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Abstract

In collusion-free protocols, subliminal communication is impossible and parties are thus
unable to communicate “any information beyond what the protocol allows”. Collusion-free
protocols are interesting for several reasons, but have specifically attracted attention because
they can be used to reduce trust in game-theoretic mechanisms. Collusion-free protocols are
impossible to achieve (in general) when all parties are connected by point-to-point channels, but
exist under certain physical assumptions (Lepinksi et al., STOC 2005) or in specific network
topologies (Alwen et al., Crypto 2008).

We provide a “clean-slate” definition of the stronger notion of collusion preservation. Our
goals in revisiting the definition are:

• To give a definition with respect to arbitrary communication resources (that includes as
special cases the communication models from prior work). We can then, in particular,
better understand what types of resources enable collusion-preserving protocols.

• To construct protocols that allow no additional subliminal communication in the case
when parties can communicate (a bounded amount of information) via other means. (This
property is not implied by collusion-freeness.)

• To provide a definition supporting composition, so that protocols can be designed in a
modular fashion using sub-protocols run among subsets of the parties.

In addition to proposing the definition, we explore implications of our model and show a general
feasibility result for collusion-preserving computation of arbitrary functionalities.
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1 Introduction

Subliminal channels in protocols [38, 39, 40] allow parties to embed “disallowed” communication
into the messages of the protocol itself, without being detected. (For example, a party might
communicate a bit b by sending a valid protocol-message with first bit equal to b.) The existence
of subliminal channels is often problematic. In a large-scale distributed computation, for instance,
subliminal channels could allow two parties to coordinate their actions (i.e., to collude) even if they
may not have been aware of each other in advance. In other settings, parties may be disallowed
or otherwise unable to communicate directly, and it would be undesirable if they could use the
protocol itself to convey information.

More recently, subliminal channels have arisen as a concern in the context of cryptographic
implementations of game-theoretic mechanisms. Here, informally, there is a game in which parties
send their types/inputs to a trusted party which then computes an outcome/result. One might
naturally want to replace the trusted party with a cryptographic protocol executed by the par-
ties [15, 19, 6, 32, 33, 34, 28, 1, 2, 26, 24]. Using protocols for secure multi-party computation (e.g.,
[21]) preserves Nash equilibria; however, such protocols do not suffice for implementing general
equilibria precisely because they have subliminal channels and thus enable collusion in the real
world even if such collusion is impossible in the original game. This realization has motivated
substantial effort toward constructing collusion-free protocols that do not allow any subliminal
communication [32, 33, 34, 28, 26, 4, 3, 24]. Collusion-free protocols are impossible when parties
are connected by pairwise communication channels, and so researchers have turned to other commu-
nication models. It is known that collusion-free computation of arbitrary functionalities is possible
if parties have access to a semi-trusted “ballot box” and can communicate publicly via (physical)
envelopes [33, 28, 26, 24], or if parties are connected (via standard communication channels) to a
semi-trusted entity in a “star network” topology [4, 3].

1.1 A New Definition: Collusion Preservation

The works of Izmalkov et al. [33, 28, 26, 24] and Alwen et al. [4, 3] give incomparable definitions of
collusion freeness, each tailored (to some extent) to the specific communication models under con-
sideration. We revisit these definitions, and propose a stronger notion called collusion preservation.1

Our aim here is to provide a clean, general-purpose definition that better handles composition, both
when collusion-preserving protocols are run as sub-routines within some larger protocol, as well as
when collusion-preserving protocols are run concurrently with arbitrary other protocols (whether
collusion-preserving or not). In what follows, we give an overview of our definition and expound
further on the above points.

Overview of our definition. We follow the definitional paradigm used by Alwen et al. [4, 3], and
review their model here. In the real-world execution of a protocol, different adversaries can corrupt
different parties. Importantly, these adversaries cannot communicate directly; instead, all parties
are connected in a “star network” topology with a semi-trusted mediator. (This is in contrast to
usual cryptographic definitions, which assume a “monolithic” adversary who controls all corrupted
parties and can coordinate their actions.) Two notions of security are then defined, depending on
whether or not the mediator is honest:

1Collusion-free protocols ensure that if parties can communicate nothing without the protocol, then they can
communicate nothing with the protocol. Collusion-preserving protocols provide a stronger guarantee: that whatever
parties can communicate without the protocol, they can communicate no more with the protocol. See further
discussion below.
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Conditional collusion freeness: When the mediator is honest, collusion freeness is required.
This is formalized by considering an ideal world where there are similarly adversaries who
cannot communicate directly, but can only send inputs to (and receive outputs from) an ideal
functionality. A protocol is collusion-free if for any ppt real-world adversaries interacting
with the (honest) mediator, there are ppt ideal-world adversaries such that the real and
ideal worlds are indistinguishable. Indistinguishability here is formulated in a “stand-alone”
manner [20].

Fallback security: When the mediator is dishonest, we clearly cannot hope for collusion
freeness any more. Nevertheless a strong and meaningful notion of security can be achieved.
Namely, adversaries are now allowed to communicate arbitrarily (in both the real and ideal
worlds), and the protocol is required to satisfy the standard notion of stand-alone security [20].

We strengthen and extend the definition of collusion freeness in several ways. First, rather than
considering a specific “star network” topology, or the specific physical assumptions of [33, 28, 26, 24],
we consider a general resource to which the parties have access in the real world. (This resource is
the only means of “legal” communication in the real world, though as we will see in a moment there
may be other “illicit” means of communication available.) In addition to the inherent advantages
of a more general definition, formulating a generic definition allows us to characterize the minimal
properties that resources need in order to achieve collusion-preserving computation.

An additional difference is that we formulate our definitions in a universally composable (UC) [8]
fashion, where there is an environment controlling the entire execution. (Actually, we use the gen-
eralized UC framework [10] as our starting point.) This has significant ramifications, since the
environment itself can now act as a communication channel for the adversaries. If the environment
chooses to allow no communication between the adversaries, then our definitions essentially “de-
fault” to the previous setting of collusion freeness. Crucially, however, if the environment allows
the adversaries to communicate c bits of information “for free”, then a collusion-preserving protocol
ensures that the adversaries cannot communicate more than c bits (on top of the communication
allowed by the ideal functionality) by running the protocol in the presence of the stated resource.
(We show below a simple counter-example demonstrating that collusion freeness does not imply
collusion preservation.) Moreover, we obtain composition “for free” due to the power of the UC
framework. In this way we improve upon the results of [4, 3], which do not claim nor realize any
form of composition, as well as the results of [33, 28, 26, 24] which obtain only a limited sort of
composition; see below.

Collusion preservation is stronger than collusion freeness. We give a simple counter-
example showing that collusion preservation is stronger than collusion freeness. Consider a protocol
π that is collusion-free in the communication model of [4, 3] where, in short, there is a central
mediator to whom all parties are connected (and no other channels are available). We obtain a new
protocol π′, identical to π except for the following two modifications to the mediator’s behavior
(where, λ is the security parameter):

1. The mediator takes a special message m ∈ {0, 1}2λ from P1. In response, the mediator chooses
a random r ∈ {0, 1}λ, sends it to P1, and stores (r,m).

2. The mediator takes a special message r′ ∈ {0, 1}λ from P2. If the mediator has a stored tuple
of the form (r′,m), it sends m to P2 (and otherwise simply ignore r).
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It is not hard to see that π′ remains collusion-free: intuitively, this is because P2 can guess r′ = r
with only negligible probability.2 However, π′ is not collusion preserving. Specifically, if P1 and P2

have access to a λ-bit channel then they can use π′ to communicate 2λ bits!
One can interpret this counter-example in several ways. One could imagine that π′ is run in a

setting in which P1 and P2 have access to a physical channel that only allows communication of λ
bits. Alternately, the parties might be running π′ while they are concurrently running some other
protocol that is not collusion-free and enables the parties to (subliminally) communicate λ bits.
Either way, the implication is the same: a collusion-free protocol may potentially allow additional
communication once parties have the ability to communicate at all.

Protocol composition. A critical feature of the protocols of Izmalkov et al. [33, 28, 26, 24]
is that they are only collusion-free when at least one party running the protocol is honest. The
underlying reason is that in their communication model parties have the ability to communicate
arbitrary information; the guarantee provided by their protocols is that any such communication
will be detected. Collusion freeness thus requires an honest party to perform the detection.

This limitation may not appear to be a problem, since one typically does not care to provide
any guarantees once all parties are malicious. It becomes a problem, however, when collusion-free
protocols are used as sub-routines within some larger protocol. Consider, for example, a collusion-
free protocol Π for three parties P1,P2,P3 in which each pair of parties runs some collusion-free
sub-protocol π between themselves. If P1 and P2 are malicious, then π may provide no guarantees
which means that they may now be able to communicate an unlimited amount of information; this
could clearly be problematic with regard to the “outer protocol” Π. (Izmalkov et al. implicitly
avoid this issue by having all parties take part in any sub-protocols that are run. While this solves
the issue, it is not an efficient approach.)

General feasibility with GUC fallback. Complementing and motivating our definitional work,
we provide a completeness result for strong realization of a large class of functionalities. More
concretely, for any functionality in this class we provide a protocol compiler and a particular
resource which satisfies a universally composable version of the security definition from [3]: the
compiled protocol provides Collusion Preserving (CP) security when executed with this particular
resource, and, as a strong fallback, when executed with an arbitrary resource, it achieves GUC-type
security, i.e., emulation by “monolithic” simulators.

