
Superposition Attacks on Cryptographic Protocols

Ivan Damg̊ard?, Jakob Funder, Jesper Buus Nielsen??, Louis Salvail? ? ?

Dept. of Computer Science, Aarhus University, Université de Montreal

Abstract. Attacks on cryptographic protocols are usually modeled by allowing an adversary to ask
queries to an oracle. Security is then defined by requiring that as long as the queries satisfy some
constraint, there is some problem the adversary cannot solve, such as compute a certain piece of
information. Even if the protocol is quantum, the queries are typically classical. In this paper, we
introduce a new model of quantum attacks on protocols, where the adversary is allowed quantum access
to the primitive, i.e, he may ask several classical queries in quantum superposition. This is a strictly
stronger attack than the standard one, and we consider the security of several primitives in this model.
We show that a secret-sharing scheme that is secure with threshold t in the standard model is secure
against superposition attacks if and only if the threshold is lowered to t/2. This holds for all classical
as well as all known quantum secret sharing schemes. We then consider zero-knowledge and first show
that known protocols are not, in general, secure in our model by designing a superposition attack on the
well-known zero-knowledge protocol for graph isomorphism. We then use our secret-sharing result to
design zero-knowledge proofs for all of NP in the common reference string model. While our protocol is
classical, it is sound against a cheating unbounded quantum prover and computational zero-knowledge
even if the verifier is allowed a superposition attack. Finally, we consider multiparty computation and
give a characterization of a class of protocols that can be shown secure, though not necessarily with
efficient simulation. We show that this class contains non-trivial protocols that cannot be shown secure
by running a classical simulator in superposition.

1 Introductiont

Attacks on cryptographic protocols are usually modeled by allowing an adversary to query an oracle
that represents the primitive he attacks, for instance the adversary specifies a message he wants to
have signed, a challenge he wants a prover to answer, or a subset of players he wants to corrupt
Security is then defined by requiring that as long as the queries satisfy some constraint, there is
some problem the adversary cannot solve, such as compute a certain piece of information.

Several previous works consider what happens to security of classical protocols if we allow the
adversary to be quantum. The model usually considered is that the adversary is now a quantum
machine, but otherwise plays exactly the same game as in a normal attack, i.e., he still communicates
classically with the protocol he attacks. One example of this is the work of Watrous [Wat06], showing
that a large class of zero-knowledge protocols are also zero-knowledge against a quantum verifier.

In this paper, we introduce a new model of quantum attacks on classical as well as quantum
cryptographic protocols, where the adversary is allowed to ask several classical queries to the
oracle in quantum superposition. In more concrete terms, we ask, for multiparty protocols: what
happens if the adversary can be in superposition of having corrupted several different subsets? or,
for zero-knowledge protocols: what happens if a quantum verifier can be in superposition of having

? The first three authors acknowledge support from the Danish National Research Foundation and The National
Science Foundation of China (under the grant 61061130540) for the Sino-Danish Center for the Theory of Interactive
Computation, within which part of this work was performed; and also from the CFEM research center (supported
by the Danish Strategic Research Council) within which part of this work was performed.

?? Partially supported by European Research Council Starting Grant 279447. Partially supported by DFF Starting
Grant 10-081612.

? ? ? Supported by Quebec’s INTRIQ, Canada’s NSERC strategic program FREQUENCY, and Canada’s NSERC
discovery grant.

issued several different challenges to the prover, and receive the responses in superposition? As we
will argue below, we believe such superposition attacks to be a valid physical concern, but they
also form a very natural generalization from a theory point of view: in the literature on black-
box quantum computing, quantum black-box access to a function is usually defined by extending
classical black-box access such that queries are allowed to contain several inputs in superposition.
Our superposition attacks extend conventional attacks in the same way.

There is recent work [BDF+11,Zha12b] that considers the random oracle model and shows
security of various schemes even if the adversary has quantum access to the random oracle. These
result are quite different from ours in that they are are concerned with allowing everything “in the
adversary’s brain” to be quantum, rather than considering his communication with the rest of the
world as we do. To the best of our knowledge our work is the first to consider adversaries that have
quantum access to the cryptographic primitive or protocol under attack 1 but we emphasize that
in independent work [Zha12a,BZ12] superposition attacks are also considered, on pseudorandom
functions and message authentication codes.

At first sight, superposition attacks may seem rather exotic. However, it is not hard to see that
in several scenarios, it is very natural to consider these attacks:

Consider first protocols that handle quantum data, such as in several previous works on quantum
secret sharing and multiparty computation (e.g., Ben-Or et al. [BCG+05]). Such a protocol requires
players to communicate quantum information and keep throughout the game a joint entangled
quantum state that involves all the players. If the players can do this, we should assume that the
adversary can do something of similar technological difficulty. It therefore seems fair to allow the
adversary to be in superposition of having interacted with different subsets of players. Note here that
“interacting with a player” does not have to be a macroscopic process: the adversary could attempt
to communicate with the player in a way that is physically different from what the implementation
of the protocol expected, and in this way get more information about the private state of the player
than he was supposed to. For instance, the effect of sending on a different frequency or a different
number of particles than expected may be hard to predict and may depend heavily on the way
the protocol is implemented. Several known attacks on quantum key distribution work in this way.
Now, if the communication defined by the protocol is quantum in the first place, we see no reason
why such an attack cannot be performed in superposition against different players.

Second, what about classical protocols? One might think that here, superposition attacks cannot
be mounted. The argument would be that since honest players are classical, they would “automati-
cally” do a measurement of anything they receive, thus forcing a collapse of any quantum state they
are given. However, this may be a dangerous assumption in the future, considering the fact that
classical computing equipment becomes smaller and approaches the quantum limit. If an adversary
captures such a device containing a secret key, he may be able to cool it down, for instance, and get
some quantum effects to happen during communication. On top of this, even honest players may
in the future use quantum computing and communication, but may sometimes need to execute a
classical protocol. Having to always do this on separate classical hardware would be an unpleasant
limitation.

So if we cannot be sure that hardware always behaves classically, perhaps an easy solution would
be to require explicitly in the protocol that every incoming message is measured? However, such
an idea seems problematic from a practical point of view: an instruction to measure an incoming
message makes little sense to someone implementing the protocol on a classical machine, so we
have to trust that someone else responsible for the physical implementation will put equipment

1 a preliminary announcement of some of our results was made in an invited talk by one of the authors at the ICITS
2011 conference.

2

in place to do the measurement. Moreover, making sure the measurement is actually done is not
as straightforward as one might think: most physicists today subscribe to an interpretation of
quantum mechanics where the belief is that the wave function never actually collapses even when
a measurement is done. Instead, information is transferred to (a part of) the environment and this
is experienced as a collapse to a party who does not have access to the environment. In our case,
this means that if the adversary were to get access to this environment, then from his point of view
no measurement took place. Hence, equipment that seeks to enforce that a measurement is done
from the adversary’s point of view must in some sense keep information away from the adverary,
and this may be non-trivial if we are dealing with microscopic equipment.

In the face of these problems, we believe the most natural and elegant solution is to ask for pro-
tocols that are secure regardless of whether any measurement is performed on incoming messages,
which exactly means we need security even if the adversary has quantum access to the primitive.

Contributions of the paper. We first show that any classical secret-sharing scheme that is perfectly
secure with threshold t in the standard model is perfectly secure against superposition attacks if
and only if the adversary’s superposition is constrained to contain subsets of size at most t/2. If this
condition is not satisfied, not only does perfect security fail, we show examples where the adversary
may even learn the secret with certainty. We also consider quantum secret sharing schemes and
show that the same results hold for a large class of schemes derived from classical linear secret
sharing, this includes essentially all known schemes.

We then consider (classical) zero-knowledge protocols and first give strong evidence that known
protocols are not, in general, secure against superposition attacks. We give such an attack on the
well-known graph isomorphism protocol, showing how to extract from the prover the number of
fixed points of the prover’s secret permutation. A simple reduction shows that if this attack could
be simulated, then there is an efficient quantum algorithm computing the isomorphism between
two graphs, as long as the isomorphism is unique. Thus the protocol can only be zero-knowledge if
graph isomorphism in most cases is easy on a quantum computer.

We then use our result on classical secret-sharing to construct zero-knowledge proofs for all of
NP in the common reference string (CRS) model. While our protocol is classical, it is sound against a
cheating unbounded quantum prover and computational zero-knowledge against a quantum verifier,
even if the verifier is allowed a superposition attack2. Since our simulation is straight-line, the
protocol is also secure under concurrent composition. We stress that our construction does not
make assumptions beyond what we need to protect against standard attacks, nor is it less efficient
than known constructions. Therefore this construction is an affirmative answer to our question
above: we can indeed have protocols that are secure, regardless of whether incoming messages are
measured or not.

Finally, we consider classical multiparty computation and we define a UC-style model for static
and passive superposition attacks on classical MPC protocols. Given our result on secret-sharing
schemes, it is natural to speculate that classical MPC protocols that are secure against t corruptions,
are secure against superposition attacks corrupting t/2 players. The situation turns out to be more
complicated, however: We show that for the model that gives the adversary the most power (and
hence is the most hostile to the simulator), simulation based security is not possible at all. However,

2 Since we use the CRS model, the reader may ask why we do not use existing protocols for non-interactive zero-
knowledge (NIZK), where the prover just sends a single message to the verifier. In this way, the adversary would
not get a chance to do a superposition attack. However, the most general assumption under which NIZK is known
to be possible with an efficient prover is existence of one-way trapdoor permutations. They in turn are only known
to be realizable under assumptions that are easily broken by a quantum adversary, such as factoring. Therefore
we do not consider NIZK a satisfactory solution.

3

putting a natural constraint on the adversary, we are able to give a characterization of a class of
protocols that can be shown secure, though not necessarily with efficient simulation. We show
that this class contains non-trivial protocols, where by non-trivial, we mean that although the
protocol is secure against a classical attack, we can show that it cannot be proved secure against
a superposition attack by simply running the classical simulator in superposition. The simulator
that does exist is in some sense “more quantum” .

Whether more general positive results hold in this constrained model remains an open question.
Likewise, the very natural question of security of quantum multiparty computation protocols against
superposition attacks remains open. Note, however, that existing work on quantum multiparty
computation is typically based on quantum secret sharing, where the adversary’s choice of subset
to corrupt is classical. The negative part of our result on secret sharing described above shows that
such protocol are not necessarily secure against superposition attacks as they stand.

2 Preliminaries

We will model players in protocols in two different ways: when we are not interested in computa-
tional limitations on parties, a player will be specified by a series of unitary transforms where the
i’th transform is done on all qubits available to the party, after the i’th message has been received
(in the form of a quantum register), and then some designated part of the storage is sent as the
next outgoing message. We are limiting ourselves to perfect unitary transformation of the party’s
register because we are exactly considering the situation where an attacker manages to prevent
coupling between the party and the environment.

In cases where we want to bound the computational complexity of a player, we consider players
to be an infinite family of interactive quantum circuits, as in the model from [FS09], and then the
complexity is the circuit size.

2.1 Running functions in superposition

Consider any function, f : X → Y and a register of qubits, |ψ〉 =
∑
x

αx|x〉|0〉 ∈ HX ⊗HY , where

dim(HX) = |X| and dim(HY) = |Y |. To run f on |ψ〉 means to apply the unitary transforma-

tion, Uf , such that Uf
∑
x

αx|x〉|0〉 =
∑
x

αx|x〉|f(x)〉. In general the register in HY , called the

response register, can contain any superposition of values, not just 0. In this case, we have that,

Uf
∑
x,a

αx,a|x〉|a〉 =
∑
x,a

αx,a|x〉|f(x)⊕ a〉 where ⊕ is the bitwise xor.

3 Secret sharing

In (classical) secret sharing n parties are sharing some secret value s ∈ S using randomness r ∈ R,
where S and R are the sets of possible secrets and randomness. We name the parties P1, . . . , Pn.
Let [n] = {1, . . . , n}. Each party, Pi, receives a share vi(s, r) ∈ {0, 1}k, also called his private view
. That is, vi : S×R → {0, 1}k.

For A ⊂ [n], let vA(s, r) = {vi(s, r)}i∈A be the string containing the concatenation of views for
parties Pi with i ∈ A. For convenience in the following we assume that each such string is padded,
so that they have the same length regardless of the size of A. That is, vA : S × R → {0, 1}t. An
adversary structure G is a family of subsets G ⊂ 2[n]. A secret sharing scheme is perfectly secure
against classical G-attacks if for any A ∈ G, the distribution of vA(s, r) does not depend on s. The

4

adversary structure of the secret sharing scheme is the maximal F ⊆ 2[n] for which the scheme is
perfectly secure against F attacks. We will only consider so-called perfect secret-sharing schemes,
where it holds for all A 6∈ G that vA(s, r) uniquely determines the secret s. I.e., in a perfectly
secure, perfect secret-sharing scheme a set of shares either carry no information on the secret or
fully determines the secret.

We will model any passive attack on the scheme as a one-time query to an corruption oracle.
The corruption oracle for a specific run of a secret sharing scheme O(s, r, A) = vA(s, r) is the
function that for a specific choice of secret, randomness and set of parties, returns the private view
of those parties. That is, O : S⊗R⊗ F → {0, 1}t.

3.1 Two-party bit sharing example

Before we present the full model for secret sharing we start with a small example. We consider the
case of 2 parties sharing a single bit, b ∈ {0, 1}, using a random bit, r ∈ {0, 1}. Here [n] = {1, 2},
F = {(1), (2)}, v1(b, r) = b⊕ r, v2(b, r) = r.

