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Abstract

In response to needs of disk encryption standardization bodies, we provide the first tweakable
ciphers that are proven to securely encipher their own keys. We provide both a narrowblock design
StE and a wideblock design EtE. Our proofs assume only standard PRP-CCA security of the
underlying tweakable ciphers.
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1 Introduction

In email archives of discussions of candidate enciphering schemes for disk encryption, conducted by
the Security in Storage Working Group (IEEE P1619), one sees the intriguing comment “I have not
received any meaningful response to the issue of grandma storing her keys on an encrypted drive. The
WG must have considered it the first time it came up.” The issue is whether it is safe to encipher the
enciphering key itself. The group eventually came to the conclusion that key-enciphering security is
important and desirable, for reasons that go beyond grandma. The presence of key-enciphering attacks
on one candidate (LRW) then influenced rejecting it in favor of others on which attacks were not found.

Meanwhile, the group did value security proofs. EME [14], a wideblock cipher, is proven to achieve
PRP-CCA security. (Disk encryption must be length preserving, so we are talking about ciphers, not
randomized modes like CBC.) A variant EME2 [11] was standardized on the strength of these proofs,
a host of efficiency properties, and the presumed security of enciphering the key.

If (as seems the consensus in this domain) key enciphering security is a requirement, and (as also
seems the consensus) proofs are also important, a discrepancy becomes obvious, namely that, while
there is a proof of PRP-CCA security, there is no proof of key enciphering security, confidence in the
latter resting only on the absence of discovered attacks.

The question this raises is, can we fill the gap? We want efficient tweakable ciphers, both narrowblock
(data is n bits long where n is the blocklength of the underlying blockcipher) and wideblock (data is
mn bits long for m ≥ 2). They should be not only proven PRP-CCA secure but also proven to securely
encipher data that contains their own keys. (In the narrowblock case this means the message might
equal the key, while in the wideblock case it means any block of the message might equal the key.) We
do not want to use random oracles (ROs) but rather want to prove all this assuming only what was
assumed for EME, namely the standard PRP-CCA security of the underlying blockcipher.

Is this possible? Proving security of encryption of key-dependent messages is notoriously hard.
Standard reduction techniques fail completely. The first solutions [5] used ROs. Sophisticated, non-RO
solutions based on novel techniques have emerged [6, 1, 7, 2] but they are far from practical.

In this paper we show nonetheless how to achieve the stated objective. We first provide StE,
a simple and efficient transform that, applied to any tweakable PRP-CCA blockcipher, results in a
tweakable narrowblock cipher that is not only proven PRP-CCA but also proven to securely encipher
its own key, assuming only PRP-CCA security of the starting tweakable blockcipher. We then use StE

as the basis for EtE, a transform that, applied to any tweakable PRP-CCA wideblock cipher, results
in another tweakable wideblock cipher that, again, is not only proven PRP-CCA but also proven to
securely encipher data containing its own key in any block, assuming only PRP-CCA security of the
starting wideblock tweakable cipher and of the tweakable blockcipher underlying StE.

Motivated also by the above mentioned issues for disk encryption, Halevi and Krawczyk [12] had
initiated the study of PRFs and PRPs secure for key dependent messages (KDMs). They were able
to provide (1) standard model KDM secure PRFs, which are not invertible and thus cannot do disk
encryption (2) KDM secure PRPs, but in the ideal cipher model. Ours are the first constructions of
KDM secure PRPs with a proof of security in the standard (as opposed to random oracle or ideal cipher)
model.

We instantiated EtE with AES as the base blockcipher, tweaked via XEX [17], and with EME as
the base wideblock cipher. We implemented this with the AES-NI instruction set. We found that EtE

is only 15% slower than plain EME.

Background. Security for key-dependent data was first considered for (randomized) IND-CPA en-
cryption [5], so that solutions (which were provided in the RO model by [5]) are necessarily length
increasing. For disk encryption, the encryption function must be length preserving. The desired prim-
itive is a tweakable cipher [15] E: {0, 1}n × T × {0, 1}mn → {0, 1}mn that deterministically maps an
n-bit key K, a tweak T ∈ T and an m-block plaintext M to an m-block ciphertext E(K,T,M). (So
n is both the keylength and the blocklength.) It must be invertible, meaning E(K,T, ·): {0, 1}mn →
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{0, 1}mn is, for every K,T , a permutation whose inverse we denote by E−1(K,T, ·). This is a (tweak-
able) blockcipher, or a narrowblock design, if m = 1, and a wideblock design if m > 1. Both are of
interest to the Security in Storage Working Group, the first under P1619 and the second under P1619.2.
In disk encryption the tweak could be the sector number (wideblock) or the block index (narrowblock)
and its use significantly increases security.

The standard security notion for a (tweakable) cipher is to be PRP-CCA secure [15]. (This is some-
times called strong PRP security following the terminology of [16].) We extend this to key dependent
messages (KDM), defining what it means for E to be Φ-PRP-CCA secure where Φ is a class of functions
that map n-bit keys to mn-bit inputs, following [5, 12]. The game picks a random challenge bit b, a
random key K and a random permutation π(T, ·): {0, 1}mn → {0, 1}mn for each T . It gives the adver-
sary the standard oracles Fn,Fn−1 from the PRP-CCA game and a new oracle KDFn. Oracle Fn, on
input T,M , returns E(K,T,M) if b = 1 and π(T,M) otherwise; oracle Fn

−1, on input T,C, returns
E−1(K,T,C) if b = 1 and π−1(T,C) otherwise; oracle KDFn, on input φ, T , where φ is required to be
in Φ, returns E(K,T, φ(K)) if b = 1 and π(T, φ(K)) otherwise. To ensure non-triviality, the adversary
is required to be legitimate, meaning does not query Fn

−1(T,C) for a C previously received as a re-
sponse to a KDFn(T, ·) query. The adversary advantage is 2Pr[b = b′] − 1 where b′ is its output bit.
Φ-PRP-CCA security obviously implies PRP-CCA security for all Φ, and coincides with it when Φ = ∅.

What we mean by “encrypting the key” depends on whether the design is narrowblock or wideblock.
In the narrowblock case, we are concerned with the obvious, namely that the message equals the key,
captured formally by letting Φ consist of the identity function id. For wideblock designs, we seek security
when any block of the message equals the key. (This reflects P1619.2 requirements.) We clarify that
the key may occur in multiple blocks but may not overlap between blocks. Thus if M = M [1] . . .M [m]
is the message then M [i] may equal the key K for any i but we do not allow K to start somewhere in
one block and end somewhere in the next block. In Section 4 we specify a Φ, that we denote IDm, that
captures this formally.

The Security in Storage Working Group advocates security for encrypting the key because users or
the system may store the key on the disk but also because, if it would create a vulnerability, an attacker
could attempt to manipulate the system so that it transfers the key from memory to the disk. Overall,
they considered it important enough to reject candidates without the property.

Attacks of Halevi and Krawczyk [12] show that, unlike for randomized encryption [5], there is no
cipher that is Φ-PRP-CCA secure for the class Φ of all functions. To achieve security, we must restrict
the class somehow. The restriction we make, namely to consider encrypting the key, results in a class
capturing practical attacks for which we will show security to be achievable.