Implications for computational game theory. The CP framework is defined in terms of
computationally bounded parties. As such the implications for game theory concern games with
similar limitations as in the field of algorithmic game theory [37]. We consider these (extensive form)
computational games to be equivalent in some sense if they contain the same set of computational
Nash Equilibria (cNE) which also implies that stronger kinds equilibria are also preserved.

Translating the new security notion and our general feasibility result to the setting of compu-
tational mediated games we show how to replace a mechanism with a protocol running over a “less
trusted” mechanism such that the resulting game is equivalent to the original. By less trusted we
mean that the mechanism need no longer be trusted to enforce privacy, nor to compute the game
round functions correctly. (However it is still trusted to enforce both fairness and the isolation of
players.)

2In particular the simulators for π′ can behave just as for π with the only modification that the simulator for P1

responds with a random message r when it receives the special message m from it’s adversary.
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In comparison to results of [25, 27, 24] which provide information theoretic-equivalence between
games using an unconventional model of computation, the results in this paper provide only compu-
tational equivalence but use a standard computational model. However their notion of composition
is weaker in two ways. Conceptually it is not scalable but more concretely it seems to allow for
only rather limited notion of concurrency. In particular protocols that implement a mechanism
must be run atomically with respect to actions in any concurrent games. In the notion obtained
in this paper is fully UC composable in the more traditional sense. On the other hand while our
protocols prevent signaling via aborts as in [25], they do not provide the full robustness to aborts
of [27, 24]. Finally the amount of randomness in the public view of our protocols is limited to a
single pre-computation round which can be run before types are distributed. From that point on
there is no further “randomness pollution”. This is similar to [31], better then [25] (where even
executions of a protocol produce randomness pollution) but weaker then [27, 24] which do not
produce any randomness pollution at all.

Relations to Abstract Cryptography. Maurer and Renner introduced the Abstract Cryptog-
raphy (AC) framework [35]. In Appendix B we describe how our model can be specified using
the language of the Abstract Cryptography framework. Besides elucidating parallels between these
two frameworks, to the best of our knowledge the following discussion represents the first concrete
instantiation of AC.

Outline of this paper. In Section 2 we define a Universally Composable version of Collusion
Freeness, called Collusion Preservation; we prove its composability and show how it relates to exist-
ing universally composable security notions. In Section 3 we characterize three minimal assumptions
any resource must have if it is to be used for realizing some important classes of functionalities;
our characterization rules out the use of standard communications models to implement almost
any interesting functionality. Next, in Section 5, we prove our general feasibility result by provid-
ing a protocol compiler and a particular resource with which a large class of functionalities can
be CP implemented in a strong way that guarantees a GUC-type fallback. In Section 6 we show
how to use the protocol compiler to significantly reduce the trust in a mechanism for games with
computationally bounded players.

2 Collusion-Preserving Computation

In this section we define our framework for investigating universally composable collusion freeness,
namely collusion-preserving computation. On the highest level the idea is to combine the strong
composability properties of the GUC framework of [11] with the model of split simulators along
the lines of [3].

2.1 Preliminaries and Notation

We denote by [n] the set {1, . . . , n} (by convention [0] = ∅) and for a set I ⊆ [n] we write I to
denote the set [n] \I. Similarly, for element i ∈ [n] we write i to denote the set [n] \ {i}. Using this
notation we denote by AI a set of ITMs {Ai}i∈I . For input tuple xI = {xi}i∈I we write AI(xI) to
denote that for all i ∈ I the ITM Ai is run with input xi (and a fresh uniform independent random
tape).

Additionally we will make heavy use of elements from the GUC framework such GUC protocols
and GUC setup functionalities. For reasons of space we assume passing familiarity with the model
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used their in. For a more detailed description of the main features of GUC used to describe our
framework we refer to Appendix A.

2.2 An Intuitive Description.

Starting from the GUC model we make the following modifications:

Split Adversaries/Simulators: Instead of a monolithic adversary/simulator we consider a
set of n (independent) PPT adversaries A[n] = {Ai : i ∈ [n]}, where Ai correspond to the
adversary associated with the player i (and can corrupt at most this party). Moreover, we
ask that for each Ai ∈ A[n] there exists an (independent) simulator Simi.

Corrupted-Set Independence: We also require that the simulators do not depend on each
other. In other words the code of simulator Simi is the same for any set of adversaries A[n]

and B[n] as long as Ai = Bi.

Modeling Split Adversaries. To incorporate the notion of a split adversary in the GUC
model, we make the following modifications to the model of execution: Let P = [n] be the
player set; instead of a single adversary, we introduce to the model n independent adversaries
A1, . . . ,An, such that for each Pi ∈ P, Ai might corrupt at most party pi.

3 For this purpose, each

Curruptions
No

GUC CP

A

π π

A A

...

...

π

A A n1
...

...

...

A

π

Set

Corrupt

...

[n]
[n]

[n]

[n]

[n]
[n] [n]

[n]

Z

Z

I

Z j

Z

i

RR

R

I

I I

i ∈ Ij ∈ I

R

Figure 1: UC corruptions compared to CP corrup-
tions.(Setup functionalities are left implicit.)

adversary is associated with a unique
adversary-ID, which includes the party-ID
of the corresponding party. Each of the
adversaries Ai has a dedicated interface to
communicate with Z.4 Note that, unlike
the standard (G)UC models, the adver-
saries do not serve as an underlying inse-
cure network, as they do not share com-
munication tapes with the honest parties
or with each other. In order to make state-
ments about computation of non-trivially
computable, i.e., non-locally computable,
functionalities one needs to consider hybrid
worlds, where the hybrid serves a the com-
munication resource for the parties and/or
as the “co-ordination” mechanism for the
adversaries. In the following we give a
generic specification of the mode of oper-
ation of functionalities in our split adversaries setting and sketch the model of execution of proto-
col in the corresponding hybrid-model. The difference between the multi-adversary hybrid world
execution and the standard (G)UC execution is graphically represented in Figure 1.

Resources, Shared Functionalities, and Exclusive Protocols. The main difference between
a CP functionality F and GUC one is that besides the n interfaces to the (honest) parties it also
has interfaces to each of the n adversaries A1, . . . ,An. In other words rather then n interfaces a CP
functionality has 2n interfaces.

3The corruption mechanism is similar to the (G)UC setting, i.e., the environment Z requests Ai corrupt Pi.
4Technically, as in the UC setting, each such interface corresponds to Ai and Z sharing a communication tape.
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Moreover, similar to the GUC framework (but in contrast to plain UC) we distinguish between
two types of functionalities: resources which we denote with capital calligraphic font as in “R” and
shared functionalities which we denote with an additional over-line as in “Ḡ”. Formally a resource
R maintains state only with respect to a single instance of a protocol, while a shared functionality
Ḡ can maintain state across protocol instances.5 For example concurrent executions can maintain
shared state via say a global CRS (like the ACRS of the GUC framework) or via a global PKI
(such as the KRK setup for GUC) as long as these are modeled as shared functionalities. However,
although concurrent instances of a protocol π may use the same resource R, the behavior of R in
one execution of π must be independent of all other executions of π (and more generally of all other
concurrent protocols instantiated by the environment). For clarity, in the remainder of this work
we will usually refer to shared functionalities simply as setup and protocols which only share state
across executions through some setup Ḡ as Ḡ-subroutine respecting. As observed already in previous
works, e.g., see [11], in practice most protocols are in fact subroutine respecting with respect to the
shared functionality which they use as setup.6

The R-Hybrid World. A CP execution in the R-hybrid world is defined via a straightforward
generalization to the analogous GUC execution. In particular when the environment Z requests
corruption of a player Pi the adversary Ai is given control of Pi’s interface to R (c.f. Figure 2). On a

π

[n]

A A...

...

...

[n]...

...

... SimSim

R-Hybrid F-Ideal

I

i ∈ I

Zj i Zj i

R I

j ∈ I j ∈ I i ∈ I

F DF

Figure 2: R-hybrid vs. F-ideal CP executions
where playerset I ⊆ [n] has been corrupted.
(Setup functionalities are left implicit.)

technical level the execution of an R-hybrid pro-
tocol is almost identical to an execution in the
GUC framework. In particular, environments
can instead invoke an arbitrary number of ITI
of any kind; even those running other protocols
and sharing state via some setup. We denote
the output of the environment Z when witness-
ing an execution of protocol π := π[n] attacked by
adversaries A := A[n] in the R-hybrid model as

CP-EXECRπ,A,Z . Finally, we say a protocol π is
R-exclusive if it makes use of no other resources
(shared or otherwise) then R.

On Bounding the Number of Calls to Re-
sources. A primary difference between how executions in a R-hybrid world are modeled in the
GUC and CP frameworks is that in the CP case parties can communicate with at most a single
instance of R. This is in contrast to all other UC like models where say an OT-hybrid world is
understood to mean that parties can make as many calls as they wish to the OT functionality
instantiating a new copy for each new OT transaction they wish to perform.

At first glance this may seem like a rather minor modeling issue since anyway environments
are not always aware of the presence of ideal functionalities (otherwise distinguishing hybrid world
would be trivial). However we argue that, in contrast to a setting with a monolithic adversary
where no such restriction is made, for a composable notion with split adversaries fixing the number
of instances of functionalities (i.e. resources) available to adversaries is in fact crucial for capturing
the desired intuition of collusion freeness.

