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Abstract

In this paper, we analyze the security of the KMOV public key cryptosystem. KMOV is based
on elliptic curves over the ring Zn where n = pq is the product of two large unknown primes of equal
bit-size. We consider KMOV with a public key (n, e) where the exponent e satisfies an equation
ex− (p + 1)(q + 1)y = z, with unknown parameters x, y, z. Using Diophantine approximations and
lattice reduction techniques, we show that KMOV is insecure when x, y, z are suitably small.
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1 Introduction

In the past decades, the advent of the Internet has exponentially increased the amount of data ex-
changed among the most diverse people, institutions and organizations, all over the world. Sensitive
data exchanged between a user and a Web site needs to be encrypted to prevent it from being disclosed
to or modified by unauthorized parties. Therefore, the development of secure communication has be-
come a critical task and the most obvious way of achieving this goal is to use a cryptographic scheme
to encrypt the data. Basically, there are two types of cryptography: symmetric-key cryptography and
public-key cryptography. The concept of the public-key cryptography was proposed by Diffie and Hell-
man [4] and Merkle [8] in the mid 1970’s. The first public-key cryptosystem, called RSA, was proposed
in 1977 by Rivest, Shamir, and Adleman [10]. It is the most widely deployed public key cryptosystem
and is used for securing web traffic in the Secure Sockets Layer (SSL) protocol and in the Transport
Layer Security (TLS) protocol. In 1991, Koyama, Maurer, Okamoto and Vanstone [7] introduced a new
public key cryptosystem called KMOV. The KMOV cryptosystem is based on elliptic curves over the
ring Zn where n = pq is an RSA modulus, that is, the product of two large unknown primes of equal
bit-size. The KMOV public key is denoted by (n, e) where the public exponent e is an integer satisfying
gcd(e, (p+ 1)(q + 1)) = 1. The private exponent d is an integer satisfying ed ≡ 1 (mod (p+ 1)(q + 1)).
The security of RSA and KMOV is mainly based on the difficulty of factoring the RSA modulus n. To
speed up the encryption or decryption one may try to use small public or secret decryption exponent.
Many important papers studied RSA and KMOV to explore the weaknesses in using small exponents
(see [2] and [6]). In 1990, Wiener [12] showed that it is possible to break RSA if the private exponent d
satisfies d < 1

3n
0.25. In 1995, Pinch [9] extended the Wiener attack to KMOV. In 2004, Blömer and May

described an attack on RSA starting with the equation ex + y = k(p − 1)(q − 1). Using the continued
fraction algorithm and lattice reduction techniques, they showed that RSA is insecure if 0 < x < 1

3n
0.25

and |y| = O
(
n−0.75ex

)
.

In this paper, we consider KMOV with a public exponent e satisfying the equation

ex− (p+ 1)(q + 1)y = z,

where x and y are co-prime positive integers. Observe that this equation has infinitely many solutions but
we will focus on small solutions. We use Diophantine approximations to find x, y among the convergents
of the continued fraction expansion of e

n when x, y and z satisfy

xy <

√
2
√
n

12
and |z| < (p− q)n 1

4 y

3(p+ q)
.

After finding x and y, one can get an approximation p̃ of p satisfying |p − p̃| < n
1
4 which leads to

the factorization of n by using Coppersmith’s method for finding small roots of modular polynomial
equations [3].
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The rest of this paper is organized as follows. In the next section, we review some necessary definitions
and notation on elliptic curves and recall the KMOV cryptosystem. In section 3, we present our new
attack on KMOV. We conclude in Section 4.

2 Preliminaries

In this section, we give a brief description of the KMOV cryptosystem and elliptic curves (see [11] for
more details on elliptic curves).

2.1 Elliptic Curves

Let p ≥ 3 be a prime. An elliptic curve over the finite field Fp is an algebraic curve with no singular
points, given by the Weierstrass equation

Ep(a, b) : y2 = x3 + ax+ b, a, b ∈ Fp, 4a3 + 27b2 6= 0,

together with a single element denoted O, called the point at infinity. Given two points P,Q ∈ Ep(a, b),
we define a third point P +Q so that Ep(a, b) forms an abelian group with this addition operation. For
the special case a = 0, the order #Ep(0, b) can easily be determined.

