2) = LSB(C2),
(3)

and

LSB(P3 ⊕ Z1
3 ⊕ t1 ⊕ Z2

2 ⊕ u2 ⊕ Z3
3 ⊕ t3 ⊕ Z4

2 ⊕ u4 ⊕ Z5
3 ⊕ t5 ⊕ Z6

2 ⊕ u6 ⊕ Z7
3

⊕t7 ⊕ Z8
2 ⊕ u8 ⊕ Z9

3) = LSB(C3).
(4)

As observed by Demirci [15], ui = ti ⊞ si, thus, LSB(ui) = LSB(ti ⊞ si),
which is equivalent to LSB(ui ⊕ ti) = LSB(si). Taking this into consideration
and XORing the two above equations, we obtain:

LSB(P2 ⊕ P3 ⊕ Z1
2 ⊕ Z1

3 ⊕ s1 ⊕ Z2
2 ⊕ Z2

3 ⊕ s2 ⊕ Z3
2 ⊕ Z3

3 ⊕ s3 ⊕ Z4
2 ⊕ Z4

3 ⊕ s4

⊕Z5
2 ⊕ Z5

3 ⊕ s5 ⊕ Z6
2 ⊕ Z6

3 ⊕ s6 ⊕ Z7
2 ⊕ Z7

3 ⊕ s7 ⊕ Z8
2 ⊕ Z8

3 ⊕ s8 ⊕ Z9
2 ⊕ Z9

3)
= LSB(C2 ⊕ C3).

(5)
This equation is called in [22] “the Biryukov-Demirci relation”, which we shall
refer to as the BD-relation.

In this paper we introduce a new keyless variant of the BD-relation in which
all the Zi

j subkeys are cancelled. Consider any pair of known plaintexts P 1 and

P 2. Denote the XOR difference between the encryptions of P 1 and P 2 (under
the same secret key) in an intermediate value X by ∆X . Then, XORing the
equations given by P 1 and P 2 yields:

LSB(P 1
2 ⊕ P 1

3 ⊕ P 2
2 ⊕ P 2

3 ⊕∆s1 ⊕∆s2 ⊕∆s3 ⊕∆s4 ⊕∆s5 ⊕∆s6 ⊕∆s7⊕
∆s8) = LSB(C1

2 ⊕ C1
3 ⊕ C2

2 ⊕ C2
3).

(6)
In the sequel, we refer to this equation as the “keyless BD-relation”.

5 Meet-in-the-Middle Biryukov-Demirci Attack on

6-round IDEA

In this section we combine the keyless BD-relation with the standard MitM
technique to obtain a new attack on 6-round IDEA, which is currently the largest
version of IDEA for which single-key attacks are known. The data complexity
of our attack is just 16 known plaintexts, the memory complexity is 225 64-
bit blocks, and the time complexity is less than 2112 encryptions. This is a huge

11

improvement over the best previously known attack on 6-round IDEA [32], which
required 249 chosen plaintexts and a slightly larger time complexity.

The 6-round variant we consider starts after the KA layer of round 2 and
ends after the KA layer of round 8. First we present the basic attack, and then
we present a tradeoff that allows us to slightly reduce the high time complexity,
at the expense of slightly increasing the low memory complexity.

5.1 The Basic Attack

In the attack combining the keyless BD-relation with the MitM technique, which
we call in the sequel “MitM BD attack”, we divide the terms of Equation (6) into
two sets, such that the terms in the first set are computed using the plaintexts
and the subkey Kt (as defined in Section 3), and the terms in the second set
are computed using the ciphertexts and the subkey Kb. In the attack, for each
guess of Kb, the adversary computes the XOR of all terms of the equation that
belong to the first set , and stores it in a hash table. Then, for each guess of the
subkey Kt, she computes the XOR of all terms that belong to the second set,
and searches for a match in the hash table. If the equation is satisfied (which is
always the case for the correct guess of (Kt,Kb)), the XOR of all the terms in
the equation is zero, which corresponds to a match in the hash table.

In the specific case of 6-round IDEA considered in this paper, Equation (6)
is reduced to:

LSB(P 1
2 ⊕ P 1

3 ⊕ P 2
2 ⊕ P 2

3 ⊕∆s2 ⊕∆s3 ⊕∆s4) =
LSB(C1

2 ⊕ C1
3 ⊕ C2

2 ⊕ C2
3 ⊕∆s5 ⊕∆s6 ⊕∆s7).

(7)

We choose the sets as follows:

– The first set consists of the terms: P 1
2 , P

1
3 , P

2
2 , P

2
3 , ∆s2, ∆s3, ∆s4.

– The second set consists of the terms: C1
2 , C

1
3 , C

2
2 , C

2
3 , ∆s5, ∆s6, ∆s7.

This division emphasizes the advantage of the MitM BD attack over the stan-
dard MitM attack. In the standard MitM attack, the adversary has to compute
values from both the plaintext and ciphertext sides until she reaches a common
intermediate value V . The use of the BD-relation allows us to “jump” over one
round in the middle: the adversary computes only up to ∆s4 in the encryption
direction and only up to ∆s5 in the decryption direction, and the meet-in-the-
middle effect is achieved using Equation (7) to bridge between these values.
What makes the attack even better is that due to the special properties of the
IDEA key schedule, this bridging in the middle allows us to gain 1.5 rounds in
the attack for free, and extends our extremely data-efficient 4.5-round attack
into a similarly efficient 6-round attack.

The details of the attack are as follows. The terms of the first set can be
computed from the plaintexts given key bits 50–33 (i.e., the entire subkeys of
the MA layer of round 2 and the entire round 3, and the subkeys Z4

1 , Z
4
3 , Z

4
5).

The terms of the second set can be computed from the ciphertexts given key
bits 125–99 (i.e., the entire subkeys of the KA layer of round 8 and the entire

12

round 7, plus the subkeys Z6
1 , Z

6
2 , Z

5
5). Hence, we have |Kt| = 112, |Kb| = 103,

and |V | = 1 (since Equation (7) considers only the LSB of the word). Note that
Kt and Kb share 87 key bits (i.e., bits 125–33 and 50–99). Hence, using the
improvements presented in Section 3.2, the data complexity of the attack is 16
known plaintexts (which suffice to construct the 15 independent message pairs
required for Equation (7)), the memory complexity is 216 32-bit blocks (which
are equivalent to 215 64-bit blocks), and the time complexity is 2112 partial
encryptions of 16 plaintexts, which are roughly equivalent to 2115 encryptions.

5.2 A Time-Memory Tradeoff

In this subsection we show that the time complexity of the attack can be slightly
reduced from 2115 to less than 2112 encryptions, at the expense of increasing the
memory complexity from 215 to 225 64-bit blocks. The tradeoff may seem to be
unattractive, but in fact it reduces the largest complexity (time) while keeping
the smaller complexities (memory and data) completely practical.

The most time-consuming part of the basic attack is computing the terms
∆s3 and ∆s4 for 16 plaintexts, which requires the knowledge of the 112 key
bits 50–33. We observe that bits 25–33 are required only for the subkey Z4

5 ,
which is used only in the last multiplication operation in the computation of
∆s4. Hence, at first glance it seems that the adversary can guess the 103 key
bits 50–24 and perform all operations except for the last multiplication, and then
guess the remaining 9 key bits and perform a single multiplication operation for
the 16 plaintexts. However, this is impossible since key bits 25–33 are also part
of Kb, and hence their value should be guessed and fixed in advance, before the
beginning of the MitM phase.

This technical problem can be solved at the expense of enlarging the memory
complexity. The adversary simply ignores the fact that bits 25–33 are shared by
Kt and Kb, and treats them as independent parts of Kt and Kb. As a result, the
number of shared key bits is reduced to 78, and thus the memory complexity
is increased to 225 40-bit blocks.5 On the other hand, this allows the adversary
to reduce the time complexity of the computation of ∆s3 and ∆s4, since it is
now possible to postpone the guess of bits 25–33 until the last multiplication
operation, as described above. As a result, this phase of the attack requires
2112 · 16 = 2116 modular multiplications. Since each encryption with 6-round
IDEA contains 24 modular multiplications (in addition to other operations), the
time required is less than 2111.42 6-round encryptions.6

5 Note that the size of an entry in the table is 40 bits: 15 bits for the value of the
evaluated keyless BD-relation in the 15 pairs, and 25 bits for the value of key bits
25–49.