Motivated by the concerns and needs of the Security in Storage Working Group that we have
explained, Halevi and Krawczyk [12] introduced the notions of KDM secure PRFs and PRPs and asked
whether there exist Φ-PRFs or Φ-PRPs for non-trivial Φ. (Meaning, Φ contains some interesting non-
constant function such as the identity.) They were able to give a standard model construct in the PRF
case, but it was not invertible and thus could not be used for disk encryption. They also gave a PRP
but the proof is in the ideal cipher model. Left open by their work is to provide a Φ-PRP for non-trivial
Φ in the standard model. We resolve this, providing not only constructs, but efficient ones, with proofs
not only in the standard model but assuming only standard PRP security of the underlying blockcipher,
for non-trivial Φ of practical interest, with tweaks, and for both the narrow and wide block settings.

Approach. First we address the narrowblock case, providing a transform StE that turns a given PRP-
CCA tweakable blockcipher into a {id}-PRP-CCA tweakable blockcipher, meaning the constructed ci-
pher not only preserves the PRP-CCA security of the base one but, assuming only PRP-CCA security of
the latter, is proven to securely encrypt its key. StE is of interest in its own right as the first (tweakable)
blockcipher that can provably encipher its own key under standard and minimal assumptions.

We would have liked to show that instantiating the base blockcipher of E of EME [14] with
F = StE[E] results in a wideblock cipher that can provably encipher its own key, but this does not
work. Instead, we show how to add a pre-processing step to EME, or any other PRP-CCA secure
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wideblock cipher, to get another wideblock cipher that now, when instantiated with F as the under-
lying blockcipher, is IDm-PRP-CCA secure, meaning not only PRP-CCA secure but able to securely
encipher messages that contain the key in any block. Let us now look at these two contributions more
closely.

Narrowblock design. Our starting point is a suggestion of [6] to securely encrypt keys with a
randomized encryption scheme by exchanging the key with another point. To make this work for
deterministic encryption we swap with a “hidden” point, the latter determined by encryption under the
key of a constant. A crucial idea is to use tweaks, defining the hidden point via a tweak not used for
anything else.

We take as given a tweakable blockcipher E: {0, 1}n×T ×{0, 1}n → {0, 1}n assumed to have normal,
meaning PRP-CCA, security, but not necessarily able to securely encrypt its key. We pick an arbitrary
tweak γ ∈ T for E and also an arbitrary point α ∈ {0, 1}n. Both α and γ are public and known to the
adversary. Our StE (Swap-then-Encipher) transform now turns E into another tweakable blockcipher
F : {0, 1}n×T \{γ}×{0, 1}n → {0, 1}n whose tweakspace T \{γ} is that of E with γ removed, meaning
γ is not allowed as a tweak for F . We define F via

F (K,T,M)

H ← E(K, γ, α)
If M = K then Y ← E(K,T,H)
Else If M = H then Y ← E(K,T,K)
Else Y ← E(K,T,M)
Return Y

In Section 3 we show that F is invertible, as required to be a cipher. A curious aspect of the design is
that at the third line we actually encrypt the key K with the original blockcipher E. Given that the
latter may not necessarily be able to securely encrypt its key, why would this work? The answer is that
we only do this if M = H and we ensure the latter is very unlikely. Thus H is our “hidden” point.

Making sure H is hidden takes some care. It is not so merely because its computation depends on
K, for the adversary will have an oracle that (at least in the real game) allow it to compute F under
K for any tweak of the adversary’s choice and this might be used to extract information about H. The
crucial point is that γ, the tweak used in computing H, was removed from the tweak space of F so the
adversary cannot use it.

The proof that F indeed securely encrypts its key is done by reduction to the assumed PRP-CCA
security of E and is delicate due to the cyclic nature of the construction.

It is crucial for disk encryption that F is invertible. It is to ensure this that we need the swap that
effectively exchanges the roles of K and H.

At first glance it would appear that StE doubles the cost since it requires two invocations of E,
one to get H and the other to get Y . This, however, is also true of XEX-AES [17]: presented as a fast
tweakable blockcipher, XEX actually requires two invocations of the underlying blockcipher. In both
cases, however, the answer is the same, namely that the ciphers will be used in a mode where the extra
blockcipher computation is done once and its cost is thus amortized out so that the effective cost of
the cipher is one blockcipher call. Specifically if F , like XEX-AES, is used as the base blockcipher in
a wideblock design to encipher a sector consisting of m blocks (eg. m = 32), we can compute H just
once across the m encipherings so StE effectively involves just a single blockcipher invocation.

The IEEE 1619 standard for narrowblock encryption is based on XEX-AES [17]. StE is easily
applied here, yielding an alternative narrowblock candidate that is as efficient as the current one when
the cost of computing H is amortized out, but also has provable security for enciphering the key.

Wideblock design. EME [14] is a wideblock tweakable cipher that is proven PRP-CCA secure
assuming only PRP-CCA security of the underlying blockcipher. It makes two passes through the data
and runs at 2 blockcipher invocations per message block. One of its attractions, and its advantage
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over the earlier CMC [13], is that it is parallelizable. No attack is known when one encrypts messages
containing the key in any block, but nor is there any proof that such an attack is absent.

We wish to enhance designs like EME so that PRP-CCA security is preserved but provable key-
enciphering security is also added, without assuming any more of the underlying blockcipher than
PRP-CCA security. Our EtE transform does just this. It makes an ECB pass through the data using
F = StE[E] under one tweak and then applies any wideblock PRP-CCA cipher (EME would be one
possibility) using F with another tweak. We prove that the resulting cipher is IDm-PRP-CCA secure
assuming only that tweakable blockcipher E is PRP-CCA secure. Thus EtE provides a generic way
to upgrade any PRP-CCA wideblock cipher to also be able to securely encipher messages containing
the key in any block, at the cost of one extra blockcipher operation per block. The design preserves
parallelizability, so that when instantiated with a parallelizable wideblock cipher like EME, the resulting
cipher is also parallelizable.

Instantiation and implementation. Getting the best out of EtE requires good choices for the
underlying components and some optimizations. We use AES as the base blockcipher and XEX [17] to
tweak it. We use EME as the wideblock cipher. Let J denote the resulting wideblock cipher as produced
by EtE. We implemented J , as well as plain EME for comparison, on an Intel Xeon W3690 processor
at 3.47 GHz with support for AES-NI running Linux version 2.6 with code compiled using gcc -O3

-ftree-vectorize -msse2 -ffast-math to enable vector instructions and perform other general optimizations.
The base code was from Brian Gladman’s EME2 implementation [9], which we modified to run as EME
and use the hardware AES instructions. Our experiments show that J is only 15% slower than EME.

Recall that EME uses about two blockcipher calls per message block. Since J would thus use
three blockcipher calls per message block, one might naively expect a 50% slowdown. However, EME
computes various offsets that are added to the blockcipher inputs and outputs, and these computations
are quite costly, so our simple ECB pass is less expensive compared to EME than one might imagine.
We remark that AES-NI is now widely available in Intel and AMD processors on modern machines, and
disk controllers might potentially have hardware AES support as well, so using AES-NI as a starting
point is realistic.