For example a primary motivation of this work is to provide a way for reducing trust in the

5Technically this is modeled by restricting an instance of a resource to only accept inputs from ITI with a fixed
session ID value while a shared functionality is can accept inputs from an ITI with any session ID.

6This notion is completely analogous to that of “subroutine respecting” as defined for the (G)UC frameworks.
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mediators used in mechanism design by providing protocols which can be used to replace the inter-
action with the mediator. However if we do not restrict the number of instances of the mechanism
with which parties can interact then there is no meaningful way to capture a game which calls for
only a single instance.

From a cryptographic point of view, suppose we prove that some protocol π “realizes” a func-
tionality F without fixing the number of instances of F simulators can interact with. Intuitively,
this would mean π allows as much collusion as can be obtained by an unlimited number of calls to
F . If F is a one-bit bi-directional channel for example the meaning of the statement changes com-
pletely if simulators use only a single instance of F to simulate versus when they can use unlimited
calls to F .

We contrast this with the case of a monolithic adversary where no such issue arises (and indeed,
the definition of (G)UC seem to allow for such simulations). The underlying reason is that even in
the ideal world there is only a single simulator. Thus any correlation obtained by the simulators in
the previous example for say player i and player j from the first execution of π is now irrelevant as
the same correlation can be simulated trivially internally by the monolithic simulator controlling
both parties. Thus no intuition is lost by not fixing how many calls to the ideal functionality are
made for simulation purposes.

Definition 2.1 (Collusion-Preserving Computation). Let Ḡ be a setup, R and F be n-party re-
sources, π be a {Ḡ,R}-exclusive protocol and φ be a {Ḡ,F}-exclusive protocol (both n-party proto-
cols). Then we say that π collusion-preservingly (CP) emulates φ in the {Ḡ,R}-hybrid world, if
there exists a collection of efficiently computable transformations Sim = Sim[n] mapping ITMs to
ITMs such that for every set of adversaries A = A[n], and every PPT environment Z the following
holds:

CP-EXECḠ,Rπ,A,Z ≈ CP-EXECḠ,Fφ,Sim(A),Z .

Realization, Reductions and the “v” Notation. As in the (G)UC frameworks, we distin-
guish between the more general notion of “emulation” and the special case of “realization”. For an
(implicit) functionality F we denote by DFi the ith dummy F-hybrid protocol which simply acts as
a transparent conduit between the ith honest and adversarial interfaces of F and Z. In particular
DFi forwards all messages it receives from Z to the functionality F (where the choice of adversarial
or honest interface is specified by Z) and vise-versa. If for functionality F , an R-hybrid protocol π
CP-emulates DF then we say that π realizes F (in the R-hybrid world). In symbols we denote this
by F vCPπ R, which can intuitively be read as “F CP-reduces to R via protocol π”.7 By omitting
π in this notation we denote simply the existence of some protocol for which the relation holds.
We also use “vGUC” to denote the analogous relation but for GUC -realization.

By convention for any functionality R we consider a pair of protocols equivalent π = φ in the
R-hybrid world if for all functionalities F we have:

F vCPπ R ⇐⇒ F vCPφ R

In particular let DR be the dummy protocol for R. Then by convention, for any protocol π we
have πD

R
= π in the R-hybrid world where πD

R
is the protocol behaving as π but with calls to R

being forwarded through DR as if they came form Z.
To simplify notation and maintain consistency with previous UC-type works, whenever an

explicit protocol for the honest players is missing in the CP-EXEC notation then it is implicitly
assumed that they are running DF . For example we might write CP-EXECFA[n],Z when the honest

7Alternatively it can also be read as “Protocol π CP-realizes F in the R hybrid model.”
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players are running DF[n]. For clarity, we include a graphical representation of the multi-adversary

hybrid-world/ideal-world definitions in Figure 2.

2.3 Composition Theorem and Other Tools

We formalize a strong (universally) composable property of CP security and, along the way, provide
a useful tool for proving CP security of protocols.

2.3.1 Simplified CP

Following the approach of [11] we make two simplifications to the definition of CP security obtaining
what we call Simplified CP (SCP).8 SCP has two desirable properties:

1. It significantly easier to prove a protocol SCP secure then CP secure.
2. Yet SCP security is equivalent to CP security under certain reasonable conditions.

Combining these two property also results in a simpler proof of the main UC-type composition
theorem then if we try and prove it directly for CP security.

To simplify the task of proving protocols SCP secure we restrict the class of environments being
considered (much like ”Externalized UC” of [11]). Let Ḡ be a setup, R be a resource and π be an
(Ḡ,R)-exclusive protocol. 9 Then for SCP security we quantify only over restricted environments
which are PPT environments which do not invoke any other ITMs besides a single instance of
protocol π as well as one instance of the dummy protocol DḠ . The second modification we make
to CP is that we quantify only over dummy adversaries. That is for all i ∈ [n] we consider only the
adversary Ai which acts as a conduit between Z and the resource R.

Proving SCP security is significantly easier than proving CP security, because only a single kind
of simulator need be considered (namely for the dummy adversaries). Moreover when verifying
the correctness of these simulators it is easier (tractable) to reason about the entire view of an
environment if it’s view consists of only a single execution of the protocol and the interaction with
the shared functionality.

Definition 2.2 (Simplified Collusion-Preserving Computation). Let Ḡ be a setup, R and F be
n-party resources, π be a {Ḡ,R}-exclusive protocols and φ be a {Ḡ,F}-exclusive protocols (both
n-party protocols). Let B = Bπ[n] be the set of n dummy adversaries interacting with π. Then we

say that π Simplified CP (SCP) emulates φ in the {Ḡ,R}-hybrid world, if there exists a collection
of efficiently computable transformations Sim = Sim[n] mapping ITMs to ITMs such that for every
restricted environment Z it holds that:

CP-EXECḠ,Rπ,B,Z ≈ CP-EXECḠ,Fφ,Sim(B),Z .

Equivalence Theorem. We first show that although SCP security may at first glance seem
weaker then CP security, in fact they are equivalent. As in the GUC framework, results relating
SCP to CP are conditioned on protocols being subroutine respecting. Intuitively this is because
only if a protocol is Ḡ-subroutine respecting can it be guaranteed that giving the environment access
to Ḡ is sufficient to faithfully internally emulate multiple concurrent executions of the protocol.

Theorem 2.3 (Equivalence). Let Ḡ be a setup, R and F be resources, π be a (Ḡ,R)-exclusive
protocol and φ be a (Ḡ,F)-exclusive protocol. Then π CP emulates φ if and only if π SCP emulates
φ.

8This can be thought of as being analogous to Externalized-UC combined with the Dummy Lemma.
9Note that this implies that π is also Ḡ-subroutine respecting protocol.
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Proof. As the set of environments and adversaries for SCP are a subset of those for CP so the
forwards direction (“=⇒”) is trivially true.

The backwards direction (“⇐=”) requires more work. It combines in a straight forward manner
the ideas of the proof of the so called “dummy lemma” of [9] with those from the proof of Theorem
2.1 [11]10. Indeed the original proofs translate almost one-to-one and all that is needed is to verify
that splitting the adversaries does not cause a break down in the logical arguments.

For completeness we sketch the entire proof highlighting the changes required to accommodate
split adversaries. We first argue that quantifying over fewer environments does not change the
quality of the security notion. Then we argue that considering only dummy adversaries also has
no effect on the quality of the security notion which concludes the proof.

We show that for any Z in the CP framework there exists a restricted environment Z̃ with at
most polynomial loss in advantage at distinguishing executions of φ from π. This breaks down into
two arguments:

1. Instantiating polynomially many arbitrary concurrent protocols communicating with Ḡ does
not help Z as Z̃ has a direct link to Ḡ (via the dummy protocol for Ḡ) and so can perfectly
emulate all concurrent protocols internally.

2. Interacting with polynomially many instances of π does not help Z significantly via a
standard hybrid argument. The core of the hybrid argument is that there must be an lth

concurrent execution of π that helps Z distinguish significantly and so Z̃ can simulate the
previous l−1 execution and use the lth as the real one. Therefore there is at most a polynomial
loss in the advantage of Z̃ when compared to the advantage of Z.

Roughly speaking, we have shown that a protocol looks the same to all efficient environments
only if it looks the same to all restricted environments. It remains to show that for any distinguishing
restricted environment interacting with arbitrary adversaries there exists a distinguishing restricted
environment interacting only with dummy adversaries. The proof remains essentially unchanged
from that of the dummy lemma in [9] so we only briefly mention how to extended it to the SCP
setting. In particular it relies on the idea that the simulator for dummy adversaries can be used as
“on-line translators” turning views of φ into views of π.

