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Abstract. Square is a multivariate quadratic encryption scheme proposed in 2009. It is a special-
ization of Hidden Field Equations by using only odd characteristic �elds and also X2 as its central
map. In addition, it uses embedding to reduce the number of variables in the public key. However,
the system was broken at Asiacrypt 2009 using a di�erential attack. At PQCrypto 2010 Clough
and Ding proposed two new variants named Double-Layer Square and Square+. We show how to
break Double-Layer Square using a re�ned MinRank attack in 245 �eld operations. A similar fate
awaits Square+ as it will be broken in 232 �eld operations using a mixed MinRank attack over
both the extension and the ground �eld. Both attacks recover the private key, given access to the
public key. We also outline how possible variants such as Square� or multi-Square can be attacked.

Key words: Multivariate Cryptography, Algebraic Cryptanalysis, Square, Double-Layer Square,
Square+, MinRank, Key Recovery

1 Introduction

In the world of Post-Quantum cryptography,Multivariate Quadratic public key schemes have
an important place. They were investigated as early as 1985 [16, 14] and have branched out into
several systems.
In this article, we deal with the so-called Square system, which works both over a ground �eld
Fq with q elements, as over an extension �eld Fqn+` . Its main feature is the operation X2 over
Fqn+` . Obviously, this is very simple to compute and invert�in particular when compared to the

similar system Hidden Field Equations [17]. Inversion ofX2 utilizes the equationX = ±Y
qn+`+1

4 .
Hence, we need qn+` ≡ 3 (mod 4) and inverting Y ∈ Fq requires only one exponentiation in
Fqn+` . Depending on the choice of q, n, the inversion is as e�cient as for S�ash [10, 1].
Square itself was proposed 2009 in [7]. It was broken in the same year [4] using a di�erential
attack. At PQCrypto 2010 Clough and Ding [9] proposed two new variants of Square, called
Double-Layer Square and Square+ which are claimed to be secure against all known attacks.
We will outline below how they di�er from the original Square scheme�but can be broken
nevertheless.
One thing which has also developed withMQ schemes is their cryptanalysis. In this article, we
will concentrate on attacks from the so-called MinRank family. Idea is to �nd a linear combina-
tion of some matrices, such that the new matrix has a special (minimal) rank. Or more formally:
Given k matrices M1, . . . ,Mk ∈ Fn×nq and a scalar r ∈ N, �nd a vector λ ∈ Fkq such that

Rank

(
k∑
i=1

λiMi

)
≤ r.



We call this an MinRank(q, k, r)-problem. Note that the general MinRank problem is NP-
complete [5]. We will see later howMultivariate Quadratic schemes relate to matrices in general
and to MinRank in particular.
A �rst MinRank attack in theMultivariate Quadratic setting was launched against TTM [13].
Informally speaking, the authors exploited the existence of a so-called step-structure in the
private key to reveal linear relations between the private and the public key. When enough of
these relations were found, the whole private key could be unravelled. A similar approach was
followed in [20]. Here, the step-width was made wider: Instead of allowing only rank di�erences
of 1, rank di�erences up to r were allowed. Finally, [22] gave further ideas on discovering rank
structure, in particular �crawling� attacks that exploit that areas of low rank might be close-
by. A cryptanalysis of the Rainbow Signature Scheme using MinRank can be found in [3]. Our
attack on Double-Layer Square (see sect. 3) will strongly refer to this paper.
Another algorithm to break MinRank-instances in practice is [12]. Here, Gröbner bases are used
to actually calculate elements of the kernel and thus derive possible choices of λ ∈ Fkq . For some
parameters this algorithm is much faster than sampling and therefore we use it in sect. 4 to
break Square+.

1.1 Achievement and Organisation

In this paper, we describe an e�cient cryptanalysis of the two public key schemes Double-
Layer Square and Square+. We show how to break Double-Layer Square by a re�ned MinRank
attack that is an extension of Billet and Gilbert [3] attack against Rainbow. The overall attack
complexity is 245. Furthermore we break Square+ using methods from the cryptanalysis of odd
characteristic HFE [2] and a MinRank attack [12]. In both cases, the attack is in polynomial
time of (nearly) all parameters. In particular, the schemes are completely broken for all possible,
practical choices of parameters.
In sect. 2, we introduce the Square cryptosystem and �x some notation. Double-Layer Square
and its attack is discussed in sect. 3. We deal with Square+ and the corresponding MinRank
problem in sect. 4. This paper concludes with sect. 5. There, we also outline possible extensions
to Square� or multi-Square.