6 In order to evaluate more precisely the time complexity of the attack (and of the
other attacks presented in this paper), one has to determine the ratio between the
complexities of the three types of operations used in IDEA (i.e., XORs, modular ad-
ditions, and modular multiplications). As this relation differs very much for different
platforms, we chose the following line of action: In the attack on the full IDEA pre-

13

After reducing the time complexity of the MitM phase, the second phase
of the attack (i.e., discarding the 2113 remaining subkey candidates), becomes
the most time-consuming phase of the attack. However, this part can also be
performed more efficiently, as follows: at the phase of generating the hash table,
the adversary also computes the entire value p5 = X6

1 ⊕X6
2 for one of the plain-

text/ciphertext pairs and stores it in the hash table. Then, for a remaining subkey
guess, the adversary only computes the value p5 for that plaintext/ciphertext
pair from the plaintext side, and checks whether it matches the value in the
corresponding entry of the hash table. As this is a 16-bit filtering, only 297

key candidates remain after this stage, and they can be easily checked by trial
encryption. Since during the computation of ∆s3 and ∆s4, the adversary al-
ready performs full encryption through round 3 and partial encryption through
round 4, obtaining the value of p5 requires only three modular multiplications,
which are roughly equivalent to 1/8 encryption. Thus, the time complexity of
this phase is (1/8) · 2113 = 2110 encryptions.

Therefore, the total time complexity of the attack is 2111.42 + 2110 = 2111.9

encryptions. The memory complexity is increased by a small factor (due to the
need to store the p5 values) to 225 56-bit blocks, which are less than 225 64-bit
blocks.

5.3 An Attack with Only Two Known Plaintexts

A variant of the attack described above can be used to attack the same 6-round
variant of IDEA with only two known plaintexts and time complexity of 2123.4

encryptions. Note that this is the smallest possible number of 64-bit messages
which can information-theoretically determine the 128-bit key, and thus it is
surprising that even with so little data we can perform full key extraction by an
algorithm which is considerably faster than exhaustive search.

First, the adversary constructs the tables and performs the MitM phase of
the basic attack described above. Since the adversary has only two plaintexts in
his disposition, he can check the validity of the keyless Biryukov-Demirci relation
only once, and thus, 2127 key suggestions remain after this stage.

As described in the previous subsection, most of these suggestions can be
discarded efficiently by storing in the table also the p5 value in one of the en-
cryptions and computing it from the plaintext side for each subkey suggestion.
In order to make this step even more efficient, the adversary can make a small
change in the MitM phase of the attack: In addition to computing ∆s3 and ∆s4,
she computes the intermediate values until the multiplication with the subkey
Z4
6 in the MA layer of round 4. Given these intermediate values, p5 can be com-

puted with only 2 modular multiplications, 2 modular additions, and 2 XORs,
which are less than 1/12 of a 6-round encryption.

sented in Section 7, where computing the exact complexity is important, we perform
the computation according to two natural measures and compare the results. In the
rest of the attacks, where the exact complexity is not so important, we compute
the complexity according to the simplest measure that assumes that additions and
XORs are negligible compared to modular multiplications.

14

The time complexity of the attack is dominated by the second phase (i.e.,
discarding the subkey suggestions), whose complexity is 2127 · (1/12) = 2123.42

encryptions.
We note that a similar attack can be applied to any number 2 ≤ k ≤ 16 of

plaintexts, with time complexity of 2107.42 · k + 2125.42−k encryptions.

5.4 Attacks on Other Reduced-Round Variants

Our analysis indicates that no other 6-round variant of IDEA (with a shifted
starting position) can be attacked by this MitM technique.

If the reduced-round variant must start at the beginning of round 1 (as
considered in [32]), then 5 rounds can be attacked, with data complexity of
just 10 known plaintexts, memory complexity of 224 64-bit blocks, and time
complexity of 2119 encryptions. For the sake of comparison, the best previous
attack on the same variant which was presented in [32] requires either 217 chosen
plaintexts and 2125.5 encryptions, or 264 known plaintexts and 2115.5 encryptions.

Similarly, if the reduced-round variant must end at the KA layer of round 9,
then 5.5 rounds can be attacked, with data complexity of 10 known plaintexts,
memory complexity of 224 64-bit blocks, and time complexity of 2119 encryptions.

6 Splice-and-Cut Meet-in-the-Middle Biryukov-Demirci

Attacks on Up to 7.5-Round IDEA

In this section we show that by increasing the data complexity and incorporating
the splice-and-cut [1] variant of the meet-in-the-middle technique into the attack,
we can increase the number of rounds we can target from 6 to 7.5, without
affecting the time complexity of the attack.

The splice-and-cut technique was proposed by Aoki and Sasaki [1] for crypt-
analysis of hash functions, and was recently adapted to block ciphers by Wei et
al. [34]. The idea behind the technique is quite simple. We divide the cipher into
two parts, just as in the basic meet-in-the-middle attack. However, in the splice-
and-cut variant, one of the parts is not consecutive but rather consists of rounds
at the top and at the bottom of the encryption. This enhancement allows us to
increase the number of rounds covered by the meet-in-the-middle technique, at
the expense of switching to the chosen plaintext model and requiring a larger
number of plaintexts.

Instead of considering several known plaintext/ciphertext pairs, guessing key
material from the encryption and the decryption sides, and checking for a match
in the middle, we choose fixed intermediate values at some point of the encryp-
tion. From one side, we guess key material used “just after” the fixed values,
and partially encrypt these values until the “checkpoint” in the middle. For the
other side, we guess key material used between the fixed point and the plaintext,
decrypting the values to get the corresponding plaintexts. We then ask (using
the fact that we are now in a chosen plaintext model) for the corresponding

15

ciphertexts, and then guess key material at the bottom of the cipher to decrypt
the ciphertexts until the checkpoint in the middle.

We refer the reader to [1, 34] for a full presentation of the splice-and-cut
technique.

6.1 Attack on 6.5-round IDEA

We start by extending the 6-round attack to 6.5 rounds, starting at the beginning
of round 2 and ending after theKA layer of round 8. Its data complexity increases
to 223 chosen plaintexts, which is considerably higher than in the 6-round attack
but still quite practical.

The key observation in the attack is a clever choice of the fixed intermediate
values. In our choice we use a technique similar to the ladder switch presented
in [9]. Our chosen values do not consist of an entire intermediate state, but rather
constitute a ladder-type structure: In the first two words, we simply choose the
corresponding plaintext words, while in the last two words, we choose the values
after the KA layer of round 2. We outline the location of the chosen value and
corresponding subkeys in Table 3.

Recall that in our 6-round attack,Kt consists of all the key except for bits 34–
49, and Kb consists of all the key except for bits 100–124. Since key bits 34–49
are not used in the first two words of the KA layer of round 2, we can encrypt our
chosen intermediate values through this part of the KA layer, and then continue
like in the top part of the 6-round attack, to obtain the values ∆s2, ∆s3, and
∆s4.

On the other hand, since key bits 100-124 are not used in the last two words
of the KA layer of round 2, we can decrypt the chosen values through this part
of the KA layer, without knowing these key bits, to obtain the corresponding
plaintexts. Then, we can ask for the corresponding ciphertexts, and proceed as in
the basic 6-round attack to obtain the values ∆s7, ∆s6, and ∆s5. The rest of the
attack is similar to the basic 6-round attack and has the same time complexity.
The time-memory tradeoff presented in Section 5.2 works without change as
well, allowing us to reduce the time complexity to less than 2112 encryptions.

The only remaining issue is to determine the data complexity of the 6.5-
round attack. Since two of the four words in the chosen intermediate values are
actually plaintext words, it is clear that the data complexity can be reduced to
232 chosen plaintexts by fixing these two words to some fixed value (e.g., zero).
We now show that the data complexity can be further reduced to 223 chosen
plaintexts with only a small increase in the time complexity.

Note that the 9 most significant bits of the addition subkey Z2
3 (i.e., bits 25–

33) are included among the bits that are shared by Kt and Kb in the basic
6-round attack. This allows us to choose the intermediate values in a more so-
phisticated way. Recall that the inner loop of the basic 6-round attack is repeated
for each possible value of the 87 shared bits. We suggest to choose a different
set of intermediate values for each value of bits 25–33, as follows. Denote the
value of bits 25–33 by v ∈ {0, 1}9. We choose the intermediate value of the third
word after the addition with Z2

3 to be v||1111111, where || denotes concatenation

16

of bit strings. For this choice, the 27 corresponding values before the addition
with Z2

3 (obtained for the 27 possible values of the 7 least significant bits of Z2
3)

are the 27 values of the form 000000000||w, where w assumes all the possible
values in {0, 1}7. Since these values are the corresponding plaintext values, this
assures that all the plaintexts required in the attack have zeros as the 9 most
significant bits of the third word. As the values of the first two words can be
easily fixed to zeros as described above, this reduces the data complexity to 223

chosen plaintexts.
The price of the significant data reduction (from 232 to 223) is a slightly

increased time complexity (from 2112 to 2113), as the time-memory tradeoff de-
scribed in Section 5.2 is not compatible with the sophisticated choice of V sug-
gested above. Indeed, in the attack presented in Section 5.2, key bits 25–33 are
no longer part of the external loop, and thus, the value of V cannot be chosen
according to their value. To minimize the computation overhead, we note that
the adversary can still perform part of the computation of ∆s3 and ∆s4 before
guessing all the 25 key bits 100–124. Specifically, she can compute ∆s3 and per-
form the multiplication with Z3

4 before guessing subkey bits 105–120, and only
then guess these key bits and perform the rest of the computation of ∆s4. As
a result, this phase of the attack is roughly equivalent to 2112 · 16 · 3 = 2117.6

modular multiplications. Since each encryption with 6.5-round IDEA contains
26 modular multiplications, this is roughly equivalent to 2112.9 6.5-round en-
cryptions. The time complexity of the rest of the attack (which is equal to the
complexity of the corresponding steps of the 6-round attack) is negligible, and
hence, the overall time complexity of the attack is about 2113 encryptions.