This scheme is of course secure against a classical attack, which we can model by giving an
adversary one-time access to an oracle that will return one share (r or r⊕ b) on request. However,
it is well known from the Deutch-Jozsa algorithm that given quantum access to such an oracle, one
can compute the xor of the two bits from only one query. Hence the scheme is not secure against
a superposition attack. In the following we consider what happens in the general case.

3.2 Model for secret sharing

We will now give the full technical description of the model for superposition attacks on general
secret sharing. To do this we first consider the state spaces needed to run the protocol and the
attack on the protocol. First is the space that contains the shares for all the parties, Hparties. The
state in the register for this space is unchanged throughout the attack and is

|parties〉p =
∑

s∈S,r∈R

√
ps
√
pr
∣∣s, r, v[n](s, r)

〉
p

=
∑

s∈S,r∈R

√
ps
√
pr|s, r〉

n⊗
i=1

|vi(s, r)〉 ,

where |s, r〉 is the purification of the secret and randomness choice. This is purely for technical
reasons and does not matter for the adversary as he never sees it (and hence they might as well be
considered measured). Secondly is the space for the environment, Henv, which the adversary can
use to choose his query and use as potential auxiliary register. The initial state for the environment
is a general (pure) state,

|ψ〉e =
∑
x

αx|x〉e ∈ Henv ,

where x is in some set of arbitrary, but finite size. We will ommit this for readability.
Finally is the space holding the adversary’s query to the corruption oracle, Hquery. This is initially
a ’blank’ state,

|ω〉q = |0, 0〉q ∈ Hquery.

The space for the entire model is hence, Htotal = Hparties ⊗Henv ⊗Hquery, and the intial state is,

|init〉t =
∑

s∈S,r∈R

√
ps
√
pr
∣∣s, r, v[n](s, r)

〉
p
⊗
∑
x

αx|x〉e ⊗ |0, 0〉q ∈ Htotal .

The attack will be defined by two operations and an adversary structure, F . First the adversary
needs to construct his query for the oracle. This includes choosing the superposition of subsets he

5

will corrupt and associated values for the response registers. This is an arbitrary unitary operation.
We will denote it, Uadv,F

query ,

Uadv,F
query : Henv ⊗Hquery → Henv ⊗Hquery .

After this unitary operation the state is

|query〉t = Uadv,F
query |init〉t

=
∑

s∈S,r∈R

√
ps
√
pr
∣∣s, r, v[n](s, r)

〉
p
⊗

∑
x,A∈F,a∈{0,1}t

αx,A,a|x〉e ⊗ |A, a〉q

where we assume it is the identity on Hparties. Next the oracle, O(s, r, A), is run. Let

UO : Hparties ⊗Hquery → Hparties ⊗Hquery

denote the unitary applying this function. The state afterwards is UO|query〉t, which equals∑
s∈S,r∈R

√
ps
√
pr
∣∣s, r, v[n](s, r)

〉
p
⊗

∑
x,A∈F,a∈{0,1}t

αx,A,a|x〉e ⊗ |A, a⊕ vA(s, r)〉q

where we assume UO is padded with appropriate identities. Consider the final state the adversary
sees for a specific secret, s,

ρadv,Fs =
∑
r∈R

pr
∣∣ψadv,F
r

〉〈
ψadv,F
r

∣∣ ,
where |ψadv,F

r 〉 =
∑

x,A∈F,a∈{0,1}t
αx,A,a|x〉e ⊗ |A, a⊕ vA(s, r)〉q.

Definition 1. A secret sharing scheme S is perfectly secure against superposition F -attacks if,
and only if, for all unitary matrices, Uadv,F

query : Henv ⊗Hquery → Henv ⊗Hquery and all possible pairs

of inputs, s, s′ ∈ S it holds that ρadv,Fs = ρadv,Fs′ .

3.3 (In)security against Superposition Attacks on Classical Secret-Sharing

For an adversary structure F , we define F 2 = {A | ∃B,C ∈ F : A = B ∪ C}.

Theorem 1. Let G be the classical adversary structure for S. S is perfectly secure against super-
position F -attacks if and only if F 2 ⊆ G.

Proof. For the forward direction, consider the adversary’s final state,

ρadvs =
∑
r∈R

pr|ψadv
r 〉〈ψadv

r |,

which equals ∑
r,x,x′,A,A′,a,a′

prαx,A,aα
∗
x′,A′,a′ |x〉e

〈
x′
∣∣
e
⊗ |A, a⊕ vA(s, r)〉q

〈
A′, a′ ⊕ vA′(s, r)

∣∣
q
.

Now, for any fixed A, A′, a, a′ and s, consider the matrix∑
r∈R

pr|A, a⊕ vA(s, r)〉q
〈
A′, a′ ⊕ vA′(s, r)

∣∣
q
.

6

The crucial observation now is that this matrix is in 1-1 correspondence with the joint distribution
of vA(s, r) and vA′(s, r). Namely, its entries are indexed by pairs of strings (α, β), where α, β are
strings of the same length. And furthermore the (α, β)’th entry is the probability that the events
vA(s, r) = α⊕ a and vA′(s, r) = β ⊕ a′ occur simultaneously, where the probability is taken over a
random r. Now, if F 2 ⊆ G, we have that S is perfectly secure against classical F 2-attacks. Therefore
the joint distribution of vA(s, r) and vA′(s, r) does not depend on s, consequently each matrix∑

r∈R
pr|A, a⊕ vA(r, s)〉q

〈
A′, a′ ⊕ vA′(s, r)

∣∣
q

is independent of s as well. Hence ∀s, s′ ∈ S : ρadv,Fs = ρadv,Fs′ as required.
For the only-if part, assume for contradiction that F 2 6⊆ G, i.e., there exist A0, A1 such that

A0∪A1 6∈ G. It follows that a secret shared using S is uniquely determined from shares in A0∪A1.
Then consider the query |ωα〉 = (|A〉|0〉+ |A′〉|0〉)/

√
2. By the same computation as above, we see

that ρadvs contains a submatrix of form
∑
r∈R
|aA ⊕ vA(s, r)〉〈aA′ ⊕ vA′(s, r)|, that corresponds to the

joint distribution of shares in A and A′. But since the secret is uniquely determined from these
shares, it follows that this submatrix is different for different secrets, and hence we get that there
exists a measurement with non-zero bias towards the secret, and so S is not perfectly secure against
superposition F -attacks. This is exactly the result we saw in the small example in Section 3.1. ut

Alternative models for secret sharing Here we take a closer look at how the response register in
handled during a superposition attack: When the adversary runs a classical component in super-
position, and sends it a message, then the reply will in general be a superposition, nevertheless the
reply might be computed in different ways. In general quantum information processing, the stan-
dard assumption is that the result is xor’ed into a response register a supplied along with the input,
e.g., if the component computes a function f , then on input |x〉|a〉, the output is |x〉|a⊕ f(x)〉. This
ensures that the components acts unitarily when the input is quantum. We call this the supplied
response register model.

When considering the case of an adversary attacking a protocol one may be able to argue
that the adversary will not have enough control to be able to decide the a priori content of the
response register. It may be more reasonable to assume that the component the adversary talks to
will create the response register and return it to the adversary. We model this setting of created
response registers by restricting the more general setting by allowing only a = 0, in which case the
adversary will always receive |x〉|f(x)〉. Note that Theorem 1 applies in this setting as well.

3.4 Attacks on Secret Sharing

Theorem 1, tells us that we cannot have perfect security if the condition F 2 ⊆ G is violated, but
nothing about how much information the adversary can actually gain on the secret in this case. Of
course, if F 6⊆ G, the adversary can trivially learn the secret. But if F ⊆ G one might hope that the
adversary only learns a small amount of information, and even that this could become negligible
by increasing the amount of randomness used to create the shares. However, in the lemma below
we show that, under a simple assumption on the secret sharing scheme, an attacker can distinguish
between two possible secrets with considerable bias. The attack works even in the restricted setting
of created response registers.

Lemma 1. Let G be the classical adversary structure for S. If there exist two subsets, A0, A1 ∈ G
such that (1) A0 ∪ A1 /∈ G and (2) any secret, s ∈ S, combined with the shares in A0 (A1)

7

uniquely determine the choice of randomness, r ∈ R, then the following holds: For any two secrets
s, s′ ∈ S : s 6= s′, there exists a query (with a = 0) that will allow an adversary to distinguish
between s and s′ with probability pguess, where pguess ≥ 3

4 .

Proof. The adversary will need no auxiliary register, so let his state simply be the query register.
He constructs the following (pure state) query

|ω〉 =
1√
2

(|A0, 0〉+ |A1, 0〉) ,

where |ω〉 ∈ Hquery and A0 6= A1 are subsets chosen according to the lemma. The final state the
adversary sees for different secrets is then

ρadvs =
∑
r∈R

pr|ψadv
r 〉〈ψadv

r | ,

where |ψadv
r 〉 =

∑
A∈{A0,A1}

1√
2
|A, vA(s, r)〉q and r ∈ R.

It is well-known that the adversary’s probability of distinguishing between two such states, ρsadv
and ρs

′
adv, is pguess = 1

2 + 1
4 × |ρ

s
adv − ρs

′
adv|tr, where | . . . |tr denotes the trace norm. Define the

difference between the two states as the matrix ∆.

∆ = ρsadv − ρs
′
adv

=
1

2

∑
A,A′∈{A0,A1},r∈R

pr|A, vA(s, r)〉q
〈
A′, vA′(s, r)

∣∣
q
− 1

2

∑
A,A′∈{A0,A1},r∈R

pr
∣∣A, vA(s′, r)

〉
q

〈
A′, vA′(s

′, r)
∣∣
q

=
1

2

∑
A,A′∈{A0,A1}

|A〉
〈
A′
∣∣(∑

r∈R
pr|vA(s, r)〉q〈vA′(s, r)|q −

∑
r∈R

pr
∣∣vA(s′, r)

〉
q

〈
vA′(s

′, r)
∣∣
q

)
.

Since the distribution of vA(s, r) (for A ∈ {A0, A1}) is independent of the secret we have that for
all s, s′ ∈ S ∑

r∈R
|vA(s, r)〉〈vA(s, r)| =

∑
r∈R

∣∣vA(s′, r)
〉〈
vA(s′, r)

∣∣,
which means we only need to consider A,A′ ∈ {A0, A1} where A 6= A′. So,

∆ =
1

2
|A0〉〈A1| ⊗

(∑
r∈R

pr|vA0(s, r)〉q〈vA1(s, r)|q −
∑
r∈R

pr
∣∣vA0(s′, r)

〉
q

〈
vA1(s′, r)

∣∣
q

)

+
1

2
|A1〉〈A0| ⊗

(∑
r∈R

pr|vA1(s, r)〉q〈vA0(s, r)|q −
∑
r∈R

pr
∣∣vA1(s′, r)

〉
q

〈
vA0(s′, r)

∣∣
q

)
.

Now define the two submatrices,

S =
∑
r∈R

pr|vA0(s, r)〉q〈vA1(s, r)|q −
∑
r∈R

pr
∣∣vA0(s′, r)

〉
q

〈
vA1(s′, r)

∣∣
q

(1)

S† =
∑
r∈R

pr|vA1(s, r)〉q〈vA0(s, r)|q −
∑
r∈R

pr
∣∣vA1(s′, r)

〉
q

〈
vA0(s′, r)

∣∣
q

8

such that ∆ is the 2× 2t by 2× 2t matrix

∆ =
1

2

(
0 S
S† 0

)
. (2)

It is well-known that if ∆ is of the form (2) and 1
2S has singular values s1 ≥ · · · ≥ sp then ∆

has eigenvalues ±s1, . . . ,±sp. Since ∆ is Hermitian, the trace norm is the sum of the absolute
eigenvalues. From this we conclude that |∆|tr = |S|tr and we can reduce the problem to that of
finding the trace norm of S. Let

S = Ms −Ms′

Ms =
∑
r∈R

pr|vA0(s, r)〉〈vA1(s, r)| .

Note that for the state to be normalized it must be that∑
i,j∈{0,1}t

[Ms]i,j =
∑

i,j∈{0,1}t,r

prδvA0
(s,r),iδvA1

(s,r),j = 1 .

Now, define the matrix, M̃s,

M̃s =
∑
r∈R
|vA0(s, r)〉〈vA1(s, r)|+

2t−1∑
i=|R|

|i〉〈i| .

It’s straightforward to check that M̃sM̃
T
s = I,∑

r∈R
|vA0(s, r)〉〈vA1(s, r)|+

2t−1∑
i=|R|

|i〉〈i|

×
∑
r′∈R

∣∣vA1(s, r′)
〉〈
vA0(s, r′)

∣∣+

2t−1∑
i=|R|

|i〉〈i|

=
∑
r,r′∈R

|vA0(s, r)〉
〈
vA0(s, r′)

∣∣〈vA1(s, r)|
∣∣vA1(s, r′)

〉
+

2t−1∑
i=|R|

|i〉〈i|

=
∑
r∈R
|vA0(s, r)〉〈vA0(s, r)|+

2t−1∑
i=|R|

|i〉〈i| = I ,

where we used that both |vA0(s, r)〉 and |vA1(s, r)〉 has a 1-1 correspondence to r ∈ R (for fixed s).

Note that
2t−1∑
i=|R|

|i〉〈i| is simply used to pad the subspace to ensure that the matrix is unitary. It will

not be of any importance in the following calculations and can simply be ignored. It is well-known
that

|S|tr = maxU{| tr(SU)|} ,
where U is any unitary matrix. That is, any specific matrix U is going to give a lower bound on
the trace norm. Both M̃s and M̃T

s are such unitary matrices,

|S|tr = maxU{| tr(SU)|} ≥ | tr(SM̃T
s)|

= | tr((Ms −Ms′)M̃
T
s)|

= |
∑

i,j∈{0,1}t
[Ms]i,j [M̃s]i,j −

∑
i,j∈{0,1}t

[Ms′]i,j [M̃s]i,j |

= |1−
∑

i,j∈{0,1}t
[Ms′]i,j [M̃s]i,j | .