The original lemma (Claim 10 in [9]) concerns a single dummy adversary Bπ attacking π (poten-
tially controlling multiple players I ∈ [n] rather then a set of individual dummies each controlling
only a single player). By assumption there exists a simulator ˜Sim(Bπ) attacking execution(s) of
φ that is able to create an indistinguishable view of execution(s) of π for all players it controls
which it feeds to the environment (just as Bπ would when attack π). The proof uses this fact to
construct, for any adversary A attacking π, a simulator Sim(A) attacking φ with similar capabilities
as ˜Sim(Bπ). More precisely, for an arbitrary adversary A the proof describes a simulator Sim(A)
which internally emulates A and let’s it interact with an internal emulation of ˜Sim which is used
to translate the view of φ into a matching view of π for A to attack. To see that Sim(A) is a good

simulator it is observed that an environment Z which can distinguish between EXECḠπI ,AI ,Z
and

EXECḠ
φI ,

˜SimI(A),Z can be used to break the correctness of ˜Sim(Bπ). All that is needed is for an

environment Z ′ to run Z and A internally and let them interact directly with ˜Sim(Bπ) or Bπ.
The same argument caries through to our setting. In the SCP framework, given a set of n

simulators which work for any subset of dummy adversaries, the same construction of simulators
for sets of arbitrarily corrupt players will work. Let A[n] be a set of arbitrary adversaries attacking π.
The goal is to describe an (efficient) transformation Simi mapping Ai to a corresponding simulator

10Theorem 2.1 in [11] states that GUC and EUC are equivalent.
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Simi(Ai) for all i ∈ [n]. By assumption, for dummy adversaries Bπ[n] interacting with protocol π SCP

security already provides for a set of transformations ˜Sim[n] such that the simulators ˜Sim[n](B
π
[n])

interact with an execution of φ and can simulate all dummy adversaries’ views of π faithfully to
any (restricted) environment. For each i ∈ [n] we construct Simi(B

π
i ) from ˜Simi(B

π
i ) just as in the

original proof.
It remains to show that these are good constructions. Formally we must show that no environ-

ment Z has significantly different output for CP-EXECḠ,Rπ,A[n],Z and for CP-EXECḠ,Fφ,Sim[n](B
π
[n]

),Z .

Suppose for sake of contradiction that Z can distinguish between these two executions. In this
case we can build restricted environment Z ′ which breaks the SCP security of π by absorbing A[n]

and Z just as in the original proof. Each Ai interacts directly with the ith adversary (be it Bπi or
˜Simi(B

π
i )). Then by outputting the same bit as Z environment Z ′ has an identical advantage at

breaking the SCP security of π as Z has at breaking the simulation of Sim[n](B
π
[n]). The fact that

there are n different absorbed Ai each interacting with a single external adversary (rather then
one A interacting with all corrupt players) has no effect on the strategy of Z ′ as it can directly
communicate with all external adversaries and so does not rely on their implicit coordination via
a monolithic modeling.

2.3.2 A Composition Theorem

As a main motivation for the CP model we put forth the goal of providing a formal and rigorous
notion of composability for collusion-free security. We capture this in the following central theorem.

Theorem 2.4 (Composition). Let R be an arbitrary resource and Ḡ be a global setup (i.e. shared)
functionality. Let ρ, π and φ be n-party protocols in the {Ḡ,R}-hybrid world such that π and φ are
Ḡ-subroutine respecting. If π SCP-emulates φ and ρ uses φ as a subroutine then ρπ/φ CP-emulates
ρ in {Ḡ,R}-hybrid world.

Proof. The ideas behind the proof of GUC composition carry over directly to the setting with split
simulators but for completeness we give a full proof. For further details we refer to the proof of
Theorem 2.1 in [11] which can be applied almost directly to this setting.

Let B := B[n] be the set of dummy adversaries for the {Ḡ,R}-hybrid world. Following the same
logic as in the proof of Theorem 2.3 it suffices to prove that for any efficient environment Z:

CP-EXECḠ,R
ρπ/φ,B,Z ≈ CP-EXECḠ,Rρ,A,Z . (1)

Since π and φ are subroutine respecting it follows by Theorem 2.3 that π CP -emulates φ. Thus
there exist simulators Sim = Sim[n](B) such that

CP-EXECḠ,Rπ,B,Zπ ≈ CP-EXECḠ,Rφ,Sim,Zπ (2)

for any environment Zπ. We use Sim to construct A satisfying Equation 1. Adversary Ai inter-
nally runs Simi(Bi) forwarding messages from Z intended for instances of πi to Simi(Bi) instead.
Moreover, any messages from Simi(Bi) destined for either Z or φi are forwarded faithfully.

We note that the transformation from Bi to Ai is efficiently computable and moreover it depends
only on the code of Bi. Thus it remains to show that Equation 1 is satisfied. We do this by
constructing an environment Zπ for which Equation 2 holds if and only if Equation 1 holds. The
fact that π SCP-emulates φ then concludes the proof.

Intuitively Zπ absorbs Z, ρ and all of A except Simi(Bi) internally. However for all messages
Ai would forward to it’s internal copy of Simi(Bi) are instead routed by Zπ to the ith (external)
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adversary. This will either be Bi or Simi(Bi). All responses are similarly forwarded back to Ai.
Finally when Z produces output Zπ outputs the same value and terminates.

Observe that CP-EXECḠ,Rπ,B,Zπ = CP-EXECḠ,R
ρπ/φ,B,Z . Indeed the only difference in the view

of Z for both executions is where any given message is sampled (but not from which distribu-

tion). Similarly CP-EXECḠ,Rφ,Sim,Zπ = CP-EXECḠ,Rρ,A,Z . Thus Equation 1 holds for Z if and only if
Equation 2 hold for Zπ.

2.4 Relations to Existing Security Notions.

We prove a pair of lemmas relating CP results to matching GUC results. In Lemma 2.5 we show to
translate a statement about CP realization into a related statement about GUC realization. Then
in Lemma 2.6 we show how to convert statements in the opposite direction. Together these results
capture the intuitive claim that the CP model is at least as expressive as the GUC (and so also
UC) models.

2.4.1 CP Implies GUC.

We first formalize the intuitive claim that CP security is at least as strong as GUC security with
the lemma which states that CP realization essentially implies the GUC realization. We describe
a natural mapping of CP functionalities to analogous GUC functionalities F 7−→ [F ]. Then we
show that if a protocol CP realizes F in the R-hybrid world, then the same protocol executed in
the analogous GUC [R]-hybrid world GUC realizes the analogous GUC functionality [F ].

Recall that the only difference between (possibly shared) GUC and CP functionalities is that
the former has a single adversarial interface while the latter has n such interfaces. The mapping
[·] is obtained as follows. For a CP functionality F , let [F ] denote the GUC functionality which
behaves as F except that the adversaries interface has the following modification:

• Whenever F would output a message Msg to the ith adversarial interface, [F ] instead outputs
(i,Msg) on it’s (single) adversarial interface.
• Whenever [F ] receives a message of the form (i,Msg) on it’s adversarial interface, it simulates

the behavior of F upon receiving message Msg on the ith adversarial interface.

Lemma 2.5. Let Ḡ be a setup and F and R be functionalities all in the CP model. If a protocol π
CP-realizes F in the {Ḡ,R}-hybrid model, then π GUC-securely realizes [F ] in the {[Ḡ], [R]}-hybrid
model. In symbols:

{Ḡ,F} vCPπ {Ḡ,R} =⇒ {[Ḡ], [F ]} vGUCπ {[Ḡ], [R]}

2.4.2 Translating GUC Statements to CP Statements

As a primary building block for feasibility results we will use GUC protocols. To show how to
translate GUC results into analogous statements in the CP framework we first need to formalize
the CP analogue of the insecure channels functionality.

The Rins Functionality. Intuitively, the main differences between the two models are that in
the CP model:

1. In the plain CP model is not equipped with insecure channels (as is the case for GUC).
2. CP adversaries are split and so cannot, a priori, coordinated their attacks arbitrarily.
3. The GUC model explicitly assumes authenticated communication.
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To address the first difference we explicitly equip the CP world with insecure channels. When
modeled appropriately, a nice side effect is that the CP adversaries can also use the insecure channels
to coordinate their attacks arbitrarily taking care of the second difference.

Formally we model the insecure channel resource (depicted in Figure 3), denoted byRins(i, j), as
being parameterized by integers i, j ∈ [n] which denote the indices of two parties called the sender Pi

RINS(i, j)

Ai Aj

PjPi

Figure 3: The Insecure
Channel functionality with
split adversaries.

and the receiver Pj . Upon receiving a message m from party:

Pi: Resource Rins(i, j) forwards m to adversary Ai.

Ai: Resource Rins(i, j) forwards m to adversary Aj .

Aj: Resource Rins(i, j) forwards m to receiver Pj .

We denote the complete network of insecure channels by

Rins = {Rins(i, j) : (i, j) ∈ [n]2, i 6= j}.

Resource Rins is used just as the implicit insecure channels are used
in (G)UC.

Lemma 2.6. Let Ḡ be a (CP) setup such that there exists some [Ḡ]-subroutine respecting protocol
that GUC realizes authenticated channels (over insecure channels).11 Further let F and R be CP
functionalities.

Then if a protocol π GUC realizes [F ] in the [Ḡ]-hybrid world, then it also CP realizes
{Ḡ,Rins,F} in the {Ḡ,Rins}-hybrid model with shared functionality Ḡ. In symbols:

{[Ḡ], [F ]} vGUCπ [Ḡ] =⇒ {Ḡ,Rins,F} vCPπ {Ḡ,Rins}

Remark 1. Formally, in the above lemma the syntax of the protocol π also needs to be adapted
to the CP setting on the right hand side of the implication. For an arbitrary GUC protocol π,
denote by π̄ the CP protocol which works just like π, but while πi sends a message m to πj via the
adversary (i.e., by writing (m, j) to its communication tape shared with the adversary), π̄i instead
uses Rins(i, j) to send m to π̄j . However, for the sake of clarity we do not distinguish between π
and π̄ as it is clear from the context which protocol is meant.12

3 Necessary Assumptions for CP

Having defined the CP framework and verified it’s composition properties, we turn to the next
major goal of this work: to provide a resource with which we can (constructively) CP-realize as
many functionalities as possible. Ideally we would like to obtain a CP-complete resource: namely
one from which any reasonable functionality can be realized. Indeed, in the next section we describe
just such a resource which we call the mediator. However we must first justify the seemingly strong
assumptions we will make when defining the mediator by showing their necessity.

