
Linear Cryptanalysis of PRINTcipher
— Trails and Samples Everywhere

Martin Ågren and Thomas Johansson

Dept. of Electrical and Information Technology, Lund University,
P.O. Box 118, 221 00 Lund, Sweden

martin.agren@eit.lth.se

Abstract. PRINTcipher is a recent lightweight block cipher designed
by Knudsen et al. Some noteworthy characteristics are a burnt-in key, a
key-dependent permutation layer and identical round keys. Independent
work on PRINTcipher has identified weak key classes that allow for a
key recovery — the obvious countermeasure is to avoid these weak keys
at the cost of a small loss of key entropy. This paper identifies several
larger classes of weak keys. We show how to distinguish classes of keys
and give a 28-round linear attack applicable to half the keys. We show
that there are several similar attacks, each focusing on a specific class
of keys. We also observe how some specific properties of PRINTcipher
allow us to collect several samples from each plaintext–ciphertext pair.
We use this property to construct an attack on 29-round PRINTcipher
applicable to a fraction 2−5 of the keys.

Keywords: cryptanalysis, block cipher, linear cryptanalysis, finding sam-
ples, key bit distinguisher

1 Introduction

Over the last few years, a number of hardware-efficient block ciphers have been
proposed. Some noteworthy examples are HIGHT [6], PRESENT [3], and KATAN
and KTANTAN [5]. One of the most recent designs to appear is PRINTcipher [8].
It is designed by Knudsen et al. and is quite similar to the well-studied PRESENT.
All rounds use the same key and differ only by a round counter. The linear layer
is partly key-dependent and as a result, 48-bit PRINTcipher uses keys of 80
bits, while 96-bit PRINTcipher uses 160-bit keys. We will focus exclusively on
PRINTcipher-48 in this paper, noting that very similar results can be derived
for PRINTcipher-96.

Our first observation relates to the key-dependent permutation: we show how
there exist several linear trails in PRINTcipher that are biased for some keys
but unbiased for most keys, allowing us to distinguish between classes of keys. In
order to attack several rounds of PRINTcipher, we need to find many samples.
Our second observation uses the identical round-structure, including identical
keys, to obtain several samples per plaintext–ciphertext pair. By guessing key

bits to do partial encrypting and decrypting, we eventually reach 29 rounds of
48.

Two recent attacks are similar to our work in that they identify classes of
weak keys. As a fundamental idea behind PRINTcipher is that the key is burnt
into the device, it is straightforward to protect against these attacks by avoiding
the weak keys. Avoiding the 252 keys attacked in [9] the size of the key space
shrinks from 280 to 280 − 252 ≈ 280 so the entropy is still 80 bits in a practical
sense. Similarly, to protect against the attack in [4] the number of keys needs to
be lowered to approximately 279.8 so there is a loss of one fifth of a bit. In this
independent paper, we find several classes that are very probable (e.g., proba-
bility one half), and even avoiding only the largest classes leads to a key space
of size approximately 278, meaning two bits of the key entropy are effectively
lost. This makes our observations very interesting compared to the previously
published results.

This paper is organized as follows: Section 2 describes PRINTcipher. Sec-
tion 3 introduces linear cryptanalysis and discusses the importance of finding
many samples. Some initial, basic observations are given in Section 4, before Sec-
tion 5 gives our fundamental observation: a key bit distinguisher on 23 rounds of
PRINTcipher. Section 6 then derives attacks on 27 and 28 rounds of PRINT-
cipher. In Section 7, we extend our observation to show that several classes of
weak keys exist, making the attack very general, and to show how one can find
many samples. In Section 8, we use our ability to find many samples to provide
an attack on 29-round PRINTcipher. Section 9 concludes the paper.

2 A Description of PRINTcipher

We focus entirely on PRINTcipher-48, which uses blocks of 48 bits and 80-bit
keys.

The 48-bit plaintext is loaded into the state, where we denote the 48 bit
positions as (b, c), 0 ≤ b < 16, 0 ≤ c < 3. The leftmost bit, also referred to as the
most significant bit (msb), is (15, 2) while (0, 0) is the least significant bit (lsb).

There are 48 rounds where each round uses a round constant RCi, i =
0, . . . , 47 (see Table 1), a 48-bit xor-key K⊕ (the same in all rounds) and a
32-bit permutation key Kπ (the same in all rounds). Each round consists of key
addition, standard permutation, round constant addition, key-dependent per-
mutation and an S-box, see Fig. 1. The S-box is given in Table 2 and takes input
(x2, x1, x0) to produce output (y2, y1, y0).

Table 1. The round constants RCi.

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

RCi 01 03 07 0F 1F 3E 3D 3B 37 2F 1E 3C 39 33 27 0E 1D 3A 35 2B 16 2C 18 30

i 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

RCi 21 02 05 0B 17 2E 1C 38 31 23 06 0D 1B 36 2D 1A 34 29 12 24 08 11 22 04

⊕K⊕

⊕RCi
π0

S
π1

S
π2

S
π3

S
π4

S
π5

S
π6

S
π7

S
π8

S
π9

S
π10

S
π11

S
π12

S
π13

S
π14

S
π15

S

Fig. 1. One round of PRINTcipher.

Table 2. The S-box as values S(x) = y = (y2, y1, y0) corresponding to x = (x2, x1, x0).
As an example, S(1, 0, 0) = S(4) = 7 = (1, 1, 1).

x 0 1 2 3 4 5 6 7

S(x) 0 1 3 6 7 4 5 2

We denote the plaintext P = p47, . . . , p0 and the ciphertext (state) after r
rounds of encryption (0 < r ≤ 48) by Cr = cr47, . . . , c

r
0.

2.1 The Key

We split the key K = K⊕||Kπ = (k⊕47, . . . , k
⊕
0)||(kπ31, . . . , kπ0) into an xor-key K⊕

(48 bits) and a permutation key Kπ (32 bits).

2.2 The Standard Permutation Π

A “large” permutation Π is applied to the state of PRINTcipher. Each bit, at
position (b, c), is moved to (t mod 16, bt/16c) where t = 3b+ c. The permutation
is given in Appendix A and can also be seen in Fig. 1.