9

Now note that∑
i,j∈{0,1}t

[Ms′]i,j [M̃s]i,j =
∑

i,j∈{0,1}t,r,r′∈R

pr × δvA0
(s,r),i × δvA1

(s,r),j × δvA0
(s′,r′),i × δvA1

(s′,r′),j .

However, the pair (vA0(s, r), vA1(s, r)) uniquely defines s and hence the sum is 0 unless s = s′.
Therefore for s 6= s′ : |S|tr ≥ 1. Putting it together we get,

pguess =
1

2
+

1

4
|∆|tr =

1

2
+

1

4
|S|tr ≥

1

2
+

1

4
× 1 =

3

4
,

which completes the proof. ut

An example of a scheme satisfying the conditions in the above lemma is the Shamir secret
sharing scheme that is classically secure against t corrupted players. Here any subset of t players
combined with the secret will give t + 1 points on a polynomial of degree at most t and hence
uniquely determine the choice of randomness.

4 Quantum Secret Sharing

In this section we study the security of quantum secret sharing against superposition attacks. The
situation turns out to be more complicated than for the classical case, and security depends on the
exact model for what the adversary is allowed to do.

The model we will use for quantum secret sharing is that a secret is a quantum state |sec〉 =∑
s∈S αs|s〉, i.e., some superposition over the possible classical choices of secret. The secret sharing

scheme is then a unitary transform that maps each basis state |s〉 plus an ancilla of appropriate
size to a state

|Φs〉 =
∑

v1,...,vn∈{0,1}k
αv1,...,vn |v1〉 · · · |vn〉 ,

where we think of the content of the i’th register as the share of the i’th player. A quantum secret
sharing scheme is secure against adversary structure F , if any subset of shares corresponding to a
subset A ∈ F contains no information on the secret state, but any subset of shares B where B 6∈ F
allows reconstruction of the secret. It follows from the no-cloning theorem that security can only
hold if F has the property that for any B 6∈ F , the complement B̄ is in F .

An example of quantum secret sharing can be derived from Shamir’s secret sharing scheme.
Here we assume that n = 2t + 1, and the adversary structure contains all subsets of size at most
t, and S = Fp for the finite field Fp. We then define |Φs〉 = 1√

M

∑
f∈Ps

|f(1)〉 · · · |f(n)〉, where Ps is

the set of polyomials of degree at most t with f(0) = s, and M the number of such polynomials.

There are several ways to define what it means that an adversary gets access to some of the
shares. The simplest form of attack we consider is called a share capture attack, where the adversary
essentially steals a subset of the shares (or subsets of shares in superposition). Since it seems natural
to assume that some evidence of the absence of shares would be left after this, we assume that the
players whose shares are captured are left with erasure symbols ⊥ instead of shares. Some notation
to describe this more formally: we will let v = v1, . . . , vn in the following, and |vA〉 will stand for
the basis state |vA〉 = |w1〉 · · · |wn〉, where wi = vi if i ∈ A and wi = ⊥ otherwise. Likewise, for the
Shamir based example, we let |f(A)〉 = |u1〉 · · · |un〉 where ui = f(i) if i ∈ A and ui = ⊥ otherwise.

In an F -share capture attack, a query
∑

A∈F αA|A〉|⊥〉 · · · |⊥〉 is prepared, where the last part
of the register will contain the captured shares. Then a unitary transform U is executed on the

10

shares and the adversary’s query. U is specified by the following action on basis states for shares
and player subsets:

U(|v1〉 · · · |vn〉|A〉|⊥〉 · · · |⊥〉) = |vĀ〉|A〉|vA〉 .

We define U to act as the identity on all basis vectors not involved in the above expression. This
clearly makes U be unitary. In the actual attack,

U(|Φs〉
∑
A∈F

αA|A〉|⊥〉 · · · |⊥〉)

is computed and the adversary is given the last two registers, containing the corrupted set(s) and
the captured shares. We say that the scheme is secure against F -share capture attacks if it always
holds that the state the adversary gets is independent of |s〉. By linearity, security trivially extends
to superpositions over different |s〉’s.

Proposition 1. Any quantum secret sharing scheme that is secure for adversary structure F is
also secure against F -share capture attacks.

Proof. The state the adversary gets after the attack can be computed by taking the global state

U(|Φs〉
∑
A∈F

αA|A〉|⊥〉 · · · |⊥〉)

and tracing out the part that the players keep. Note that this part is a superposition over basis
states of form |vĀ〉. From such a state, the set A is determined by the positions of the ⊥’s. Note
also that after we trace out the players, their part can be assumed to be measured without loss of
generality. This will therefore collapse the adversary’s superposition over subsets to some particular
choice of A. It follows that the attack is equivalent to choosing subset A ∈ F with probability |αA|2
and asking for shares in this subset only. This reveals no information by the assumed security. ut

A more interesting result emerges if we allow the adversary slightly more power. We will consider
what we call a capture-and-replace attack. Here, the adversary prepares a query as before and U
is executed. Now, the adversary does some local computation. For convenience and without loss of
generality for our result, we assume that a unitary transform V is applied by the adversary to the
shares captured |vA〉a (where a denotes the registers held by the corrupted players) together with
an ancilla in state |0〉z: V |vA〉a|0〉z = |φA〉az. Finally, the adversary keeps register Z before U is
executed again on the remaining registers. Note that U = U †, so the second transformation puts
the shares back in place. It seems hard to argue that the adversary would be limited to only one
application of U , so there is good motivations to consider this attack. We talk about F -capture-and-
replace attacks in the same way as above. It is easy to see that capture attacks are a special case
of capture-and-replace attacks. In this more general case however, it turns out that superposition
attacks help the adversary, and for the Shamir based scheme, we get a result similar to what we
have for classical secret sharing. It turns out that for a successful attack, it suffices to request the
shares of A and A′ in superposition such that #(A∪A′) > t and where V simply copies classically
the shares returned by the query.

Theorem 2. Let G be the adversary structure containing sets of at most t, for which the Shamir
based quantum secret sharing scheme is perfectly secure. Then, the scheme is perfectly secure against
F -capture-and-replace attacks in superposition if and only if F 2 ⊆ G.

11

Proof. Let us first prove the if part of the statement: If F 2 ⊆ G then the Shamir based quantum
secret sharing scheme is perfectly secure against F -capture-and-replace attacks. We first consider
the global state |Ψ̃s〉 after the attack, assuming basis state |s〉 has been shared, which using the
above notation is: ∣∣∣Ψ̃s〉 =

1√
M

∑
f∈Ps,A∈F

αA(U † ⊗ 11z)
∣∣f(Ā)

〉
ā
|A〉 ⊗ V |f(A)〉a|0〉z

=
1√
M

∑
f∈Ps,A∈F

αA(U † ⊗ 11z)
∣∣f(Ā)

〉
ā
|A〉
∣∣φf(A)

〉
az

:=
1√
M

∑
A∈F

αA|A〉
∣∣∣Ψ̃A,s〉

āaz
.

Let us denote by p = a ∪ ā the register containing the shares of all players where the shares in a
are possibly corrupted by the adversary when the transform V was applied. To get the state ρs
actually held by the adversary, we trace out the part held by the players:

ρs = trp

(∣∣∣Ψ̃s〉〈Ψ̃s∣∣∣)
=

1

M

∑
A,A′∈F

αAα
∗
A′ |A〉

〈
A′
∣∣⊗ trp

(∣∣∣Ψ̃A,s〉〈Ψ̃A′,s∣∣∣
pz

)
. (3)

We now compute the partial trace explicitly. As usual, we suppose that each share belongs to the
same finite field S than the secret s. In the following, we assume #S = q and that all polynomials
in Ps are of degree d: #Ps = qd. Let {|e〉}e∈Sn be the computational orthonormal basis for Hp

∼=
Ha⊗Hā

∼= Ha′⊗Hā′ . For e = e1, e2, . . . , en ∈ Sn and A = (i1, i2, . . . , it) an ordered subset of [n], we
denote by eA := ei1 , ei2 , . . . , eit the substring of e corresponding to its elements located at indices
in A. Let a = |A| and a′ = |A′|. Then, we have:

trp

(∣∣∣Ψ̃A,s〉〈Ψ̃A′,s∣∣∣
pz

)
=

1

M
trp

 ∑
f,f ′∈Ps

∣∣f(Ā)
〉
ā

〈
f ′(Ā′)

∣∣
ā′
⊗
∣∣φf(A)

〉
az

〈
φf ′(A′)

∣∣
a′z

=

1

M

∑
e

〈e|p

 ∑
f,f ′∈Ps

∣∣f(Ā)
〉
ā

〈
f ′(Ā′)

∣∣
ā′
⊗
∣∣φf(A)

〉
az

〈
φf ′(A′)

∣∣
a′z

 |e〉p
=

1

M

∑
e

∑
f,f ′∈Ps

〈
eĀ
∣∣f(Ā)

〉〈
f ′(Ā′)

∣∣eĀ′〉⊗ 〈eA∣∣φf(A)

〉〈
φf ′(A′)

∣∣eA′〉 (4)

=
1

M

∑
e

∑
z∈Sa
z′∈Sa′

〈eA|
(
V |z〉

〈
z′
∣∣V †) |eA′〉 ∑

f,f ′∈Ps

f(A)=z
f ′(A′)=z′

〈
eĀ
∣∣f(Ā)

〉〈
f ′(Ā′)

∣∣eĀ′〉, (5)

where (4) follows from the fact that |eA〉 and |eA′〉 are tensor product states. In this case, for any
partitionings (A, Ā) of Ha ⊗Hā and (A′, Ā′) of Ha′ ⊗Hā′ , where Hp ∼ Ha ⊗Hā ∼ Ha′ ⊗Hā′ , we
have that 〈e|pA|e〉p = 〈eAĀ|A|eA′Ā′〉 = 〈eĀ| (〈eA|A|eA′〉) |eĀ′〉.

Now, we look at the rightmost sum in (5), which evaluates to an integer. We show that this
integer is independent of the secret shared value s ∈ S. It will then follow easily that the whole
state in (5) is independent of s and therefore ρs = ρs′ for all s, s′ ∈ S as defined in (3). For z ∈ Sa

12

and z′ ∈ Sa′ , we have:

∑
f,f ′∈Ps

f(A)=z
f ′(A′)=z′

〈
eĀ
∣∣f(Ā)

〉〈
f ′(Ā′)

∣∣eĀ′〉 = 〈eĀ|

 ∑
f∈Ps

f(A)=z

∣∣f(Ā)
〉
 ∑

f ′∈Ps

f ′(A′)=z′

〈
f ′(Ā′)

∣∣
 |eĀ′〉

=

{
0 if e /∈ Ps ∩ PA,z ∩ PA′,z′ ,
1 if e ∈ Ps ∩ PA,z ∩ PA′,z′ ,

(6)

where for z ∈ Sa, PA,z := {f ∈ P0 ∪ P1 : f(A) = z}. Notice that (6) follows from the fact that eĀ
fixes n − a values for polynomial f ∈ Ps with f(A) = z, which fixes all n values. In other words
only one f ∈ Ps such that f(A) = z can possibly have nonzero inner product with eĀ.

Let Â := A∪A′ and â := #Â. We can re-write (5) using (6) and the fact that Â ⊆ G, resulting
in:

trp

(∣∣∣Ψ̃A,s〉〈Ψ̃A′,s∣∣∣
pz

)
=

1

M

∑
z∈Sa
z′∈Sa′

∑
e∈Sn

e∈Ps∩PA,z∩PA′,z′

〈eA|
(
V |z〉

〈
z′
∣∣V †) |eA′〉 (7)

=
qd−â

M

∑
z∈Sa
z′∈Sa′

∑
w∈Sâ

〈wA|
(
V |z〉

〈
z′
∣∣V †) |wA′〉 (8)

=
qd−â

M

∑
w∈Sâ

〈wA|

 ∑
z∈Sa
z′∈Sa′

V |z〉
〈
z′
∣∣V †
 |wA′〉 (9)

:= ρA,A′ , (10)

where (7) follows from (6) and (5). Equation (8) is a consequence of the fact that Â ⊆ G and that
the number of polynomials of degree d with â+1 (one value corresponding to f(0) = s) fixed values
is qd−â. Equation (10) follows from the fact that (9) is independent of s. Using (10) in (3) completes
the proof of the if-part of the statement:

ρs =
1

M

∑
A,A′∈F

αAα
∗
A′ |A〉

〈
A′
∣∣⊗ ρA,A′ = ρs′ ,

for all s, s′ ∈ S. Since ρs = ρs′ for all basis secrets s, s′ ∈ S, the state of the adversary remains
independent of any quantum secret |σ〉 =

∑
s∈S αs|s〉 with 〈σ|σ〉 = 1.

For the only-if part, we consider that the adversary could simply “copy” the shares, that is,
define V such that V |f(A)〉a|0〉z = |f(A)〉a|f(A)〉z, and set the query to be (|A〉+ |A′〉)/

√
2 for sets

A,A′ where A ∪ A′ has size larger than t. Now, s is uniquely determined from |f(A)〉, |f(A′)〉 and
hence the matrices trp(|Ψ̃A,s〉〈Ψ̃A′,s|pz) are different from different values of s, so we can distinguish

(with some probability) between sharings of different basis states. ut

Theorem 2 generalizes easily to any quantum secret sharing scheme derived from a classical lin-
ear scheme. We conjecture it generalizes to any quantum scheme. However, the only other quantum
schemes we are aware of are schemes that use quantum shares for classical data. For instance, the
4 Bell-states can be used to share 2 classical bits among two players who receive only one qubit
each. This scheme can also be broken under a superposition attack.