2 Notation

In this section we shortly recap the Square encryption scheme [7]. We start by giving some
general outline onMultivariate Quadratic public key systems and some notation.
EachMQ-scheme uses a publicMultivariate Quadratic map P : Fnq → Fmq with

P :=

 p(1)(x1, . . . , xn)
...

p(m)(x1, . . . , xn)


for 1 ≤ k ≤ m and

p(k)(x1, . . . , xn) :=
∑

1≤i≤j≤n
γ
(k)
ij xixj

as public key. The trapdoor is given by a structured central map F : Fnq → Fmq with

F :=

 f (1)(x1, . . . , xn)
...

f (m)(x1, . . . , xn)


2



for 1 ≤ k ≤ m and

f (k)(x1, . . . , xn) :=
∑

1≤i≤j≤n
γ̃
(k)
ij xixj .

In order to hide this trapdoor we choose two secret linear transformations S ∈ Fn×nq , T ∈ Fm×mq

and de�ne P := T ◦ F ◦ S. Note that some proposals also use a linear and constant part of p(k)

and f (k). However, as it is well known that quadratic terms only depend on quadratic terms from
the secret map F and on linear terms from S, T , we can safely ignore the linear and constant
parts in our cryptanalysis to ease explanation [19, 15, 3]. Where necessary, the a�ne case can
be added easily.

Sometimes, as for Square, the trapdoor does not reveal itself over Fnq but over the extension �eld

Fqn+` . Let ϕ : Fn+`q → Fqn+` be the standard isomorphism between the vector space and the

extension �eld and F ′ = ϕ ◦F ◦ϕ−1. As outlined above, Square is de�ned for qn+` ≡ 3 (mod 4)
and uses F ′ = X2 over Fqn+` . This can be easily inverted by the square root formula

X = ±Y
qn+`+1

4 . (1)

To make their scheme more resistant, the authors of Square have chosen S as a (n + `) × n
matrix of rank n. This is equivalent to deleting ` variables from the secret map F in the public
map P. See �gure 1 for an overall illustration of Square. The original parameters of the scheme
are n = 34, q = 31 and ` = 3 [7].

Fn
q Fn+`

q

Fn+`
q Fn+`

q

Fqn+` Fqn+`

P

S T

F

ϕ ϕ−1

F ′

Fig. 1. The Square Scheme.

In the sequel, we will make heavy use of the matrix representation of Multivariate Quadratic
polynomials. As described above, we assume all polynomials p(k) and f (k) for 1 ≤ k ≤ n+ ` to
be homogenized. As explained, we can do so as the linear and constant parts of the p(k) and
f (k) do not carry any cryptographically relevant information. Let x = (x1, . . . , xn)

ᵀ respectively
x̃ = (x̃1, . . . , x̃n+`)

ᵀ be a column vector and P(k) ∈ Fn×n respectively F(k) ∈ Fn+`×n+` the
matrix describing the quadratic form of p(k) = xᵀP(k)x respectively f (k) = x̃ᵀF(k)x̃. We restrict
to symmetric matrices (see �gure 2). Using a minor twist, we can also represent univariate
polynomials over the extension �eld Fqn this way. By a slight abuse of notation, we obtain the

same �gure 2 for the univariate polynomial P (k)(X) =
∑

0≤i≤j<n
γ
(k)
i,j X

qi+qj over the extension

�eld Fqn for x = (X,Xq, . . . , Xn−1)ᵀ.
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P(k) =


γ
(k)
1,1 γ

(k)
1,2/2 · · · · · · γ

(k)
1,n/2

γ
(k)
1,2/2 γ

(k)
2,2 γ

(k)
2,n/2

...
...

. . .
...

γ
(k)
1,n−1/2 γ

(k)
2,n−1/2 γ

(k)
n−1,n−1 γ

(k)
n−1,n/2

γ
(k)
1,n/2 γ

(k)
2,n/2 · · · γ(k)

n−1,n/2 γ
(k)
n,n


Fig. 2. Matrix representation P(k) of the public key polynomial p(k).

3 Double-Layer Square

Double-Layer Square as proposed in [9] uses the idea of Rainbow [11] to split the central map
into two layers and thus destroy the di�erential properties in the public map that where used
to break Square. The �rst layer is just the same mapping F as for Square. The second layer
is de�ned by G : F2n+`

q → Fnq with G = ϕ′−1 ◦ G ◦ (id × ϕ′) and ϕ′ : Fnq → Fqn the standard
isomorphism. It is explicitly given by

G((x1, . . . , xn+`), X) = αX2 + β(x1, . . . , xn+`)X + γ(x1, . . . , xn+`) (2)

where α ∈ Fqn , β is a�ne and γ is quadratic over Fqn . The whole central map over the vector
space is thus given by

F||G =



f (1)(x1, . . . , xn+`)
...

f (n+`)(x1, . . . , xn+`)

g(1)(x1, . . . , x2n+`)
...

g(n)(x1, . . . , x2n+`)


.