To this end, we demonstrate three necessary properties a given resource must have for it to be
CP-complete. As corollaries to these results we rule out realizing large classes interesting function-
alities using virtually all common communication resources such as fully connected networks and

11For example let [Ḡ] be the KRK setup of [11] for which [16] shows a protocol GUC realizing authenticated channels
in the static corruptions setting.

12In particular for the general feasibility result in Section 5 the input to the protocol compiler is π̄ rather then π.
This is because the fallback security (Definition 4.1) is defined in the CP setting rather then the GUC setting and so
the security provided by the compiled protocol is analyzed in the presence of Rins rather then in the GUC model.
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broadcast channels. Beyond this, due to their generality, we believe that given a target ideal func-
tionality F (such as an auction mechanism or voting functionality), these results provide significant
insights into the minimal assumptions about real world communication channels which can be used
to CP realize F .

More precisely, in this section we prove statements of the form ”if F vCP R and F has property
P1 then R must have property P2”. We provide some conditions under which R must be “isolat-
ing” (Lemma 3.2), “probabilistic” (Lemma 3.4) and finally “programmable” (Lemma 3.5). Taken
together we see that a CP-complete resource (such as our mediator) must simultaneously have all
three properties.

The proofs extract these properties by reason about the necessary properties the behavior of R
must have in the setting where all players are corrupt.13

To this end we use the following reduction notion between functionalities.

Definition 3.1. Let R and F be n-party CP resources and let DF[n] be the n-tuple of F-hybrid
adversaries that first corrupt their respective players and then act as the dummy adversary. We
say that F is contained in R (written F vC R) if there exists n adversaries A[n] (corrupting all
players) such that for any efficient environment Z (and protocol π):

CP-EXECFDF
[n]
,Z ≈ CP-EXECRπ,A,Z .

A benefit of defining the vC reduction to be so weak is that statements of the form F vC R
are often easy to verify for many interesting resources R.14 This makes it a good candidate for
properties of functionalities in the following results. Next we define a simple and very weak channel
which we will use in place of F in the properties.

Bounded Collaborative Channels. Let resource Cci,j to be the ideal n-party functionality al-
lowing up to c ∈ N bits to be sent by Pi to Pj (and from adversary Ai to Aj). Moreover Cci,j requires
the cooperation of all other n−2 players and n adversaries in order for the message to be delivered.
More precisely the message from Pi is given to both Ai and Aj who can modify it (or even halt
delivery) at will. The message is only delivered to Pj once all other n− 2 players and adversaries
have submitted a special message ok (otherwise, on any other input Cci,j simply halts producing no
output). We call such a channel a bounded collaborative channel.

We observe that statements of the type Cdi,j vC F are often easy to verify for many interesting
examples such as when F is a VCG auction mechanism [41, 14, 22] (i.e. a second price auction).
Even if the winners fee is kept secret from all other bidders the statement Cdi,j vC F still holds for
any value i, j and d.15 On the other hand for a voting mechanism with say t candidates, private
votes, public outcome and the possibility to abstain the statement holds for any value of i, j and
d ≤ log t. Therefor when trying to realize these kinds relevant resources the following lemma
provides an easy property to verify for candidate real world communication resources that are to
be used.

13In a stand alone setting one might ask why complete corruptions are even an interesting case (for example
the stand-alone collusion-free notion of [33] explicitly rules this case out). But for a composable security notion
(for example with the application of modular protocol design in mind) it is vital to consider these executions since
sub-protocols may be run but a set of entirely corrupt parties.

14See the following discussion on bounded collaborative channels.
15For example a set of adversaries to such that the VCG mechanism contains Cdi,j act as follows. Each adversary

corrupts it’s player (ignoring their valuations). Then Aj bids 2d on behalf of receiver Pj , Aj bids m ∈ [0, 2n − 1] on
behalf of sender Pi and all other adversaries bid 0 for their players. The winner of the auction (i.e. Pj) then outputs
it’s fee as the message received.
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3.1 Isolation

Consider a statement of the type F vCP R. Intuitively this holds only if R can “isolate” corrupt
players as much as F . Somewhat more formally suppose we wish to CP-realize functionality F
which allows for at most d bits of communication between players Pi and Pj . The following
lemma rules out using any resource R (with arbitrary protocol) which can be used (formally:
contains) a c-bit bounded collaborative channel between these players whenever c > d. In fact,
the requirements for obtaining such a channel are so weak that the lemma rules out using almost
all standard communication channels as CP-complete resources as they all allow for unbounded
amounts insecure communication between at least one pair of players.

Lemma 3.2. Let R and F be n-player resources with Cci,j vC R and Cdi,j vCP F then:

F vCP R =⇒ c ≤ d.

Proof. We use the transitivity of the CP relation to obtain Cdi,j vCP R. Let A[n] be the adversaries
such that Cci,j vC R and suppose for the sake of contradiction that c > d. We briefly describe
an environment Z and R-hybrid adversaries B[n] for which no simulators exist fooling Z in the

Cdi,j -hybrid world. The environment samples a uniform random string r ← {0, 1}c and gives it to
Bi. Then it waits for the output of r′ of Bj and outputs 1 if and only if r′ = r. Meanwhile, for each
s ∈ [n] adversary Bs acts as As intuitively turning R into Cci,j . For s 6∈ {i, j} the adversary Bs uses
ok as input to Cci,j and terminates. Adversary Bi reads it’s input r from Z and uses it as input for
Cci,j (on behalf of players Pi) to be sent to Pj . Finally adversary Bj waits till it receives r′ from Cci,j
(intended for delivery to Pj) and outputs r′ to Z before terminating. It is easy to verify that Z
will always output 1 during such an execution.

Clearly there are no good simulators for B[n] in the Cdi,j -hybrid world as by definition of a
bounded collaborative channel there isn’t enough bandwidth between the ith and jth honest (and
adversarial) interfaces in Cdi,j . Thus with probability at least 1/2 the output of the jth simulator
will not equal the input to the ith simulator in which case Z will output 0.

As an immediate application of Lemma 3.2 we obtain the following (informal) result ruling out
most, if not all, the usual communication channels from being CP-complete. In particular, we view
the following corollary provides significant justification for seaming strength of the assumptions
made later on about the mediator resource. Also, the following implications for broadcast channels
can be seen as extending the related impossibility result for broadcast channels from [32].

Corollary 3.3. Let resource R vCP H then if H is a broadcast channel then R is not CP-complete.
Further if H is a fully connected network of insecure, authenticated or secure channels then R is
not CP-complete.

Remark On the Models of [33, 28]. When all players are corrupt their communication model
contains Cci,j for any value of c > 0. Thus their notion of composition requires all parties in a
protocol π to take part in all sub-protocols of a given protocol π (via observation of publicly
verifiable events) in order to guarantee security of π. On the one hand this approach requires no
honest party to trust another since each can verify the computation but on the other hand this
type of composition scales badly in the presence of many users. Especially in a real world setting.

3.2 Independent Randomness

Besides the capability of enforcing bounded isolation another requirement for realizing several
interesting functionalities is that the resource being used must be a probabilistic ITM. This stands
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in contrast with necessary assumptions on (even complete) resources in a setting with monolithic
adversaries. On the other hand, in [28] for example, protocols make use of a ballot-box which
contains inherent fresh randomness and the verifiable devices of [26] also have similar capabilities.

For positive integer c we denote by Fccoin the 2-party coin flipping functionality which takes no
input and outputs c uniform random coins to P1 and P2.16

Lemma 3.4 (Randomness is Necessary). For any integer c > 0 and resource R if Fccoin vCP R
then R is a probabilistic ITM.

The proof relies on the intuition that if R is deterministic and all players are corrupt, the
adversaries can completely determine the behavior of R which they can use to transmit at least a
bit between each other.

Proof. Suppose R is a deterministic resource. We construct an environment Z and pair of adver-
saries A[2] for which there are no simulators in the Fccoin-hybrid world.

Suppose protocol π is such that Fccoin vCPπ R and for an execution of π we denote by Y the
random variable describing it’s (common) output. Fix a random tape r1 for π1. Then it must
be that Y still has noticeable entropy even conditioned on the choice of r1. If this were not the
case then an adversary corrupting only P1 and running π1 with tape r1 on his behalf could not be
simulated since the output of the honest P2 would always be fixed unlike an execution with Fccoin
in the ideal world. More generally the number of random tapes r2 for π2 which cause Y to take on
a fixed value is at most negligibly less then a 1/2c fraction of all possible values. Thus for any r1

it is easy to compute two tapes r0
2 and r1

2 which cause Y to take on two distinct values y0 and y1

respectively.
The adversaries each corrupt their respective player and run π on their behalf. Adversary A1

uses random tape r1 and if π1 outputs y0 it outputs 0 otherwise it outputs 1. The environment
provides A2 with input a uniform random bit b and A2 uses the random tape rb2 for it’s copy of π2.
Thus by comparing the output of A1 with the value of b over many executions the environment
can distinguish the R-hybrid world from any execution in a Fccoin-hybrid world. This is because
the Fccoin functionality allows now communication between players and so a simulator for A2 has
no way to signal b to A1.