2.3 The Key-Dependent Permutation π

A “small” permutation πb is applied to each (disjoint) triplet of bits in the state of
PRINTcipher. The new positions of bits (b, 2), (b, 1), (b, 0) are (b, cb2), (b, cb1), (b, cb0),
respectively, where (cb2, c

b
1, c

b
0) are determined by the two key bits (kπ2b+1, k

π
2b).

This mapping is given in Table 3. Note in particular how one of the permuta-
tions is trivial while the others fix one bit while switching the two remaining
bits. Thus, the two permutations that shift the three-bit word cyclically have
been excluded from PRINTcipher and can not be selected by the key.

2.4 Other Notation

Let Ir = r mod 2 indicate whether r is even or odd. Partial encryption in rounds
r1, . . . , r2 − 1 is denoted by φr1,r2 . Similarly, partial decryption in rounds r2 −
1, . . . , r1 is denoted φ−1r1,r2 .

Table 3. The key-dependent permutation. The bits at positions (b, 2), (b, 1), (b, 0) are
moved to positions (b, cb2), (b, cb1), (b, cb0), respectively where (cb2, c

b
1, c

b
0) are determined

by (kπ2b+1, k
π
2b).

(kπ2b+1, k
π
2b) (cb2, c

b
1, c

b
0)

(0, 0) (2, 1, 0)

(0, 1) (1, 2, 0)

(1, 0) (2, 0, 1)

(1, 1) (0, 1, 2)

2.5 Existing Work on PRINTcipher

Abdelraheem et al. have given a differential attack on 22-round PRINTcipher [1].
Using the entire code book, they study the single-bit differentials in order to learn
how the bits are permuted through the entire cipher, i.e., r rounds. Finding the
rth root of this permutation then gives them the single-round permutation π◦Π
and thus Kπ.

We note that it is straightforward to invert the last S-box upon retrieving
a ciphertext (it is present only to make hardware implementations smaller as it
does not require any special logic for the last round as in e.g., AES). Thus, an
attacker can extend the 22-round attack to 23 rounds at very low cost: the S-box
only has to be inverted if the three bits in its output are the only bits that have
a difference.

Two very recent publications reach further than 22 rounds. At CRYPTO,
Leander et al. [9] showed how an “invariant subspace attack” allowed for a class
of 252 keys to be distinguished regardless of the number of rounds, so in particular
for the full PRINTcipher. At SAC, Karakoç et al. [4] combined differential and
linear cryptanalysis to reach 29 rounds on 4.54% and 31 rounds on .036% of the
keys.

3 Linear Cryptanalysis

Originally introduced by Matsui [11], linear cryptanalysis has since been applied
to a large number of cryptographic primitives in many different fashions. In
the original form, the goal is to find some biased linear relation on bits in the
progressing state of the cipher. If key bits involved in partially encrypting and/or
decrypting are guessed correctly, the bias should be observable, while for wrong
guesses, the bias should not appear. As a result, the partial key guess can be
verified and the rest of the key found through an exhaustive search. The end
result is an attack faster than exhaustive search, but the cost is that one needs
to access many plaintext–ciphertext pairs (see Section 3.1).

While it is common to study trails on linear combinations of bits in plaintext
and ciphertext,

P (α · P = β · C + γ ·K) =
1

2
± ε,

where α, β, γ are bitmasks, the most simple case is to study single-bit trails
such as

P (p47 = c47) =
1

2
+ ε.

This paper will exclusively deal with single-bit trails, possibly involving the xor
of one bit of key, although it is no doubt possible to find many more trails by
using multiple-bit trails. The reason we do this is that the single-bit trails appear
very naturally in PRINTcipher.

We refer to ε as the bias of the trail, and an attacker will naturally try to
find relations with as large bias as possible. In the PRINTcipher specification,
the designers show that the optimal linear trails over r rounds of PRINTcipher
have probability 1

2 + 2−r−1, i.e., bias 2−r−1. In this paper, we will exclusively
look at such optimal trails.

The piling-up lemma [11] tells us how the bias diminishes over more rounds.
In our context it means that piling two optimal trails on r1 and r2 rounds into
one trail on r = r1 + r2 rounds, results in a bias of 2−r−1 = 2−r1−r2−1. This is
not surprising: piling two optimal trails results in an optimal trail.

Every time we look at (e.g.,) p47 ⊕ c47, we actually look at a sample, a bit
that is picked from some distribution. By looking at sufficiently many samples,
we can make a sufficiently good guess on which distribution we are dealing with.

3.1 On the Importance of Finding Many Samples

In order to distinguish between two distributions on {0, 1}, one with Prob(1) =
1
2 + ε and one with Prob(1) = 1

2 , it is commonly accepted [11, 2] that one needs
ε−2 samples. One actually needs αε−2 samples, but the constant α is small
enough to be ignored: this allows for easier analysis and comparisons of crypt-
analytic results. In this paper, we will always need to obtain 22r+2 samples.

An attacker can only access 248 different plaintext–ciphertext pairs on PRINT-
cipher, which seems to indicate that only 248 samples can be found and that
only 23-round trails can be used, i.e., less than half the number of rounds. If we
want to use a trail on (23 + s) rounds, we need to obtain 22(23+s)+2 = 248+2s

samples, i.e., 22s samples per plaintext–ciphertext pair.
In this paper, we will note how some particular features of PRINTcipher al-

low us to find trails where we can access several samples per plaintext–ciphertext
pair. We also see how these samples are independent (enough) to make them us-
able in a cryptanalytic setting.

We will only consider iterated trails, i.e., trails beginning and ending at a
common bit position. This is for simplicity: iterated trails can be used to trivially
create trails on larger numbers of rounds. One can also see that by using iterated
trails, the number of distinct πb involved in the trail is kept to a minimum, which
keeps the involved number of key bits decently small.

Recall that a sample sj is a bit obtained by comparing a plaintext bit to a
ciphertext bit (more generally, linear combinations). Crucial in linear cryptanal-
ysis is counting how many samples are 1 resp. 0, i.e., deriving the sum S =

∑
j sj .