With || we denote concatenation of two vectors and g(i) = xᵀG(i)x with G(i) ∈ F2n+`×2n+`
q . By

construction, we have rank(f (i)) ≤ n+` and rank(g(i)) ≤ 2n+`, cf. �g. 3 for the overall structure
of the two layers. In order to invert the central map we �rst use the square root formula (1)

0

00

n+ ` n

for F(1), . . . ,F(n+`)

and

n+ ` n

for G(n+`+1), . . . ,G(2n+`)

Fig. 3. Central maps of Double-Layer Square.

to determine x1, . . . , xn+`. This solution is plugged into (2) which is then solved, e.g. by the
school book root �nding for quadratic equations or by Berlekamp's algorithm. See �g. 4 for an
illustration of the whole scheme.
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F2n
q F2n+`

q

F2n+`
q F2n+`

q

P

S T

F||G

Fig. 4. The DoubleLayer Square Scheme. || denotes concatenation of vectors.

3.1 MinRank attack against Double-Layer Square

In this section we adapt the MinRank attack of Billet and Gilbert [3] to Double-Layer Square. In

order to reconstruct T we have to solve the problem of �nding a linear combination
2n+`∑
i=1

λiP
(i)

for λi ∈ Fq with minimal rank. In general this is a di�cult problem, as Buss et al. [5] showed
that the decisional version of MinRank over Fq is NP-complete.

The idea of [3] to calculate a solution of the MinRank problem is to sample a vector ω ∈R F2n
q

and hope that it lies in the kernel of a linear combination of low-rank matrices. If this is the
case solving the linear system of equations

2n+`∑
i=1

λiP
(i)ω = 0 for ω ∈R F2n

q , λi ∈ Fq,P(i) ∈ F2n×2n
q (3)

reveals a part of the secret transformation T . The crucial point is to calculate the probability
over all ω that there exist values λ1, . . . , λn+` ∈ Fq such that

ω ∈ ker

(
n+∑̀
i=1

λiS
ᵀF(i)S

)
. (4)

For S being an (2n + `) × (2n + `) matrix of full rank and ω ∈R F2n+`
q this probability equals

the likelihood of

Sω ∈ ker

(
n+∑̀
i=1

λiF
(i)

)
. (5)

While the general idea is the same for Double-Layer Square, we need to be careful as S is a
(2n+`)×2nmatrix of rank 2n. We will tackle this problem after having calculated the probability
that there exists λi ∈ Fq ful�lling (5).
It is well known that the probability of a random (m× n) matrix over Fq being regular is given
by

m−1∏
i=0

(
1− qi

qn

)
< 1− 1

qn−m+1
. (6)

This implies that the probability of a random (m×n) matrix over Fq to be singular is bounded
below by 1/(qn−m+1). In Fig. 5 we illustrate the coe�cient matrix of the linear system(

n+∑̀
i=1

λiF
(i) +

2n+`∑
i=n+`+1

λiG
(i)

)
Sω = 0 (7)

for a random but �xed ω ∈ F2n+` and for g(i) = xᵀG(i)x the associated matrix for a given secret
polynomial g(i).
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A

B

F(1)Sω
...

F(n+`)Sω

G(n+`+1)Sω
...

G(2n+`)Sω

n+ ` n

0

Fig. 5. Coe�cient matrix of linear system (7).

The probability that there exist λ1, . . . , λn+` ∈ Fq such that (5) holds is the probability of matrix
A in �gure 5 to be singular, i.e. 1/q. Note that it is not enough for our attack that such a linear
combination exists. In order to e�ciently obtain this solution using (3) we also need the rank
of the whole matrix from �g. 5 to be rank(A) + n. This is true with overwhelming probability
in our case. Otherwise we would obtain parasitic solutions by (3).
Up to this point, the overall complexity of the MinRank attack is

q(n+ `)(2n+ `)3

as we expect to sample q vectors ω ∈ F2n
q until A becomes singular. We need to repeat this

sampling until we have recovered (n+ `) linearly independent equations of small rank. Solving
(3) requires Gaussian elimination in (2n+ `) variables.
Now we have to deal with the problem that S is not a (2n+ `)× (2n+ `) square matrix but a
rectangular (2n+ `)× 2n matrix. Obviously equation (4) and (5) are not equivalent any longer,
but it holds

n+∑̀
i=1

λiF
(i)Sω +

2n+`∑
i=n+`+1

λiG
(i)Sω = 0⇒

n+∑̀
i=1

λiS
ᵀF(i)Sω +

2n+`∑
i=n+`+1

λiS
ᵀG(i)Sω = 0.

I.e. the probability of choosing ω in the kernel of low-rank matrices is still 1/q. This argument
hides a slight heuristic. If we choose ω ∈R F2n

q , Sω is not a random element in F2n+`
q any

longer and thus the rows of the matrix in �g. 5 are not randomly chosen. Nevertheless they are
independent and thus formula (6) should be a good approximation. Our experiments in table 1
con�rm this. The backward direction is not true, as 2n+` vectors of lenght 2n are always linearly
dependent and thus we obtain q` parasitic solutions. The overall attack cost is therefore

(n+ `)q`+1(2n+ `)3 .