3.3 Programmability.

We stated the goal of finding a CP-complete resource. Unfortunately, (unlike in models with
monolithic adversaries) in the CP setting no single resource can be CP-complete. Instead we
consider parameterized sets of resources. More formally we say that a set R = {Rk}k∈K of resources
is CP-complete if for any functionality F , there exists a resource Rk ∈ R such that F vCP Rk.
Indeed later on, the mediator which we define is really a (CP-complete) class of resources. In
our main theorem we only guarantee full security for the protocols we construct when the correct
element of the mediator class is used. We argue that any completeness in the CP framework will
require such a format.17

For index set K let RK := {Rk | k ∈ K} denote a set of resources parameterized by elements of
K. We call RK a programmable resource if there exist k1, k2 ∈ K such that Rk1 6vCP Rk2 .

Lemma 3.5. A class of resources is CP-complete only if it is programmable.

16We opt for this unusually general formulation as the result does not require c = 1 and so we can also capture
ideal key exchange; another interesting functionality.

17To mitigate this we show that even if an arbitrary different resources is used (not necessarily from the mediator
class) the protocol still attains a certain (GUC-like) security.
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Proof. Let C1
i,j and C2

i,j denote the 1-bit and 2-bit (respectively) bounded collaborative channels
between Pi and Pj (see the definition in Section 3.1). Let the class of resources RK be CP-complete.
Then there exists a, b ∈ K and protocol π such that C2

i,j vCPπ Rb and C1
i,j vCP Ra.

Assume for a moment that RK is not programmable. This implies that for some protocol φ
we have Rb vCPφ Ra. Consider the n-tuple of adversaries A[n] living in the Ra-hybrid world which
each corrupt their respectively players and then run protocol (stack) φ ◦ π on the players’ behalf
using input supplied by the environment. In other words, the adversaries corrupt all players and
then turn Ra into Rb using protocol φ and then turn Rb into C2

i,j using protocol π. The message
transmitted from Ai and Aj (over C2

i,j ) is supplied to Ai by the environment and is the output of
Aj .

We construct environment Z for which no simulators exist in the C1
i,j -hybrid world (much as

in the proof of Lemma 3.2). It selects a pair of random bits r ∈ {0, 1}2 and gives them to Ai as
input. Then it waits for Aj to produce output r′. Finally Z outputs 1 if and only if r = r′. Clearly
in the C1

i,j -hybrid world the ith and jth adversary do not have enough bandwidth between them to
simulate for this strategy which contradicts C1

i,j vCP Ra.

4 GUC Fallback Security

Without any further requirements CP security as defined in Definition 2.1 can be easily achieved
from an appropriate resource. Indeed, because the resource is completely trusted it could trivially
be the functionality we are trying to compute. However such trust is a rare commodity and so
one might ask for a better solution. To that end we add a second property which we call “fallback
security”. The goal is to capture what kind of security remains if the protocol is run not with the
resource it was designed for but with an arbitrary (potentially malicious) resource instead. Note
that the trivial solution provides essentially no fallback security at all. However we will show,
perhaps somewhat surprisingly, that in fact a very strong type of security can still be achieved;
namely GUC-like realization.

Definition 4.1 (CP-realization with GUC fallback). For setup Ḡ, functionalities F and R, we say
that a protocol π CP-realizes a functionality F with GUC fallback in the {Ḡ,R}-hybrid model if it
has the following properties:

CP security: {Ḡ,F} vCPπ {Ḡ,R}
GUC fallback: For any efficient resource R∗: {Ḡ,Rins,F} vCPπ {Ḡ,R∗}.

Recall that by default the GUC plain model is equipped with [Rins]. Thus applying Lemma 2.5
and omitting the redundant [Rins] term we have that GUC fallback security directly implies:

{[Ḡ], [F ]} vGUCπ {[Ḡ], [R∗]}.

Intuitively this means that π run in the presence of R∗ and arbitrarily coordinated adversaries still
GUC realizes [F ].

We note that as an alternative, by restricting the class of resources R∗ for which the fallback
is desired one could in turn hope for stronger but still non-trivial fallback properties. This could
reflect the real world settings where moderate guarantees about the behavior of the resource are
given but it is still undesirable to completely trust the resource. In this sense the feasibility result in
this work demonstrates that at the very least GUC fallback can be achieved even when no moderate
guarantees of any type are made.

Next we provide a useful tool for proving GUC fallback.
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A “Dummy”-Resource Lemma. We show that instead working with arbitrary resource R∗,
it suffices to prove that GUC fallback holds for a special “dummy” resource M∗, which behaves as
a forwarder between all parties and a dedicated adversary, e.g., the one with the smallest index.

More precisely the dummy resource, denoted by M∗, is the n-party functionality behaving as
follows:

• When M∗ receives a message by some party or adversary, M∗ forwards it to a default adversary,
e.g., the adversary of the party with the smallest index (wlog assume that this is A1)

• When M∗ receives a message of the form (send,m, ID) from A1, where ID is the identifier of
some party or adversary, M∗ sends m to the corresponding party or adversary, respectively.

As shown in the following lemma, M∗ capture the behavior of the worst possible resource R∗. In
particular, the following lemma, allows us to reduce the GUC-fallback property (of Definition 4.1)
to CP security in the M∗-hybrid model. In other words any statement about a monolithic ad-
versary/simulator is translated to a statement in the M∗-hybrid model, where the simulator for
Sim1 plays the role of a coordinator among the simulators to allow the to mimic the behavior a
monolithic simulator.

Lemma 4.2. Let M∗ denote the “dummy” resource defined above. Moreover let π be a protocol, Ḡ
be a shared functionality and F be a CP functionality. Then for any efficiently computable resource
R∗ it holds that:

{Ḡ,M∗,F} vCPπ {Ḡ,M∗} =⇒ {Ḡ,Rins,F} vCPπ {Ḡ,R∗}.
Proof. Let R∗ be some efficiently computable resource, DR∗ be the R∗-hybrid dummy protocol and
DM∗ be the dummy M∗-hybrid protocol. One can easily verify the following two properties hold
simultaneously:

1. {Ḡ,M∗} vCPDR∗ {Ḡ,R
∗}

2. {Ḡ,Rins,F} vCPDM∗ {Ḡ,M∗,F}.
Indeed, for property (1) the simulator S1 for A1 need simply simulate the behavior of R∗ (the
assumption of efficient computability ofR∗ ensures that S1 can do so). As M∗ is a forwarder between
S1 and the parties, this setting is indistinguishable from the R∗-hybrid setting. For property (2)
all simulators use Rins to redirect any messages originally destined for M∗ to S1. Moreover for any
message of the form (send,m, ID) to be sent by A1 to M∗ the simulator S1 instead uses Rins to
forward m directly to the party with the matching ID.

The above two properties applied in order together with Theorem 2.4 (the composition theorem)
imply the lemma.18

{Ḡ,M∗,F} vCPπ {Ḡ,M∗} =⇒ {Ḡ,M∗,F} vCPπ {Ḡ,R∗} (3)

=⇒ {Ḡ,Rins,F} vCP(DM∗ )
π {Ḡ,R∗} (4)

=⇒ {Ḡ,Rins,F} vCPπ {Ḡ,R∗} (5)

The third implication follows from the composition theorem applied to the protocol (DM∗)
π

which
forwards between Z and π running in the {Ḡ,R∗}-hybrid world (instead of between Z and F as
would protocol DM∗). In other words, the composition implies (DM∗)

π
= π in the {Ḡ,R∗}-hybrid

world.
18Formally, we also make use of the convention of omitting dummy protocols from protocol call hierarchy (see Sec-

tion 2). That is if DR∗ is the dummy protocol for R∗, by convention πD
R∗

= π.
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5 A General Feasibility Result

We are now ready to prove a general feasibility result. Roughly speaking we describe an (efficient)
programmable resource {MF}F∈{0,1}∗ , called the mediator, parametrized by descriptions of func-
tionalities, such that for any F in a large class of functionality, we can design a protocol π (using
setup Ḡ) which CP-realizes F with GUC fallback in the {Ḡ,MF}-hybrid model.

Output-Synchronized Functionality. In contrast to previous frameworks, because we consider
split simulators the environment Z has an additional means for distinguishing between executions.
Briefly, Z can measure the amount of on-line synchronization that taking part in an execution
provides to sets of adversaries. In contrast all actions taken by monolithic adversaries during
an execution are already inherently perfectly synchronized so no such strategy exists in (G)UC
frameworks.

A bit more formally suppose the n-party functionality F takes one input from each player Pi
and then produces some (global) output y. Moreover we want to realize F with a protocol π which
requires strictly more than one such round.19 Then Z can use the following fact to distinguish:
it knows that in an execution of π the adversary Aj can not compute y in less than two rounds.
However, in general the simulators Sim which only have access to F may not be able to communicate
to each other how many times they have been activated. In particular Simi cannot keep track of
how often say Simj has been activated. So Simi has no way of knowing when to deliver the output
y to Z.

We address this by introducing the class of output-synchronized functionalities. For a arbitrary
functionality F we write F̂ to denote the “output synchronized” version of F . That is F̂ consists
of a wrapper (the synchronizing shell) and inner functionality F . The synchronizing shell works as
follows:

• On it’s first activation, F̂ sends a request to one of the simulators (e.g. the one with the
smallest ID) to acquire the index of the desired output round. Let R denote the response of
this simulator (if no valid R is received then set R := 1).
• Subsequently, all inputs are forwarded to F .
• Outputs of F are not immediately delivered to their recipient. Rather they are recorded

are given only upon request from the recipient and only after R subsequent complete rounds
have been observed (each output-request which is issued before that is answered by a default
message ⊥). By a complete round we mean a sequence of at least one activation per player
in an arbitrary order.