Kaliski and Robshaw [7] note that if one can find several linear approximations

that involve the exact same key bits, i.e., the same bitmask γ, so that one can
get several counts Si =

∑
j s
i
j , one can use a weighted sum of these counts Si

— this measurement has the same expected value but a smaller variance. In
particular, when the bias is the same for all linear approximations, the weighted
sum is simply the average, which up to a multiplicative constant is the same as
the overall number of samples that are 1, i.e.,

∑
i,j s

i
j . It is then natural to think

of the different sij (with varying i and j) as different samples from the same
underlying distribution.

4 Some Initial Observations

4.1 The S-Box

Some single-bit trails are available on the S-box and through the remainder of
this paper, we will focus on these three:

Prob(y2 = x2) = Prob(y1 = x1) = Prob(y0 = x0 ⊕ 1) =
1

2
+ 2−2.

They are conveniently all from xi to yi, which is not strictly necessary but
simplifies the presentation of the subsequent observations and attacks.

4.2 The Permutation πb and the S-box

Table 4. The S-box evaluated for all possible permutations on the input.

(x2, x1, x0) S(x2, x1, x0) S(x1, x2, x0) S(x2, x0, x1) S(x0, x1, x2)

(0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0)
(0, 0, 1) (0, 0, 1) (0, 0, 1) (0, 1, 1) (1, 1, 1)
(0, 1, 0) (0, 1, 1) (1, 1, 1) (0, 0, 1) (0, 1, 1)
(0, 1, 1) (1, 1, 0) (1, 0, 0) (1, 1, 0) (1, 0, 1)
(1, 0, 0) (1, 1, 1) (0, 1, 1) (1, 1, 1) (0, 0, 1)
(1, 0, 1) (1, 0, 0) (1, 1, 0) (1, 0, 1) (1, 0, 0)
(1, 1, 0) (1, 0, 1) (1, 0, 1) (1, 0, 0) (1, 1, 0)
(1, 1, 1) (0, 1, 1) (0, 1, 1) (0, 1, 1) (0, 1, 1)

One can quite easily see that with (y2, y1, y0) = S(x2, x1, x0) and (y′2, y
′
1, y
′
0) =

S(x2, x0, x1), we always have y2 = y′2, see Table 4. This means that if we are
only interested in tap 2 out of the S-box, it does not matter if x1, x0 are swapped
or not before entering the S-box.

As a consequence, if we

– know three bits that enter S ◦ πb,
– want to know y2 out of the S-box, and
– need to guess the permutation πb, i.e., (kπ2b+1, k

π
2b),

then we only need to make three guesses on πb.
The same property shows up on y0 also, but not on y1, see Table 4. We

will use this observation to reduce the amount of guesswork we need to perform
during partial encryption. We will use the notation π3

b to mark that we only
guess a ternary digit, a trit, for πb due to these properties.

Similarly, when we guess for a partial decryption, we often do not need to
guess the whole permutation πb, i.e., two bits, but only how it permutes one
particular bit. We will (e.g.,) use the notation πb(2) to indicate that we only
guess how the bit 2 is permuted by πb.

5 A Key Bit Distinguisher

5.1 General Attack Idea

We will use a variant of linear cryptanalysis: we study single-bit trails that are
biased for certain classes of keys and non-biased for other keys. As a very non-
detailed example, consider a trail from the left-most bit to the left-most bit. It
is readily apparent from Fig. 1 that such a trail exists and that it is iterated
(although it is of course not obvious from the figure that it has a bias). We claim
that we can distinguish individual bits of Kπ using this trail: it is biased for half
the keys and non-biased for the other half. Thus, if we can distinguish between
these two distributions (i.e., if the bias is large enough and we have sufficiently
many samples) we can determine the value of this key bit.

The sample trail considered here is “simple” as it is apparent to the naked eye,
but it is possible to find several such trails over considerable numbers of rounds.
As a consequence, there exist many classes of weak keys in PRINTcipher.

5.2 A Detailed Example

We now describe how to distinguish between two distributions: one where kπ30 is
zero, and one where it is one. This allows for a partial-key recovery, i.e., learning
one bit of the key, faster than brute force.

Note that Π(15, 2) = (15, 2), and that for two of four keys, π15(2) = 2. This
happens precisely when kπ30 = 0 (see Table 5).

Table 5. How the individual bits (2, 1, 0) are moved by the key-dependent permutation
πb, and for which keys (kπ2b+1, k

π
2b) it happens.

Bit Move Possible Keys Bit Move Possible Keys Bit Move Possible Keys

0→ 0 (0, 0),(0, 1) 1→ 0 (1, 0) 2→ 0 (1, 1)

0→ 1 (1, 0) 1→ 1 (0, 0),(1, 1) 2→ 1 (0, 1)

0→ 2 (1, 1) 1→ 2 (0, 1) 2→ 2 (0, 0),(1, 0)

Thus, with kπ30 = 0, (π ◦ Π)(15, 2) = (15, 2). The probability that this bit
then passes the S-box unaltered is 3

4 , so after a single round of encryption, we

have

Prob(c147 = p47 ⊕ k⊕47) =
1

2
+ 2−2.

For two rounds, we have

Prob(c247 = p47) =
1

2
+ 2−3

as the key xors cancel and with the use of the piling-up lemma. Generalizing to
any even number of rounds, we have

Prob(cr47 = p47) =
1

2
+ 2−r−1.

For PRINTcipher on 22 rounds, we would need almost the entire code book,
246 plaintext–ciphertext pairs.

We can also use the full code book, of size 248, to attack 23 rounds. We then
have an odd number of rounds, and the key bit k⊕47 shows up, so we utilize the
relation

Prob(cr47 = p47 ⊕ k⊕47) =
1

2
+ 2−r−1, (1)

with r = 23. Things then get slightly more tricky, as we learn more about the
key but need to distinguish between three distributions:

1. cr47 = p47 with probability 1
2 , implying kπ30 = 1.

2. cr47 = p47 with “high” probability, implying kπ30 = 0 and k⊕47 = 0.
3. cr47 = p47 with “low” probability, implying kπ30 = 0 and k⊕47 = 1.