13

5 Zero-Knowledge

In this section we first give evidence that standard ZK protocols are not, in general, secure against
superposition attacks. We then present a construction in the CRS model that leads to ZK protocols
for NP that are indeed secure against superposition attacks.

5.1 An Attack Against the Graph Isomorphism Protocol

Consider the well-known protocol for proving graph isomorphism: The common input is two graphs
(G0, G1) on n nodes, where the prover P knows a permutation π such that π(G0) = G1. P will
send to the verifier V a graph H = σ(G0) where σ is a random permutation on n nodes. V sends
a random bit b, and P returns the permutation ρ = πbσ−1. Finally V checks that ρ(H) = Gb.

This protocol is perfect zero-knowledge against a classical as well as a quantum verifier, but
in the quantum case the proof assumes that the verifier is limited to sending a classical bit b as
challenge to the prover (see [Wat06] for a precise definition of zero-knowledge when the verifier is
quantum). We consider what happens if a superposition attack is allowed, and we give a concrete
attack that allows to extract non-trivial information from the prover. We will only consider input
graphs for which the permutation π is uniquely defined from G0, G1. This is mostly for simplicity,
but note also that it is well-known that deciding whether the permutation is unique is equivalent
to deciding graph isomorphism in the general case. Hence, assuming the latter is hard, algorithms
trying to compute an isomorphism between G0 and G1 are unlikely to have an easier time when
the permutation is unique.

To analyze what happens, we need to assume a concrete way in which P communicates his
permutation to V in the final message. We will assume a natural method, namely to send ρ, P sends
ρ(0), . . . , ρ(n−1) in the classical case. We generalize this to the quantum case in the standard way: V
supplies a register |b〉|i0〉0 · · · |in−1〉n−1 and |b〉|i0 + ρb(0) mod n〉0 · · · |in−1 + ρb(n− 1) mod n〉n−1,
in returned, where ρb is the correct answer to b. By adding the answer into the response register,
we ensure that the operation of P is unitary3.

The proof of the theorem below works by first constructing a concrete attack that the verifier
might execute and concluding that this attack would allow to decide if the prover’s secret permu-
tation has a fixed point or not. Then, if a simulator existed for such a verifier, a simple reduction4

allows us to get the full isomorphism between the graphs in all cases where the permutation in
question is unique:

Theorem 3. If the graph isomorphism protocol is zero-knowledge against superposition attacks,
then graph isomorphism can be computed efficiently by a quantum algorithm for all inputs where
the permutation in question is uniquely defined by the input graphs.

Proof. We describe the attack a verifier might execute. We first specify the state we will send to P :

1√
2

(|0〉+ |1〉) Fn(|1 + r mod n〉0) Fn(|1〉1) · · ·Fn(|1〉n−1) ,

where Fn is the quantum Fourier transform over Zn and r is a random non-zero value in Zn. The
state can also be written as

1√
2

(|0〉 Fn(|1 + r mod n〉0) Fn(|1〉1) · · ·Fn(|1〉n−1) +

|1〉 Fn(|1 + r mod n〉0) Fn(|1〉1) · · ·Fn(|1〉n−1)) .

3 It is an open question whether our result holds for the case of created response registers mentioned earlier.
4 We are grateful to Elad Verbin for pointing this reduction out to us.

14

To see what happens to this state under the operation done by P , consider the k’th register of
those where Fn is applied, in the summand corresponding to challenge bit b. Before P ’s operation,
it is in state

Fn(|ik〉k) =
n−1∑
j=0

ωikjn |j〉k ,

where ωn is the principal n’th root of unity and i0 = 1 + r mod n and ik = 1 otherwise. After the
operation, we have the new state

n−1∑
j=0

ωikjn |j + ρb(k)〉k =
n−1∑
j′=0

ωik(j′−ρb(k))
n

∣∣j′〉
k

= ω−ikρb(k)
n

n−1∑
j′=0

ωikj
′

n

∣∣j′〉
k

= ω−ikρb(k)
n Fn(|ik〉k) ,

by a simple substitution of variables. Plugging this into the above overall state, we get that the
state P returns can be written as

1√
2
· (|0〉 ω−(1+r)ρ0(0)

n Fn(|1 + r mod n〉)ω−ρ0(1)
n Fn(|1〉) · · ·ω−ρ0(n−1)

n Fn(|1〉)

+|1〉 ω−(1+r)ρ1(0)
n Fn(|1 + r mod n〉)ω−ρ1(1)

n Fn(|1〉) · · ·ω−ρ1(n−1)
n Fn(|1〉)) .

Collecting some terms, we get

1√
2
· (|0〉 ω−rρ0(0)−

∑
k ρ0(k)

n Fn(|1 + r mod n〉)Fn(|1〉) · · ·Fn(|1〉)

+|1〉 ω−rρ1(0)−
∑

k ρ1(k)
n Fn(|1 + r mod n〉)Fn(|1〉) · · ·Fn(|1〉)) .

Note that since ρ0, ρ1 are permutations, we have∑
k

ρ0(k) =
∑
k

ρ1(k) = n(n− 1)/2.

Using this and the fact that ρ0 = σ−1, ρ1 = πσ−1, we get that our state is of form

1√
2
ω−n(n−1)/2−rσ−1(0)
n (|0〉+ ωr(σ

−1(0)−π(σ−1(0)))
n |1〉)⊗

Fn(|1 + r mod n〉)Fn(|1〉) · · ·Fn(|1〉) .

In the final step, we measure the first bit of the state in the basis

(|0〉+ |1〉)/
√

2, (|0〉 − |1〉)/
√

2.

Call the measurement results 0 respectively 1.
Let us consider the distribution we can expect of the measurement result: σ−1(0) is uniform

in Zn. Furthermore, it is clear that r(σ−1(0) − π(σ−1(0))) is 0 if σ−1(0) is a fixed point of π and
uniform in Z∗n otherwise. It follows that the distribution of the final measurement result depends
only on the number of fixed points of P ’s secret π.

Furthermore, if σ−1(0) is a fixed point of π, we will measure 0 with probability 1, if not, we get
result 1 with non-negligible probability. It follows by a Chernoff bound that in a polynomial number

15

of queries we can decide except with negligible error probability whether π has a fixed point or not.
In fact, it is not hard to see that the distribution of the measurement result for different numbers
of fixed points have non-negligible statistical distance, so in a polynomial number of queries one
can even get a reliable estimate of the number of fixed points of π.

Now, if the protocol was zero-knowledge in our model, a simulator would exist that on input
any two isomorphic graphs would create a state indistinguishable from the state our attack creates
with the help of the prover. Thus, running the simulator a sufficient number of times followed by
the measurements described above, we get an oracle that tells us whether the permutation that
takes one graph to the other has a fixed point.

Using such an oracle, we can compute the permutation: letG′ = θ(G1) for a random permutation
θ and ask the oracle if the permutation mapping G0 to G′ has a fixed point. If the answer is no, we
know that, e.g., θ(π(0)) 6= 0 or equivalently π(0) 6= θ−1(0). Since we know θ, we can exclude one
possibility for π(0). Repeating this, we eventually find π(0) and can compute other values of π in
the same way. This terminates in polynomial time since a random permutation has no fixed points
with constant probability (about 1/e), and if this happens, the value we can exclude is uniform
among the potential values. ut

5.2 A Superposition-Secure Zero-Knowledge Protocol

In this section, we present a zero-knowledge proof for any NP problem in the common reference
string model. The proof is sound for an unbounded prover (quantum or not) and is computationally
zero-knowledge for a polynomially bounded quantum verifier, even if superposition attacks are
allowed.

For the protocol, we need a commitment scheme with special properties: we require a keyed
commitment scheme Commitpk, where the corresponding public key pk is generated by one of two
possible key-generation algorithms: GH or GB. For a key pkH generated by GH, the commitment
scheme CommitpkH is perfectly hiding, whereas the other generator, GB, produces a key pkB, such
that CommitpkB is unconditionally binding. Furthermore, we require that keys pkH and pkB produced
by the two generators are computationally indistinguishable, for any family of polynomial size
quantum circuits. We call such a commitment scheme a dual-mode commitment scheme.5 As a
candidate for implementing such a system, we can use a construction proposed in [DFS04]. That
construction can be based on any decision problem for which there is a perfect honest-verifier zero-
knowlede Σ-protocol, and where it is hard (for a quantum adversary) to distinguish yes-instances
from no-instances. A plausible candidate for such a problem is the code equivalence problem (see
[DFS04] for more details) 6.

5.3 The Model

We now describe the framework for our protocol: the proof system is specified w.r.t. a language
L, and we have a prover P and a verifier V , both are assumed classical (when playing honestly).
They get as input a common reference string CRS chosen with a prescribed distribution σ and a

5 The notions of dual-mode cryptosystems and of meaningful/meaningless encryptions, as introduced in [PVW08]
and [KN08], are similar in spirit but differ slightly technically.

6 An alternative construction can be derived from the the public-key encryption scheme of Regev [Reg05], which
is based on a worst-case lattice assumption. However, the resulting commitment scheme in unconditional hiding
mode is only statistically secure (rather than perfect). To use this scheme in our protocol we would need a version
of Theorem 1 that holds for secret-sharing schemes with statistical security. We believe such a result is true, but
do not have a proof at the time of writing.

16

string x. P and V interact and at the end V outputs accept or reject. The first two properties we
require are standard: Completeness: if x ∈ L and P, V follow the protocol, V outputs accept with
probability 1. Soundness: if x 6∈ L (but CRS is chosen according to σ) then for any prover P ∗, V
outputs accept with probability negligible (in the length of x) when interacting with P ∗ on input
x and CRS.

For zero-knowledge, we extend the capabilities of a cheating verifier V ∗ so it may do a superpo-
sition attack. For simplicity, we give our definition of superposition zero-knowledge only for 3-move
public-coin protocols, i.e., conversations are assumed to have the form (a, e, z), where e is a random
challenge issued by the verifier. It is not hard to extend the definition but the notation becomes
more cumbersome. First, V ∗ is assumed to be a quantum machine, and the protocol is executed as
follows: V ∗ receives x,CRS and P ’s first message a. Now, instead of sending a classical challenge
e, V ∗ is allowed to send a query

∑
e,y αe,y|e〉|y〉. We assume the the prover will process the query

following his normal algorithm in superposition, so the verifier will get the same two registers back,
in state

∑
e,y αe,y|e〉|y + z(x, e, ρ)〉, where z(x, e, ρ) is P ’s response to challenge e on input x and

internal randomness ρ. Finally, V ∗ outputs 0 or 1. Let preal(x) be the probability that 1 is output.
We say that the proof system is superposition zero-knowledge if there exists a polynomial time
quantum machine, the simulator S, such that the following holds for any cheating verifier V ∗ and
x ∈ L: S interacts with V ∗ on input x, and we let psim(x) be the probability that V ∗ outputs 1.
Then |preal(x)− psim(x)| is negligible (in the length of x).

Note that, as usual in the CRS model, S only gets x as input and may therefore generate the
reference string itself.

5.4 The Protocol

We now describe the basic ideas behind our protocol: we will let the CRS contain the following:
pkB, c = CommitpkB(0), pkB′, where the public keys are both generated by GB. Then, using a standard
trick, we will let P show that either x ∈ L or c contains a 1. Since of course the latter statement is
false, P still needs to convince us that x ∈ L. The simulator, on the other hand, can construct a
reference string where c does contain 1 and simulate by following the protocol. The CRS will look
the same to the verifier so we just need that the change of witness used is not visible in the proof,
i.e., the proof should be so-called witness indistinguishable. In this way, we can simulate without
rewinding, and this allows V ∗ to be quantum.

However, standard techniques for witness indistinguishability are not sufficient to handle a
superposition attack. For this, we need to be more specific about the protocol: a first attempt (which
does not give us soundness) is that P will secret-share his witness w (where for the honest prover, w
will be a witness for x ∈ L), to create shares s1, . . . , sn where we assume the scheme has t-privacy.
Then P ’s first message is a set of commitments a = (CommitpkB′(s1, r1), . . . , CommitpkB′(sn, rn)).
The verifier’s challenge e will point out a random subset of the commitments, of size t/2, and the
prover opens the commitments requested. Intuitively, this is zero-knowledge by Theorem 1: since
we limit the number of shares the verifier can ask for to half the threshold of the secret sharing
scheme, the state V ∗ gets back contains no information on the secret w.

On the other hand, this protocol is of course not sound, the verifier cannot check that the
prover commits to meaningful shares of anything. To solve this, we make use of the “MPC in the
head” technique from [IKOS09]: Here, we make use of an n-party protocol in which the witness w
is secret-shared among the players, and a multiparty computation is done to check whether w is
correct with respect to the claim on the the public input, namely in our case x ∈ L or the c from
the CRS contains 1. Finally all players output accept or reject accordingly. It is assumed that the
protocol is secure against active corruption of t players where t is Θ(n). We will call this protocol

17

πL,CRS in the following. Several examples of suitable protocols can be found in [IKOS09]. In their
construction, the prover emulates an execution of π in his head, and we let vπL,CRS (i, ρ) denote the
view of virtual player i, where ρ is the randomness used. The prover then commits to vπL,CRS (i, ρ),
for i = 1, . . . , n and the verifier asks the prover to open t randomly chosen views that are checked
for consistency and adherence to πL,CRS . It is shown in [IKOS09] that if no valid witness exists for
the public input, then the verifier will detect an error with overwhelming probability.

Now, observe that the process of emulating π can be thought of as a secret sharing scheme,
where the prover’s witness w is shared and each vπ(i, ρ) is a share: indeed any t shares contain no
information on w by t-privacy of the protocol. Therefore combining this with our rudimentary idea
from before gives us the solution.