Unfortunately, the authors of [9] did not provide concrete security parameters. However, using
their security analysis, we derived q = 31, n = 17, ` = 4 for a claimed security level of 280. Using
our attack, this reduces to 245 to separate the upper from the lower level. We have broken this
set of parameters in about 1 day, see Table 1. Moreover, we can ignore the embedding modi�er,
as explained in [2, Sect. 5]. In a nutshell, we work on the maximal rank of the corresponding
matrices. However, the embedding modi�er will only decrease the rank and hence not increase
its maximum. Hence, the di�erence from �g. 3 still holds. Once we have separated these layers,
the rest of the attack is equal to Billet/Macario-Rat [4], although we have to take the Double-
Layer structure into account. First, we separate out the two layers F and G. Using the algorithm
of Billet/Macario-Rat, we can separate the variables of the F-layer into x1, . . . , xn+` (output of
Billet/Macario-Rat) and xn+`+1, . . . , x2n+` (others). Using these, we have the variable mixing S,
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Table 1. Time to recover the hidden vector space T for �xed �eld size q = 31, �eld extension n = 17 and variable
embedding degree `. The number of samples from the vector space (#ω) is independent from `, but close to qn.
Each line is based on 11 independent experiments. The line with previously secure parameters is highlighted
in bold.

time [sec]
q n ` #ω #ω/n min avg max

1 500 29.41 129 170 219
31 17 2 460 27.06 210 268 375

3 568 33.41 2416 3069 3903
4 567 33.35 55595 83334 126587

the equation mixing T , and the inner layer X2 for the �rst layer F. For the second, i.e. the G-
layer, it is a bit more complicated as we are dealing with

αX2 + β(x1, . . . , xn+`)X + γ(x1, . . . , xn+`) .

here, so Billet/Macario-Rat does not apply directly. However, we see by inspection that all
monomials depending on x1, . . . , xn+` come from the term γ, all monomials depending both
on x1, . . . , xn+` and xn+`+1, . . . , x2n+` come from βX; and the rest comes from αX2. Applying
Billet/Macario-Rat to these gives us the complete variable change S and equation change T (up
to equivalences, [21]). Hence, we have reconstructed the private key and are therefore in the
same position as the legitimate user when computing y = P(x) for given y ∈ F2n+`

q .

3.2 Experimental Results

We have implemented attack in Sage [18]. In particular, we needed to verify if the probability
computations for obtaining a separation into the two layers is correct. To this aim, we have
implemented full Double-Layer Square, including embedding modi�er and the layer structure.

Table 2. Time to recover the hidden vector space T for varying �eld size q, but �xed �eld extension n = 17 and
embedding degree ` = 4. The number of samples from the vector space (#ω) is independent from `, but close to
qn. Each line is based on 11 independent experiments. The line with previously secure parameters is highlighted
in bold.

time [sec]
n ` q #ω #ω/q min avg max

3 47 15.55 15 18 21
5 85 17.04 35 53 62
7 148 21.12 96 180 225
11 230 20.89 717 963 1094
13 244 18.74 1310 1730 2159

17 4 17 319 18.76 4164 5590 6895
19 385 20.26 7260 9941 14489
23 448 19.47 16102 22734 27614
29 577 19.89 45687 67172 93908
31 567 18.28 55595 83334 126587

We have used the parameters derived from [9] and varied one of the three, i.e. the number of
variables n, the embedding degree ` and the �eld size q. The results can be found in tables 1�3.
In particular, we have veri�ed that the relation #ω = qn holds, i.e. if the number of samples
only depends on q times the dimension of T . Except for small values of ` (cf. table 3), we have
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Table 3. Time to recover the hidden vector space T for �xed �eld size q = 31, embedding degree `, and variable
�eld extension n. The number of samples from the vector space (#ω) is independent from `, but close to qn. As
the values for n are rather small, there were some parasitic solutions, i.e. more vectors ω needed to be sampled.
Each line is based on 11 independent experiments.

time [sec]
q ` n #ω #ω/n min avg max

7 305 43.52 20333 35763 51591
8 409 51.07 30592 49048 72719

31 4 9 388 43.08 27830 47124 79685
10 471 47.15 38412 58527 77266
11 408 37.05 35559 51443 63089

found a good correlation. However, as for small dimensions, the ranks become small, too, so we
expect that a random matrix is far more likely to exhibit such a small rank. Hence, the number
of parasitic solutions increases, too. The derived parameters of Double-Layer Square were broken
in just under an hour on average (3100s ≈ 50min), cf. tables 2�3.

All computations were carried out on a Intel(R) Xeon(R) CPU X3350 with 2.66GHz, 4 cores, and
8GB physical RAM. For each tuple (q, n, `), we have carried out 11 independent experiments.
Each of them took up to 2 hours.