Lemma 1. Let p > 3 be a prime satisfying p ≡ 2 (mod 3) and 0 < b < p. Then

#Ep(0, b) = p+ 1.

Let n = pq be an RSA modulus. Let (a, b) ∈ Z2
n such that gcd

(
4a3 + 27b2, n

)
= 1. An elliptic curve

En(a, b) over Zn is the set of points (x, y) ∈ Z2
n satisfying

En(a, b) : y2 = x3 + ax+ b (mod n),

together with the point at infinity. The addition law can be extended for points in En(a, b) and the
Chinese Remainder Theorem leads to the following lemma.

Lemma 2. Let n = pq be the product of two primes and En(a, b) an elliptic curve over Zn with
gcd

(
4a3 + 27b2, n

)
= 1. Then for any P ∈ En(a, b) and any integer k, we have

(1 + k#Ep(a, b)#Eq(a, b))P = P.

2.2 KMOV Scheme

The KMOV cryptosystem [7] is based on elliptic curves En(a, b) over Zn where n = pq is an RSA
modulus. The scheme works as follows.

• Key Generation

1. Find two primes, p and q with p ≡ q ≡ 2 (mod 3) and compute n = pq.

2. Choose an exponent e co-prime to (p+ 1)(q + 1) and compute d ≡ e−1 (mod (p+ 1)(q + 1)).

3. Return the public key (n, e) and the private key (n, d).

• KMOV Encryption

1. Represent the message m as a couple (m1,m2) ∈ Z2
n.

2. Compute b = m2
2 −m3

1 (mod n) and the point (c1, c2) = e× (m1,m2) on En(0, b).

3. Return (c1, c2).

• KMOV Decryption

1. Compute b = c22 − c31 (mod n) and the point (m1,m2) = d× (c1, c2) on En(0, b).

2. Return (m1,m2).
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The correctness of the decryption is based on Lemma 1 and Lemma 2. Indeed

d× (c1, c2) = de× (m1,m2)
= (1 + k(p+ 1)(q + 1))× (m1,m2)
= (1 + k#Ep(0, b)#Eq(0, b))× (m1,m2)
= (m1,m2),

where k is the integer satisfying ed = 1 + k(p+ 1)(q + 1).

3 The New attack on the KMOV Cryptosystem

Let (n, e) be a KMOV public key with n = pq. Let x, y be co-prime positive integers. Define z by

z = ex− (p+ 1)(q + 1)y.

In this section, we show that, under some conditions, it is possible find x, y, p, q using only the public
key (n, e) which leads to the factorization of n and breaks the system. We shall need the following useful
result.

Lemma 3. Let n = pq be an RSA modulus with q < p < 2q. Then

2
√
n < p+ q <

3
√

2
2
√
n.

Proof. We have (p+ q)2 = (p− q)2 + 4n > 4n. Then p+ q > 2
√
n. On the other hand, since q < p < 2q,

then n < p2 < 2n and
√
n < p <

√
2n. Let f(p) = p + n

p . The derivative satisfies f ′(p) = 1 − n
p2 > 0.

Hence f(p) < f(
√

2n) and

p+ q = p+
n

p
<
√

2n+
n√
2n

=
3
√

2
2
√
n.

This terminates the proof.

We shall also need the following result (see [5], Theorem 184).

Theorem 1. Let α be a real number. If x and y are positive integers such that gcd(x, y) = 1 and∣∣∣α− y

x

∣∣∣ < 1
2x2

,

then y
x is one of the convergents of the continued fraction expansion of α.

Now, we can prove the following theorem which permits to find x and y using the convergents of the
continued fraction expansion of e

n .

Theorem 2. Let n = pq be an RSA modulus with q < p < 2p. Suppose that a KMOV public exponent e
satisfies an equation ex− (p+ 1)(q + 1)y = z with gcd(x, y) = 1 and

xy <

√
2
√
n

12
and |z| < (p− q)n 1

4 y

3(p+ q)
.

Then y
x is one of the convergents of the continued fraction expansion of e

n .