Superposition-secure zero-knowledge proof for any NP -language L.
The public input is x, of length k bits. The distribution σ generates the common reference string
as pkB, c = CommitpkB(0), pkB′, where the public keys are both generated by GB on input 1k.

1. The prover P emulates πL,CRS to generate vπL,CRS (i, ρ) and sends to the verifier V : CommitpkB′(vπL,CRS (i, ρ), ri),
for i = 1, . . . , n.

2. V sends a challenge e designating a random subset of the commitments of size t/2.
3. P opens the commitments designated by e, V checks the opened views according to the algorithm

described in [IKOS09], and accepts or rejects according to the result.

Theorem 4. If (GB,GH, Commit) form a secure dual-mode commitment scheme, then the above
protocol is complete, sound and superposition zero-knowledge.

Proof. Completeness is trivial by inspection of the protocol. Soundness follows immediately from
the soundness proof in [IKOS09], we just have to observe that the fact that the prover opens t/2
and not t views makes no difference, in fact the proof holds as long as Θ(n) views are opened.
For zero-knowledge, we describe a simulator S: It will generate a common reference string as
pkH, c = CommitpkH(1), pkH′ where both public keys are generated by GH on inout 1k. It then plays
the protocol with V ∗, answering its quantum queries by following the protocol. This is possible
since c now contains a 1, so S knows a valid witness. To show that V ∗ cannot distinguish the
simulation from the protocol, we define series of games

Game 0 The protocol as described above, but where P talks to V ∗ doing a superposition attack.
Game 1 As Game 0, but the CRS is generated as pkH, c = CommitpkH(0), pkH′, where both public

keys are generated by GH.
Game 2 As Game 1, but the CRS is generated as pkH, c = CommitpkH(1), pkH′.
Game 3 As Game 2, but P uses as witness the fact that c contains a 1.

Now, Game 0 and Game 1 are computationally indistinguishable by assumption on the dual-mode
commitment scheme. Game 1 and Game 2 are perfectly indistinguishable by the fact that commit-
ments done using pkH are perfectly hiding. Game 2 and Game 3 are perfectly indistinguishable by
Theorem 1 and the fact that commitments done using pkH′ are perfectly hiding. More concretely,
note that if you take a secret-sharing scheme meeting the conditions of Theorem 1 and you aug-
ment each share with a commitment, under a perfectly hiding commitment scheme, to all the other
shares, then you obtain a secret-sharing scheme that still meets the conditions of Theorem 1 Then
you note that the protocol can be seen as using such an augmented secret-sharing scheme where the
prover’s witness is the secret, so we can apply Theorem 1 to conclude that Games 2 and 3 cannot
be distinguished. Finally, note that Game 3 is exactly the same game as the simulation. ut

18

6 Multiparty computation

In this section we consider the models for MPC protocols. A classical passive attack on a multiparty
computation protocol looks a lot like the attacks on secret sharing: you query for a subset and get
back the party’s entire view of the protocol. Of course, you can generalize this to a superposition
attacks in the same way. And you can ask if there is some adversary structure for which the protocol
would be secure against such an attack, assuming classical security.

Security for MPC protocols is usually defined as an adversary’s inability to distinguish between
an attack in the real world where he’s allowed access to a corruption oracle of some subset of the
parties and an ideal world where the attack is simulated towards the adversary using the ideal
functionality which models the intended behavior of the protocol. We hence need to describe both
models for the real and for the ideal world. They will need different spaces and different operations
to execute. As before, we have n parties running the protocol. We name the parties P1, . . . , Pn.
Let [n] = {1, . . . , n}. An adversary structure is F ⊂ 2[n]. Each party, Pi, has local input, si ∈ Si
which is supplied by the adversary and chooses randomness, ri ∈ Ri. We use s ∈ S and r ∈ R
to denote the concatenation of each of the si respectively the ri. Note that when s and r are
fixed, the execution of a protocol is deterministic, i.e., it is fixed what all parties send and receive.
We use vi(s, r) and oi(s, r) to denote the private view respectively the output or party Pi, when
the protocol has been run on inputs s and using randomness r. Note these are functions and not
general quantum operations as the parties, even the corrupted ones, are expected to run the protocol
honestly. Concretely, the view vi(s, r) if Pi is vi(s, r) = (si, ri,msgi(s, r)), where msgi(s, r) is the
concatenation of the messages that Pi receive from the other parties when the protocol is run on
input vector s with randomness vector r. For A ⊂ [n], let vA(s, r) = {vi(s, r)}i∈A, sA = {si}i∈A
and oA(s, r) = {oi(s, r)}i∈A be strings containing the concatenation of views, inputs respectively
outputs for parties Pi with i ∈ A.

For convenience, in the following we assume that each such string is padded, so that they have
the same length (t bits) regardless of the size of A.

6.1 MPC model in the ’Real world’

First we will consider the case of running and attacking the protocol in the real world. As earlier,
all actions taken by the parties and the adversary will be considered purified so the overall state
remains pure throughout. Consider the following space,

Htotal = Hparties ⊗Hin ⊗Hout ⊗Henv ⊗Hquery .

– Hparties contains the private views and purification of the randomness for the parties.
– Hin contains the input the parties will use to run the protocol.
– Hout is where the output will be stored after running the protocol.
– Henv is the environment and is used to store auxiliary input and any auxiliary register needed

by the adversary. The dimension is therefore arbitrary, though finite.
– Hquery is where the query to, and response from, the oracle will be stored.

Each of these subspaces are, of course, of appropriate (and finite) dimension.
We will break the superposition run, and attack, of a MPC protocol in the real world down into

four unitaries. After each unitary we will consider the change to the description of the state. In
the beginning all the registers are blank (i.e., have value 0), except the environment, which might
contain some (purified) auxiliary input for the adversary. The initial state is hence,

|init〉rwt =
∑
x

αx|0〉p|0〉i|0〉o|x〉e|0〉q ,

19

where |init〉rwt ∈ Htotal, |0〉p ∈ Hparties, |0〉i ∈ Hin, |0〉o ∈ Hout, |x〉e ∈ Henv and |0〉q ∈ Hquery, as
should be expected from the notation. The superscript, rw, specifies that it’s in the real world. The
first unitary is applied by the adversary and supplies the inputs to the parties. This is an arbitrary
unitary operation. We will denote it, Uadv

in ,

Uadv
in : Hin ⊗Henv → Hin ⊗Henv .

The result of this is that the input registers are now filled. These are in superposition over all
possible inputs. The state after the first unitary is therefore,

|1〉rwt =
∑
x,s

αx,s|0〉p|s〉i|0〉o|x〉e|0〉q ,

where s = s[n] = (s1, . . . , sn) is the vector of inputs. The classical protocol π is now run honestly
without intervention from the adversary. This is a classical function π run in superposition of the
possible inputs and produces a corresponding superposition of private views and outputs for the
parties. We will denote this unitary, Upro

run,π,

Upro
run,π : Hparties ⊗Hin ⊗Hout → Hparties ⊗Hin ⊗Hout .

Recall that we are purifying all actions, hence also the choice of randomness when the protocol is
run. The state after the second unitary is therefore,

|2〉rwt =
∑
x,s,r

αx,s
√
pr
∣∣v[n](s, r)

〉
p
|s〉i
∣∣o[n](s, r)

〉
o
|x〉e|0〉q . (11)

Next the adversary needs to construct his query to the oracle. This includes choosing the superposi-
tion of subsets he will corrupt and associated values for the response registers for input, output and
view. For simplicity we will sometimes refer to the last three values by a. That is, a = (aqi, aqo, aqv).

This is an arbitrary unitary operation. We will denote it, Uadv,F
query ,

Uadv,F
query : Henv ⊗Hquery → Henv ⊗Hquery ,

where the F in the notation specifies that all subset with non-zero amplitude in the constructed
query are from the adversary structure F . The state is now,

|3〉rwt =
∑

x,s,r,A,a

αx,s,A,a
√
pr
∣∣v[n](s, r)

〉
p
|s〉i
∣∣o[n](s, r)

〉
o
|x〉e|A, a〉q .

The next unitary is applied by the oracle, that, for each corrupted subset in the query, fills the
input, output and view into the response register supplied by the adversary. This is a classical
function on each corrupted subset and view in the superposition which fills the input, output and
view into the response register. We will denote this unitary, Urw

res,

U iw
res : Hparties ⊗Hin ⊗Hout ⊗Hquery → Hparties ⊗Hin ⊗Hout ⊗Hquery .

The state after the fourth unitary is

|4〉rwt =
∑

x,s,r,A,a

αx,s,A,a
√
pr
∣∣v[n](s, r)

〉
p
|s〉i
∣∣o[n](s, r)

〉
o
|x〉e|A, aqi ⊕ sA, aqo ⊕ oA(s, r), aqv ⊕ vA(s, r)〉q ,

20

where o(s, r) = (o1, . . . , on) where oi is the output of party number i in the protocol π run on inputs
s and randomness r. The adversary receives the response register and must now guess if he’s in
the real or ideal world. He can do this using the input register, his auxiliary register and the query
register. To see the adversary’s final state we need to trace out the register holding the view of all
the parties,

ρrwadv = trp(|4〉〈4|rwt) =
∑

r,r′,s,s′

√
pr
√
pr′
∣∣ψadv
r,s

〉〈
ψadv
r′,s′
∣∣ trp(

∣∣v[n](s, r)
〉
p

〈
v[n](s

′, r′)
∣∣
p
)

=
∑

r,r′,s,s′

√
pr
√
pr′
∣∣ψadv
r,s

〉〈
ψadv
r′,s′
∣∣〈v[n](s, r)

∣∣
p

∣∣v[n](s
′, r′)

〉
p
)

=
∑
r,s

pr
∣∣ψadv
r,s

〉〈
ψadv
r,s

∣∣ ,
where |ψadv

r,s 〉 =
∑
x,A,a

αx,s,A,a|s〉i|o[n](s, r)〉o|x〉e|A, aqi ⊕ sA, aqo ⊕ oA(s, r), aqv ⊕ vA(s, r)〉q.

It is interesting to note that even though the input register was supplied by the adversary he
only sees a mixed state. This happens as the parties keep a private copy of their input and therefore
collapses the input register from the point of view of the adversary. While it is standard to assume
the players keep such a copy (i.e. they remember their own input), you could consider a model where
they do not. In this case the input register would not collapse and hence the adversary would have
a superposition, instead of a mixed state, over the choice of input. It is an open problem how this
would effect security.

We will sum up these steps below in Figure 1.

6.2 MPC model in the ’Ideal world’

Secondly we consider the ideal world, where a simulator is to simulate a real attack for the adversary
using only the ideal functionality. The space for this model is,

Htotal = Hideal ⊗Hin ⊗Hout ⊗Hsim ⊗Henv ⊗Hquery .

– Hin,Hout and Henv serve the same purpose as in the real world.
– Hsim denotes the subspace in which the simulator operates.
– Hquery is still the register where the adversary constructs his query, but the simulator will be

allowed to change this before using it to query the ideal functionality.
– Finally, we have a space for the ideal functionality, Hideal. This is necessary as we want to purify

the random choices made and we need the state of the ideal functionality to be entangled with
the input register as the parties would be in the real world.

We will describe the unitaries that differ and refer to the earlier description for those that don’t.
There will be six unitaries in total. The initial state is,

|init〉iwt =
∑
x

αx|0〉if|0〉i|0〉o|0〉s|x〉e|0〉q ,

where |init〉t ∈ Htotal, |0〉if ∈ Hideal, |0〉i ∈ Hin, |0〉o ∈ Hout, |0〉s ∈ Hsim, |0〉e ∈ Henv and |0〉q ∈
Hquery, as should be expected from the notation. The superscript, iw, denotes that it’s in the ideal
world. The first unitary is exactly as in the real world and hence,

Uadv
in : Hin ⊗Henv → Hin ⊗Henv

21

Inital state:
|init〉rwt =

∑
x

αx|0〉p|0〉i|0〉o|x〉e|0〉q

1.
Uadv

in : Hin ⊗Henv → Hin ⊗Henv

|1〉rwt =
∑
x,s

αx,s|0〉p|s〉i|0〉o|x〉e|0〉q

2.
Upro

run : Hparties ⊗Hin ⊗Hout → Hparties ⊗Hin ⊗Hout

|2〉rwt =
∑
x,s,r

αx,s
√
pr
∣∣v[n](s, r)

〉
p
|s〉i
∣∣o[n](s, r)

〉
o
|x〉e|0〉q

3.
Uadv,F

query : Henv ⊗Hquery → Henv ⊗Hquery

|3〉rwt =
∑

x,s,r,A,a

αx,s,A,a
√
pr
∣∣v[n](s, r)

〉
p
|s〉i
∣∣o[n](s, r)

〉
o
|x〉e|A, a〉q

4.
Urw

res : Hparties ⊗Hin ⊗Hout ⊗Hquery → Hparties ⊗Hin ⊗Hout ⊗Hquery

|4〉rwt =
∑

x,s,r,A,a

αx,s,A,a
√
pr
∣∣v[n](s, r)

〉
p
|s〉i
∣∣o[n](s, r)

〉
o
|x〉e|A, aqi ⊕ sA, aqo ⊕ oA(s, r), aqv ⊕ vA(s, r)〉q

Fig. 1. Purified run of multiparty computation in the real world with superposition attacks

22

|1〉iwt =
∑
x,s

αx,s|0〉if|s〉i|0〉o|0〉s|x〉e|0〉q .