The data complexity can be further reduced by another factor of 213 to only
210 chosen plaintexts, at the expense of increasing the time complexity by a
smaller factor of 29. Note that out of the 16 bits of the multiplication subkey
Z2
4 , 7 bits are included in the 87 shared bits. If we guess the 9 remaining bits

(i.e., bits 41–49) at the beginning of the attack, we can choose the intermediate
values after the multiplication with Z2

4 in accordance with the value of Z2
4 , such

that the corresponding values of the fourth plaintext word are fixed. Since the
attack requires 8 intermediate values for performing the match in the middle
(such that the remaining part of the attack has a smaller data complexity), the
data complexity is reduced to 210 chosen plaintexts (27 possible values of the
third word, and 8 possible values of the fourth word).

We note that various other tradeoffs between the data and the time com-
plexities of the attack are possible as well.

6.2 Attack on 7-round IDEA

In this subsection we show that another half-round can be added to the attack,
in exchange for increasing the data complexity to the non-practical value of 248

chosen plaintexts.
The variant we attack starts after the KA layer of round 1 and ends after

the KA layer of round 8. The intermediate values are chosen as in the previous
attack. Since the bits used in the MA layer of round 1 (i.e., bits 64–95) are

17

included in the bits shared by Kt and Kb in the 6-round attack, the attack
described in the previous subsection extends without any change to the 7-round
version we consider, with time complexity of less than 2112 encryptions.

The only remaining issue is the data complexity of the resulting attack. This
time, all the words in the intermediate values are not taken from the plaintext.
However, we observe that by the structure of the MA layer in IDEA, the XOR
of words 1 and 2 before the KA layer of round 2 is equal to the XOR of words 1
and 3 in the “plaintext” of our variant (i.e., before the MA layer of round 1).
As the values of words 1 and 2 before the KA layer of round 2 are included
in the intermediate values we fix, we can choose them in such a way that their
XOR is always constant (e.g., zero), and thus, the XOR of words 1 and 3 in
all the plaintext words required in the attack is constant. This reduces the data
complexity to 248 chosen plaintexts.

The data complexity can be reduced from 248 to 239 chosen plaintexts, at the
expense of increasing the time complexity by factor of about 210. As described
in the 6.5-round attack, if we guess the value of key bits 41–49 at the beginning
of the attack, we can choose the intermediate values according to the value of
the subkey Z2

4 . If we choose them such that the intermediate values before the
multiplication with Z2

4 are equal to zero, then the XOR of words 2 and 4 of the
plaintext is equal to the value of word 3 before the addition with Z2

3 . This allows
us to choose the intermediate values after this addition in such a way that the
9 most significant bits of the XOR of words 2 and 4 of the plaintext is equal
to zero (like in the 6.5-round attack). This reduces the data complexity to 239

chosen plaintexts. On the other hand, the time complexity is increased by factor
210 due to the guess of bits 41–49, and since this improvement is not compatible
with the time-memory tradeoff presented in Section 5.2 (as in the data-reduced
6.5-round attack).

The data complexity can be reduced by another factor of 2 if we increase
the time complexity by the same factor. Here we use the fact that by the BD-
relation, the LSB of the XOR of words 2 and 3 in the input to round 2 is equal
to the LSB of the XOR of words 2 and 3 in the “plaintext” (i.e., before the MA
layer of round 1) XORed with the LSB of s1. Note that since the left input to
the MA layer of round 1 is the XOR of the two leftmost words of V , and the
subkey Z1

5 is included among the 87 common bits, the value of s1 can be fixed
by choosing the first two words of the V values according to the value of Z1

5 .
Furthermore, if we guess the least significant bit of the subkey Z2

3 (i.e., bit 40) in
advance, we can choose the intermediate values such that the LSB of the XOR
of words 2 and 3 in the input of round 2 is fixed. This allows us to choose the
intermediate values in such a way that the LSB of the XOR of words 2 and 3
of the plaintexts is fixed (say, to zero), and thus to reduce the data complexity
(while increasing the time complexity) by an additional factor of 2.

The two reductions of the data complexity can be combined, resulting in a
final data complexity of 238 chosen plaintexts, and a time complexity of about
2123 encryptions.

18

Round Zi

1 Zi

2 Zi

3 Zi

4 Zi

5 Zi

6

i = 1 0–15 16–31 32–47 48–63 64–79 80–95
i = 2 96–111 112–127 25–40 41–56 57–72 73–88
i = 3 89–104 105–120 121–8 9–24 50–65 66–81
i = 4 82–97 98–113 114–1 2–17 18–33 34–49
i = 5 75–90 91–106 107–122 123–10 11–26 27–42
i = 6 43–58 59–74 100–115 116–3 4–19 20–35
i = 7 36–51 52–67 68–83 84–99 125–12 13–28
i = 8 29–44 45–60 61–76 77–92

The lines show the point where the fixed value V is chosen, where range means that
the value V is set before the use of this subkey, and range stands for the value V being
chosen after the use of this subkey.
Table 3. The Splice-and-Cut Meet-in-the-Middle Biryukov-Demirci Attacks of Sec-
tion 6.

6.3 Attack on 7.5-round IDEA

In this subsection we show how to add another half-round to the attack, but this
time we have to use 263 chosen plaintexts, which is half of the entire codebook
of IDEA.

The variant we attack starts at the plaintext and ends after the KA layer of
round 8. The intermediate values are chosen like in the previous attacks. Since
the bits used in the entire round 1 (i.e., bits 0–95) are included in the bits of Kb

in the 6-round attack, the attack described in the previous subsection extends
without change to the 7.5-round variant we consider, with time complexity of
less than 2112 encryptions.

The only remaining issue is the data complexity of the resulting attack. This
time, all the words in the intermediate values are too far from the plaintext,
and we did not find a way to choose the intermediate values in such a way that
several plaintext bits will be fixed.

The only reduction we were able to obtain in the data complexity is by
a factor of 2, using the second improvement of the 7-round attack described
above. By guessing the least significant bits of the subkeys Z1

3 and Z2
3 (i.e.,

bits 40 and 47) in advance, we can choose the intermediate values so that the
LSB of the XOR of words 2 and 3 of the plaintexts is fixed. This reduces the
data complexity to 263 chosen plaintexts, while increasing the time complexity
to slightly less than 2114 encryptions (which is still significantly faster than
exhaustive key search).

7 Reducing the Time Complexity of Exhaustive Key

Search on the Full IDEA

In this section we show that the techniques presented in Section 6 can be used
to marginally reduce the time complexity of exhaustive key search on the full
8.5-round IDEA to 2126.8 encryptions. Our techniques (along with several other

19

techniques which were recently proposed by other researchers) can be viewed as
speeding up exhaustive search rather than as “real attacks”, since they still go
over all the possible keys, but perform less than a full encryption for each key.
Such techniques are always limited in the speedup factor they can offer, since
even in the best case the cryptanalyst has to perform at least one operation for
each possible key.

First we recall two well known “folklore” techniques that allow us to slightly
speed up exhaustive search for almost any block cipher. Afterwards, we show
that in the special case of IDEA, we can get even better speedup factors by
combining these techniques with the BD-relation.

7.1 Standard Techniques for Speeding up Exhaustive Search on
Block Ciphers

The standard ways to slightly speed up exhaustive key search on block ciphers
are:

1. The distributive technique: Usually, several secret key bits are not used in the
first few operations of the encryption process (for example, in IDEA, bits 96–
127 of the key are not used in round 1 of the encryption process). This allows
us to perform these few operations only once for each choice of the other bits,
and then guess the remaining bits and perform the rest of the encryption
process. The same is possible (using the decryption direction) if several key
bits are not used in the last few operations. We call it a distributive technique
since it is similar to the algebraic idea of extracting common values out of
the parenthesis (i.e., when we compute x followed by y and then x followed
by z, we can compute x only once via xy + xz = x(y + z)).