2 Preliminaries

Notation. By Maps(D,R) we denote the set of all functions f : D → R. We denote by id the identity
function. Some of our definitions and proofs are expressed via code-based games [4]. Recall that such
a game — see Figure 1 for an example — consists of an Initialize procedure, procedures to respond
to adversary oracle queries, and a Finalize procedure. A game G is executed with an adversary A
as follows. First, Initialize executes. Then A executes, its oracle queries being answered by the
corresponding procedures of G. When A terminates, its output becomes the input to Finalize, and
the output of the latter is the output of the game. We denote by “GA” the event that this game output
takes value true. Boolean flags are assumed initialized to false. The running time of an adversary by
convention is the worst case time for the execution of the adversary with the game defining its security,
so that the time of the called game procedures is included.

Tweakable blockciphers. A tweakable blockcipher [15] is a map E: {0, 1}k×T ×{0, 1}m → {0, 1}m

that takes input a k-bit key K, a tweak T drawn from the tweakspace T and a m-bit message M to
return an m-bit output E(K,T,M). The map E(K,T, ·): {0, 1}m → {0, 1}m that on input M ∈ {0, 1}m

returns E(K,T,M) is required to be a permutation and its inverse is denoted E−1(K,T, ·).
The standard notion of security for a tweakable blockcipher is to be a tweakable pseudorandom

permutation [15]. This can be considered under either chosen-plaintext attack (usually called PRP
security) or chosen-ciphertext attack (usually called strong PRP security) [15, 16], but we will use the
terms PRP-CPA and PRP-CCA as more indicative of the models and more consistent with notation for
other primitives. We will be working with PRP-CCA. To define it consider games RealE and RandE of
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proc Initialize // RealE ,RealE,Φ

K←$ {0, 1}k

proc Fn(T,M) // RealE ,RealE,Φ

Return E(K,T,M)

proc KDFn(T, φ) // RealE,Φ

M ← φ(K)
Return E(K,T,M)

proc Fn
−1(T,C) // RealE ,RealE,Φ

Return E−1(K,T,C)

proc Finalize(b′) // RealE ,RealE,Φ

Return (b′ = 1)

proc Initialize // RandE ,RandE,Φ

K←$ {0, 1}k ; π←$ TwPm(T , {0, 1}m)

proc Fn(T,M) // RandE ,RandE,Φ

Return π(T,M)

proc KDFn(T, φ) // RandE,Φ

M ← φ(K)
Return π(T,M)

proc Fn
−1(T,C) // RandE ,RandE,Φ

Return π−1(T,C)

proc Finalize(b′) // RealE ,RealE,Φ

Return (b′ = 1)

Figure 1: Games RealE ,RandE to define PRP-CCA security, and games RealE,Φ,RandE,Φ to define
KDM PRP-CCA security of tweakable blockcipher E: {0, 1}k × T × {0, 1}m → {0, 1}m.

Figure 1. In Rand, we are denoting by TwPm(T , {0, 1}m) the set of all π: T × {0, 1}m → {0, 1}m such
that π(T, ·) is a permutation on {0, 1}m for each T ∈ T . In this case, π−1(T, ·): {0, 1}m → {0, 1}m is
the inverse of π(T, ·). We define the prp-cca advantage of A as

Adv
prp-cca
E (A) = Pr[RealAE ]− Pr[RandAE ].

KDM PRP-CCA security. We extend PRP-CCA to allow for the encryption of key-dependent
messages via games RealE,Φ and RandE,Φ of Figure 1. Oracle KDFn takes input a tweak T and a
function φ ∈ Maps({0, 1}k, {0, 1}m) and derives M as φ(K). If Φ ⊆ Maps({0, 1}k, {0, 1}m) we say that
adversary A is Φ-restricted if the argument φ in its KDFn queries is always from Φ. We define the
Φ-kdm-prp-cca advantage of such an A to be

Adv
prp-cca
E,Φ (A) = Pr[RealAE,Φ]− Pr[RandAE,Φ].

We continue, thus, to denote the notion via prp-cca, the key-dependent messages indicated by the extra
subscript Φ in the advantage function.

Consider the following strategy for A. It makes KDFn query T, id to get back a ciphertext C and
then queries Fn

−1(T,C). The response will be M = id(K) = K, and now A has the key and can
easily win. (That is, get a high advantage, for example by returning 1 if E(K,T,M ′) = Fn(T,M ′)
for some T and some M ′ 6= M , and 0 otherwise.) To preclude this, we require that A is legitimate,
meaning that, for all T, φ, it never makes a Fn

−1(T,C) query for C previously received in response to
a KDFn(T, φ) query. The analogy is the definition of IND-CCA secure encryption where the adversary
is not allowed to query to the decryption oracle a ciphertext it previously received as a challenge. The
(necessary) assumption that adversaries are legitimate is made throughout and is implicit in all our
results. We remark that we do not need to prohibit A from query Fn

−1(T,C) for C previously returned
in response to query Fn(T,M), because A already knows the message M it would get as response. So
no restriction is present in the plain prp-cca notion. But when key-dependent messages are introduced,
we must require legitimacy.

KDM-secure IND-CPA encryption was defined by [5]. Subsequently, KDM security of tweakable
blockciphers was defined by Halevi and Krawczyk [12]. Because blockciphers, unlike encryption schemes,
are deterministic, KDM security is not achievable when arbitrary functions φ are allowed in KDFn

queries. This is analogous to what happens with related-key attacks (RKAs) and thus, as with the
formalization of RKA security from [3], Halevi and Krawczyk [12] parameterize the advantage and
definition of KDM security for tweakable blockciphers by a class Φ of functions. Our narrow-block
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design StE will achieve security when Φ = {id}, corresponding to encrypting the key.
Halevi and Krawczyk [12] do not explicitly state the legitimacy condition. They also allow the

possibility of decryption of key-dependent ciphertexts, via an extra oracle. We have not considered this
capability because, while plaintexts may be key dependent, we did not see why ciphertexts would be key
dependent. Our schemes do not aim to achieve security in the presence of decryption of key-dependent
ciphertexts.

3 Narrowblock Cipher

In this section we show how to construct a narrowblock tweakable blockcipher that can securely encipher
its own key.

Construction. Let E: {0, 1}n × T × {0, 1}n → {0, 1}n be a tweakable blockcipher whose key length
and message length are the same value n. (For example, n = 128 for XEX-AES [17].) We fix an arbitrary
tweak γ ∈ T as well as an arbitrary message α ∈ {0, 1}n. Both γ and α are public parameters of the
system known to the adversary. Our Swap-then-Encipher transform StEγ,α associates to E another
tweakable blockcipher F = StEγ,α[E]: {0, 1}n×T \{γ}×{0, 1}n → {0, 1}n whose tweak space T \ {γ}
is that of E with the point γ removed. The function F is defined as follows:

F (K,T,M)

01 H ← E(K, γ, α)
02 If M = K then Y ← E(K,T,H)
03 Else If M = H then Y ← E(K,T,K)
04 Else Y ← E(K,T,M)
05 Return Y

Before considering security, We establish that F is invertible as required to be a tweakable blockcipher.
Indeed, the inverse F−1 is given by

F−1(K,T,C)

01 Y ← D(K,T,C)
02 H ← E(K, γ, α)
03 If Y = K then M ← H
04 Else If Y = H then M ← K
05 Return M

Efficiency. In the form it is described above, evaluating F requires two calls to the underlying cipher
E. But in practice we are enciphering a message consisting of multiple blocks. In this case the value
E(K, γ, α) can be computed just once and then cached, which means each evaluation of F (K,T,M)
requires one call to E with the same key and tweak value. Similarly, E(K, γ, α) can also be cached for
inversion. Thus, the amortized cost of StEγ,α is the same as that of E. We remark that the situation
here is analogous to that of XEX [17]. XEX too needs two applications of the underlying blockcipher,
but one can usually be amortized out. StE is no worse.