We note that intuitively this modification provides minimal synchronization between adver-
saries. In particular only the output delivery is synchronized but surprisingly, they can not for
example, tell at any given moment during their execution which round another adversary believes
they are in. Nevertheless it turns out that output synchronization is a sufficient condition en-
abling CP secure realization. For the remaining on this section we shall assume that F is an
output-synchronized functionality, i.e, is of the form F̂ ′ for some functionality F ′.

To formalize our main feasibility theorem:

Well-Formed Functionality: As in [12], due to technical limitations inherited from UC-
type frameworks, we restrict ourselves to the class of well-formed functionalities[12], which

19Observe that most general MPC protocols need more than one round for many interesting non-reactive function-
alities.

19



intuitively includes all functionalities whose behavior does not depend on the identities of
corrupted parties.

Aborting Functionality: Consistent with existing literature on general secure computation
tolerating a dishonest majority, we get security with abort. We capture this with the notion
of an aborting functionality. These are such that they might accept a special input ABRT.
Moreover, if any corrupted player provides input ABRT then the output of all players is also
ABRT.

Setup Off-line Protocol: A protocol which precedes all other computation and communica-
tion by it’s only interaction with the setup Ḡ is called setup off-line. 20 Roughly speaking
our construction has the mediator run a GUC protocol obliviously but verifiably on behalf of
the players. If the π were not setup off-line then it is unclear by whom the interaction with
Ḡ could be performed. On the one hand players should remain oblivious to the messages of
π (to obtain CP security) and the other hand the mediator should not be trusted to perform
the interaction (so as to obtain GUC fallback).

GUC-AuthComplete Setup: We call a setup Ḡ (i.e. a CP shared functionality) GUC–
AuthComplete if in the [Ḡ]-hybrid world:

1. There exists a setup off-line protocol which GUC realizes authenticated channels from
insecure channels.

2. Every well-formed functionality can be GUC securely realized (in the standard GUC
model which assumes authenticated channels) by a setup off-line protocol.

We note that one such setup is the Key-Registration with Knowledge (KRK) functionality
of [11, 16] when viewed as a CP shared functionality (we refer to Section 5.3 for details). In
particular the results of [16] imply Property (1) and the results of [11] imply Property (2).

Ideally, we would like to state our feasibility result for any (albeit efficient) functionality F .
More realistically we require F some additional (standard) properties.

Theorem 5.1 (General Feasibility Theorem). Let Ḡ be a GUC-AuthComplete CP setup there exists
a programmable resource M = {MF} such that for every well-formed aborting functionality F there
exists a protocol π which CP-realizes F with GUC fallback in the MF -hybrid model.

We prove the theorem constructively, i.e., by describing an efficient compiler mapping a given
aborting well-formed functionality F to a protocol CP(π) and parameters for resource M. We point
out that although we have assumed that F is output-synchronized, the GUC property holds, for
the same protocol CP(π), even for the non-synchronized functionality, i.e., the one that results
by removing from F the synchronizing shell. The reason is that in the GUC-fallback setting the
simulators can synchronize when to produce output by using the insecure channels R∗ins

The proof of the theorem proceeds in two steps:

1. We show how to obtain from a GUC-AuthComplete setup Ḡ, e.g., the KRK [11], a setup
off-line protocol π which CP realizes F using insecure channels (in subsection 5.1).

2. Then we show how to compile π into protocol CP(π) and resource MF which CP realize F
with GUC fallback (in subsection 5.2).

20We note that all known protocols satisfy this definition. In particular the protocols of [11, 16] are of this form.
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5.1 Bootstrapping from GUC

We prove the following lemma.

Lemma 5.2. Let Ḡ be a GUC-AuthComplete CP setup. Then for every wellformed aborting CP
functionality F there exist a setup off-line protocol π such that {Ḡ,Rins,F} vCPπ {Ḡ,Rins}.

Proof. Let [F ] be the GUC analogue21 of F . By assumption Ḡ is GUC-AuthComplete so there
exists a GUC protocol π such that {[Ḡ], [F ]} vGUCπ [Ḡ]. As Ḡ is GUC-AuthComplete we can
apply Lemma 2.6 to obtain the result.

5.2 Adding Fallback Security

We prove the following lemma which states that if a protocol exists that CP realizes F from insecure
channels then there exists a protocol and resource which additionally have GUC fallback. The proof
of Theorem 5.1 follows directly from this and Lemma 5.2.

Lemma 5.3. Let Ḡ be a GUC-AuthComplete CP setup; let F be a well-formed aborting functionality
and let π be a setup off-line protocol such that {Ḡ,Rins,F} vCPπ {Ḡ,Rins}.

Then there exists an efficient resource MF (called the “mediator”) and protocol CP(π) such that
CP(π) CP realizes F with GUC fallback in the MF -hybrid model.

Proof Idea. The proof is constructive, i.e., we show how to construct CP(π) and MF , and some-
what involved; it is inspired by the protocol of [3]. On the highest level the idea is to have the
mediator MF emulate an execution π “in his head” such that the players are oblivious to every-
thing but their input and output of π. Intuitively this guarantees the CP realization property
of Definition 4.1.

To obtain the GUC fallback property we need to make the following modifications to this
approach. For each i ∈ [n] the state of the emulated πi is shared between Pi and MF such that MF
can not alter it without the help of Pi yet both parties learn nothing about the actual value of the
state. For this purpose we describe a pair of 2-party SFE’s run between Pi and MF which allow
for state of πi to be updated as dictated by an honest execution of π. Intuitively it is the hiding of
the states from MF and the security of the SFE’s which ensure GUC fallback.

While enjoying a significantly stronger security notion, our compiler is also conceptually simpler
than the one in [3]. This stems from our assumption that the input protocol π operates over a
network of insecure channels rather then the broadcast channel used in [3]. As a result, (1) our
compiler does not need to worry about the parties authenticating their messages, as this is taken
care of by π, and (2) we do not need specifically describe a “mediated” broadcast protocol as in [3].

Assumptions and Constraints. For simplicity we make the following assumptions.

Non-Reactive F : We restrict ourselves to the case of non-reactive functionalities F , aka Secure
Function Evaluation (SFE); however at the cost of more involved notation, the same methods
can be extended to the case of reactive functionalities.

Without loss of generality we also assume the following.

21Recall that in Section 3, for a CP functionality F we defined [F ] to be the monolithic extension of a CP
functionality.

21



Fixed Rounds: We assume that π consists of a sequence of rounds. In each round, every player
sends a fixed length message (from a public domainM) to every other player. The rounds are
non-overlapping, in the sense that messages which a party sends in some round (even when
he is corrupted) depend on the party’s input, randomness, and the messages that where sent
to this party up to that round.22 Such a non-overlapping rounds structure can be obtained
by known protocols, even in the asynchronous setting, by using synchronization techniques
from [30, 29]. Furthermore, we assume that the number of rounds is fixed 23 and public, and
that every party receives it’s π output in the same round. We note that most known general
MPC protocols either already satisfy this and the next property, or can be trivially modified
to do so. Specifically all GUC protocols of [11, 16] (which are presumably the protocols that
will be used to instantiate our construction as in for example Corollary 5.6) satisfy this and
the next property.

Black-Box Simulation: We assume that π CP realizes F with black-box simulation. We point
out that this is already implied by Definition 2.1.

Commitment Protocol: We use a GUC-secure commitment scheme (Com, Dec) with the same
message space M as π. The scheme’s existence follows from the facts that Ḡ is GUC-
AuthComplete and that the commitment functionality is well- formed and aborting. In
particular [11] provides a concrete construction.

We sketch the remainder of the proof which is detailed in Sections 5.2.1 and 5.2.2:

In Section 5.2.1: First, we describe how to share the state of πi between a player and the

mediator. Next we describe two useful programmable functionalities Finp = {F (π)
inp(A,B)}π∈{0,1}∗

and Fcomp = {F (π)
comp(A,B)}π∈{0,1}∗ .24 These specify how from (a sharing of) some valid π-state

for a party Pi, the mediator and Pi can compute a sharing of Pi’s next message, and thus an
updated π-state from Pi. To avoid over-complicated notation, wherever it is clear from the context
or redundant we might omit the protocol from the notation of the above functionalities, i.e., we

write Fcomp (resp. Finp) instead of F (π)
comp (resp. F (π)

inp). In order to achieve the GUC fallback, the
mediator should not be allowed to see the parties’ shares of the shared protocol states. Therefore,
instead of invoking the functionality Finp and Fcomp, the mediator and Pi execute a two-party
protocol implementing the corresponding functionality. In fact, as we shall show, the code of Pi in
the compiled protocol CP(π) consists of playing as Bob in the evaluations of these two-party SFE’s.

In Section 5.2.2: As soon as we specify the code of the mediator and of the parties, the proof pro-
ceeds along the lines of the proof of [3]: We analyze the security of the protocol in the {Finp,Fcomp}-
hybrid world, and use composition to argue that replacing the hybrids by the corresponding proto-
cols does not compromise security. The main technical obstacle in this approach is that, similarly
to UC and GUC, our framework does not specify how different functionalities could communicate

22The adversary is rushing, hence, messages of corrupted parties in any round might depend on the messages which
honest parties send in that round, but not on messages that honest parties prepare for future rounds.