4 Square+

Another version of the Square cryptosystem is called Square+. It was also suggested in the very
same paper as Double-Layer Square by Clough and Ding [9]. As Square, it uses X2 over the
extension �eld Fqn+` as its central monomial. In addition, we have p ∈ N random equations
that blind the di�erential structure of X2 in the public key. In total, we obtain m := n+ `+ p
equations for Square+. Obviously, Square+ is overdetermined�both due to the embedding of `
variables and the p extra polynomials. In order to prevent Gröbner based attacks, (`+ p) has to
be chosen relatively small compared to n. In the original Square+ paper, proposed parameters
are q = 31, n = 48, ` = 3, p = 5 [9].

Let ϕ : Fn+`q → Fqn+` be the standard isomorphism between the vector space Fn+`q and the
�nite �eld Fqn+` . Denote with a1, . . . , ap a total of p random, quadratic polynomials over Fq,
the so-called plus-polynomials. The mixing of the equations is realized by a full-rank matrix

T ∈ F(n+`+p)×(n+`+p)
q . The embedding modi�er is realized via a matrix S ∈ F(n+`)×n

q with
rank(S) = n. The Square part is expressed over the ground �eld as C, the plus polynomials are
given in A, see

C : Fn+` → Fn+` : (u1, . . . , un+`)→ ϕ−1 ◦X2 ◦ ϕ(u1, . . . , un+`)
= (v1, . . . , vn+`),

A : Fn+` → Fp : (u1, . . . , un+`)→ (a1(u1, . . . , un+`), . . . , ap(u1, . . . , un+`))

= (vn+`+1, . . . , vn+`+p)

Now we can write the public key P of Square+ as P := T ◦ (C ◦ S,A ◦ S). See �gure 6 for a
graphical representation. Note that all intermediate operations are quadratic over Fq, as is P. If
we leave out the embedding modi�er for a moment (transformation S), there are two parts of
Square+, namely the invertible, but �soft� part X2, represented by transformation C, and the
not-invertible �hard� part a1, . . . , ap, represented by transformation A. If we manage to separate
them, we are done as there is an e�cient attack against Square [2].

8
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q Fn+`+p

q

Fn+`
q Fn+`+p

q

P

S T

C ‖ A

Fig. 6. The Double-Layer Square Scheme.

4.1 Odd-Characteristic HFE Attack against Square+

To this aim, we have a closer look at �odd Characteristic HFE� (or odd-HFE) and its cryptanal-
ysis [6, 2]. In particular we notice that the central map of odd-HFE is∑

(i,j)∈∆(D)

γi,jX
qi+qj

for a set of admissible degrees ∆(D) := {(i, j) ∈ N2 : i ≤ j, qi + qj ≤ D}, N the set of non-
negative integers and γi,j ∈ Fqn the coe�cients of the corresponding private key. Setting D = 2
and γ(0,0) = 1, we obtain ∆(2) = (0, 0) and the central map of odd-HFE coincides with the one
of Square+. As a result, we can apply the cryptanalysis of Bettale et al. [2] against odd-HFE
also against Square+. Alas, this cryptanalysis does not include the case odd-HFE+, so we need
to investigate this question closely to determine if we can break Square+ within this framework.
As we will see below, it works but there are subtle changes to be made.

As for the original attack against odd-HFE, the key point is the observation that we can write
X2 as a matrix of small rank over the extension �eld. More to the point, we have X2 = xᵀFx
over Fqn+` for x = (X,Xq, Xq2 , . . . , Xqn−1

)ᵀ with F1,1 = 1 but Fi,j = 0 otherwise. As only F1,1

is non-zero, we obviously have rank(F) = 1. A similar observation for a MinRank attack against
HFE was already used by Kipnis-Shamir [15]. Note that expressing X2 over the ground �eld
yields a much higher rank, in practice close to (n+ `).

To ease notation and to mount the attack, we follow the approach of [2] and start with the
vector (θ1, . . . , θn+`) ∈ Fn+`

qn+` . Note that this vector has a double function: First, it �xes a basis

of the vector space Fn+`q , i.e. over the ground �eld, and second, the elements θ1, . . . , θn+` are
simultaneously interpreted over the extension �eld Fqn+` . This way we can apply the homomor-

phism Fqn+` → Fqn+` : x 7→ xq
k
for k = 0, . . . , (n+ `− 1) within the extension �eld. Finally, this

is used to construct a matrix Mn+`.

Mn+` :=


θ1 θq1 . . . θq

n+`−1

1

θ2 θq2 . . . θq
n+`−1

2
...

. . .
...

θn+` θ
q
n+` . . . θ

qn+`−1

n+`


More precisely, for a vector v := (v1, . . . , vn+l) ∈ Fn+`q we have the mapping φ : Fn+`q 7→ Fqn+`

with

φ(v) 7→ V1 : (v1, . . . , vn+`)Mn+` =: (V1, . . . , Vn+`) .