Proof. Transforming the equation ex− (p+ 1)(q + 1)y = z, we get ex− ny = (p+ q + 1)y + z. Dividing
by nx, we get

e

n
− y

x
=

(p+ q + 1)y + z

nx
. (1)

If |z| < (p−q)n
1
4 y

3(p+q) then |z| < n
1
4 y. Then using Lemma 3, we get

|(p+ q + 1)y + z| ≤ (p+ q + 1)y + |z|
≤ (p+ q + 1)y + n

1
4 y

= (p+ q + 1 + n
1
4 )y

< 2(p+ q)y

≤ 3
√

2
√
ny.
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Plugging in (1), we get ∣∣∣ e
n
− y

x

∣∣∣ < 3
√

2
√
ny

nx
.

Now, assume that xy <
√

2
√

n
12 . Then 3

√
2
√

ny
nx < 1

2x2 which implies∣∣∣ e
n
− y

x

∣∣∣ < 1
2x2

.

Then, by Theorem 1, y
x is a convergent of the continued fraction of e

N . This terminates the proof.

Now assume that x and y are known in the equation ex − (p + 1)(q + 1)y = z. Next, we show how
to find p and q. Let us first refer to the following existing result (see [3]).

Theorem 3 (Coppersmith). Let n = pq be an RSA modulus with q < p < 2q. Suppose we know an
approximation p̃ of p with |p− p̃| < n

1
4 . Then n can be factored in time polynomial in log n.

Let us present the main result.

Theorem 4. Let n = pq be an RSA modulus with q < p < 2q. Suppose that a KMOV public exponent e
satisfies an equation ex− (p+ 1)(q + 1)y = z with gcd(x, y) = 1 and

xy <

√
2
√
n

12
and |z| < (p− q)n 1

4 y

3(p+ q)
.

Then n can be factored in polynomial time.

Proof. Suppose e satisfies an equation ex − (p + 1)(q + 1)y = z. If gcd(x, y) = 1, xy <
√

2
√

n
12 and

|z| < (p−q)n
1
4 y

3(p+q) , then, by Theorem 2, we find x and y among the convergents of e
n . Next, put

U =
ex

y
− n− 1, V =

√
|U2 − 4n|.

Starting with the equation ex− (p+ 1)(q + 1)y = z, we get

|U − p− q| =
∣∣∣∣exy − n− 1− p− q

∣∣∣∣ =
|z|
y
<

(p− q)n 1
4

3(p+ q)
< n

1
4 . (2)

Now, we have ∣∣(p− q)2 − V 2
∣∣ =

∣∣(p− q)2 − ∣∣U2 − 4n
∣∣∣∣

≤
∣∣(p− q)2 − U2 + 4n

∣∣
=

∣∣(p+ q)2 − U2
∣∣

= |p+ q − U | (p+ q + U) .

Dividing by p− q + V , we get

|p− q − V | ≤ |p+ q − U | (p+ q + U)
p− q + V

. (3)

Observe that (2) implies
p+ q + U < 2(p+ q) + n

1
4 < 3(p+ q).

On the other hand, we have p− q + V > p− q. Plugging in (3), we get

|p− q − V | < 3(p+ q)(p− q)n 1
4

3(p+ q)(p− q)
= n

1
4 .

Combining this with (2), we deduce∣∣∣∣p− U + V

2

∣∣∣∣ =
∣∣∣∣p+ q

2
− U

2
+
p− q

2
− V

2

∣∣∣∣ ≤ ∣∣∣∣p+ q

2
− U

2

∣∣∣∣+
∣∣∣∣p− q2

− V

2

∣∣∣∣ < n
1
4 .

This implies that U+V
2 is an approximation of p up to an error term of at most n

1
4 . Then Coppersmith’s

Theorem 3 will find p in polynomial time and the factorization of n follows.
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4 Conclusion

In this paper, we describe a new attack on the KMOV cryptosystem with a public key (n, e) where
n = pq is an RSA modulus and e is a KMOV public exponent satisfying gcd(e, (p+ 1)(q + 1)) = 1. We
prove that KMOV is insecure if there exist relatively small integers x, y and z satisfying an equation
ex − (p + 1)(q + 1)y = z. The attack combines the continued fraction algorithm and Coppersmith’s
lattice reduction based method and can be seen as an extension of Pinch’s attack on small KMOV secret
decryption exponents.
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