2. The early abort technique: To discard a possible key, it suffices to show that
one of the ciphertext bits it produces is incorrect, and thus we can abort the
evaluation for almost all the keys before we compute the full ciphertext. For
example, in the case of IDEA, one can compute the 16 initial ciphertext bits
without performing three of the four operations in the last KA layer, which
allows us to discard most of the key guesses in a slightly more efficient way.

The distributive technique can be further enhanced by using the meet-in-
the-middle technique. If several key bits are not used both in the first and in
the last few operations of the encryption process, the adversary can perform
these operations before guessing the relevant key bits, and then perform the rest
of the encryption (for all the key guesses) in a meet-in-the-middle fashion. For
example, in the case of IDEA, bits 125–127 are not used in rounds 1,8,9 and part
of round 2 of the encryption, which allows to reduce the complexity of exhaustive
key search by more than 25% (by “saving” the computation of about 3 of the
8.5 rounds of IDEA).

A more advanced enhancement using the meet-in-the-middle technique is
the following. Assume that a subset S1 of the key bits is not used in the first
few operations, and a (possibly different) subset S2 is not used in the last few

20

operations. The adversary can perform the following algorithm (given a single
known plaintext/ciphertext pair):

For each value of the bits in K \ S1 \ S2 (i.e., the bits of K that are not
included in either S1 or S2), perform the following:

1. For each value of the bits in S2 \ S1, perform the first few operations of the
encryption process (that do not require the knowledge of S1) for the given
plaintext. Create a table that contains the intermediate values corresponding
to the values of the bits in S2 \ S1.

2. For each value of the bits in S1 \ S2, perform the last few operations of
the encryption process (that do not require the knowledge of S2) in the de-
cryption direction for the given ciphertext. After that, guess the value of
the remaining bits in S2, compute the rest of the operations until the inter-
mediate values, and check the match with the values in the pre-computed
table.

This algorithm can be enhanced even further using the splice-and-cut tech-
nique. Instead of starting from the plaintext and the ciphertext sides, we can
start from a chosen intermediate value V . Assume that a subset S′

1 of the key
bits is not used in the operations between the plaintext and V and in the last
few operations, and a (possibly different) subset S′

2 is not used in the first few
operations after V . Then, as in the attacks presented in Section 6, an adapted
variant of the above algorithm applies when staring with V , at the expense of
increasing the data complexity.

7.2 Speeding Up Exhaustive Key Search on the Full IDEA

While for many block ciphers, the speedup that can be obtained using the simple
techniques described above is still a very small fraction of the time complexity of
exhaustive key search, in the case of IDEA they already provide a considerable
speedup. We can fix, as the intermediate value V , the following ladder-type
structure in the KA layer of round 1: In all words except for the second one,
we simply choose the corresponding plaintext words, while in the second word,
we choose the value after the key addition with Z1

2 . We observe that key bits
125–15 are not used at the beginning between the plaintext and V and at the
end in rounds 8,9. On the other hand, key bits 16–24 are not used (after V) in
rounds 1,2, and in part of round 3. The location of V is described in Table 4.
Using the algorithm described above, the complexity of exhaustive key search is
reduced by almost 50% (by “saving” the computation of more than four of the
8.5 rounds).7

The speedup can be made even more significant by incorporating the BD-
relation. Recall that the second basic observation presented above suggests to
avoid the computation of several operations in the encryption process by checking
only part of the ciphertext. In the case of IDEA, we can save even more by

7 The exact complexity analysis is given for the most advanced attack presented below,
and thus we do not analyze this intermediate value here.

21

checking instead whether the BD-relation holds. We cannot use the keyless BD-
relation since we want to use a single plaintext/ciphertext pair. (Using two pairs
will double the encryption time, which will eliminate most of the time saving).
However, we can still use the original BD-relation.

The algorithm of the improved attack is as follows:

1. Choose an arbitrary value V of ladder type, as described above.
2. For each value of bits 0–12 and 25–127 of the key, perform the following:

(a) Compute the XOR of the LSBs of the subkeys Z1
2 , Z

2
2 , . . . , Z

9
2 , Z

1
3 , Z

2
3 , . . . , Z

9
3

(required for the BD-relation).
(b) For each value of bits 13–15 of the key, partially encrypt V through

rounds 1,2,3 and compute the values s1, s2, s3 in the BD-relation. Store
the XOR of the LSBs of these values, along with the intermediate value
p3, in a table entry corresponding to the value of bits 13–15.

(c) For each value of bits 16–24 of the key, perform the following:
i. Decrypt V through the key addition with Z1

2 to obtain the cor-
responding plaintext. Consider the corresponding ciphertext,8 and
partially decrypt it through rounds 9,8,7 to obtain the values s7, s8.9

ii. For each value of bits 13–15 of the key, continue the partial decryp-
tion to compute the values s4, s5, s6, and check (using the corre-
sponding entry in the table), whether the BD-relation holds. If not,
discard the key guess.

iii. For the remaining keys, continue the partial decryption through
rounds 5 and 4 and check whether the value of p3 (that is equal
to the XOR of the first two words in the input to round 4) matches
the corresponding value in the table. As this is a 16-bit filtering,
most of the key guesses are discarded at this stage.

iv. Check the remaining key guesses by a trial encryption.

As we show below, this algorithm allows to speed-up exhaustive search by a
factor of about 5/2. However, in a naive implementation, it increases the data
complexity to 216 chosen plaintexts, since for different values of key bits 16–31,
the intermediate value V leads (by partial decryption) to 216 different plaintexts.
The data complexity can be reduced by choosing the value V according to the
value of (part of) bits 16–31. Specifically, we can reduce the complexity to 29

chosen plaintexts by setting the 7 LSBs of the second word in V to be equal to
bits 25–31 of the key (that are guessed in the external loop of the attack), which
assures that the 7 LSBs of the second plaintext word are zero in all plaintexts.

8 As shown below, the data complexity of the attack is only 16 chosen plaintexts.
Hence, the plaintext/ciphertext pairs can be stored in a table of size 16, and the
corresponding ciphertext can be retrieved by a single table lookup.

9 Note that this operation can be performed more efficiently using the fact that key
bits 125–12 are not used in the decryption direction until the multiplication with the
subkey Z7

5 . This allows us to perform all the operations in this step except for the last
multiplication only once for each value of bits 125–12, which makes the complexity
of all these operations negligible (compared to the other parts of the attack).

22

Round Zi

1 Zi

2 Zi

3 Zi

4 Zi

5 Zi

6

i = 1 0–15 16–31 32–47 48–63 64–79 80–95
i = 2 96–111 112–127 25–40 41–56 57–72 73–88
i = 3 89–104 105–120 121–8 9–24 50–65 66–81
i = 4 82–97 98–113 114–1 2–17 18–33 34–49
i = 5 75–90 91–106 107–122 123–10 11–26 27–42
i = 6 43–58 59–74 100–115 116–3 4–19 20–35
i = 7 36–51 52–67 68–83 84–99 125–12 13–28
i = 8 29–44 45–60 61–76 77–92 93–108 109–124
i = 9 22–37 38–53 54–69 70–85

The lines show the point where the fixed value V is chosen, where range means that
the value V is set before the use of this subkey, and range stands for the value V being
chosen after the use of this subkey.

Table 4. Speeding up Exhaustive Search on the Full IDEA.

The complexity can be reduced even further by adding part of bits 16–24 to
the external loop of the attack. For example, adding bits 20–24 to the external
loop increases the time complexity of the attack by less than 5%, while reducing
the data complexity to only 16 chosen plaintexts. The data complexity can be
reduced even further, but at the expense of increasing the time complexity. We
compute below the time complexity for the variant of the attack that requires
16 chosen plaintexts.

In order to determine the time complexity of the attack, we count the number
of operations of each type (XORs, modular additions, modular multiplications,
and table lookups) performed for each key guess. For the sake of clarity, we
present the numbers for each step of the attack separately.

– Step 2(a): Negligible (performed only once every 212 keys).
– Step 2(b): 10 multiplications, 8 additions, and 13 XORs, performed for 2−4

of the keys.
– Step 2(c)(i): Using the efficient implementation described in footnote 9,

equivalent to 1 multiplication and 1 addition, performed for 2−3 of the keys.
– Step 2(c)(ii): 11 multiplications, 10 additions, 20 XORs, and 1 table lookup,

performed for all the keys.
– Step 2(c)(iii): 3 multiplications, 4 additions, 4 XORs, and 1 table lookup,

performed for 2−1 of the keys.
item Step 2(c)(iv): Negligible (performed only for 2−17 of the keys).