Security. The following theorem says that F = StEγ,α[E] is a PRP-CCA that can securely encipher
its own key, or more formally, that it is {id}-kdm-prp-cca secure, assuming only that E meets the
standard PRP-CCA notion of security.

Theorem 3.1 Let E: {0, 1}n × T × {0, 1}n → {0, 1}n be a tweakable blockcipher. Let γ ∈ T and
α ∈ {0, 1}n. Let F = StEγ,α[E]: {0, 1}n × T \ {γ} × {0, 1}n → {0, 1}n be the tweakable blockcipher
associated to E via the StEγ,α transform as defined above. Let Φ = {id} consist of the identity function.
Let A be an adversary making at most Q oracle queries. Then there is an adversary B such that

Adv
prp-cca
F,Φ (A) < 2 ·Adv

prp-cca
E (B) +

3Q

2n − 1
.
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proc Initialize // G0,G1

K←$ {0, 1}n ; H ← E(K, γ, α)

proc Fn(T,M) // G0 , G1

X ←M
If M = K then

bad← true ; X ← H
Else If M = H then

bad← true ; X ← K
Return E(K,T,X)

proc KDFn(T, φ) // G0,G1

Return E(K,T,H)

proc Fn
−1(T,C) // G0 , G1

X ← E−1(K,T,C) ; M ← X
If X = K then

bad← true ; M ← H
Else If X = H then

bad← true ; M ← K
Return M

proc Finalize(b′) // G0,G1,G2

Return (b′ = 1)

proc Finalize(b′) // G3,G4

Return (bad1 ∨ bad2)

proc Initialize // G2

π←$ TwPm(T , {0, 1}n)
H ← π(γ, α)

proc Fn(T,M) // G2

Return π(T,M)

proc KDFn(T, φ) // G2

Return π(T,H)

proc Fn
−1(T,C) // G2

Return π−1(T,C)

proc Initialize // G3

K←$ {0, 1}n

H ← E(K, γ, α)
H ′ ← E(K, γ, α′)

proc Initialize // G4

π←$ TwPm(T , {0, 1}n)
H ← π(γ, α)
H ′ ← π(γ, α′)

proc Fn(T,M) // G3

If E(M,γ, α′) = H ′ then bad1 ← true

Else If M = H then bad2 ← true

Return E(K,T,M)

proc KDFn(T, φ) // G3

Return E(K,T,H)

proc Fn
−1(T,C) // G3

M ← E−1(K,T,C)
If E(M,γ, α′) = H ′ then bad1 ← true

Else If M = H then bad2 ← true

Return M

proc Fn(T,M) // G4

If E(M,γ, α′) = H ′ then bad1 ← true

Else If M = H then bad2 ← true

Return π(T,M)

proc KDFn(T, φ) // G4

Return π(T,H)

proc Fn
−1(T,C) // G4

M ← π−1(T,C)
If E(M,γ, α′) = H ′ then bad1 ← true

Else If M = H then bad2 ← true

Return M

Figure 2: Games used in the proof of Theorem 3.1.

Moreover, the running time of B is about equal to the running time of A.

The intuition is that, during the RealF,{id} and RandF,{id} games, an adversary is unlikely to trigger
the test in lines 02 and 03 in the computation of F , except by submitting φ = id to its oracle. Once
this established, we can give a reduction to the prp-cca security of E. For the first part, we show that
K and H are hard to guess using the prp-cca security of E. If the adversary guesses K, then we can
show how to break the prp-cca security of E, a contradiction. We can show the same if the adversary
guesses H. This is where we use the fact that the tweak γ is never allowed elsewhere, effectively making
H look random. The proof implements this approach and deals with other complications.

Proof: We begin with the games in Figure 2. Recall that here Φ = {id}, so it is assumed that φ = id
in any KDFn query. Game G0 includes the boxed code and hence is the same as RealAF , and thus we
have

Adv
prp-cca
F,Φ (A) = Pr[GA

0 ]− Pr[GA
2 ]

= Pr[GA
1 ]− Pr[GA

2 ] + Pr[GA
0 ]− Pr[GA

1 ]

≤ Pr[GA
1 ]− Pr[GA

2 ] + Pr[Bad(GA
1 )] .

The inequality is by the Fundamental Lemma of Game Playing [4] since G0,G1 are identical until bad.
We design adversary B1 so that

Pr[GA
1 ]− Pr[GA

2 ] ≤ Adv
prp-cca
E (B1) . (1)

The simulation is straightforward since G1 does not include the boxed code. B1 has oracles Fn,Fn−1.
It starts by letting H ← Fn(γ, α). It then runs A. When A makes a query (T,M) to its Fn oracle,
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B1 queries its own Fn oracle with (T,M) and forwards the response to A. Similarly when A makes a
query (T,C) to its Fn−1 oracle, B1 queries its own Fn

−1 oracle with (T,C) and forwards the response
to A. When A queries its KDFn oracle with T, id, adversary B1 responds with Fn(T,H). When A
halts with output b′, so does B1. We clearly have

Pr[RealB1

E ] = Pr[GA
1 ] .

Since the tweak γ is not used in any queries of A, the point H in G2 is random and can be viewed as
playing the role of K in game RandE . Thus we also have

Pr[RandB1

E ] = Pr[GA
2 ] .

Thus we have Equation (1).

It remains to upper bound Pr[Bad(GA
1 )]. Fix a point α′ ∈ {0, 1}n \ {α} and consider games G3,G4 of

Figure 2. Game G3 replaces the M = K test from G1 with the test E(M,γ, α′) = H ′. The purpose
is to avoid referring explicitly to K, thereby opening the way for a reduction to the assumed prp-cca
security of E. This new test, however, will certainly return true if M = K and hence

Pr[Bad(GA
1 )] ≤ Pr[GA

3 ]

= Pr[GA
3 ]− Pr[GA

4 ] + Pr[GA
4 ] .