5.3 More Linear Trails on One Round of PRINTcipher

There are in total four iterated single-round trails, and we list them in Table 6.
Some constants arise as the S-box flips bit 0 with probability 3

4 rather than
preserves it, and as bits of RCi enter.

Table 6. The iterated single-round trails on PRINTcipher, extended to several rounds.
All trails have bias 2−r−1.

Trail Requirement

cr0 = p0 ⊕ k⊕0 Ir ⊕ dr kπ1 = 0

cr23 = p23 ⊕ k⊕23Ir (kπ15, k
π
14) = (0, 1)

cr24 = p24 ⊕ k⊕24Ir ⊕ Ir (kπ17, k
π
16) = (1, 0)

cr47 = p47 ⊕ k⊕47Ir kπ30 = 0

dr =
(
r + 1 +

∑
0≤i<r RCi

)
mod 2

23 rounds

Fig. 2. Performing two rounds of partial encryption and decryption to access the bits
at position (15, 2).

6 Guessing Keybits for Partial Encryption and
Decryption

The above observation can be used as-is to mount an attack on 23-round PRINT-
cipher, recovering up to three bits of the key, but it is straightforward to derive
an even more powerful attack on 27 rounds of PRINTcipher: if a guessed partial
key is correct, we should observe the bias, while if the guess is bad, the behaviour
should be (more) random.

First, we assume that kπ30 = 0, meaning our attack only works for a fraction
2−1 of the keys. Then, we aim to decrypt two rounds at the end and encrypt
two rounds at the top of PRINTcipher. Thus, we need to guess the bits and
trits listed in Table 7. There are in total N = 213 · 33 ≈ 217.8 guesses. See Fig. 2
for an overview of the partial calculations.

Due to the property observed in Section 4.2, we do not need to guess kπ31.
We have assumed kπ30 = 0 to fix π15(2) = 2 and this is enough to predict tap 2
out of the S-box. It does not matter whether π15 is trivial or swaps bits 0 and 1.

We call the plaintext (resp. ciphertext) bits that affect the partial encryption
(resp. decryption) to the bits we are interested in active. There are nine active

Table 7. The bits and trits required for encryption, decryption, and both, when en-
crypting/decrypting two rounds to access the bits at position (15, 2).

Encryption k⊕42, k⊕37, k⊕31, k⊕26, k⊕21, k⊕15, k⊕10, k⊕5 , π10, π3
5

Decryption k⊕46, k⊕45, π14(2), π13(2)

Both k⊕47

bits in the plaintext and nine in the ciphertext. For a plaintext–ciphertext pair
(P,C) we can collect these bits into an eighteen-bit word w = (p47, p31, . . . , c39).

We describe the attack: Acquire all 248 plaintext–ciphertext pairs (P j , Cj).
Categorize them according to the active bits, i.e., for each possible word w, count
how often it appears. Denote these counters Rw. This is the data collection part
of the attack.

We then begin analyzing the data. For each plaintext–ciphertext pair and
for each guess of key material, denoted by Gi, 0 ≤ i < N , we will calculate two
rounds of encryption and decryption, P̂ j = φ0,2(Gi, P

j), Ĉj = φ−125,27(Gi, C
j),

and count how often ĉj47 = p̂j47 ⊕ k
⊕
47

i
. This is done using N counters Si. An

efficient way of doing this [10] is to use the counters Rw. For each word w and
each keyguess Gi, we do the partial calculations P̂ i,w = φ0,2(Gi, Pw), Ĉi,w =
φ−125,27(Gi, Cw). Pw (Cw) is some plaintext (ciphertext) which has the correct

active bits as determined by w. If ĉi,w47 = p̂i,w47 ⊕ k
⊕
47
i, we add Rw to Si.

By sorting all Si, we can get a ranking of the different guesses. We pick the
most likely guess, brute force all non-guessed bits and hopefully recover the key.
Otherwise, we pick the second most likely guess, etc. The exact number of bits
that need to be brute forced will be different for different guesses: where we
guessed a trit (e.g.,) π14(2), we will have recovered one or two bits of (kπ29, k

π
28).

As long as the correct guess is ranked on the upper half of the sorted list of
counters, the entire key will be found faster than what can be expected from a
brute force (278).

The counters Rw are used for saving time [10]. Several other improvements
can be made, also from [10]: We should not make 218 ·N partial encryptions and
decryptions. First, the plaintext and ciphertext operations can be separated com-
pletely, so that we only need to make 29 ·N+29 ·N encryptions/decryptions. Sec-
ond, since the overlap in encryption and decryption with respect to the guessed
bits is very small, we only need to perform 29·Ne+29·Nd encryptions/decryptions
where Ne (Nd) is the number of key guesses that actually affect the encryption
(decryption). Third, doing two complete PRINTcipher rounds in both direc-
tions is unneccessary as we only need to perform “partial rounds”, i.e., use some
small number of S-boxes.

6.1 Experimental Results

We have implemented this attack on 7+4 = 11 rather than 23+4 = 27 rounds of
PRINTcipher. This means that we guess the same bits and perform the same

partial encryptions, but that the bias is larger so that it is feasible for us to
perform many attacks in order to gather statistics.

It turns out that over 213 different weak keys, the attack works with proba-
bility 0.78. That is, almost four times out of five, the correct key ranks on the
upper half of the sorted list of Si.

6.2 Analyzing the Attack Complexity

The attack consists of data collection and data analysis. The latter in turn con-
sists of 1) deriving two sets of counters, Ne for encryption and Nd for decryption,
and 2) combining these to find N counters. If the number of active bits in the
plaintext (ciphertext) is denoted ae (ad) and the number of active S-boxes in
encryption (decryption) is denoted Ae (Ad), the time complexities are given by

T collect = ε−2,

T count =
2aeNeAe + 2adNdAd

16 · r
,

T combine = 2ae+adN.

The first two measurements are normalized to r-round PRINTcipher evalua-
tions, while the last describes the number of “simple” bit and integer operations
needed to calculate the counters Si.