Hence, the amortized number of operations for each key is 13.3 multiplica-
tions, 12.6 additions, 22.8 XORs, and 1.5 table lookups. For the sake of compar-
ison, the number of operations in a full IDEA encryption are: 34 multiplications,
34 additions, and 48 XORs.

In order to compare the complexity of our attack with that of exhaustive
key search, one has to fix a ratio between the computational costs of the three
types of operations used in IDEA – XORs, modular additions, and modular

23

multiplications, and to compare the cost of a table lookup to that of these three
operations. As these costs differ significantly on different platforms, we propose
the two extremal measurements:

1. Assuming that the multiplications are much more time consuming than
all the other operations, and thus, counting only multiplications and ta-
ble lookups and assuming that they take the same amount of time. (This
approach was taken in [24]).

2. Assuming that one multiplication is equivalent to one XOR/addition. (It is
clear that on any platform, a multiplication modulo 216 + 1 does not take
less than a modular addition or an XOR).

According to the first approach, a full IDEA encryption is equivalent to 34
multiplications. Our attack requires 14.75 multiplications for each key, which are
equivalent to 0.4338 · 2128 IDEA encryptions.

According to the second approach, a full IDEA encryption is equivalent to 116
operations. Our attack requires 50.3 operations for each key, which are equivalent
to 0.4336 · 2128 IDEA encryptions.

As can be seen, the two computations yield extremely close values of the
complexity. It is thus reasonable to assume that a measurement using any other
natural ratio will lead to a similar overall complexity. Therefore, the time com-
plexity of our attack is close to 2126.8 encryptions.

We note that a similar attack can be applied to 7.5-round IDEA, starting at
the plaintext. In this case, V is chosen as in the attack on the full IDEA, and the
adversary uses the fact that key bits 100–124 are not used between the plaintext
and V , in rounds 8,7, and in part of round 6. The data complexity of the attack
is 16 chosen plaintexts, and its time complexity is

2128(10 · 2−4 + 10 · 2−25 + 4 + 1 + 3 · 2−1) = 2128 · 7.125

multiplications, that are equivalent to 2125.9 7.5-round encryptions. This attack
has a higher time complexity than the 7.5-round attack presented in Section 6
(2125.9 vs 2114), but we mention it due to its greatly reduced data complexity
(16 vs 263).

7.3 Speeding Up Exhaustive Key Search on Other Block Ciphers

The simple techniques for speeding up exhaustive search presented in Section 7.1
can be used to obtain considerable speedups not only for IDEA, but also for other
well-known block ciphers. To give two quick examples, we consider the ciphers
KASUMI [33] (used in GSM and 3G telephony) and GOST [17] (the former
Soviet Union encryption standard). In order to save space, we refer the reader
to [17, 33] for the notations used in the attacks.

In the case of KASUMI, the adversary can fix V to be the intermediate value
before the third round of the FO function in round 1. The key word K8 is not
used before V and in most of round 8 (until the FL function), and the key word
K4 is not used in the rest of round 1 and in most of round 2 (until the subkey

24

KL2,2). This allows the adversary to compute 16 bits in the left half of the
output of round 2 (and thus, also of round 3, due to the Feistel structure) on the
one side, and almost a full round on the other side, before guessing the entire
key. The part of encryption performed until the full key guess is thus slightly
more than 4 rounds, which means that the attack provides speedup by a factor
of almost 2 over exhaustive key search.

In the case of GOST, the speedup is even more considerable due to its very
weak key schedule. The adversary can fix V to be the intermediate value after
round 31 (i.e., one round before the ciphertext). The key word K1 is not used
in rounds 18–31, and the key word K8 is not used in round 32 and rounds 1–7.
This allows to compute 22 of the 32 rounds before guessing the full key. The
weak diffusion of a single GOST round allows to gain at least three more rounds
for free easily, and hence, the attack provides a speedup by a factor of at least
32/7 over exhaustive key search.

It should be mentioned that recently, attacks faster than exhaustive key
search were proposed against both KASUMI (by Jia et al. [21]) and GOST (by
Isobe [20] and others). However, these are complex attacks making use of various
subtle weaknesses of the ciphers. The speedups we sketched are much simpler
and more generic, and can be viewed as suggesting one of the following:

– Using a simple key schedule (as in KASUMI, GOST, IDEA, and many other
ciphers) leads in many cases to a true reduction in the cipher’s security, due
to the ability to speed up exhaustive search in a non-negligible way. Hence,
a linear key schedule should be avoided in the design of block ciphers, even
if the rest of the design is conservative.

– Minor speedups of exhaustive key search, e.g., by a factor of 2 or 4, should
not be considered a weakness of the design, since the key length is way too
big to make such speedups a threat in any scenario. On the other hand,
such speedups should be taken into consideration when the complexity of
other attacks is compared to that of exhaustive key search. Instead of com-
paring with the “theoretical” complexity of 2n trial encryptions for a cipher
with n-bit keys, one should compare to the realistic complexity of optimized
exhaustive key search.

8 Zero-in-the-Middle Biryukov-Demirci Attack on

Reduced-Round Variants of IDEA

The keyless Biryukov-Demirci relation was used to attack reduced-round vari-
ants of IDEA in several previous papers [5, 6, 32]. All these papers used a tech-
nique that can be called “Zero-in-the-Middle” (ZitM BD attack), in which the
adversary uses proper choice of plaintext/ciphertext pairs, in conjunction with
additional differential-type techniques, in order to ensure that some terms of the
BD-relation are cancelled. While all the attacks presented in [5, 6, 32] are infe-
rior to the MitM BD attacks presented in the previous sections, we show in this
section that there are other scenarios in which the ZitM BD technique is more

25

efficient than the MitM BD technique. First, we survey the results of [5, 6, 32],
and then we present two new ZitM BD attacks.

8.1 Previous Zero-in-the-Middle Keyless Biryukov-Demirci Attacks

The Zero-in-the-Middle Biryukov-Demirci attack was used in several papers to
attack 5-round, 5.5-round, and 6-round variants of IDEA:

1. Differential BD attack on 5 rounds: The first attack that exploited the
keyless BD-relation is [5]. In the attack, the reduced-round variant starts
after the KA layer of round 3 and ends after the KA layer of round 8, and
a differential property is used to cancel the term ∆s4 in the BD-relation.
The data complexity of the attack is 219 known plaintexts, and the time
complexity is 2103 encryptions. In [6] it was shown that the data complexity
can be reduced to 16 known plaintexts, at the expense of increasing the time
complexity to 2114 encryptions (and a slightly improved variant of the attack
of [5] which uses only 218.5 known plaintexts was presented).

2. Square BD attack on 5.5 and 6 rounds: The next attack that exploited
the keyless BD-relation in larger versions of IDEA appeared in [6]. In this
attack, the reduced-round variant starts either after the KA layer of round 2
or at the beginning of round 3 and ends after the KA layer of round 8, and
a Square property is used to cancel the terms ∆s3 and ∆s4 in the BD-
relation. The data complexity of the attack on 6-round IDEA is almost the
entire codebook, and the time complexity is 2126.8 encryptions.

3. Key-Dependent Differential BD attack on 5.5 and 6 rounds: The
most recent attack that exploited the keyless BD-relation is [32]. The attack
targets the same variant as [6] and uses a differential-type technique called
key-dependent attack to cancel the terms ∆s3 and ∆s4 in the BD-relation
(instead of the Square technique used in [6]). This allows to reduce the data
and time complexities of the attack on 6-round IDEA to 249 chosen plaintexts
and 2112.1 encryptions, respectively.

All these attacks are clearly inferior to the MitM BD attack on 6-round IDEA
presented in Section 5, whose data complexity is just 16 known plaintexts, and
whose time complexity is less than 2112 encryptions.

8.2 A Zero-in-the-Middle Biryukov-Demirci Distinguishing Attack
on 2.5-Round IDEA

In this subsection we present a very efficient distinguishing attack on 2.5-round
IDEA, based on the Zero-in-the-Middle Biryukov-Demirci technique. The attack
applies to any 2.5 consecutive rounds starting with the KA layer, and does not
depend on any property of the IDEA key schedule. The time complexity of the
attack is 218, which is significantly lower than the complexity of any previously
published attack on IDEA (including attacks on 2 and 2.5 rounds).

26

For 2.5 rounds of IDEA, Equation (6) is reduced to:

LSB(P 1
2 ⊕ P 1

3 ⊕ P 2
2 ⊕ P 2

3 ⊕∆s1 ⊕∆s2) = LSB(C1
2 ⊕ C1

3 ⊕ C2
2 ⊕ C2

3). (8)

Note that if for some round of IDEA, ∆pr = 0, then ∆sr = 0 as well. Hence,
if the plaintexts and the ciphertexts are chosen such that ∆p1 = ∆p2 = 0, then
the terms ∆s1 and ∆s2 in Equation (8) are cancelled, and the equation reduces
to a simpler form:

LSB(P 1
2 ⊕ P 1

3 ⊕ P 2
2 ⊕ P 2

3) = LSB(C1
2 ⊕ C1

3 ⊕ C2
2 ⊕ C2

3), (9)

whose validity can be checked using only the plaintexts and the ciphertexts,
independently of the key.