The ideal functionality now entangles itself with the input register and produces the correct out-
puts in the output register. The correct outputs are defined via an n-ary function f . For inputs
(s1, . . . , sn) the correct outputs are (o1, . . . , on) = f(s1, . . . , sn). We allow f to be a randomized
function, so that (o1, . . . , on) = f(s1, . . . , sn; r) for some randomizer r. The ideal functionality is
the unitary which evaluates the classical function f in superposition using a purified r. We will
denote this unitary, U iw

eval,f ,

U iw
eval,f : Hideal ⊗Hin ⊗Hout → Hideal ⊗Hin ⊗Hout .

Recall that any random choices are purified onto Hideal. The resulting state is therefore,

|2〉iwt =
∑
x,s,r

αx,s
√
pr|s, r〉if|s〉i

∣∣o[n](s, r)
〉
o
|0〉s|x〉e|0〉q .

Inspect the out-register to note that we use the notation o[n](s, r) for the output vector (o1, . . . , on) =
f(s1, . . . , sn; r). This could potentially lead to confusion as we also use o[n](s, r) to denote the
output of the protocol, in the real world. We will, however, restrict our attention to perfectly
correct protocols, meaning that running the protocol (o1, . . . , on) = π(x1, . . . , xn; r1, . . . , rn), i.e.,
with uniformly random randomness ri for party Pi, will give a distribution which is identical to
evaluating f(x1, . . . , xn; r) for a uniformly random randomizer r for the randomized function f .
This means that we in the analysis, with loss of generality, can assume that r = (r1, . . . , rn) and
that f(x1, . . . , xn; r) = π(x1, . . . , xn; r1, . . . , rn). Hence o[n](s, r) is exactly the same value in the
ideal world and in the real world.

The adversary constructs his query exactly as earlier,

Uadv,F
query : Henv ⊗Hquery → Henv ⊗Hquery

|3〉iwt =
∑

x,s,r,A,a

αx,s,A,a
√
pr|s, r〉if|s〉i

∣∣o[n](s, r)
〉
o
|0〉s|x〉e|A, a〉q .

Now the simulator gets the query and must construct an appropriate response to the adversary, only
using the ideal functionality. First the simulator is allowed to change the adversary’s query using
an auxiliary register. Only requirement is that it is corruption preserving 7. This is an arbitrary
unitary operation. We will denote it, U sim

query,

U sim
query : Hsim ⊗Hquery → Hsim ⊗Hquery

|4〉iwt =
∑

x,z,s,r,A,a

αx,z,s,A,a
√
pr|s, r〉if|s〉i

∣∣o[n](s, r)
〉
o
|z〉s|x〉e|A, a〉q

Now the corruption oracle is run on the query from the simulator. This is a classical function that
each corrupted subset and each view in the superposition which fills in the input and output into
the response register. We will denote this unitary, U iw

res,

U iw
res : Hin ⊗Hout ⊗Hquery → Hin ⊗Hout ⊗Hquery

7 That is, the amplitude of each corruption subset A is unchanged

23

and the response register now contains input and output from the corrupted parties, but, of course,
not their views.

|5〉iwt =
∑

x,z,s,r,A,a

αx,z,s,A,a
√
pr|s, r〉if|s〉i

∣∣o[n](s, r)
〉
o
|z〉s|x〉e|A, aqi ⊕ sA, aqo ⊕ oA(s, r), aqv〉q .

Next the simulator must try to simulate the response the adversary got in the real world. We will
denote this unitary, U sim

res,

U sim
res : Hsim ⊗Hquery → Hsim ⊗Hquery .

The resulting state is

|6〉iwt =
∑

x,z,s,r,A,a

α′x,z,s,A,a
√
pr|s, r〉if|s〉i

∣∣o[n](s, r)
〉
o
|z〉s|x〉e|A,ψz,s,A,a〉q .

Finally, to see what state the adversary sees we must trace out the ideal functionality and the
simulator registers,

ρiwadv = trif,sim(|6〉〈6|iwt)

=
∑

r,r′,s,s′,z,z′

pr
∣∣ψadv
r,s,z

〉〈
ψadv
r′,s′,z′

∣∣ trif,sim(
(
|s, r〉if

〈
s′, r′

∣∣
if
⊗ |z〉s

〈
z′
∣∣
s

)
=

∑
r,r′,s,s′,z,z′

pr
∣∣ψadv
r,s,z

〉〈
ψadv
r′,s′,z′

∣∣ (〈s, r|if∣∣s′, r′〉if × 〈z|s∣∣z′〉s)
=
∑
r,s,z

pr
∣∣ψadv
r,s,z

〉〈
ψadv
r,s,z

∣∣ ,
where |ψadv

r,s,z〉 =
∑
x,A,a

αx,z,s,A,a|s〉i|o[n](s, r)〉o|x〉e|A,ψz,s,A,a〉q. We sum up the steps in Figure 2.

A MPC protocol is defined by the operator Upro
run . A specific adversay is defined by the initial

state
∑
x

αa|x〉 and the two unitary operators, Uadv
in , Uadv,Fquery. Finally, a simulator is defined by the

two unitary operators, {U sim
query, U

sim
res}. This allows for the following definition.

Definition 2. We say that the MPC protocol π is a perfect passive-secure implementation of the
n-ary function f against F -superposition attacks if there exists a perfect black-box simulator of
π given f against superposition attacks from F . A pair of unitary operators, (U sim

query, U
sim
res), is a

perfect black-box simulator of π given f against superposition attacks from F if, and only if, for all

auxiliary inputs,
∑
x

αx|x〉, and all pairs of operators (Uadv
in , Uadv,F

query),

ρrwadv = ρiwadv ,

where

ρrwadv = trp(|4〉〈4|rwt)

ρiwadv = trif,s(|6〉〈6|iwt)

|4〉rwt = Urw
resU

adv,F
queryU

pro
run,πU

adv
in |init〉

rw
t

|6〉iwt = U sim
resU

iw
resU

sim
queryU

adv,F
queryU

iw
eval,fU

adv
in |init〉

iw
t ,

where we for readability assume that the operators are padded with appropriate identities on the
subspaces they don’t operate.

24

Inital state:
|init〉iwt =

∑
x

αx|0〉if|0〉i|0〉o|0〉s|x〉e|0〉q

1.
Uadv

in : Hin ⊗Henv → Hin ⊗Henv

|1〉iwt =
∑
x,s

αx,s|0〉if|s〉i|0〉o|0〉s|x〉e|0〉q

2.
U iw

eval,f : Hideal ⊗Hin ⊗Hout → Hideal ⊗Hin ⊗Hout

|2〉iwt =
∑
x,s,r

αx,s
√
pr|s, r〉if|s〉i

∣∣o[n](s, r)
〉
o
|0〉s|x〉e|0〉q

3.
Uadv,F

query : Henv ⊗Hquery → Henv ⊗Hquery

|3〉iwt =
∑

x,s,r,A,a

αx,s,A,a
√
pr|s, r〉if|s〉i

∣∣o[n](s, r)
〉
o
|0〉s|x〉e|A, a〉q

4.
U sim

query : Hsim ⊗Hquery → Hsim ⊗Hquery

|4〉iwt =
∑

x,z,s,r,A,a

αx,z,s,A,a
√
pr|s, r〉if|s〉i

∣∣o[n](s, r)
〉
o
|z〉s|x〉e|A, a〉q

5.
U iw

res : Hin ⊗Hout ⊗Hquery → Hin ⊗Hout ⊗Hquery

|5〉iwt =
∑

x,z,s,r,A,a

αx,z,s,A,a
√
pr|s, r〉if|s〉i

∣∣o[n](s, r)
〉
o
|z〉s|x〉e|A, aqi ⊕ sA, aqo ⊕ oA(s, r), aqv〉q

6.
U sim

res : Hsim ⊗Hquery → Hsim ⊗Hquery

|6〉iwt =
∑

x,z,s,r,A,a

α′x,z,s,A,a

√
pr|s, r〉if|s〉i

∣∣o[n](s, r)
〉
o
|z〉s|x〉e|A,ψz,s,A,a〉q

Fig. 2. Purified run of multiparty computation in the ideal world with superposition attacks

25

6.3 No simulator for general MPC if U sim
query is unitary

In this section we argue that in the model with supplied response registers, it seems that simulation
is impossible for purely technical reasons.

For this purpose, consider the dummy 4-party function d(x1, x2, x3, x4) = (λ, λ, λ, λ), where λ
is the empty string, i.e., the function which gives no outputs on any of its inputs. Consider protocol
δ, where parties P2, P3, P4 runs as follows: On input xi, output λ and terminate, and where P1 runs
as follows: On input x1, let s denote the first bit of x1 and then create a random secret sharing
(s1, . . . , s4) of s, send si to Pi and then output λ and terminate.

The adversary will not need an auxiliary register in the following and will therefore be left out
of the equations. Let the adversary make a query, defined by Uadv,Fquery : Hquery → Hquery, that is
only of the dealer and one more party where he puts the response register for the input in perfect
superposition. The complete state after applying Uadv,Fquery on the query register is,

|3〉rwt =
∑
r,aqi

1√
|S|
√
pr
∣∣v[n](s, r)

〉
p
|s〉i
∣∣o[n](s, r)

〉
o
|A, aqi, 0, 0〉q

where A = {1, 2} The state after applying the oracle is

|4〉rwt =
∑
r,aqi

1√
|S|
√
pr
∣∣v[n](s, r)

〉
p
|s〉i
∣∣o[n](s, r)

〉
o
|A, aqi ⊕ sA, 0, vA(s, r)〉q

If we look at the final part of the query register (vA(s, r)) we can see that it is in a classical state
and contains the view of the dealer and one other party, that is, the randomness and one secret
share. This uniquely defines the secret and hence the query register must be orthogonal for two
different secrets.
In the ideal world assume, for the time being, that U sim

query is the identity. The state after the oracle
for the ideal functionality is applied is then

|5〉iwt =
∑
r,aqi

1√
|S|
√
pr|s, r〉if|s〉i

∣∣o[n](s, r)
〉
o
|0〉s|A, aqi ⊕ sA, 0, 0〉q

Since this is in perfect superposition over all values of aqi we can conclude that,

|5〉iwt =
∑
r,aqi

1√
|S|
√
pr|s, r〉if|s〉i

∣∣o[n](s, r)
〉
o
|0〉s|A, aqi ⊕ sA, 0, 0〉q

=
∑
r,aqi

1√
|S|
√
pr|s, r〉if|s〉i

∣∣o[n](s, r)
〉
o
|0〉s|A, aqi, 0, 0〉q

and the state the simulator sees is therefore independent of the secret. There’s hence no way it
can produce two orthogonal states depending on the secret and hence no way to simulate. For the
case of a different simulator where U sim

query is not the identity, but some unitary operation on Hquery,

there exists a different adversary that applies the unitary, Ũadv
query = Uadv,Fquery(U sim

query)−1 instead. The
register the simulator sends to the oracle of the ideal functionality is now exactly the same as
above, and the same argumentation can now be repeated. It follows that for any such simulator
there exists an adversary that cannot be simulated.

26

6.4 No simulator for superposition attacks by running classical simulator in
superposition

In this section we argue that most protocols cannot be simulated against a superposition attack by
running a classical simulator in superposition. This, in some sense, shows that simulators against
superposition attacks have to be inherently quantum: they should “globally” manipulate the quan-
tum state they get back from the ideal functionality, not just locally work on the individual classical
states in the superposition. Unfortunately, this makes it unclear how to design a good quantum
simulator, even assuming restrictions on F as in Theorem 1 for secret sharing and in the setting
with created response registers, as we need fundamentally new techniques. We will later return to
how we construct such simulators. For now we want to argue that constructing them will require
new techniques.

As discussed above, a natural first attempt to construct a simualtor for a protocol which is
classically secure would be to use the classical simulator and produce a superposition of what it
produces on those corrupted subsets that occur in the corruption query from the adversary. We
can show, however, that this probably does not work in general.

Let us first make clear what we mean by running a classical simulator in superposition: consider
a classical machine S which gets as input parties subset A, the inputs and outputs of those parties
(sA, oA(s)) and a random string c. It then outputs S(A, sA, oA(s), c). Running S in superposition

now means that on input |ψsim
x,s 〉 =

∑
A∈F,c

αx,s,A|0〉s|A, sA, oA(s), 0〉q, we output

∑
A∈F

αx,s,A
√
pc|c〉s|A, sA, oA(s), S(A, sA, oA(s), c)〉q .

This means that the state returned to the adversary will be∑
A,A′∈F

αAα
∗
A′ |A〉

〈
A′
∣∣⊗ |sA, oA(s)〉〈sA′ , oA′(s)| ⊗

∑
c

pc|S(A, sA, oA(s), c)〉
〈
S(A′, sA′ , oA′(s), c)

∣∣ .
Now consider the following simple example protocol δ: we have 4 parties P0, P1, P2, P3. Player

P0 gets as input a bit s. He will then secret share it additively among the other parties: he chooses
uniformly bits r1, r2 and sends r1 to P1, r2 to P2 and s ⊕ r1 ⊕ r2 to P4. Then all parties outputs
the empty string λ. Let d be the 4-party function d(·, ·, ·, ·) = (λ, λ, λ, λ). Clearly, δ is a perfectly
secure evaluation of d against a classical attack where at most 2 parties are corrupted. One might
therefore hope that it would be perfectly secure against superposition attacks using superpositions
of sets containing only 1 party.

However, we now argue that such security cannot be shown by running any classical simulator
S in superposition. To this end, consider the case where we corrupt all parties in equally weighted
superposition. This will mean that the simulator has to start from the input state.

1

2
(|P0〉|s〉|0〉+

3∑
i=1

|Pi〉|⊥〉|0〉) .