Note that this mapping only uses the �rst component of the vector (V1, . . . , Vn+`). Moreover, the
�rst column of Mn+` consists only of base elements of Fn+`q . Hence, two values V1, Ṽ1 ∈ Fqn will
only be equal if the corresponding vectors v, ṽ ∈ Fnq are the same. The inverse mapping needs

9



to make use of the special structure of the matrix Mn+` to map elements back into the ground
�eld. We have φ−1 : Fqn+` 7→ Fn+`q for

φ−1(V ) 7→ (v1, . . . , vn+`) : (V, V
q, . . . , V qn+`−1

)M−1n+` =: (v1, . . . , vn+`) .

Using the matrix Mn+`, we can now go back and forth between the two vector spaces Fn+`q

(ground �eld) and Fn+`
qn+` (extension �eld). The latter is a very redundant version of the former

as we could use any component of the vector V = (V, V q, . . . , V qn+`−1
) to reconstruct all other

(n+`−1) elements. However, we will see below how it will help us to express the rank condition
on F using only publicly available information.

There are two minor ingredients missing before we can formulate the full attack. The �rst is the
quadratic form of the plus polynomials a1, . . . , ap. As for Double-Layer Square, we write them as

symmetric matrices A(i) ∈ F(n+`)×(n+`)
q with x = (x1, . . . , xn+`) and ai = xA(i)xᵀ for 1 ≤ i ≤ p.

Hence, we work over the ground �eld here. Second, we de�ne matrices F(i) ∈ F(n+`)×(n+`)
qn+` similar

to F from above as F
(i)
k,k := 1 but F

(i)
a,b = 0 for k := (1 − i) (mod n + `) + 1, 1 ≤ a, b ≤ k. Or

to rephrase this, we have the all-zero matrix with the a single 1, the matrix F(1) coincides with
the originally de�ned matrix F , and the 1 is traveling backwards on the main diagonal for each
consecutive matrix F(i). Note that evaluating Mn+`F

(k)Mᵀ
n+` yields exactly X

2 for each matrix

F(k).

We now express the private key in terms of S, T,A,F and study their corresponding ranks

P = T ◦ F ◦ S
= (C ◦ S,A ◦ S)T

Replacing P on the left hand side with the public key matrices P(k) for 1 ≤ k ≤ (n + ` + p),
plugging in the de�nitions of C,A, and bringing the matrix T to the left we obtain

(P(1), . . . ,P(n+`+p))T−1 = [(SMn+`F
(1)Mᵀ

n+`S
ᵀ, . . . , SMn+`F

(n+`)Mᵀ
n+`S

ᵀ)M−1n+`

||(SA(1)Sᵀ, . . . , SA(p)Sᵀ)]

Again, �||� denotes the concatenation of vectors. Note that the overall equation is over the
ground �eld Fq, while the matrices F(i) are over the extension �eld Fn+`q . There are two important

remarks to be made: First, the matrices A(i) are with overwhelming probability of high rank, both
over the ground �eld and the extension �eld Fqn+` . In contrast, each column SMn+`F

(1)Mᵀ
n+`S

ᵀ

has at most rank 1 over the extension �eld Fqn+` . Note that the embedding modi�er does not
change the latter rank property as the rank will only decrease, not increase by the embedding
modi�er, cf. [2, Sect. 5] for a more detailed explanation of this fact. Second, we are only interested
in separating out the �rst (n + `) columns of the right hand side from the last p ones. So
we do not look for the full matrix T−1, but only its �rst (n + `) columns. We denote them

by T̃ ∈ F(n+`+p)×(n+`)
q and have rank n + `. Combining these two observations, our equation

simpli�es to

(P(1), . . . ,P(n+`+p))T̃Mn+` = (SMn+`F
(1)Mᵀ

n+`S
ᵀ, . . . , SMn+`F

(n+`)Mᵀ
n+`S

ᵀ)

Note that the whole equation is now over the extension �eld while the coe�cients of the matrices
P(i) come from the ground �eld. For simplicity, write U := T̃Mn+`. By construction of Mn+`

we have ui,j = uqi,j−1 and ui,1 = uqi,n+` for 1 ≤ i ≤ n+ `, 1 < j ≤ n+ `, so the knowledge of one
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column of U is enough to determine the whole matrix. Hence we only concentrate on the �rst
column of U and obtain

n+`+p∑
i=1

P(i)ui,1 = SMn+`F
(1)Mᵀ

n+`S
ᵀ =: H with H ∈ Fn×n

qn+`

for unknown S. As our �nal equation is over Fn+`q we clearly have rank(H) ≤ 1 and can thus
use a similar technique as in section 3 to determine values λi ∈ Fqn+` such that

rank(

n+`+p∑
i=1

λiP
(i)) ≤ 1

by solving the corresponding MinRank(q, n+ `+ p, 1) problem, i.e. for rank r = 1.