In order to satisfy the relation ∆p1 = 0, we can consider pairs of chosen
plaintexts (P 1, P 2) such that ∆(X1

1 , X
1
2 , X

1
3 , X

1
4) = (0, β, 0, γ) for arbitrary val-

ues of β and γ. For such pairs, ∆Y 1
1 = ∆Y 1

3 = 0 (independent of the values of
Z1
1 , Z

1
3), and hence, ∆p1 = 0. We note that the same idea was used in [22].

Similarly, if we take only ciphertext pairs satisfying ∆(Y 3
1 , Y

3
2 , Y

3
3 , Y

3
4) =

(0, 0, β′, γ′) for arbitrary values of β′ and γ′, then ∆X3
1 = ∆X3

2 = 0, and thus,
∆p2 = 0.

Based on these observations, we can mount a simple distinguishing attack on
2.5-round IDEA, using the following algorithm:

1. Ask for the encryption of 218 plaintexts of the form (A,Z,B,W), where A
and B are fixed and Z and W assume arbitrary random values.

2. Insert the ciphertexts into a hash table sorted by the first two words.
3. For every pair of ciphertexts in the same bin of the hash table, check whether

Equation (9) holds for the corresponding plaintext/ciphertext pair.
4. If there is a pair for which the equation does not hold, conclude that the

cipher is not 2.5-round IDEA. If there is no such pair, conclude that the
cipher is 2.5-round IDEA.

Due to the choice of the structure, for every pair of plaintexts in the structure
we have∆p1 = 0. Furthermore, for every pair of ciphertexts in the same bin of the
hash table, we also have ∆p2 = 0. Hence, for all the checked pairs, Equation (9)
must be satisfied.

The 218 plaintexts can be combined into about 235 possible pairs, and a
fraction of 2−32 of them is expected to have ciphertext difference of the form
(0, 0, β′, γ′). Hence, the expected number of pairs analyzed in Step 3 is 8. If there
is a pair for which Equation (9) fails, we know for sure that the cipher is not
2.5-round IDEA. On the other hand, for a random permutation, the probability
that the equation holds for all the eight pairs is 1/256. Hence, the distinguisher
succeeds with probability greater than 99.5%.

Since the second and the third steps of the attack are implemented using a
hash table, the time complexity of the attack is dominated by the time complex-
ity of the encryptions in the first step of the attack. Hence, the data complexity
of the attack is 218 chosen plaintexts and the time complexity is 218 encryptions.

27

We note that by adding an MA layer after the attacked 2.5-round variant,
one may obtain a key recovery attack on 3-round IDEA with data complexity
of 219 chosen plaintexts and time complexity of 248.5 encryptions. Also, for a
5-round variant of IDEA starting after the KA layer of round 3, a choice of
plaintexts similar to that of the 2.5-round attack allows to cancel the term ∆s4

in the keyless Biryukov-Demirci relation, and thus to obtain an attack with data
complexity of 219 chosen plaintexts and time complexity of 2103 encryptions.
Finally, considering a Square structure chosen in a similar way, one may cancel
both the terms ∆s3 and ∆s4 in the Biryukov-Demirci relation, resulting in a
marginal attack on 6-round IDEA. All these results were described in the con-
ference versions of this paper [5, 6], and are omitted here since they are inferior
to the MitM BD attack presented in Section 5.

8.3 Related-Key Zero-in-the-Middle Biryukov-Demirci Attack on
7.5-Round IDEA

In this section we present a related-key attack on the first 7.5 rounds of IDEA
based on the Zero-in-the-Middle Biryukov-Demirci technique. In this attack, we
use the difference between the keys to construct pairs of plaintexts for which the
intermediate values (when encrypted under the two different keys) are equal for
2.5 rounds. In conjunction with an appropriate choice of the plaintext/ciphertext
pairs, the terms∆s1, ∆s2, ∆s3, and∆s4 in the keyless Biryukov-Demirci relation
are cancelled.

The related-key differential Let K and K∗ be two keys that differ only
in the two bits 34 and 49. We observe that if for two plaintexts P and P ∗,
encrypted under K and K∗, respectively, the intermediate values of Y 2 (i.e., the
values after the KA layer of round 2) are equal, then the intermediate encryption
values remain equal until the MA layer of round 4. Indeed, bits 34 and 49 of
the key are not used in the MA layer of round 2, in the entire round 3, and in
the KA layer of round 4. Furthermore, these key bits are also not used in the
subkey Z4

5 , and hence, the terms ∆s2, ∆s3, and ∆s4 in the BD-relation are equal
to zero.

Therefore, for such pairs, Equation (6) (for the first 7.5 rounds of IDEA) is
reduced to:

LSB(P2⊕P3⊕P ∗
2⊕P ∗

3⊕∆s1⊕∆s5⊕∆s6⊕∆s7) = LSB(C2⊕C3⊕C∗
2⊕C∗

3). (10)

All terms of this equation can be computed given the plaintexts, the ci-
phertexts, and 103 key bits (specifically, bits 125–99 of the key). Hence, if the
adversary can construct 25 pairs (P, P ∗) for which the intermediate Y 2 values
are equal, the attack can be completed within time complexity of about 2103

encryptions.

The choice of the plaintexts In order to obtain the required pairs (P, P ∗) ef-
ficiently, we consider 28 pairs of structures (Si, S

∗
i) of 2

16 chosen plaintexts each,

28

to be encrypted under the keys K and K∗, respectively. In both structures Si

and S∗
i , the three first words are fixed to constants (Ai, Bi, Ci) and (A∗

i , B
∗
i , C

∗
i),

respectively, and the fourth words assume all the 216 possible values. The values
Ai, Bi, Ci, A

∗
i , B

∗
i , C

∗
i are chosen such that:

Ai = A∗
i ; Bi ⊕B∗

i = 0040x; Ci ⊕ C∗
i = 2000x.

Note that by the chosen key difference, there is no difference in the subkeys Z1
1

and Z1
2 , and the difference in the subkey Z1

3 is in the third-most significant bit
(which is bit 34 of the secret key). Hence, the difference between the structures
Si and S∗

i in the first three words of the state Y 1 (i.e., after the KA layer
of round 1) equals (0, 0040x, 0) with probability 2−2. In order to bypass the
MA layer of round 1, we consider only pairs (Pi ∈ Si, P

∗
i ∈ S∗

i) for which the
difference in Y 1

4 is 0040x. For each pair of structures (Si, S
∗
i) and for any value

of the subkey Z1
4 , the pair of structures contains 2

16 pairs (Pi, P
∗
i) for which this

condition is satisfied. Therefore, the data contains 28 · 2−2 · 216 = 222 pairs with
difference (0, 0040x, 0, 0040x) in the state Y 1.

Detection of the right pairs The right pairs, i.e., the pairs (Pi ∈ Si, P
∗
i ∈ S∗

i)
for which ∆Y 2 = 0, are detected in a two-step procedure. First the adversary
guesses the value of bits 0–63 of the key, encrypts all plaintexts through the KA
layer of round 1 (under the corresponding keys), and chooses the 222 pairs for
which the difference ∆Y 1 is (0, 0040x, 0, 0040x). The time complexity of this step
is less than 225 · 264 = 289 encryptions.

In the second step, the adversary guesses the value of bits 64–95 of the key,
and for each of the 222 remaining pairs, she checks whether ∆Y 2 = 0.

Note that for each of the 222 pairs, we have ∆X2 = (0, 0, 0040x, 0040x).
Since there is no difference in the subkeys Z2

1 and Z2
2 , it is assured that ∆Y 2

1 =
∆Y 2

2 = 0, as required.10 In the third word, we have ∆X2
3 = 0040x, and there is

key difference in the seventh least significant bit (which is bit 34 of the secret
key), and hence, ∆Y 2

3 = 0 holds with probability 1/2. In the fourth word, since
the operation is modular multiplication and both the state difference and the
subkey difference are non-zero, we make the randomness assumption that the
values after the KA layer are equal with probability 2−16.11 Hence, the expected
number of pairs satisfying ∆Y 2 = 0 is 222 · 2−1 · 2−16 = 32.

The time complexity of detecting these pairs is 264 · 232 · 222 = 2118 partial
encryptions, which are roughly equivalent to 2115 full encryptions.