For the specific attack detailed above, we have Ne = 211 · 3 and Nd = 23 · 32.
Since (ae, ad, Ae, Ad) = (9, 9, 4, 4), the complexities turn out at

T collect = 22·24 = 248,

T count =
29 · 211 · 3 · 4 + 29 · 23 · 32 · 4

16 · 27
≈ 215,

T combine = 29+9 ·N = 218 · 213 · 33 ≈ 236.

This suggests that the most time consuming part is the data collection where
we need to generate and look at 248 plaintext–ciphertext pairs.

6.3 Reaching the Limit: 28 Rounds

We note that in the attacks on 27 rounds, guessing and encrypting is more
expensive than guessing and decrypting: during decryption, we first invert S,
and then only need to control one bit in some πb. On the other hand, during
encryption, we need to fully control the permutation, so that we can calculate
all three bits that go into the S-box. This leads to more expensive guesswork on
πb and especially on K⊕. Thus, the natural approach for extending the attack
by one round is to add another round in the partial decryption.

In Table 8, we list the bits and trits involved in partially decrypting and
encrypting from 28 rounds to 23. The attack requires N = 218 ·38 ≈ 230.7 guesses,

partitioned as Ne = 211 ·3 and Nd = 29 ·38. With (ae, ad, Ae, Ad) = (9, 27, 4, 13),
we have

T collect = 22·24 = 248,

T count =
29 · 211 · 3 · 4 + 227 · 29 · 38 · 13

16 · 28
≈ 244,

T combine = 29+27 ·N = 236 · 218 · 38 ≈ 267.

28 rounds seems to be the best we can do: using a single trail, we have not
been able to go beyond 28 rounds while keeping the attack costs below exhaustive
search.

Table 8. The bits and trits required for encryption, decryption, and both, when en-
crypting/decrypting two/three rounds to access the bits at position (15, 2). Note the
overlap in π10.

Encryption k⊕37, k⊕31, k⊕26, k⊕21, k⊕15, k⊕10, k⊕5 , π10, π3
5

Decryption
k⊕46, k⊕45, k⊕44, k⊕43, k⊕41, k⊕40, k⊕39, π14(2), π13(2),
π12(2), π11(2), π10(2), π9(2), π8(2), π7(2)

Both k⊕42, k⊕47

7 On More Rounds of PRINTcipher: Complementary
Trails

We generalize our observation slightly and give an example two-round trail: with
(kπ23, k

π
22, k

π
6) = (1, 1, 0),

Prob(c211 = p11 ⊕ k⊕11 ⊕ k
⊕
35) =

1

2
+ 2−3.

Note in particular how there is a complementary trail,

Prob(c235 = p35 ⊕ k⊕11 ⊕ k
⊕
35) =

1

2
+ 2−3,

see Fig. 3. The complementary trail depends on the exact same key configura-
tion and allows us to collect two samples with every plaintext–ciphertext pair.
We show in Section 8.1 that this works, i.e., the samples can be considered as
independent.

We do not give all the two-round trails on PRINTcipher, as we will not use
them in the remainder of the paper. We only note that due to the structure of
PRINTcipher, every S-box is used precisely once so far in the paper: either in
one trail on one round (S-boxes 0, 7, 8, 15), or in two complementary trails on
two rounds.

Fig. 3. Two complementary trails on two rounds of PRINTcipher. Both trails are
activated by (kπ23, k

π
22, k

π
6) = (1, 1, 0).

Table 9. The number of iterated trails over various number of rounds.

#Rounds #Trails #Rounds #Trails #Rounds #Trails #Rounds #Trails

1 4 5 154 9 5806 13 138662

2 16 6 424 10 13366 14 283810

3 28 7 1040 11 30430 15 560608

4 96 8 2584 12 65808 16 1075000

As a particular four-round trail that we will use later, we give

Prob(c437 = p37 ⊕ k⊕37 ⊕ k
⊕
17 ⊕ k

⊕
4 ⊕ k

⊕
12 ⊕ 1) =

1

2
+ 2−5, (2)

which is activated by (kπ25, k
π
24, k

π
10, k

π
9 , k

π
3) = (1, 0, 0, 0, kπ2).

The total number of iterated trails over various number of rounds are given
in Table 9.

7.1 More Attacks on 27/28 Rounds

We can use basically any trail on 23 rounds to create attacks on 27/28 rounds.
Do note that the trail on bit (15, 2) is very nice as the partial encryptions and
decryptions involve few bits of K⊕ and Kπ, due to S-box reuse. Most other trails
involve more guesswork. As an example, using (2) 5.75 times yields

Prob(c2512 = c237 ⊕ k⊕12 ⊕ 1) =
1

2
+ 2−24,

from which we can build an attack on 28 rounds. We have N = 227 · 36 ≈ 236.5,
Ne = 214 · 3, Nd = 213 · 37 and (ae, ad, Ae, Ad) = (9, 27, 4, 13). The complexities
are

T collect = 22·24 = 248,

T count =
29 · 214 · 3 · 4 + 227 · 213 · 37 · 13

16 · 28
≈ 246,

T combine = 29+27 ·N = 236 · 227 · 36 ≈ 273.

The bits and trits guessed are listed in Appendix B.

7.2 On False Positives

By piling the single-round trail on the left-most bit, we see that e.g., Prob(c1047 =
p47) = 1

2 +2−11 when kπ30 = 0. However, there are several other ways of obtaining
this distribution.

All in all, there are 102 different trails from (15, 2) to (15, 2) over ten rounds,
each corresponding to a different class of keys. This means that a biased distri-
bution can be explained by any of these trails, and thus any of these classes. Due
to this, an attacker will prefer to use short, iterated trails involving few bits of
Kπ.

8 Using Complementary Trails to Distinguish on
24-Round Trails

We will now construct 24-round trails with bias 2−25. By using trails that allow
four samples per plaintext–ciphertext pair, we can get in total 250 samples,
allowing us to distinguish the distribution.

The best iterated trails on 24 rounds are given in Table 10. They are “best”
in the sense that they use a small number of key bits (5), yet allow four comple-
mentary trails each, so that we can get the required number of samples. In fact
they are constructed from iterated four-round trails, that we have piled in order
to cancel the bits that appear from K⊕ (cf. Section 5.2).