We stress that in G4, where we move to the random world by replacing E(K, ·, ·) by π(·, ·), the test
still uses E, invoking the blockcipher here explicitly on inputs M,γ, α′. (The test does not use π.) We
design adversary B2 so that

Pr[GA
3 ]− Pr[GA

4 ] ≤ Adv
prp-cca
E (B2) . (2)

The simulation is again straightforward now that K is not referred to explicitly in either game. B2

has oracles Fn,Fn−1. It starts by letting H ← Fn(γ, α) and H ′ ← Fn(γ, α′) and initializing boolean
variables bad1, bad2 to false. It then runs A. When A makes a query (T,M) to its Fn oracle, B2 does
the following:

If E(M,γ, α′) = H ′ then bad1 ← true

Else If M = H then bad2 ← true

Return Fn(T,M) to A

Similarly when A makes a query (T,C) to its Fn−1 oracle, B2 does the following:

M ← Fn
−1(T,C)

If E(M,γ, α′) = H ′ then bad1 ← true

Else If M = H then bad2 ← true

Return M to A

When A queries its KDFn oracle with T, id, adversary B responds with Fn(T,H). When A halts with
output b′, adversary B halts with output 1 if (bad1 ∨ bad2) has value true and 0 otherwise. We have

Pr[RealB2

E ] = Pr[GA
3 ] and Pr[RandB2

E ] = Pr[GA
4 ]

which implies Equation (2).

Let B be the adversary that picks c at random from {1, 2} and runs Bc. Then at this point we have

Adv
prp-cca
F,Φ (A) ≤ 2 ·Adv

prp-cca
E (B) + Pr[GA

4 ]

and proceed to upper bound the last term above, considering separately the probability of setting bad1
and that of setting bad2. Since γ is not in the tweak space of F , game G5 of Figure 3 picks π from
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proc Initialize // G5

π←$ TwPm(T \ {γ}, {0, 1}n)
H ←$ {0, 1}n ; S ← ∅

proc Fn(T,M) // G5

S ← S ∪ {E(M,γ, α′)}
Return π(T,M)

proc KDFn(T, φ) // G5

Return π(T,H)

proc Fn
−1(T,C) // G5

M ← π−1(T,C)
S ← S ∪ {E(M,γ, α′)}
Return M

proc Finalize(b′) // G5

H ′←$ {0, 1}n \ {H}
Return (H ′ ∈ S)

proc Initialize // G6,G7

For all T ∈ T \ {γ} do
YT ←$ {0, 1}n ; R(T )← {YT }

H ←$ {0, 1}n

proc Fn(T,M) // G6 , G7

If π[T,M ] then return π[T,M ]
C←$ {0, 1}n \R(T )
If M = H then

bad← true ; C ← YT
D(T )← D(T ) ∪ {M}
R(T )← R(T ) ∪ {C}
π[T,M ]← C ; π−1[T,C]←M
Return π[T,M ]

proc KDFn(T, φ) // G6,G7

Return YT

proc Fn
−1(T,C) // G6 , G7

If π−1[T,C] then return π−1[T,C]
M ←$ {0, 1}n \D(T )
If C = YT then

bad← true ; M ← H
Else If M = H then

bad← true

M ←$ {0, 1}n \ (D(T ) ∪ {H})
D(T )← D(T ) ∪ {M}
R(T )← R(T ) ∪ {C}
π[T,M ]← C ; π−1[T,C]←M
Return M

proc Finalize(b′) // G6,G7

Return bad

proc Initialize // G8

For all T ∈ T \ {γ} do
YT ←$ {0, 1}n ; R(T )← {YT }

S ← ∅

proc Fn(T,M) // G8

If π[T,M ] then return π[T,M ]
C←$ {0, 1}n \R(T )
S ← S ∪ {M}
D(T )← D(T ) ∪ {M}
R(T )← R(T ) ∪ {C}
π[T,M ]← C ; π−1[T,C]←M
Return π[T,M ]

proc KDFn(T, φ) // G8

Return YT

proc Fn
−1(T,C) // G8

If π−1[T,C] then return π−1[T,C]
M ←$ {0, 1}n \D(T )
If C = YT then bad← true

Else S ← S ∪ {M}
D(T )← D(T ) ∪ {M}
R(T )← R(T ) ∪ {C}
π[T,M ]← C ; π−1[T,C]←M
Return M

proc Finalize(b′) // G8

H ←$ {0, 1}n

Return (H ∈ S) ∨ bad

Figure 3: More games used in the proof of Theorem 3.1.

TwPm(T \{γ}, {0, 1}n) rather than TwPm(T , {0, 1}n), and picks H,H ′ as random, distinct points. The
game can move the setting of bad1 and the choice of H ′ to Finalize without impacting what is returned
to the adversary. At the end of the execution, the set S can have size at most Q so

Pr[GA
4 sets bad1] = Pr[GA

5 ] ≤
Q

2n − 1
.

Bounding the probability that bad2 is set in G4 is more difficult because information about H does
reach the adversary via the KDFn query. Our intent is to move to a game where H is not referred
to in replying to adversary oracle queries. We begin with game G6 of Figure 3 which samples π lazily.
The arrays π[·, ·] and π−1[·, ·] are assumed initially everywhere undefined, and get filled in as the game
progresses. A test “If π[T,M ]” returns true if π[T,M ] is defined, and false otherwise, and similarly
for “If π−1[T,C]”. The game begins by picking a random YT for each T that is intended to stand for
π[T,H] but not assigned to the latter so as to avoid using H. Instead, whenever π[T,H] or π−1[T, YT ]
are called for, the game sets bad and corrects via the boxed code, which is included in G6. A variant of
the Fundamental Lemma of Game Playing from [4] says that identical until bad games have the same
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probability of setting bad and hence

Pr[GA
4 sets bad2] = Pr[GA

6 ] = Pr[GA
7 ] .

But game G7, which excludes the boxed code, does not refer to H in replying to adversary oracle queries,
and hence

Pr[GA
7 ] = Pr[GA

8 ] .

Since A is legitimate, a Fn
−1(T,C) query with C = YT must occur before it receives YT from KDFn

and hence is made with no knowledge of YT . Thus the probability that a query of A sets bad is at most
2−n. (We remark that this is the place we use the assumption that A is legitimate, without which bad

could be set with probability one.) On the other hand the set S has size at most Q at the end of the
execution of A with the game. So Pr[GA

8 ] ≤ 2Q · 2−n. Putting this together with the above concludes
the proof.

The IEEE 1619 standard for narrowblock encryption is based on XEX-AES [17]. StE is an alter-
native narrowblock candidate that is essentially as efficient as the current one but also has provable
security for enciphering the key.

4 Wideblock cipher

We provide a simple and general way to enhance a given PRP-CCA wideblock cipher to be able to
encrypt messages that might, in any block, contain the key. Our construction simply puts an ECB layer
in front of the given cipher and then uses StE as the base tweakable blockcipher for both the ECB pass
and the application of the wideblock cipher. This works for any given wideblock cipher that is a mode
of operation of a blockcipher, meaning it uses the key only to key an underlying blockcipher, as is the
case with EME and other standard designs. StE is used with one tweak for the ECB pass and then,
by fixing a different tweak, yields a blockcipher to instantiate the wideblock mode of operation.

We begin, below, by defining what it means for a wideblock design to be a mode of operation and
what it means to assume it is PRP-CCA secure. Then we provide our construction and prove it secure.