10 Note that it is important that this difference is fixed to zero independently of the
subkeys Z2

1 and Z2

2 , since these two subkeys use bits 96–127 of the secret key, and
25 of these 32 bits are not included in the 103 key bits guessed in the attack (which
are bits 125–99).

11 We have experimentally verified this claim, and found out that for all subkey pairs,
this probability is at least 2−16. Furthermore, our experiments revealed that for
31/32 of the subkey pairs, this probability is actually 2−15. Thus, in most of the
cases, the data complexity of the attack can be reduced by factor of 2.

29

Checking whether Equation (10) holds After the right pairs are detected,
the adversary guesses 7 additional key bits (i.e., bits 96–99 and 125–127 of the
key), and checks whether Equation (10) holds. As this is a 32-bit filtering, only
2103 · 2−32 = 271 key suggestions are expected to remain, and these suggestions
can be checked by guessing the remaining 25 key bits and performing a trial
encryption.

Checking whether Equation (10) holds requires partial decryption of the ci-
phertexts through 2.5 rounds. (Note that there is no need to compute ∆s1, as
for all the right pairs, ∆p1 = 0, and thus, ∆s1 = 0). Hence, a naive application
of this step requires 2103 · (32 · 2) · (2.5/8) = 2107.32 encryptions.

This step can be performed more efficiently by noting that half of the key
guesses are discarded after considering the first right pair, half of the remaining
key guesses are discarded after the second right pair, etc. Hence, instead of
decrypting all the pairs at once, the adversary can decrypt the first pair and check
whether the equation holds, then (if the key guess was not discarded) decrypt
the second pair and check the equation for it, etc. Using this improvement, the
time complexity of this step is 2104+2103+2102+ . . . ≈ 2105 partial decryptions,
which are roughly equivalent to 2103.32 full encryptions.

However, the overall time complexity of the attack is dominated by the de-
tection of the right pairs, whose complexity is about 2115 encryptions. In the
next paragraph we present a more efficient algorithm that allows to detect the
right pairs with time complexity of less than 2100 encryptions, thus reducing the
overall complexity of the attack to about 2103.5 encryptions.

An efficient algorithm for detecting the right pairs As shown above, the
first step in the detection of right pairs, that consists of guessing bits 0–63 of the
key and detecting 222 pairs with difference ∆Y 1 = (0, 0040x, 0, 0040x), requires
less than 289 encryptions. We thus concentrate on the second step that consists
of guessing bits 64–95 of the key and checking, for each of the 222 pairs, whether
∆Y 2 = 0.

Consider the modular multiplication with the subkey Z2
4 in the KA layer of

round 2. We observe that for all 222 pairs, the difference before this multiplication
is ∆X2

4 = 0040x, and for the right pairs, the difference after the multiplication is
∆Y 2

4 = 0. In addition, the subkey Z2
4 consists of bits 41–55 of the key, and thus

is included in bits 0–63 that are guessed during the first step of the right pairs
detection. Hence, the adversary can go over all 216 pairs of 16-bit values with
difference 0040x, multiply them by the known value of Z2

4 and find those pairs
for which the difference after the multiplication is zero. For each guess of Z2

4 ,
one or two pairs with difference 0040x lead after the subkey multiplication to
zero difference, and thus, the adversary can compute the actual values (X2

4 , X
∗2
4)

which a pair must have in order to be a right pair. The time complexity of this
computation is less than 264 · 216 = 280 encryptions.

After the adversary computes the “required” (X2
4 , X

∗2
4) values, she guesses

bits 64–79 of the key (i.e., the subkey Z1
5), and partially encrypts the 222 pairs

through the MA layer of round 1. Then, for each pair, she assumes that indeed

30

it is a right pair, and using the required values of (X2
4 , X

∗2
4) on the one hand and

u1, s1, q1 (that can be computed from the partial encryption and the required
values (X2

4 , X
∗2
4)) on the other hand, she computes the input and the output of

the modular multiplication with the subkey Z1
6 .

This gives the adversary an equation of the form a⊙ Z1
6 = b, where a, b are

known. Since the modular multiplication is performed in a field, the adversary
can invert the equation and get the value of Z1

6 with only a few operations. (For
example, she can store the inverses of all elements in the field in a table of size
216, and perform a single table lookup and a single modular multiplication to
compute Z1

6 = a−1 ⊙ b). Hence, for each of the 222 pairs, the adversary can find
the value of Z1

6 for which that pair is a right pair. Finally, the adversary inserts
the tuples (P1, P2, Z

1
6) into a hash table sorted according to the value of Z1

6 , and
then for each value of Z1

6 , she can get the 32 right pairs with respect to that key
by a single table lookup. The time complexity of this step is 264 · 216 · 222 = 2102

simple computations, which are less than 2100 encryptions.

Summary Using this improved algorithm, the time complexity of the attack is
reduced to less than 2103.5 encryptions. The data complexity of the attack is 225

chosen plaintexts, and the memory complexity is 222 32-bit blocks, which are
equivalent to 221 64-bit blocks.

A known plaintext variant of the attack We note that a similar attack
can be performed in the known-plaintext model. In the attack, the adversary
considers two structures of 243 known plaintexts encrypted under the keysK and
K∗, and for each guess of bits 0–63 of the key, she inserts the plaintexts into a
hash table and detects the 222 pairs (P, P ∗) for which∆Y 1 = (0, 0040x, 0, 0040x).
The rest of the attack is the same as the chosen-plaintext attack described above.
Since the first step can be performed efficiently, the overall time complexity of
the attack is the same as that of the chosen plaintext attack. The memory
complexity is increased to 243 64-bit blocks.

9 Summary and Open Problems

In this paper, we described a new single-key attack on 6-round IDEA which
requires only two known plaintexts in order to find the full 128-bit key by an
algorithm which is considerably faster than exhaustive search. In addition, we
presented several single-key attacks on 6.5, 7, and 7.5 rounds of IDEA using an
increasing number of plaintexts, and even a marginal attack on full IDEA which
is about 2.5 times faster than exhaustive search. All these results are major
improvements over previously published attacks, which could handle at most 6
rounds using impractical amounts of chosen plaintexts. In the stronger model
of related-key attacks, we could attack up to 7.5 rounds using a practical data
complexity.

The two major techniques we used in this paper are MitM BD and ZitM BD.
In general, the MitM BD technique yields better attacks in terms of the number

31

of rounds that can be attacked, but there are scenarios in which the ZitM BD
technique yields better results. It seems that such scenarios are of two types:

– Low time complexity attacks: The MitM BD attack inevitably requires
a large time complexity, since computing even a single ∆sr value requires
to guess at least 48 key bits (subkeys Zr

1 , Z
r
3 , and Zr

5 in the encryption
direction, or subkeys Zr+1

1 , Zr+1
2 , and Zr

5 in the decryption direction). Hence,
it appears that any MitM BD attack would have time complexity of at least
248. In contrast, there is no lower bound on the complexity of a ZitM BD
attack, since the adversary can choose the plaintexts such that some ∆sr

terms are cancelled, independently of the key. This is demonstrated in the
case of 2.5-round IDEA, where the ZitM BD technique allows to mount a
distinguishing attack with an extremely low time complexity of 218.

– Low data complexity attacks on a large number of rounds: Due
to the key schedule of IDEA, the computation of any four consecutive ∆sr

values requires knowledge of the entire secret key. Hence, if the number
of ∆sr terms in the BD equation is greater than 6, the equation is not
vulnerable to the MitM BD attack. This obstacle can be overruled by using
the splice-and-cut technique (like in our 7.5-round attack), but only at the
price of a higher data complexity. In contrast, there may be special scenarios,
such as the related-key model, in which a special choice of plaintexts allows to
cancel more than three consecutive ∆sr values. This is demonstrated in the
case of 7.5-round IDEA, where the BD-relation contains 7 terms of the form
∆sr, but a special choice of plaintexts according to a related-key differential
allows to cancel four consecutive ∆sr terms.

Summarizing, it seems that the MitM BD technique is better in the “usual”
scenarios, where the required complexity of the attack is not “too low”. However,
in specific scenarios, and especially in the related-key scenario, the ZitM BD
attack can perform better. It would be nice to combine these two techniques
into a unified framework.

The main open problem left in this paper is to find a “real” attack on the
full 8.5-round IDEA, whose running time is considerably faster than the 2128

complexity of exhaustive search. In our opinion, the 2126.8 attack we described
in this paper (and even the 2126.0 attack presented in [24]) are too marginal to
justify such a claim, and we encourage other researchers to try to improve them.

References

1. Kazumaro Aoki and Yu Sasaki, Preimage Attacks on One-Block MD4, 63-Step
MD5 and More, proceedings of Selected Areas in Cryptography 2008, Lecture Notes
in Computer Science 5381, pp. 103–119, Springer-Verlag, 2009.