The state has this form since the input and output for P0 is just s and the other parties have no
input or output. The state returned will be

ρsim,s =
∑

A,A′∈{{P0},{P1},{P2},{P3}}

1

2
|A〉
〈
A′
∣∣⊗ |sA〉〈sA′ | ⊗∑

c

pc|S(A, sA, c)〉
〈
S(A′, sA′ , c)

∣∣ .
27

If we define that s{Pi} = si is some secret s if i = 0 and ⊥ otherwise, and index with Pi, Pi′ instead
of A,A′, we can write the state a bit more conveniently as:

ρsim,s =
∑
i,i′

1

2
|Pi〉〈Pi′ | ⊗ |si〉〈si′ | ⊗

∑
c

pc|S(i, si, c)〉
〈
S(i′, si′ , c)

∣∣ .
On the other hand, we can compute the state ρreal,s that would be returned from a real attack.

Define vi(s, r1, r2) to be the view of the protocol for Pi, defined as a 2-bit register. Thus

v0(s, r1, r2) = (r1, r2), v1(s, r1, r2) = (r1, 0), v2(s, r1, r2) = (r2, 0), v3(s, r1, r2) = (r1 ⊕ r2 ⊕ s, 0) .

This means that the state returned for a particular choice of s, r1, r2 is

|Ψs,r1,r2〉 =
1

2

3∑
i=0

|Pi〉|si〉|vi(s, r1, r2)〉 .

For fixed s, each choice of r1, r2 occurs with probability 1/4, so

ρreal,s =
∑
r1,r2

1

4
|Ψs,r1,r2〉〈Ψs,r1,r2 | =

1

16

∑
i,i′

|Pi〉〈Pi′ ||si〉〈si′ |
∑
r1,r2

|vi(s, r1, r2)〉〈vi′(s, r1, r2)| .

Consider the part of ρsim,s that corresponds to Pi = P0 and Pi′ = P1. Then, since we assume perfect
simulation, i.e., ρsim,s = ρreal,s, for any c, we must have S(P0, sA, oA(s), c) = S(0, s, c) = (r1, r2)
and S(Pi′ , sA′ , oA′(s), c) = S(1,⊥, c) = (r1, 0), where the same r1 occurs in both strings, since in
a real execution, P1 would of course receive the same bit that P0 sent. We get an exactly similar
conclusion for Pi′ = P2, and for Pi′ = P3, we can conclude that S(3,⊥, c) = (s⊕ r1 ⊕ r2, 0).

But now note that, we can simply compute S(i,⊥, c) for i = 1, 2, 3 and some fixed c. Then
the above shows that if running S in superposition was a perfect quantum simulator, we could
compute (s, 0) = S(1,⊥, c) ⊕ S(2,⊥, c) ⊕ S(3,⊥, c), without any information on s, which is of
course a contradiction.

6.5 Simulators in the created response registers model

The result in 6.3 strongly suggests that it’s impossible to construct a simulator for general MPC
protocols in the setting with supplied response registers: if not even the above simple secret sharing-
based protocol is secure, there is not much hope that more advanced protocols, which actually use
the secret sharings for computations, could be proven secure. In this section we will discuss the
problem of constructing a simulator for the model with created response registers and protocols
for deterministic functions. That is, the output does not depend on the chosen randomness. While
simulators in general consists of two operators, {U sim

query, U
sim
res}, we will restrict U sim

query to be the
identity. That is, the query from the adversary is sent directly to the oracle. We can do this wlog
because there’s no values in the response register and U sim

query must be corruption preserving.

Assume all randomness is uniformly chosen. This can be done wlog and helps to unclutter the
notation. For a specific protocol, define the matrix (or vector of states) M(A, s) as

M(A, s) = (|A, vA(s, 0)〉, . . . , |A, vA(s, r)〉, . . . , |A, vA(s, |R| − 1)〉) .

We can now express the security of the protocol in the following way

28

Lemma 2. A multiparty computation protocol for a deterministic function f is perfectly secure
against superposition F -attacks if, and only if, there exists a set of |R| × |R| unitary matrices
{Us}s∈S such that for all s, s′ ∈ S, A ∈ Fs,s′ where Fs,s′ = {A ∈ F |sA = s′A ∧ oA(s) = oA(s′)}

M(A, s)Us = M(A, s′)Us′

Proof. Consider the final state the adversary sees (using the output is independent of randomness
and only 0 in the response registers),

ρrwadv = trp(|4〉〈4|rwt) =
∑
r∈R

1

|R|
|ψadv
r 〉〈ψadv

r |

where |ψadv
r 〉 =

∑
x,s,A∈F

αx,s,A|s〉i|o[n](s)〉o|x〉e|A, sA, oA(s), vA(s, r)〉q and the state the simulator sees

after the oracle has been applied in the ideal world,

ρiwsim = trif,e,i(|5〉〈5|rwt) =
∑
x,s

∣∣ψsim
x,s

〉〈
ψsim
x,s

∣∣
where |ψsim

x,s 〉 =
∑
A∈F

αx,s,A|0〉s|A, sA, oA(s), 0〉q. The state the simulator must sent back is,

∑
x,r,s

1

|R|
|ψx,r,s〉〈ψx,r,s|

where

|ψr,s〉 =
∑
A∈F

αx,s,A|A, sA, oA(s), vA(s, r)〉q .

To continue we need a claim that is almost equivalent to Theorem 4 in [CJW04], but changed
slightly for our specific purposes. For this reason we will also provide a separate proof. The reader
is encouraged to read [CJW04] for additional information on the existence of transformations
between sets of quantum states.

Claim. There exists a perfect simulator, i.e., ρrwadv = ρiwadv, iff there exist unitary operator, U sim
res

such that for all x, s ∈ S

U sim
res

∣∣ψsim
x,s

〉
= U sim

res

∑
A∈F

αx,s,A|0〉s|A, sA, oA(s), 0〉q =
1√
|R|

∑
A∈F

αx,s,A
∑
i,k∈R

[Us]i,k|k〉s|A, sA, oA(s), vA(s, i)〉q

(12)
where [Us]i,k is the i, k index of a |R|×|R| unitary matrix in some set of unitary matrices, {Us}s∈S.

Proof. For the forward direction, consider the final state the adversary sees

ρiwadv = trif,s(|6〉〈6|iwt) =
∑

k∈R,s∈S

∣∣ψadv
k,s

〉〈
ψadv
k,s

∣∣ ,
29

where |ψadv
k,s 〉 =

∑
x,A∈F

αx,s,A|s〉i|o[n](s)〉o|x〉e

(∑
i∈R

[Us]i,k
1√
|R|
|A, sA, oA(s), vA(s, i)〉q

)
. Note that

∀s,A,A′, x, x′,
1

|R|
∑

i,j,k′∈R
[U∗s]i,k[Us]j,k|A, sA, oA(s), vA(s, i)〉

〈
A′, sA′ , oA′(s), vA′(s, j)

∣∣ (13)

=
1

|R|
∑
i,k∈R

[U∗s]i,k[Us]i,k|A, sA, oA(s), vA(s, i)〉
〈
A′, sA′ , oA′(s), vA′(s, i)

∣∣
=

1

|R|
∑
i∈R

pi|A, sA, oA(s), vA(s, i)〉
〈
A′, sA′ , oA′(s), vA′(s, i)

∣∣
where we used that [Us]i,k is unitary and only depends on s. This means the adversary sees the
state he expects (except for labels) and we’ve completed the proof for the forward direction.
Conversely, assume for contradiction that there is a simulator that can constructs the correct
mixed state for the adversary, but none that can construct one of the form of equation (12). If∑
x,k,s

pk|φx,k,s〉〈φx,k,s| is the state the simulator sents back, then it must be that ∀x, s :

∑
k

pk|φx,k,s〉〈φx,k,s| =
∑
r

1

|R|
|ψx,r,s〉〈ψx,r,s|

where
|ψr,s〉 =

∑
A

αx,s,A|A, sA, oA(s), vA(s, r)〉q .

This is true if, and only if, there exist unitary matrices, {Ux,s}x,s, such that,

∀k :
√
pk|φx,k,s〉 =

1√
|R|

∑
i

[Ux,s]i,k|ψx,i,s〉 .

By purifying the state we see we get,∑
k

√
pk|k〉|φx,k,s〉 =

1√
|R|

∑
i,k

[Ux,s]i,k|k〉|ψx,i,s〉 =
1√
|R|

∑
A∈F

αx,s,A
∑
i,k

[Ux,s]i,k|k〉s|A, sA, oA(s), vA(s, i)〉q .

Note that we can choose the purification because all purifications are unitarily equivalent. And since
the value of x only effects the amplitude we can, by linearity, assume that Ux,s does not depend
on x. This shows that the state produced by any perfect simulator must be of that form. This is a
contradiction and completes the proof. ut

Note that U sim
res exists (and is unitary) if it preserves inner product between all possible states,

hence we can conclude that there exists a perfect simulator if there exists a set of unitary matrices,
{Us}s∈S such that for all x, x′, s, s′ ∈ S and all queries {αx,s,A}, {α′x′,s′,A}

(
∑
A∈F

α∗x,s,A〈0|s〈A, sA, oA(s), 0|q)(
∑
A′∈F

α′x′,s′,A′ |0〉s
∣∣A′, s′A′ , oA′(s′), 0〉q)

=
1

|R|

∑
A∈F

α∗x,s,A
∑
i,k∈R

[U∗s]i,k〈k|s〈A, sA, oA(s), vA(s, i)|q

∑
A′∈F

α′x′,s′,A′
∑
j,k′∈R

[Us′]j,k′
∣∣k′〉

s

∣∣A′, s′A′ , oA′(s′), vA′(s′, j)〉q
 .

30

For the LHS we have that,

(
∑
A∈F

α∗x,s,A〈0|s〈A, sA, oA(s), 0|q)(
∑
A′∈F

α′x′,s′,A′ |0〉s
∣∣A′, s′A′ , oA′(s′), 0〉q)

=
∑
A

α∗x,s,Aα
′
x′,s′,A〈sA, oA(s)|

∣∣s′A, oA(s′)
〉

=
∑

A∈Fs,s′

α∗x,s,Aα
′
x′,s′,A .

For the RHS we get that,

1

|R|

∑
A∈F

α∗x,s,A
∑
i,k∈R

[U∗s]i,k〈k|s〈A, sA, oA(s), vA(s, i)|q

∑
A′∈F

α′x′,s′,A′
∑
j,k′∈R

[Us′]j,k′
∣∣k′〉

s

∣∣A′, s′A′ , oA′(s′), vA′(s′, j)〉q

=
1

|R|
∑

A∈F,k,i,j∈R
α∗x,s,Aα

′
x′,s′,A[U∗s]i,k[Us′]j,k〈sA, oA(s), vA(s, i)|

∣∣s′A, oA(s′), vA(s′, j)
〉

=
1

|R|
∑

s,s′,A∈F,k∈R
α∗x,s,Aα

′
x′,s′,A〈sA, oA(s)|

∣∣s′A, oA(s′)
〉
×

(∑
i∈R

[U∗s]i,k〈A, vA(s, i)|

)∑
j∈R

[Us′]j,k
∣∣A, vA(s′, j)

〉
=

1

|R|
∑

s,s′,A∈Fs,s′ ,k∈R
α∗x,s,Aα

′
x′,s′,A ×

(∑
i∈R

[U∗s]i,k〈A, vA(s, i)|

)∑
j∈R

[Us′]j,k
∣∣A, vA(s′, j)

〉 .

The maximum value of the inner product of two normalized vectors is 1, so the maximum value of

1

|R|

(∑
i∈R

[U∗s]i,k〈A, vA(s, i)|

)∑
j∈R

[Us′]j,k
∣∣A, vA(s′, j)

〉
is 1
|R| . Hence for the sum is over R to be 1, it must be that∑

i∈R
[Us]i,k|A, vA(s, i)〉 =

∑
j∈R

[Us′]j,k
∣∣A, vA(s′, j)

〉
.

That is, there exists a simulator iff there exist |R| × |R| unitary matrices Us such that for all
s, s′ ∈ S, k ∈ R, A ∈ Fs,s′∑

i∈R
[Us]i,k|A, vA(s, i)〉 =

∑
j∈R

[Us′]j,k
∣∣A, vA(s′, j)

〉
. (14)

Using the definition of M(A, s) we can now write the requirement in the more convenient way:
There exists a simulator for the MPC protocol if, and only if, there exist a set of unitary matrices,
{Us}s∈S, such that for all s, s′ ∈ S, A ∈ Fs,s′ :

M(A, s)Us = M(A, s′)Us′

which completes the proof of Lemma 2. ut

We’d like to warn the reader that it is important not to confuse the unitary matrices, {Us}s∈S, with
the simulator itself. They are merely a tool to show the existence of one. Also, at this point the
reader would be excused for lacking any intuition on why the lemma is reasonable. We therefore
find it instructive to consider two examples. First we’ll reconsider secret sharing in this framework
and secondly a simple MPC protocol.

31

6.6 Secret sharing example

In this section we show that a simple secret sharing based protocol is a secure implementation of a
dummy function in the MPC model with created response registers. The section serves as a sanity
check of the model, as one should expect the given protocol to be a secure implementation of the
given function. The section also shows an application of Lemma 2.

Consider a secret sharing scheme for n parties P1, . . . , Pn and an MPC setting with n′ = n+ 1
parties P0, P1, . . . , Pn. Consider the dummy function d(x0, x1, . . . , xn) = (λ, . . . , λ), where λ is the
empty string. Consider the protocol π, where P0 parses x0 as a secret s for the secret sharing scheme,
secret shares s into (s1, . . . , sn) and sends si to Pi. Then all parties output λ. Let t be the threshold
of the secret sharing scheme. By Theorem 1 we would expect δ to be a secure implementation of d
against a superpostion attack of t/2 of the parties P1, . . . , Pn. We show that this is indeed the case.

Theorem 5. Let F = {A ⊆ {P1, . . . , Pn} : |A| ≤ t/2}. The protocol d is a secure implementation
of δ under superposition F - attacks.