Modes. A wideblock mode of operationWB = (WB,WB−1) is a pair of oracle algorithms. Given oracle
access to a permutation g: {0, 1}n → {0, 1}n, algorithm WB takes input a tweak T ∈ T and an m-block
message X ∈ {0, 1}mn to return an m-block ciphertext denoted WB(T,X : g). Given oracle access to
g−1, algorithm WB−1 takes input a tweak T ∈ T and an m-block ciphertext Y ∈ {0, 1}mn to return an
m-block message denoted WB−1(T, Y :g−1). It is required that WB−1(T,WB(T,X :g) :g−1) = X for all
choices of the inputs and oracles. Here T , n,m are the tweak space, blocklength and number of blocks
associated to WB.

If N : {0, 1}n×{0, 1}n → {0, 1}n is a blockcipher then WB associates to it a tweakable blockcipher
W = WB[N ] where W : {0, 1}n × T × {0, 1}mn → {0, 1}mn is defined by W (K,T,X) = WB(T,X :
E(K, ·)) and W−1(K,T, Y ) = WB−1(T, Y : E−1(K, ·)). EME is an example of a wideblock mode of
operation that, in this way, transforms a given blockcipher into a wideblock tweakable cipher.

Let WB = (WB,WB−1) be a wideblock mode of operation. Consider the games of Figure 4 and let

Adv
prp-cca
WB

(B) = Pr[ROB
WB]− Pr[RandBmn] .

Game ROWB instantiates the oracles of WB and WB−1 with a random narrow block permutation
and its inverse, respectively, while game Randmn responds to oracle queries via a random wideblock
permutation. Now let

Adv
prp-cca
WB

(Q,n,m, t) = max
B

Adv
prp-cca
WB

(B)

where the maximum is over all adversaries B making at most Q oracle queries with the tweak argument
in each query having length at most nt. Proving security of a mode of operation ubiquitously proceeds
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proc Initialize // ROWB

π←$ Pm({0, 1}m)

proc Fn(T,M) // ROWB

Return WB(T,M :π)

proc Fn
−1(T,C) // ROWB

Return WB−1(T,C :π−1)

proc Finalize(b′) // ROWB

Return (b′ = 1)

proc Initialize // Randmn

π←$ TwPm(T , {0, 1}mn)

proc Fn(T,M) // Randmn

Return π(T,M)

proc Fn
−1(T,C) // Randmn

Return π−1(T,C)

proc Finalize(b′) // Randmn

Return (b′ = 1)

proc Initialize // J

π←$ TwPm(T , {0, 1}n)
K←$ {0, 1}n

proc Fn(T,M) // J

Return π(T,M)

proc KDFn(T, idM ) // J

For i = 1, . . . ,m do
If M [i] = ⊥ then M [i]← K

Return π(T,M)

proc Fn
−1(T,C) // J

Return π−1(T,C)

proc Finalize(b′) // J

Return (b′ = 1)

Figure 4: On the left are games ROWB,Randmn to define security of wideblock mode of operation
WB = (WB,WB−1). On the right is the final game J for the proof of Theorem 4.1.

by upper bounding this advantage as a function of Q,n,m, t. This is a purely information theoretic
setting, and absolute bounds are provided. For example, for EME, it is shown in [14] that this advantage
is at most 7(Qt + qn + 1)2/2n. (EME requires m ≤ n, assumed in this bound.) PRP-CCA security of
WB[N ] follows from the assumption that N is a PRP-CCA secure blockcipher by a standard reduction
argument.

Construction. Let ECB denote the oracle algorithm that given oracle access to a permutation
g: {0, 1}n → {0, 1}n, and given input M = M [1] . . .M [m] ∈ {0, 1}mn, returns the m-bit string
C = ECB(M : g) defined by C[i] = g(M [i]) for 1 ≤ i ≤ m. Let WB = (WB,WB−1) be a wide-
block mode of operation with tweakspace T , blocklength n and number of blocks m. Let F : {0, 1}n ×
{γ1, γ2} × {0, 1}

n → {0, 1}n be a tweakable blockcipher with a tweakspace of size two. (Of course,
any tweakable blockcipher with an even larger tweakspace will do. Just drop all but two possible
tweaks.) Our EtE (ECB-then-encipher) transform associates to WB and F a tweakable wideblock
cipher J = EtE[WB, F ] where J : {0, 1}n × T × {0, 1}mn → {0, 1}mn is defined as follows:

J(K,T,M)

01 X ← ECB(M :F (K, γ1, ·))
02 Y ←WB(T,X :F (K, γ2, ·))
03 Return Y

The inverse is defined by

J−1(K,T, Y )

01 X ←WB−1(T, Y :F−1(K, γ2, ·))
02 M ← ECB(X :F−1(K, γ1, ·))
03 Return X

We take advantage here of the fact that ECB(· :g−1) is the inverse of ECB(· :g).
When instantiated with EME in the role of WB this uses three blockcipher invocations per block,

but retains the parallelizability of EME. F would be obtained by applying StE to some tweakable
blockcipher with a tweakspace of size three.

The class IDm. We formally define the class Φ capturing occurrence of the key in any block of the
message. Associate to any m-vector M over {0, 1}n∪{⊥} the function idM : {0, 1}n → {0, 1}mn that on
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input a key K ∈ {0, 1}n returns the message M ′ = M ′[1] . . .M ′[m] defined by M ′[i] = M [i] if M [i] 6= ⊥
and M ′[i] = K if M [i] = ⊥ for all 1 ≤ i ≤ m. Then IDm is the class of all idM as M ranges over all
m-vectors over {0, 1}n ∪ {⊥}. This is the class Φ we will consider.

Security. Assume WB is PRP-CCA secure and assume F is {id}-PRP-CCA secure, meaning can
safely encrypt its own key. We claim that J is IDm-PRP-CCA secure, meaning can safely encrypt
messages that contain the key in any block.

Theorem 4.1 Let WB = (WB,WB−1) be a wideblock mode of operation with tweakspace T , blocklength
n and number of blocks m. Let F : {0, 1}n×{γ1, γ2}×{0, 1}

n → {0, 1}n be a tweakable blockcipher. Let
J = EtE[WB, F ] be the wideblock tweakable cipher associated to WB and F via the EtE transform as
defined above. Let Φ = IDm. Let A be an adversary making at most Q oracle queries with the tweak
argument in each query having length at most nt. Then there is an adversary B such that

Adv
prp-cca
J,Φ (A) ≤ 2 ·Adv

prp-cca
F,{id} (B) + 2δ(WB) +

2Q2(m2 + 2)

2n+2
,

where δ(WB) = Adv
prp-cca
WB

(Q,n,m, t). Moreover, the running time of B is about equal to the running
time of A.

The proof would seem at first to be a quite straightforward simulation in which KDFn queries of
A can be answered via KDFn queries of B. The subtle issue is that B needs to be legitimate and this
means it cannot answer all Fn−1 queries of A. Ensuring B is legitimate makes the proof more involved.