8.1 Samples are Independent (Enough)

The connection between the bias ε and the required number of samples ε−2 relies
on the independence of the samples, and it is not obvious that the samples we
pick are independent. Most cryptanalysis simply assumes that the samples are
independent, or at least independent enough for the attacks to still be possible.
Verifying the independence through simulation is common, at least on a smaller
number of rounds or reduced-size versions of the algorithm (“PRINTcipher-
12”), where it is practically possible.

We need to be a little bit more wary than usual as we pick several samples
from the same plaintext–ciphertext pair — it is not hard to realize that the

Table 10. The iterated trails on eight rounds (r = 8) composed from four-round
iterated trails, depending only on five bits of Kπ. All trails have bias 2−r−1, and the
constants erj arise from the round constants RCi. The trails are easily extended to
e.g., 24 rounds (r = 24), in which case only the constants need to be rechecked. (The
symmetrically inclined reader have ample reasons to admire this table.)

Trail S-boxes Trail S-boxes

cr4 = p4 ⊕ er4 4,12,5,1,4,12,5,1,. . . cr10 = p10 10,14,11,3,10,14,11,3,. . .

cr12 = p12 ⊕ er12 12,5,1,4,12,5,1,4,. . . cr30 = p30 14,11,3,10,14,11,3,10,. . .

cr17 = p17 ⊕ er17 1,4,12,5,1,4,12,5,. . . cr35 = p35 3,10,14,11,3,10,14,11,. . .

cr37 = p37 ⊕ er37 5,1,4,12,5,1,4,12,. . . cr43 = p43 11,3,10,14,11,3,10,14,. . .

Key class Key class

(kπ25, k
π
24, k

π
10, k

π
9 , k

π
3) = (1, 0, 0, 0, kπ2) (kπ29, k

π
22, k

π
21, k

π
7 , k

π
6) = (kπ28, 0, 0, 0, 1)

Trail S-boxes Trail S-boxes

cr7 = p7 7,7,6,2,7,7,6,2,. . . cr24 = p24 8,9,13,8,8,9,13,8,. . .

cr18 = p18 2,7,7,6,2,7,7,6,. . . cr25 = p25 9,13,8,8,9,13,8,8,. . .

cr22 = p22 6,2,7,7,6,2,7,7,. . . cr29 = p29 13,8,8,9,13,8,8,9,. . .

cr23 = p23 7,6,2,7,7,6,2,7,. . . cr40 = p40 8,8,9,13,8,8,9,13,. . .

Key class Key class

(kπ15, k
π
14, k

π
13, k

π
12, k

π
5) = (1, 1, 1, 0, kπ4) (kπ27, k

π
19, k

π
18, k

π
17, k

π
16) = (kπ26, 0, 1, 1, 1)

Constants (r = 8) Constants (r = 24)

(e84, e
8
12, e

8
17, e

8
37) = (1, 1, 1, 1) (e244 , e

24
12, e

24
17, e

24
37) = (1, 0, 1, 1)

calculations behind the four samples have affected each other, and it is not
impossible that samples obtained from the same plaintext–ciphertext pair are so
dependent that they do not contribute (much) more than one sample from an
information-theoretic point of view. If this is the case, we would not be able to
exploit any bias smaller than (about) 2−23.

Thus, we have done the following on eight-round PRINTcipher: We use
218 plaintext–ciphertext pairs to derive equally many samples on bit (1, 1), and
from this we guess whether the key is in the upper-left class from Table 10
by comparing the number of samples that are 1 to some pre-defined threshold
derived to yield a 50% success rate. This gives false positives/negatives with
probabilities 0.03/0.50, respectively. Similar probabilities are observed for the
three complementary trails, when used one on one.

If we instead use only 216 plaintext–ciphertext pairs, but pick 22 samples from
each pair, we are able to carry out the attack with seemingly unchanged success:
The probabilities of false positives/negatives are 0.02/0.50. These results have
been obtained by attacking 214 keys from each class and are listed in Table 11.

8.2 Partial Encryption and Decryption for 29 Rounds

Similar to in Section 6, we aim to guess key bits for partial encryptions and
decryptions. Previously, we were able to add five rounds in this way to construct

Table 11. The attack in Section 8.1 was carried out on 214 different keys using either
one sample per plaintext–ciphertext pair or four samples per pair but fewer pairs. “True
Pos. Ratio” shows how frequently a key belonging to the keyclass was identified as such.
Similarly, “True Neg. Ratio” shows how often a key not belonging to the keyclass was
correctly excluded.

Trail Pairs Samples/Pair True Pos. Ratio True Neg. Ratio

c84 = p4 ⊕ 1 218 1 0.50 0.97

c812 = p12 ⊕ 1 218 1 0.50 0.97

c817 = p17 ⊕ 1 218 1 0.51 0.97

c837 = p37 ⊕ 1 218 1 0.51 0.97

all four 216 22 0.51 0.98

a 28-round attack using a 23-round trail. Now, using the 24-round trails, we
reach 29 rounds. Again, we use the upper-left key class in Table 10.

The key observation is that we can divide all of the work, so that we deal with
the four trails completely independently. If we number the trails j = 1, 2, 3, 4,
we will have time complexities

T collectj = ε−2,

T countj =
2a

j
eN j

eA
j
e + 2a

j
dN j

dA
j
d

16 · r
,

T combinej = 2a
j
e+a

j
dN.

for producing the four different lists of counters Sji . In order to combine all

counters Sji into N -many counters Si we need to do N rather simple operations.
Note that we have made related, but not identical, guesses on the permutations,
e.g., by guessing π14(2) when using trail 1 and π14(0) when using trail 2. Some
care must be taken here, but it does not affect the cost of this step, which remains
at T finalize = N quite simple operations.

Specific guesses are listed in Appendix B. All (aje, ad,
j , Aje, A

j
d) = (9, 27, 4, 13).

The total attack complexities are

T collect = 22·24 = 248,

T count =
∑
j

T countj ≈ 250,

T combine =
∑
j

T combinej ≈ 276,

T finalize = N = 262 · 33 ≈ 267.