In the proof, we will allow each choice of randomness to be non-uniform as it adds only very
little clutter. We note that since none of the parties P1, . . . , Pn have any consequential input or
output to δ we have that for all s, s′ ∈ S : Fs,s′ = F . Note, in particular, that P0 6∈ A for all A ∈ F ,
so the secret s is never an input of a corrupted party. The result then follows as a Corollary of
Theorem 1.

Corollary 1. If a secret sharing scheme S is perfectly secure against superposition F -attacks then
there exists a set of |R| × |R| unitary matrices {Us}s∈S such that for all s, s′ ∈ S, r ∈ R, A ∈ F∑

i∈R

√
pi[Us]i,r|vA(i, s)〉 =

∑
j∈R

√
pj [Us′]j,r

∣∣vA(j, s′)
〉
.

Proof. Since the secret sharing scheme is secure we know from Theorem 1 that the joint distribution
of the view for any A,A′ ∈ F is independent of s and hence, for all s, s′ ∈ S:

σs =
∑
r∈R

pr|ψs,r〉〈ψs,r| = σs′ =
∑
r∈R

pr
∣∣ψs′,r〉〈ψs′,r∣∣

where
|ψs,r〉 =

∑
A∈F

αA|A〉|vA(r, s)〉 .

This is equivalent to saying that the fidelity of two such states is 1. According to Uhlmann’s
Theorem this implies that there exist purifications of σs and σs′ such that their inner product is 1.
Unitary equivalence of purifications implies you can write any such purification in H ⊗ R, where
dim(R) = |R|, as ∑

k∈R

√
p′k
∣∣ψ′s,k〉|k〉R =

∑
i,k∈R

√
pi[Us]i,k|ψs,i〉|k〉R

where {Us}s∈S is a set of |R| × |R| unitary matrices. As the fidelity must be 1, it must be that for
all s, s′ ∈ S∑
i,k∈R

√
pi[U

∗
s]i,k〈ψs,i|〈k|R

 ∑
j,k′∈R

√
pj [Us′]j,k′

∣∣ψs′,j〉∣∣k′〉R
 =

∑
i,j,k∈R

√
pi
√
pj [U

∗
s]i,k[Us′]j,k〈ψs,i|

∣∣ψs′,j〉

=
∑

A∈F,k∈R
|αA|2

(∑
i∈R

√
pi[U

∗
s]i,k〈vA(i, s)|

)∑
j∈R

√
pj [Us′]j,k

∣∣vA(j, s′)
〉 = 1 .

32

Because
∑
A∈F
|αA|2 = 1 and noting the states are normalized, we can conclude that

∀s, s′ ∈ S, k ∈ R, A ∈ F :

(∑
i∈R

√
pi[U

∗
s]i,k〈vA(i, s)|

)∑
j∈R

√
pj [Us′]j,k

∣∣vA(j, s′)
〉 = 1 ,

from which the result follows. ut

6.7 Simple MPC simulator example

For this example we return to the simple four-party (P0, P1, P2, P3) bit-sharing scheme considered
in section 6.4. There we showed that we could not simulate an attack by simply running a classical
simulator for the protocol in superposition. We are now in position to show that a simulator nonethe-
less exists. Recall that |vP0(s, (r0, r1))〉 = |r0, r1〉, |vP1(s, (r0, r1))〉 = |r0, 0〉, |vP2(s, (r0, r1))〉 =
|r1, 0〉, |vP3(s, (r0, r1))〉 = |r0 ⊕ r1 ⊕ s, 0〉. We have two possible inputs s ∈ {0, 1} so we need to
find two unitary matrices, U0, U1 in order to apply Lemma 2. These have been found manually.

U0 =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

U1 =

1
2

1
2

1
2 −

1
2

1
2

1
2 −

1
2

1
2

1
2 −

1
2

1
2

1
2

−1
2

1
2

1
2

1
2

 .

It is a tedious, but straightforward, calculation to show that8,

M(P1, 0) = M(P1, 1)U1

M(P2, 0) = M(P2, 1)U1

M(P3, 0) = M(P3, 1)U1

and since P0 /∈ F0,1 we do not require that M(P0, 0) = M(P0, 1)U1. To get a better feeling for what
is going on we will consider equation (14) for two specific choices for A and r. First let A = P2 and
r = (1, 0). The following must be true for the unitary matrices to be correct choices,

|P2, vP2(0, (1, 0))〉 =
∑

(i0,i1)∈R

[U1](i0,i1),(1,0)|P2, vP2(1, (i0, i1))〉

Since U0 is just the identity, the LHS is easy to calculate, |P2, vP2(0, (1, 0))〉 = |0, 0〉 For the RHS
we see that ∑

(i0,i1)∈R

[U1](i0,i1),(1,0)|P2, vP2(1, (i0, i1))〉

=
1

2
|P2, vP2(1, (0, 0))〉 − 1

2
|P2, vP2(1, (0, 1))〉+

1

2
|P2, vP2(1, (1, 0))〉+

1

2
|P2, vP2(1, (1, 1))〉

=
1

2
|0, 0〉 − 1

2
|1, 0〉+

1

2
|0, 0〉+

1

2
|1, 0〉 = |0, 0〉 .

8 Note that we encode the randomness as (0, 0) = 0, (0, 1) = 1, (1, 0) = 2, (1, 1) = 3

33

Of particular interest is A = P3 as the view depends on the secret (for fixed randomness). Choose
r = (0, 0):

|P3, vP3(0, (0, 0))〉 =
∑

(i0,i1)∈R

[U1](i0,i1),(0,0)|P3, vP3(1, (i0, i1))〉 .

For LHS, |P3, vP3(0, (0, 0))〉 = |0, 0〉. For RHS, ∑
(i0,i1)∈R

[U1](i0,i1),(0,0)|P3, vP3(1, (i0, i1))〉

=
1

2
|P3, vP3(1, (0, 0))〉+

1

2
|P3, vP3(1, (0, 1))〉+

1

2
|P3, vP3(1, (1, 0))〉 − 1

2
|P3, vP3(1, (1, 1))〉

=
1

2
|1, 0〉+

1

2
|0, 0〉+

1

2
|0, 0〉 − 1

2
|1, 0〉 = |0, 0〉 .

6.8 General MPC

In this section we will give a restatement of Lemma 2, expressing the requirement for the existence
of a simulator as an explicit property of the multiparty computation protocol. This will allow
for a straightforward, albeit extremely inefficient, method for checking the security of any MPC
protocol for a deterministic function in our model. For all ordered pairs of inputs, s, s′ ∈ S, and all
sets A ∈ Fs,s′ we will associate a permutation of the randomness, {πs,s′,A}s,s′,A∈Fs,s′

∈ S(R). By
ordered pairs we mean that πs,s′,A may differ from πs′,s,A.

Theorem 6. A multiparty computation protocol for a deterministic function f is perfectly secure
against superposition F -attacks with created response registers if, and only if, it is correct and there
exist permutations, {πs,s′,A}s,s′,A∈Fs,s′

with the following two properties,

1.

∀s, s′ ∈ S,∀A ∈ Fs,s′ ,∀r ∈ R :∣∣vA(s, πs,s′,A(r))
〉

=
∣∣vA(s′, πs′,s,A(r))

〉
2.

∀s, s′, s′′ ∈ S, ∀A ∈ Fs,s′ , A′ ∈ Fs,s′′ :∑
r∈R
|vA(s, r)〉〈vA′(s, r)| =

∑
r∈R

∣∣vA(s, πs,s′,A(r))
〉〈
vA′(s, πs,s′′,A′(r))

∣∣
Note that property (1) is exactly the statement that a (not necessarily efficient) simulator exists in
the classical model.

Proof. Before we begin we will need the following claim,

Claim. We can without loss of generality assume that all the rows (and columns) of Us sum to 1.

Proof. First recall that according to Lemma 2 we have that there is a simulator iff

∃U0, · · · , U|S|−1 st.

∀s, s′ ∈ S, ∀A ∈ Fs,s′ : M(A, s)Us = M(A, s′)Us′ .

34

For any solution we can always multiply with U−1
0 on the right side of all equations and we can

hence wlog assume that U0 = I. Now consider ∀s ∈ S the equation,

∀A ∈ F0,s : M(A, 0) = M(A, s)Us .

That is,

∀r ∈ R :
∑
k∈R

[Us]r,k|AvA(s, k)〉 = |vA(0, r)〉 .

Hence all rows (and columns) of Us must sum to 1. ut

We can, in other words, view M(A0,s, s)Us simply as M(A0,s, 0) under some permutation of the
columns. In fact, since Us must always preserve the length of the columns, any M(A, s)Us is always
just a permutation of the columns in M(A, s). Although the permutation is defined by the same
unitary it is not necessarily the same permutation. But they are clearly related. We will make this
relationship explicit by separating the requirement for a simulator into two parts. Let Mπs,s′,A(A, s)
denote the permutation of the columns in M(A, s) that corresponds to applying the permutation
function to the randomness for the view in each column, that is,

Mπs,s′,A(A, s) =
(∣∣A, vA(s, πs,s′,A(0))

〉
, . . . ,

∣∣A, vA(s, πs,s′,A(r))
〉
, . . .

)
.

The first requirement is simply the statement that for A ∈ Fs,s′ some permutation of the randomness
exist to allow their views to be equal for s and s′. The second is the statement that, when the input
to the parties are the same, these permutations must be performed by the same unitary matrix.
That is, there exists a simulator if, and only if, there exist permutations, {πs,s′,A}s,s′,A∈Fs,s′

with
the following two properties,

1.

∀s, s′ ∈ S, ∀A ∈ Fs,s′ :

Mπs,s′,A(A, s) = Mπs′,A(A, s′)

2. There exist unitary matrices, {Us}s∈S, such that ∀s, s′, A ∈ Fs,s′ : M(A, s)Us = Mπs,s′,A(A, s).

For a specific choice of permutations such unitary matrices exist iff they preserve the inner product.
That is, iff

∀s, s′, s′′ ∈ S,∀A ∈ Fs,s′ , A′ ∈ Fs,s′′ :

M(A, s)M(A′, s)† = Mπs,s′,A(A, s)Mπs,s′′,A′ (A′, s)† .

Writing out the equations using the definition of M(A, s) we conclude the proof. ut

Had the choice of corrupted parties been classical we could have let the unitary matrices depend
on both the input and which party was corrupted. Specifically, in equation (13), the reason the

unitaries cannot depend on A is that
∑

i,j,k∈R
[U∗s,A]i,k[Us,A′]j,k does not cancel out correctly if they

differ and the adversary would not see the correct state. If the choice of A was classical we would
see no such cross-terms 9 and no such relationship would be required.

9 Recall that there are no cross-terms for s because the input register is perfectly entangled with the parties/ideal
functionality

35

References

[BCG+05] Michael Ben-Or, Claude Crépeau, Daniel Gottesman, Avinatan Hassidim, and Adam Smith. Secure
multiparty quantum computation with (only) a strict honest majority. In 46th Annual IEEE Symposium
on Foundations of Computer Science (FOCS), pages 249–260, 2005.

[BDF+11] Dan Boneh, Özgür Dagdelen, Marc Fischlin, Anja Lehmann, Christian Schaffner, and Mark Zhandry.
Random oracles in a quantum world. In Dong Hoon Lee and Xiaoyun Wang, editors, ASIACRYPT,
volume 7073 of Lecture Notes in Computer Science, pages 41–69. Springer, 2011.

[BZ12] Dan Boneh and Mark Zhandry. Quantum-secure message authentication codes. Electronic Colloquium on
Computational Complexity (ECCC), 19:136, 2012.

[CJW04] Anthony Chefles, Richard Jozsa, and Andreas Winter. On the existence of physical transformations
between sets of quantum states. International Journal of Quantum Information, pages 11–21, 2004.
http://arxiv.org/abs/quant-ph/0307227.

[DFS04] Ivan Damg̊ard, Serge Fehr, and Louis Salvail. Zero-knowledge proofs and string commitments withstanding
quantum attacks. In Advances in Cryptology—CRYPTO ’04, volume 3152 of Lecture Notes in Computer
Science, pages 254–272. Springer, 2004.

[FS09] Serge Fehr and Christian Schaffner. Composing quantum protocols in a classical environment. In Theory
of Cryptography Conference (TCC), volume 5444 of Lecture Notes in Computer Science, pages 350–367.
Springer, 2009.

[IKOS09] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-knowledge proofs from secure
multiparty computation. SIAM J. Comput., 39(3):1121–1152, 2009.

[KN08] Gillat Kol and Moni Naor. Games for exchanging information. In Theory of Cryptography Conference
(TCC), volume 4948 of Lecture Notes in Computer Science, pages 423–432. Springer, 2008.

[PVW08] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for efficient and composable
oblivious transfer. In Advances in Cryptology—CRYPTO ’08, volume 5157 of Lecture Notes in Computer
Science, pages 554–571. Springer, 2008.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In 37th Annual
ACM Symposium on Theory of Computing (STOC), pages 84–93, 2005.

[Wat06] John Watrous. Zero-knowledge against quantum attacks. In 38th Annual ACM Symposium on Theory
of Computing (STOC), pages 296–305, 2006. full version available at http://www.cs.uwaterloo.ca/ wa-
trous/papers.html.

[Zha12a] Mark Zhandry. How to construct quantum random functions. In FOCS, pages 679–687. IEEE Computer
Society, 2012.

[Zha12b] Mark Zhandry. Secure identity-based encryption in the quantum random oracle model. In Reihaneh
Safavi-Naini and Ran Canetti, editors, CRYPTO, volume 7417 of Lecture Notes in Computer Science,
pages 758–775. Springer, 2012.

36