Proof: We begin with the games in Figure 5. We have

Pr[RealAJ,IDm

] = Pr[GA
0 ]

= Pr[GA
0 ]− Pr[GA

1 ] + Pr[GA
1 ]

≤ Pr[GA
1 ] + Pr[Bad(GA

1 )] , (3)

the inequality by the Fundamental Lemma of Game Playing [4]. We will design (legitimate!) B1, B2 so
that

Pr[GA
1 ]− Pr[HA] ≤ Adv

prp-cca
F,{id} (B1) (4)

Pr[Bad(GA
1 )]− Pr[Bad(HA)] ≤ Adv

prp-cca
F,{id} (B2) . (5)

Adversaries B1, B2 are almost the same, differing only in how they take their final decision, and accord-
ingly we unify their descriptions. For i ∈ {1, 2}, adversary Bi has access to oracles Fn,KDFn,Fn−1

and simulates oracles of the same name for A. It starts by setting S ← ∅ and bad ← false and then
it runs A, answering its oracle queries as follows. When A queries Fn(T,M), adversary Bi does the
following:

For i = 1, . . . ,m do X[i]← Fn(γ1,M [i])
Y ←WB(T,X :Fn(γ2, ·)))
Return Y to A.

The Fn calls made here by Bi are to its own Fn oracle. When A queries KDFn(T, idM ), adversary Bi

does the following:

For i = 1, . . . ,m do
If M [i] = ⊥ then X[i]← KDFn(γ1, id)
Else X[i]← Fn(γ1,M [i])

S ← S ∪ {X[i] : 1 ≤ i ≤ m}
Y ←WB(T,X :Fn(γ2, ·)))
Return Y to A.
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proc Initialize // G0,G1

K←$ {0, 1}n ; S ← ∅

proc Fn(T,M) // G0,G1

X ← ECB(M :F (K, γ1, ·))
Y ←WB(T,X :F (K, γ2, ·))
Return Y

proc KDFn(T, idM ) // G0,G1

For i = 1, . . . ,m do
If M [i] = ⊥ then M [i]← K

X ← ECB(M :F (K, γ1, ·))
S ← S ∪ {X[i] : 1 ≤ i ≤ m }
Y ←WB(T,X :F (K, γ2, ·))
Return Y

proc Fn
−1(T,C) // G0 , G1

X ←WB−1(T,C :F−1(K, γ2, ·))
S′ ← {X[i] : 1 ≤ i ≤ m }
M ← ⊥
If S ∩ S′ 6= ∅ then bad← true

M ← ECB(X :F−1(K, γ1, ·))
Else M ← ECB(X :F−1(K, γ1, ·))
Return M

proc Finalize(b′) // G0,G1

Return (b′ = 1)

proc Initialize // H

π←$ TwPm({γ1, γ2}, {0, 1}
n)

K←$ {0, 1}n ; S ← ∅

proc Fn(T,M) // H

X ← ECB(M :π(γ1, ·))
Y ←WB(T,X :π(γ2, ·))
Return Y

proc KDFn(T, idM ) // H

For i = 1, . . . ,m do
If M [i] = ⊥ then M [i]← K

X ← ECB(M :π(γ1, ·))
S ← S ∪ {X[i] : 1 ≤ i ≤ m }
Y ←WB(T,X :π(γ2, ·))
Return Y

proc Fn
−1(T,C) // H

X ←WB−1(T,C :π−1(γ2, ·))
S′ ← {X[i] : 1 ≤ i ≤ m }
M ← ⊥
If S ∩ S′ 6= ∅ then bad← true

Else M ← ECB(X :π−1(γ1, ·))
Return M

proc Finalize(b′) // H

Return (b′ = 1)

proc Initialize // I0, I1
π1←$ TwPm({γ1}, {0, 1}

n)
π2←$ TwPm(T , {0, 1}n)
K←$ {0, 1}n ; S ← ∅

proc Fn(T,M) // I0, I1

X ← ECB(M :π1(γ1, ·))
Y ← π2(T,X)
Return Y

proc KDFn(T, idM ) // I0, I1

For i = 1, . . . ,m do
If M [i] = ⊥ then M [i]← K

X ← ECB(M :π1(γ1, ·))
S ← S ∪ {X[i] : 1 ≤ i ≤ m }
Y ← π2(T,X)
Return Y

proc Fn
−1(T,C) // I0 , I1

X ← π−1
2 (T,C)

S′ ← {X[i] : 1 ≤ i ≤ m }
M ← ⊥
If S ∩ S′ 6= ∅ then bad← true

M ← ECB(X :π−1
1 (γ1, ·))

Else M ← ECB(X :π−1
1 (γ1, ·))

Return M

proc Finalize(b′) // I0, I1

Return (b′ = 1)

Figure 5: Games used in the proof of Theorem 4.1.

Again the calls made by Bi in the code above are to its own Fn,KDFn oracles. When A queries
Fn

−1(T,C), adversary Bi does the following:

X ←WB−1(T,X :Fn−1(γ2, ·)))
S′ ← {X[i] : 1 ≤ i ≤ m}
M ← ⊥
If S ∩ S′ = ∅ then

For i = 1, . . . ,m do M [i]← Fn
−1(γ1, X[i])

Else bad← true

Return M to A.

As before, the calls made by Bi here are to its own Fn
−1 oracle. So far there has been no difference

between B1, B2 but now, when A halts, they compute their outputs differently, B1 returning the same
output as A, but B2 returning 1 if bad = true and 0 otherwise.

We claim that Bi is legitimate, meaning that it never queries Fn−1 at a point (T,C) which was output
by a call to KDFn with tweak T . The Fn

−1 queries issued by B1 occur at two points, both when
processing Fn

−1 queries issued by A. Note that Bi only queries KDFn with tweak γ1, and since the
Fn

−1 queries used in the computation of WB−1 are all with the distinct tweak γ2, these queries will
not violate legitimacy. The other queries made by Bi to Fn

−1, which are under γ1, are only made if
S ∩ S′ = ∅, and hence do not violate legitimacy. This explains why bad is set this way in the games.
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Now we have

Pr[RealB1

F,{id}] = Pr[GA
0 ]

Pr[RandB1

F,{id}] = Pr[HA]

Pr[RealB2

F,{id}] = Pr[Bad(GA
0 )]

Pr[RandB2

F,{id}] = Pr[Bad(HA)]

which yields Equations (4) and (5).

Let B pick i ∈ {1, 2} at random and run Bi, and let δ(F ) = Adv
prp-cca
F,{id} (B). Then from Equations (3),

(4), (5) we have

Pr[GA
0 ] ≤ 2δ(F ) + Pr[HA] + Pr[Bad(HA)] . (6)

We will design B3, B4 so that

Pr[HA]− Pr[IA1 ] ≤ Adv
prp-cca
WB

(B3) (7)

Pr[Bad(HA)]− Pr[Bad(IA1 )] ≤ Adv
prp-cca
WB

(B4) . (8)

Adversaries B3, B4 are almost the same, differing only in how they take their final decision, and ac-
cordingly we unify their descriptions. For i ∈ {3, 4}, adversary Bi has access to oracles Fn,Fn−1 and
provides oracles Fn,KDFn,Fn−1 to A. It starts by selecting K at random from {0, 1}n. It will then
pick π at random from TwPm({γ1}, {0, 1}

n). (This is a conceptual simplification. Adversary Bi can’t
really pick π in advance like this and remain efficient. Instead it will build π on the fly via lazy sam-
pling.) It sets S ← ∅ and bad← false and then runs A. When A queries Fn(T,M), adversary Bi does
the following:

X ← ECB(M :π(γ1, ·))
Y ← Fn(T,X)
Return Y to A.