Table 4. Time to solve the MinRank problem for Square+ for varying embedding degree `, but �xed �eld size
q = 31, �eld extension n = 17, and plus equations p = 5. Each line is based on 11 independent experiments. We
see that the running time does not depend on the embedding degree `.

time [sec]
q n p ` min avg max

0 1590.59 1610.13 1630.91
1 1580.85 1605.42 1624.17
2 1563.80 1600.54 1616.89
3 1587.97 1603.67 1628.78

31 17 5 4 1557.96 1604.47 1626.03
5 1567.56 1610.80 1636.44
6 1584.20 1606.61 1622.34
7 1573.56 1604.07 1621.94
8 1583.91 1609.04 1629.97
9 1575.46 1603.57 1624.08
10 1565.71 1597.58 1618.23

4.2 Solving MinRank for Square+

All in all, there are two methods available. The �rst is credited to Schnorr and works on deter-
minants for (r+1)× (r+1) submatrices while the other was developed by Levy-dit-Vehel et al.
[12] and uses Gröbner bases.
We start with Schorr's method. It uses the following observation: For given rank r, each sub-
matrix of size (r+1)× (r+1) must have determinant zero. Hence, each such determinant gives

rise to one equation of degree (r + 1). For a (τ × τ)-matrix, we can form
(
τ
r+1

)2
sub-matrices

(selecting r+1 rows and columns, respectively) and hence equations. Assuming that a su�ciently
high proportion of them is linearly independent, we are able to solve the corresponding system of
equations by linearization. In our case, we have r = 1 and τ := (n+ `+p) free variables, leading
to a total of

(
n+`+p

2

)
degree 2 monomials. For ` + p < n, this allows to compute a solution in(

n+`+p
2

)3 ∈ O(n6) computations over Fqn+` and is hence polynomial in all security parameters.
For the proposed parameters n = 48, ` = 3, p = 5 we obtain a total workload of ≈ 231.77 and
have hence broken the scheme.
For the second method, we inspect the kernel of the matrix H. Remember that each kernel
element ω ∈ Fnqn+` has the form ω := SMn+`(0, ω̃2, . . . , ω̃n+`) for ω̃i ∈ Fqn+` and 2 ≤ i ≤ (n+ `).

11



Table 5. Time to solve the MinRank problem for Square+ for varying extension degree n, but �xed �eld size
q = 31, embedding degree ` = 3 and plus equations p = 5. Each line is based on 11 independent experiments. We
see that the running time increses with n, but that this increase is polynomial in n.

time [sec]
q ` p n min avg max

6 17.51 19.42 22.28
7 35.67 37.73 39.06
8 62.21 64.72 67.94
9 100.10 103.84 106.66
10 157.60 160.98 164.36
11 223.90 229.27 234.75
12 353.21 359.82 365.34
13 456.14 464.08 472.65
14 693.66 701.91 709.00
15 943.38 949.51 958.05

31 3 5 16 1279.68 1288.73 1302.35
17 1601.64 1616.49 1631.36
18 2291.12 2305.78 2329.30
19 2666.34 2722.55 2752.76
20 3922.29 3955.14 3980.28
21 5071.11 5286.55 6969.38
22 6387.73 6469.96 6513.20
23 6915.21 6983.90 7085.33
24 10037.24 11676.78 18159.85
25 11054.98 11180.87 11254.37
26 15264.25 15430.23 15528.12

So randomly sampling vectors ω ∈R Fnqn+` needs q
n+` trials on average to �nd a kernel element

of H and is hence exponential in the security parameters n, `. It is also impractical for the
proposed parameters. Thus we use the more re�ned technique from Levy-dit-Vehel et al. [12]
to solve instances of the MinRank problem. In a nutshell, they do not sample vectors ω but
calculate them. This is done by generating an overdeterminedMQ-system and then solving it
with Gröbner base techniques. Note that the attack complexity grows exponentially with the
rank of the target matrix. However, as this rank is �xed to 1 in our case, we are not concerned
by this.
The dimension of the kernel of H is (n − 1) in the extension �eld and thus we can �x all but
one coe�cient of ω at random and still expect a solution. The corresponding vector therefore
becomes (ω1, . . . , ωn−1, x) with ωi ∈ Fqn+` �xed values and x a free variable living over the
extension �eld Fqn+` . Using this notation, we can formulate the following system of quadratic
equations over the vector space Fnqn+` :(

n+`+p∑
i=1

λiP
(i)

)
ω = 0n

For rank 1, we can sample a total of (n−1) linearly independent values ω(1), . . . , ω(n−1) from the
kernel and hence obtain (n−1)n linearly independent equations in a total of (n−1)+(n+`+p) =

2n + ` + p − 1 unknowns. According to [12], we expect an overall complexity of
(
N+r+1
r+2

)3
for

N the number of unknowns. For the proposed parameters n = 48, ` = 3, p = 5 we obtain a

workload of
(
2n+`+p+1

3

)3 ≈ 252.55. This is clearly worse than Schnorr's method. However, the
Gröbner method can exploit computing all intermediate steps in the ground �eld, so the authors
of [2] report a substantial speed-up here. Moreover, for variations of Square+, we might be able
to formulate side-conditions easier than for Schnorr's method.
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Table 6. Time to solve the MinRank problem for Square+ for varying number of plus polynomials p, but �xed
�eld size q = 31, extension degree n = 17, and embedding degree ` = 3. Each line is based on 11 independent
experiments. We see that the running time increses with p, but that this increase is polynomial in p.