2. Eyup S. Ayaz and Ali A. Selçuk, Improved DST Cryptanalysis of IDEA, proceed-
ings of Selected Areas in Cryptography 2006, Lecture Notes in Computer Science
4356, pp. 1–14, Springer-Verlag, 2007.

3. Eli Biham, Alex Biryukov, and Adi Shamir, Miss in the Middle Attacks on IDEA
and Khufu, proceedings of Fast Software Encryption 1999, Lecture Notes in Com-
puter Science 1636, pp. 124–138, Springer-Verlag, 1999.

32

4. Eli Biham, Orr Dunkelman, and Nathan Keller, Related-Key Boomerang and Rect-
angle Attacks, Advances in Cryptology, proceedings of EUROCRYPT 2005, Lec-
ture Notes in Computer Science 3494, pp. 507-525, Springer-Verlag, 2005.

5. Eli Biham, Orr Dunkelman, and Nathan Keller, New Cryptanalytic Results on
IDEA, Advances in Cryptology, proceedings of ASIACRYPT 2006, Lecture Notes
in Computer Science 4284, pp. 412–427, 2006.

6. Eli Biham, Orr Dunkelman, and Nathan Keller, A New Attack on 6-Round IDEA,
proceedings of Fast Software Encryption 2007, Lecture Notes in Computer Science
4593, pp. 211–224, Springer-Verlag, 2007.

7. Eli Biham, Orr Dunkelman, and Nathan Keller, A Unified Approach to Related-Key
Attacks, proceedings of Fast Software Encryption 2008, Lecture Notes in Computer
Science 5086, pp. 73–96, Springer-Verlag, 2008.

8. Alex Biryukov, Jorge Nakahara Jr., Bart Preneel, and Joos Vandewalle, New
Weak-Key Classes of IDEA, proceedings of Information and Communications Secu-
rity 2002, Lecture Notes in Computer Science 2513, pp. 315–326, Springer-Verlag,
2002.

9. Alex Biryukov and Dmitry Khovratovich, Related-key Cryptanalysis of the Full
AES-192 and AES-256, Advances in Cryptology, proceedings of ASIACRYPT
2009, Lecture Notes in Computer Science 5912, pp. 1–18, Springer-Verlag, 2009.

10. Nikita Borisov, Monica Chew, Robert Johnson, and David Wagner, Multiplica-
tive Differentials, proceedings of Fast Software Encryption 2002, Lecture Notes in
Computer Science 2365, pp. 17–33, Springer-Verlag, 2002.

11. Johan Borst, Lars R. Knudsen, and Vincent Rijmen, Two Attacks on Reduced
Round IDEA, Advances in Cryptology, proceedings of EUROCRYPT 1997, Lecture
Notes in Computer Science 1233, pp. 1–13, Springer-Verlag, 1997.

12. David Chaum and Jan-Hendrik Evertse, Cryptanalysis of DES with a Reduced
Number of Rounds: Sequences of Linear Factors in Block Ciphers, Advances
in Cryptology, proceedings of CRYPTO 1985, Lecture Notes in Computer Sci-
ence 218, pp. 192–211, Springer, 1986.

13. Joan Daemen, René Govaerts, and Joos Vandewalle, Cryptanalysis of 2.5 Rounds
of IDEA (Extended Abstract), technical report 93/1, Department of Electrical En-
gineering, ESAT–COSIC, K.U. Leuven, Belgium, 1993.

14. Joan Daemen, René Govaerts, and Joos Vandewalle, Weak Keys for IDEA, Ad-
vances in Cryptology, proceedings of CRYPTO 1993, Lecture Notes in Computer
Science 773, pp. 224–231, Springer-Verlag, 1994.

15. Hüseyin Demirci, Square-like Attacks on Reduced Rounds of IDEA, proceedings of
Selected Areas in Cryptography 2002, Lecture Notes in Computer Science 2595,
pp. 147–159, Springer-Verlag, 2003.

16. Hüseyin Demirci, Ali A. Selçuk, and Erkan Türe, A New Meet-in-the-Middle Attack
on the IDEA Block Cipher, proceedings of Selected Areas in Cryptography 2003,
Lecture Notes in Computer Science 3006, pp. 117–129, Springer-Verlag, 2004.

17. GOST, Gosudarstvennei Standard 28147-89, Cryptographic Protection for Data
Processing Systems, Government Committee of the USSR for Standards, 1989.

18. Philip Hawkes, Differential-Linear Weak Keys Classes of IDEA, Advances in Cryp-
tology, proceedings if EUROCRYPT 1998, Lecture Notes in Computer Science
1403, pp. 112–126, Springer-Verlag, 1998.

19. Philip Hawkes and Luke O’Connor, On Applying Linear Cryptanalysis to IDEA,
Advances in Cryptology, proceedings of ASIACRYPT 1996, Lecture Notes in Com-
puter Science 1163, pp. 105–115, Springer-Verlag, 1996.

33

20. Takanori Isobe, A Single-Key Attack on the Full GOST Block cipher, proceedings of
Fast Software Encryption 2011, Lecture Notes in Computer Science 6733, pp. 290–
305, Springer-Verlag, 2011.

21. Keting Jia, Hongbo Yu, and Xiaoyun Wang, A Meet-in-the-Middle Attack on the
Full KASUMI, IACR Cryptology ePrint Archive, Report 2011/466, 2011.

22. Pascal Junod, New Attacks Against Reduced-Round Versions of IDEA, proceed-
ings of Fast Software Encryption 2005, Lecture Notes in Computer Science 3557,
pp. 384–397, Springer-Verlag, 2005.

23. John Kelsey, Bruce Schneier, and David Wagner, Key-Schedule Cryptoanalysis of
IDEA, G-DES, GOST, SAFER, and Triple-DES, Advances in Cryptology, pro-
ceedings of CRYPTO 1996, Lecture Notes in Computer Science 1109, pp. 237–251,
Springer-Verlag, 1996.

24. Dmitry Khovratovich, Gaëtan Leurent, and Christian Rechberger, Amplified
Independent-Bicliques: Cryptanalysis of Full IDEA, private communication, 2011.

25. Xuejia Lai, James L. Massey, and Sean Murphy, Markov Ciphers and Differen-
tial Cryptanalysis, Advances in Cryptology, proceedings of EUROCRYPT 1991,
Lecture Notes in Computer Science 547, pp. 17–38, Springer-Verlag, 1992.

26. Willi Meier, On the Security of the IDEA Block Cipher, Advances in Cryptol-
ogy, proceedings of EUROCRYPT 1993, Lecture Notes in Computer Science 765,
pp. 371–385, Springer-Verlag, 1994.

27. Jorge Nakahara Jr., Paulo S.L.M. Barreto, Bart Preneel, Joos Vandewalle, and Hae
Y. Kim, SQUARE Attacks Against Reduced-Round PES and IDEA Block Ciphers,
IACR Cryptology ePrint Archive, Report 2001/068, 2001.

28. Jorge Nakahara Jr., Vincent Rijmen, Bart Preneel, and Joos Vandewalle, The
MESH Block Ciphers, proceedings of Information Security Applications, WISA
2003, Lecture Notes in Computer Science 2908, pp. 458–473, Springer-Verlag, 2004.

29. Jorge Nakahara Jr., Bart Preneel, and Joos Vandewalle, The Biryukov-Demirci
Attack on Reduced-Round Versions of IDEA and MESH Ciphers, proceedings of
Australasian Conference on Information Security and Privacy 2004, Lecture Notes
in Computer Science 3108, pp. 98–109, Springer-Verlag, 2004.

30. NESSIE, Performance of Optimized Implementations of the NESSIE
Primitives, NES/DOC/TEC/WP6/D21/a, available on-line at
http://www.nessie.eu.org/nessie.

31. H̊avard Raddum, Cryptanalysis of IDEA-X/2, proceedings of Fast Software En-
cryption 2003, Lecture Notes in Computer Science 2887, pp. 1–8, Springer-Verlag,
2003.

32. Xiaorui Sun and Xuejia Lai, The Key-Dependent Attack on Block Ciphers, Ad-
vances in Cryptology, proceedings of ASIACRYPT 2009, Lecture Notes in Com-
puter Science 5912, pp. 19–36, 2009.

33. 3rd Generation Partnership Project, Technical Specification Group Services and
System Aspects, 3G Security, Specification of the 3GPP Confidentiality and In-
tegrity Algorithms; Document 2: KASUMI Specification, V.3.1.1, 2001.

34. Lei Wei, Christian Rechberger, Jian Guo, Hongjun Wu, Huaxiong Wang, and San
Liang, Improved Meet-in-the-Middle Cryptanalysis of KTANTAN, IACR Cryptol-
ogy ePrint Archive, Report 2011/201, 2011.

34