When A queries KDFn(T, idM ), adversary Bi does the following:

For i = 1, . . . ,m do
If M [i] = ⊥ then M [i]← K

X ← ECB(M :π(γ1, ·))
S ← S ∪ {X[i] : 1 ≤ i ≤ m}
Y ← Fn(T,X)
Return Y to A.

When A queries Fn−1(T,C), adversary Bi does the following:

X ← Fn
−1(T,C)

S′ ← {X[i] : 1 ≤ i ≤ m}
M ← ⊥
If S ∩ S′ = ∅ then X ← ECB(M :π(γ1, ·))
Else bad← true

Return M to A.

So far there has been no difference between B3, B4 but now, when A halts, they compute their outputs
differently, B3 returning the same output as A, but B4 returning 1 if bad = true and 0 otherwise. We
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have

Pr[ROB3

WB
] = Pr[HA]

Pr[RandB3

mn] = Pr[IA1 ]

Pr[ROB3

WB
] = Pr[Bad(HA)]

Pr[RandB3

mn] = Pr[Bad(IA1 )]

which yields Equations (7) and (8).

Recall that δ(WB) = Adv
prp-cca
WB

(Q,n,m, t). Then from Equations (6), (7), (8) we have

Pr[GA
0 ]− Pr[IA1 ] ≤ 2δ(F ) + 2δ(WB) + Pr[Bad(IA1 )] . (9)

Consider game J of Figure 4. Composing a random permutation with any independently chosen per-
mutation yields a random permutation, regardless of the distribution of the second permutation, so

Adv
prp-cca
J,IDm

(A) = Pr[RealAJ,IDm

]− Pr[RandAJ,IDm

]

= Pr[GA
0 ]− Pr[JA]

= Pr[GA
0 ]− Pr[IA0 ]

= (Pr[GA
0 ]− Pr[IA1 ]) + (Pr[IA1 ]− Pr[IA0 ])

≤ (Pr[GA
0 ]− Pr[IA1 ]) + Pr[Bad(IA1 )] .

Putting this together with Equation (9) we have

Adv
prp-cca
J,IDm

(A) ≤ 2δ(F ) + 2δ(WB) + 2 · Pr[Bad(IA1 )] . (10)

To complete the proof we bound the last term above. The assumption that A is legitimate (this is
where we use it) implies that if it makes query Fn

−1(T,C) then it made no previous KDFn(T, ·) query
that returned C. We can wlog also assume that no previous Fn(T, ·) query returned C. Taking a hit of
Q2 ·2−mn−1 in the bound, we can view π(T, ·) as a random function rather than a random permutation,
so the response to a new Fn

−1(T,C) query is a new, random string, meaning each block is uniformly
distributed in {0, 1}n. If A made q1 queries to KDFn then the set S has size at most q1m and each
Fn

−1 inverse query has chance at most q1m
22−n of setting bad. If it made q2 queries to Fn

−1, the
overall chance of setting bad is at most q1q2m

22−n. But q1 + q2 ≤ Q so q1q2 ≤ Q2/4 and thus

Pr[Bad(IA1 )] ≤
Q2

2mn+1
+

Q2m2

2n+2
≤

Q2(m2 + 2)

2n+2
.

Combining this with Equation (10) completes the proof.

5 Implementation

We describe a fast AES-based instantiation of EtE. As a starting point, we need an AES-based
tweakable blockcipher. LRW [15] and XEX [14] are possible choices. Both of them require two calls to
the base AES blockcipher, but with XEX, one of the calls can be can be made just once and the value
cached as the cipher is used to encipher many message blocks. We thus choose XEX. Applying StE

to XEX yields a tweakable blockcipher F . Now we need to pick a wideblock cipher to play the role of
WB. We pick EME which uses about two blockcipher calls per message block together with overhead
for offset computations. Let J be the wideblock tweakable cipher produced by applying EtE to WB

and F . We have optimized J and then implemented it and compared its speed to that of EME.

XEX. XEX over a blockcipher E: {0, 1}n × {0, 1}n → {0, 1}n has tweakspace {0, 1}n × I, where I

is the set of integers [1, . . . , 2n − 2]. Arithmetic operations in XEX are done in the field GF(2n),
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Figure 6: Running time of J on a scale where the running time of EME has been normalized to 1 and
AES implemented via AES-NI.
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Figure 7: Running time EtE with plain AES on a scale where the running time of EME has been
normalized to one. This shows that the extra AES computations from our ECB layer add little to the
running time.

with elements of GF(2n) viewed interchangeably as n-bit strings, integers in [0, 2n − 1] and as formal
polynomials of degree n − 1 with binary coefficients. Addition is bitwise XOR and multiplication of
two points is performed by multiplying them as formal polynomials modulo the irreducible polynomial

p128(x) = x127 + x7 + x2 + x + 1. XEX is defined by Ẽ
(N,i)
K (M) = EK(M ⊕ ∆) ⊕ ∆ where ∆ = 2iN

and N = EK(N). For our purposes, we require a much smaller tweak space of two elements. We
pick t0 = (0n, 1) and t1 = (10n−1, 1). Now, ∆ can assume only two values (∆0,∆1) which can be
precomputed and cached between successive calls, avoiding running E for the second time to calculate
N. The XOR operations still remain, but they are parallelizable, using vector instructions [8].

Experiments. We compare the speeds of EtE and EME on a processor that has the AES-NI support
for executing AES in hardware [10]. Given that EtE is intended for use in disk encryption at the sector
level, which happens in hardware, the use of AES-NI is realistic.

Our results shown in Figure 6 show that encrypting with EtE is slower than EME by a modest 15%
or less. We ran the tests described below on a Intel Xeon W3690 processor at 3.47 GHz with support for
AES-NI running Linux version 2.6 with code compiled using gcc -O3 -ftree-vectorize -msse2 -ffast-math

to enable vector instructions and perform other general optimizations. The base code was from Brian
Gladman’s EME2 implementation [9], which we modified to run as EME and use the hardware AES
instructions.
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Figure 8: Running time of J on a scale where the running time of EME has been normalized to 1 and
with AES implemented in software.

Discussion. Using XEX (on top of AES) and the extra ECB layer account for EtE’s slowdown relative
to EME-AES. To understand how these modifications affect the speed individually, we timed EtE with
AES instead of XEX. This cipher is only PRP-CCA secure, but we were interested in its running time.
We see in Figure 7 that adding the extra ECB step makes up only 7% of the overhead and running
XEX on top of AES makes up the remaining 8%. Since EME is a two pass scheme, we would expect
that adding another ECB pass would amount to a close to 50% slowdown. Indeed, this can be observed
when AES is implemented in software, as shown in Figure 8, where we see a 45% slowdown. But with
AES in hardware, most of the time in EME-AES is spent outside the AES calls. This may be surprising
at first, but we should keep in mind that in hardware, AES runs very fast. Thus, adding an extra AES
operation per block is not too expensive, justifying our choice of adding an ECB layer.
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