time [sec]
q n ` p min avg max

1 445.00 463.68 486.29
2 673.89 691.55 710.60
3 922.74 953.12 969.35
4 1252.06 1271.33 1304.54

31 17 3 5 1645.86 1664.79 1682.80
6 2133.76 2152.02 2180.77
7 2723.46 2752.11 2769.51
8 3437.09 3480.57 3516.38
9 4344.27 4371.97 4422.50
10 5374.37 5409.62 5455.11

Table 7. Time to solve the MinRank problem for Square+ for varying size of the ground �eld q, but �xed
extension degree n = 17, embedding degree ` = 3, and plus polynomials p = 5. Each line is based on 11
independent experiments. We see that the running time increses with p, but that this increase is polynomial in
p.

time [sec]
n ` p q min avg max

5 1620.20 1632.99 1647.49
7 1623.13 1644.97 1667.52
11 1656.97 1672.01 1696.61
13 1676.45 1697.23 1712.70
29 1666.75 1685.57 1712.05

17 3 5 31 1650.53 1682.56 1714.89
37 1646.03 1669.35 1711.87
41 1663.81 1680.39 1700.42
127 1617.03 1628.94 1644.85
131 1625.35 1641.86 1655.91
251 1614.91 1637.76 1670.60
257 1615.56 1633.81 1655.00

Executing either the algorithm of Schnorr or of Levi-dit-Vehel et al., we can reconstruct the
initial Square system and are in the same position as a legitimate user.
We have implemented the attack of Schnorr and found the theory in line with the practical
experiments. In particular, the matrices F(i) for 1 ≤ i ≤ (n+ `) have rank 1 over the extension
�eld and we can reconstruct the matrix H for public key matrices P(k) for 1 ≤ k ≤ (n+ `+ p)
alone. As for our experiments with Double-Layer Square, we used Sage [18] on a Intel(R) Xeon(R)
CPU X3350 with 2.66GHz, 4 cores, and 8GB physical RAM. Moreover, as shown in tables 4�7,
no parameter has exponential in�uence on the running time of the key recovery algorithm.
When implementing the attack a slight problem was memory consumption as Sage proved to be
rather ine�cient here. Hence, we could not break the proposed parameters although they should
be in reach for a memory optimized version of the attack.
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5 Conclusion

In this paper we have presented the �rst cryptanalysis of the two twin schemes Double-Layer
Square and Square+. Both attacks relied heavily on the rank properties of the public key equa-
tions over the ground �eld (Double-Layer) or the extension �eld (Square+). In either case, each
scheme is fully broken for any reasonable choice of parameters: For Double-Layer Square, the
attack is exponential in the security parameter `. However, as ` = 4 and cannot be increased too
much due to generic attacks againstMultivariate Quadratic schemes, it is e�cient in practice.
For Square+, the attack is fully polynomial in all security parameters q, `, p.

Table 8. Summary of the complexity of the attacks given in this paper. In both cases, we measure the number of
computations over the corresponding �eld with q being the size of the ground �eld, n an intermediate extension
degree, and ` the embedding degree.

Algorithm Attack Complexity over

Double-Layer Square Key Recovery (n+ `)q`+1(2n+ `)3 Fq

Square+ Key Recovery
(
n+`+p

2

)3 Fqn+`

As we have established a strong link between odd characteristic Hidden Field Equations and
Square, we know that any cryptanalytic result for the former can be exploited for the latter. So
the relation between Square and odd-HFE is the same as for MIA/C∗ and HFE. All attacks to
the latter (odd-HFE, HFE) will inevitable apply to the former (Square, MIA/C∗). Hence, any
strategy to repair Square will need to take these similarities into account. In addition, we have
to remember that Square will always be much weaker than odd-HFE�for reasons similar to the
pair MIA/C∗ and HFE. Moreover, we expect that any successful cryptanalysis of odd-HFE can
be turned easily in a cryptanalysis of Square�maybe even without any further modi�cation.
For example, transferring Square to the equivalent of �multi-HFE� [6] does not seem to be a
good idea. It was already established that this variant actually leads to a weaker version of the
original odd-HFE. Similarly, we can conclude that Square- is broken, as is MIA-. Both variations
were suggested in [8], the �rst as �bivariate Square", the other as Square-. On the other hand, a
secure version of Square will most certainly give rise to a secure version of MIA.
In particular, Square has exactly the same big advantage over odd-HFE that MIA/C∗ has over
HFE: Speed. When it comes to signing/decrypting, both will outperform the more secure variants
by orders of magnitudes. Hence, it seems to be too early to call the overall game �Square� being
over but it seems a fair guess that some further modi�cations will be tried. If they will stand
the test of time is a di�erent question altogether.
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