Although brute force costs 275, as we assume five bits of the key, we claim
that 276 “simple” operations compare favorably to 275 evaluations of 29-round
PRINTcipher.

Let us briefly comment on the possibility of using 25-round trails with bias
2−26: if we can get 16 samples per plaintext–ciphertext pair, we have the nec-
essary 252 samples. As we need to involve all πb, we would put restrictions on
at least 16 bits of the key. This puts the brute force cost at 264 or lower, which
seems to be too low for the attack to be meaningful. Another obstacle to this
attack is that the complementary trails are not completely identical, as different
bits of K⊕ will appear.

Table 12. A summary of the explicit attacks on 27-, 28- and 29-round PRINTcipher
presented in this paper. r denotes the length of the trail(s) used, and R denotes that
R-round PRINTcipher is attacked. ’Enc’ (’dec’) tells how many rounds are partially
encrypted (decrypted). T count and T combine are rounded to the nearest integer power
of two.

Trail r enc dec R Key fraction T collect T count T combine

c2547 = c247 ⊕ k⊕47 23 2 2 27 2−1 248 215 236

c2547 = c247 ⊕ k⊕47 23 2 3 28 2−1 248 244 267

c2512 = c237 ⊕ k⊕12 ⊕ 1 23 2 3 28 2−5 248 246 273

c264 = c24 and more 24 2 3 29 2−5 248 250 276

9 Conclusion

Table 12 summarizes the attacks on 27–28 rounds of PRINTcipher outlined in
this paper. Several more attacks are available for several more key classes.

We note some particular observations that all arise from the structure of
PRINTcipher and the use of the exact same round key throughout the cipher:

– When there is a non-decomposable, iterated r-round trail there are in fact r
complementary trails, allowing r samples per plaintext–ciphertext pair.

– When we guess for a partial encryption/decryption, there is overlap between
the bits that activate the trail and those we need for encryption/decryption.

With this work, linear cryptanalysis has reached 28 rounds of PRINTcipher.
We have used weak key classes which means that we need to carry out several
attacks in parallel in order to have a high probability of success. However, we
have seen that there are many large key classes and in particular several of them
only depend on one or two bits of the key. This means our results “invalidate”
several more keys than previous results on PRINTcipher. The exception is the
differential attack which worked on all keys but only reached 23 rounds.

We have exclusively studied PRINTcipher-48, but our observations are no
doubt applicable to PRINTcipher-96 as well, where it seems reasonable that
our techniques could be used to reach around 52–55 rounds. Another area of
future research could be to look at the linear hull effect. The work in [9] and [4]

suggest that the linear hull of PRINTcipher can behave in unexpected ways. It
might be possible to cause peculiar effects to arise, e.g., by fixing more bits of
the key, in order to reach further into PRINTcipher with linear cryptanalysis.

As a further research direction, we note that by inverting the (S◦πb) where πb
is (partly) assumed, the number of active bits could be reduced. The technique
would apply to all attacks in this paper, but the full gain of this remains to be
determined.

The complementary trails that arise in PRINTcipher are very interesting,
and allowed us to add one round to the attacks, albeit for a smaller class of keys.
It would be very interesting to see if this complementary property could lead to
more observations on PRINTcipher.

Acknowledgment

This work was supported by the Swedish Foundation for Strategic Research
(SSF) through its Strategic Center for High Speed Wireless Communication at
Lund. The authors wish to thank the anonymous reviewers whose comments
helped improve the paper.

References

1. M. A. Abdelraheem, G. Leander, and E. Zenner. Differential cryptanalysis of
round-reduced PRINTcipher: Computing roots of permutation. In A. Joux, ed-
itor, Fast Software Encryption 2011, Lecture Notes in Computer Science, pages
1–17. Springer-Verlag, 2011.

2. T. Baignères, P. Junod, and S. Vaudenay. How far can we go beyond linear crypt-
analysis? In Advances in Cryptology—ASIACRYPT 2004, volume 3329 of Lecture
Notes in Computer Science, pages 432–450. Springer-Verlag, 2004.

3. A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann, M. J. B. Rob-
shaw, Y. Seurin, and C. Vikkelsoe. PRESENT: An Ultra-Lightweight Block Cipher.
In Cryptographic Hardware and Embedded Systems—CHES 2007, volume 4727 of
Lecture Notes in Computer Science, pages 450–466. Springer-Verlag, 2007.

4. F. Karakoç, H. Demirci, and A. E. Harmancı. Combined differential and
linear cryptanalysis of reduced-round PRINTcipher. In Selected Areas in
Cryptography—SAC 2011, To be published in Lecture Notes in Computer Science.
Springer-Verlag, 2011.

5. C. De Cannière, O. Dunkelman, and M. Knežević. KATAN and KTANTAN
— a family of small and efficient hardware-oriented block ciphers. In Crypto-
graphic Hardware and Embedded Systems—CHES 2009, volume 5747, pages 272–
288. Springer-Verlag, 2009.

6. D. Hong, J. Sung, S. Hong, J. Lim, S. Lee, B.-S. Koo, C. Lee, D. Chang, J. Lee,
K. Jeong, H. Kim, J. Kim, and S. Chee. HIGHT: A New Block Cipher Suitable for
Low-Resource Device. In Cryptographic Hardware and Embedded Systems—CHES
2006, volume 4249 of Lecture Notes in Computer Science, pages 46–59. Springer-
Verlag, 2006.

7. B. S. Kaliski and M. J. B. Robshaw. Linear cryptanalysis using multiple approx-
imations. In Y. Desmedt, editor, Advances in Cryptology—CRYPTO’94, volume
839 of Lecture Notes in Computer Science, pages 26–39. Springer-Verlag, 1994.

8. L. Knudsen, G. Leander, A. Poschmann, and M. Robshaw. PRINTcipher: A block
cipher for ic-printing. In S. Mangard and F-X. Standaert, editors, Cryptographic
Hardware and Embedded Systems—CHES 2010, volume 6225 of Lecture Notes in
Computer Science, pages 16–32. Springer, 2010.

9. G. Leander, M. A. Abdelraheem, H. AlKhzaimi, and E. Zenner. A cryptanalysis of
PRINTcipher: The invariant subspace attack. In P. Rogaway, editor, Advances in
Cryptology—CRYPTO 2011, volume 6841 of Lecture Notes in Computer Science,
pages 206–221. Springer-Verlag, 2011.

10. M. Matsui. The first experimental cryptanalysis of the Data Encryption Stan-
dard. In Y. Desmedt, editor, Advances in Cryptology—CRYPTO’94, volume 839
of Lecture Notes in Computer Science, pages 1–11. Springer-Verlag, 1994.

11. M. Matsui. Linear cryptanalysis method for DES cipher. In T. Helleseth, edi-
tor, Advances in Cryptology—EUROCRYPT’93, volume 765 of Lecture Notes in
Computer Science, pages 386–397. Springer-Verlag, 1994.

A The Standard Permutation

Table 13 lists the key-independent permutation in PRINTcipher.

Table 13. The standard permutation Π in PRINTcipher. Bits at positions ’In’ are
moved to positions ’Out’.

In Out In Out In Out In Out

(0, 0) (0, 0) (4, 0) (12, 0) (8, 0) (8, 1) (12, 0) (4, 2)

(0, 1) (1, 0) (4, 1) (13, 0) (8, 1) (9, 1) (12, 1) (5, 2)

(0, 2) (2, 0) (4, 2) (14, 0) (8, 2) (10, 1) (12, 2) (6, 2)

(1, 0) (3, 0) (5, 0) (15, 0) (9, 0) (11, 1) (13, 0) (7, 2)

(1, 1) (4, 0) (5, 1) (0, 1) (9, 1) (12, 1) (13, 1) (8, 2)

(1, 2) (5, 0) (5, 2) (1, 1) (9, 2) (13, 1) (13, 2) (9, 2)

(2, 0) (6, 0) (6, 0) (2, 1) (10, 0) (14, 1) (14, 0) (10, 2)

(2, 1) (7, 0) (6, 1) (3, 1) (10, 1) (15, 1) (14, 1) (11, 2)

(2, 2) (8, 0) (6, 2) (4, 1) (10, 2) (0, 2) (14, 2) (12, 2)

(3, 0) (9, 0) (7, 0) (5, 1) (11, 0) (1, 2) (15, 0) (13, 2)

(3, 1) (10, 0) (7, 1) (6, 1) (11, 1) (2, 2) (15, 1) (14, 2)

(3, 2) (11, 0) (7, 2) (7, 1) (11, 2) (3, 2) (15, 2) (15, 2)

B Bits Involved in Given Attacks

Tables 14 and 15 lists what key material is guessed for the attacks on 28 and 29
rounds using the four-round trail 5.75 and 6 times.

Table 14. The bits and trits required for encryption, decryption, and both, when
encrypting/decrypting two/three rounds to access the bits at position (12, 1)/(4, 0).

Encryption k⊕46, k⊕44, k⊕41, k⊕30, k⊕28, k⊕25, k⊕9 , k⊕4 , π3
14, π9,

Decryption
k⊕38, k⊕37, k⊕19, k⊕18, k⊕17, k⊕16, k⊕15, k⊕13, kπ8 , π15(0),
π14(0), π13(0), π12(0), π6(1), π3(1), π2(1), π0(1)

Both k⊕36, k⊕20, k⊕14, k⊕12

Table 15. The bits and trits guessed in the attack on 29-round PRINTcipher by
encrypting/decrypting two/three rounds.

j Pos. N j Bits

1 (12, 1) 231 · 36

Enc. k⊕9 , k⊕12, k⊕14, k⊕20, k⊕25, k⊕28, k⊕30, k⊕36, π9, π3
14

Dec.
k⊕0 , k⊕1 , k⊕2 , k⊕3 , k⊕5 , k⊕15, k⊕16, k⊕17, k⊕37, k⊕45, k⊕46, k⊕47,
π0, π2(0), π3(0), π3

11, π13(2), π14(2), π15

Both k⊕4 , k⊕41, k⊕44, k⊕46

2 (5, 2) 223 · 39

Enc. k⊕1 , k⊕7 , k⊕21, k⊕23, k⊕28, k⊕33, k⊕37, k⊕39, k⊕44, kπ2 , π3
7

Dec.
k⊕3 , k⊕4 , k⊕9 , k⊕10, k⊕11, k⊕13, k⊕14, k⊕15, k⊕16, π0(1), π3(0),
kπ11, π9(0), π10(0), π11(0), π13(0), π14(0), π15(0)

Both k⊕5 , k⊕12, k⊕17

3 (4, 0) 221 · 36

Enc. k⊕1 , k⊕4 , k⊕6 , k⊕22, k⊕28, k⊕33, k⊕44, kπ2

Dec.
k⊕13, k⊕14, k⊕15, k⊕16, k⊕18, k⊕19, k⊕37,
π0(1), π2(1), π3(1), kπ8 , π13(0), π14(0), π15(0)

Both k⊕12, k⊕17, k⊕20, k⊕36, k⊕38, π3
6 = π6(2)

4 (1, 1) 229 · 37

Enc. k⊕0 , k⊕1 , k⊕5 , k⊕11, k⊕16, k⊕17, k⊕21, k⊕27, k⊕32, k⊕33, π0, kπ2 , π3
11

Dec.
k⊕4 , k⊕12, k⊕13, k⊕14, k⊕36, k⊕38, k⊕39, k⊕40, k⊕41, k⊕42, k⊕44, kπ8 ,
π6(2), π7(2), π8(2), π9(2), π10(2), π11(2), π13(2), π14(2)

Both k⊕37, k⊕43, π11

Overall
k⊕0 , . . . , k⊕7 , k⊕9 , . . . , k⊕23, k⊕25, k⊕27, k⊕28, k⊕30, k⊕32, k⊕33,

262 · 33 k⊕36, . . . , k⊕47, π0, kπ2 , π2, π3, kπ8 , kπ11, π3
6 = π6(2),

π3
7 = π7(2), π8(2), π9, π10, π11, π13, π14, π15