23More generally, at the cost of elegance, we could have assumed only that the distribution describing the number
of rounds in an honest execution of π be efficiently sampleabale and independent of all inputs used by the players.

24We use Alice (A) and Bob (B), and not indices i, j ∈ [n], for the parties executing Finp and Fcomp to avoid
confusion, as we intend to have the mediator play the role of Alice. Furthermore, for notational simplicity we will
often omit the superscript (π) from this notation.
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with each-other. Hence, it is not straight-forward how to make the argument in the {Finp,Fcomp}-
hybrid world, as this would require the mediator to communicate with the hybrids. To overcome
this difficulty, we consider the model where the mediator is replaced by an extra party PM 6∈ [n];
PM executes the code of the mediator and shares an ideal bidirectional secure channel with every
Pi (i.e., we have a star network of ideal secure channels where PM is in the middle of the star).
Because the mediator is a functionality and cannot be corrupted, we will only consider in the se-
curity statements for the case when PM is honest. However, in order to proof CP realization with
GUC fallback, we will consider two versions/programs of PM: the first one, denoted as PMF , will
behave as the mediator MF and we will show that it allows for CP-realizing the functionality F .
The second one, denoted as PM∗ , will behave as the dummy mediator M∗, will allows us to achieve
the security required for the GUC fallback.

5.2.1 A Detailed Description of MF and CP(π).

Intuitively the mediator MF and the compiled protocol CP(π) use the protocols πinp and πcomp that
securely implement the functionalities Finp and Fcomp, respectively, as follows.

Init: Initially, mediator MF sets the round index to ρ := 0.

Inputs: The first interaction between a player Pi and MF involves an invocation of πinp. The
purpose is to fix Pi’s input xi and a random tape ri used in the emulation of πi. The
output of πinp for the mediator is commitments to xi and ri while Pi receives the matching
decommitments. As soon as every party has committed to his input and randomness, MF
augments the round index to ρ := 1.

Computation & Outputs: All subsequent interactions between Pi and MF consist of invocations
of πcomp which takes input the current (shared) state of πi together with an (n − 1)-tuple of
messages received by πi during the current round. Initially Fcomp checks that all inputs match
and are of a valid form. Next it computes the next state of πi together with an (n− 1)-tuple
of messages out produced by πi for use in the next round ρ+ 1. Fcomp outputs the updated
shared state and, to MF , the messages out. Finally, if ρ is the last round of π then Pi also
receives it’s output of the computation (and otherwise it receive a default message ⊥).

For any value of ρ which is not the last round-index, as soon as the mediator has completed
one computation of πcomp with each player, MF increments ρ := ρ+ 1.

In the following, we describe in detail the functionalities Finp and Fcomp (which implicitly depend
on n and the code of π). As already mentioned, these are functionalities between two parties, Alice
and Bob, where the role of Alice will be player by the mediator, and the role of Bob will be played
by each of the parties in [n]. Recall that we denote by M the message-space of protocol π. We
assume that M is equipped with a special abort message ABRT.

We begin the detailed description with some language and notation for working with the state
of party Pi in protocol πi (for simplicity, we denote Pi’s code in π as πi).

Shared Protocol State. In a nutshell we model a shared state of a protocol as a pair of matching
vectors of commitments/decommitments to the view of an execution. More precisely, recall that π
has a fixed number of rounds rmax ∈ N, during each of which each player sends (n − 1) messages
from message space M, one to each of the other player. We call an (n − 1)-tuple of messages
~m (containing one component either per sender or per receiver) a message burst. I.e. in each
round each player receives a message burst and sends a message burst.25 At any point of the

25For the first round the received message bursts can take on arbitrary fixed default value.
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execution of protocol π, the received message bursts, together with the random tape ri and input
xi completely determine the state of πi. Thus we model the state of πi as a quadruple of the form
Πi = (xi, ri,Mi, ρ) where ρ is the index of the current round, and Mi is an rmax× (n− 1) matrix
with rows ~ma such that for all a ∈ [rmax] and b ∈ [n − 1] the entry ma,b ∈ M∪ {⊥}. The goal of
Finp will be to initialize Πi and the goal of Fcomp will be to iteratively and obliviously fill in the
entries of Mi.

We call a state Πi sound for round r (where 0 ≤ r ≤ rmax) if:

1. ρ = r.
2. For all j ∈ [ρ] each message burst ~mj ∈Mn−1.
3. For all j ∈ {ρ+ 1, . . . , rmax} each message burst ~mj = ⊥n−1.

A shared state is a pair of quadruples (~Ci, ~Di) where ~Ci maintained by Pi and ~Di is main-
tained by MF . Mediator MF holds commitments to xi and ri, while commitments to Mi

and ρ are held by Pi (and vice versa for the corresponding decommitments).26 In symbols
Pi maintains the quadruple ~Ci = [Dec(xi), Dec(ri), Com(ρ), Com(Mi), ] while MF maintains ~Di =

[Com(xi), Com(ri), Dec(ρ), Dec(Mi)]. We call a shared state (~Ci,~(D)i) valid for round ρ if:

1. The matching components of ~Ci and ~Di are valid commitment/decommitments pairs.
2. Let Πi be the vector of decommited values. Then Πi is sound for round ρ.

Functionality Finp(A,B). The goal of this functionality is to prepare a shared state of πi between
Pi (playing as Bob) and MF (plying as Alice). This includes fixing an input and random tape,
initializing all incoming message bursts to a default value and then committing to the state using
a GUC commitment protocol (Com, Dec).

For sake of simplicity, we describe the functionality Finp (see Figure 4) in a form of a function.
A CP functionality can be trivially obtained from our description, by considering the corresponding
SFE functionality in the GUC framework [8, 11] and modifying it by applying the transformation
[·] along the lines of Section 2.4.1.

Functionality Finp(A,B)

Input: This functionality takes input x from B.

Computation:

1. If x is not a valid input to πi then Fcomp sets (x, r) := (0, 0). Otherwise Finp(i) samples a
fresh random tape r. Let ⊥ be the rmax× (n− 1) matrix with all ⊥ entries.

2. Set vector ~C = (Dec(x), Dec(r), Dec(1), Com(⊥)).

3. Set vector ~D = (Com(x), Com(r), Com(1), Dec(⊥)).

Output: Party A receives ~D while B is given ~C.

Figure 4: A detailed description of functionality Finp(A,B).

Functionality Fcomp(A,B). This functionality is accessed by Pi (playing as Bob) and MF (playing
as Alice). Its goal it to update the state of πi and compute an outgoing message burst for the next
round.

In more detail it takes input a shared state for πi and, from MF , an (incoming) messages burst
~m received by πi during that round. The functionality checks that the shared state is valid for

26The commitment to matrix Mi is assumed to work component wise with the components arranged in a canonical
order. For the sake of readability we use matrix notation.
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some ρ ∈ [rmax]. If not or if the state or ~m contain an ABRT message then Fcomp set’s the outgoing
message burst to {ABRT}n−1. Otherwise Fcomp updates the state with the new message tuples. If
ρ = rmax then Fcomp computes and sets y equal to the output of πi. Otherwise it sets y to a default
value. Finally, Fcomp outputs an updated sharing of the state to the parties, as well as y for Pi and
the outgoing message burst for round ρ+ 1 to MF .

For a detailed description of Fcomp(A,B) see Figure 5. For simplicity we describe Finp in form of
a function; as in the case of Finp, the actual functionality can be derived by taking the corresponding
GUC functionality and modifying it along the lines of Section 2.4.1.

Functionality Fcomp(A,B)

Input: This functionality takes input integer ρ, incoming message burst ~in and vector ~D from A as
well as vector ~C from B.

Computation:

1. Initialize flag abort := 0.
2. If (~C, ~D) is not a valid shared state for round ρ set abort := 1.

3. Let Πi = (xi, ri,Mi) be the state of πi shared in (~C, ~D). If Mi has an entry ABRT then set
abort := 1.

4. If for some j ∈ [n− 1] burst ~in has component inj = ABRT then set abort := 1.
5. If abort = 1 then set outgoing message burst ~out = {ABRT}n−1. Otherwise:

1. Set the received message burst for round ρ in Πi to ~in. In symbols: ~mρ = ~in.
2. Run πi with state Πi obtaining the ρ+ 1 outgoing message burst ~out according to the

honest protocol.

3. Build a fresh sharing (~C ′, ~D′) of Πi with fresh commitments.
4. If ρ < rmax set y := ⊥. Otherwise if abort = 1 set y = ABRT. Otherwise run πi with Πi and

store it’s output as y.

Output: Party A receives ( ~out, ~D′) while B is given (y, ~C ′).

Figure 5: A detailed description of functionality Fcomp(A,B).

Remark 2 (Minimal Signaling by Abort). The specification of Fcomp ensure that by making the
protocol abort, an adversary might signal no more than one bit to other adversaries. In particular,
no adversary (other than the one that caused the abort) is informed about when or by whom the
message that caused the abort was sent. This is consistent with other recent results in collusion-free
computation [26, 3].

The protocols πinp(A,B) and πcomp(A,B): As already mentioned, the mediator MF and the
parties in the compiled protocol CP(π) do not have access to the two-party functionalities Finp
and Fcomp. Rather the behavior of these functionalities is emulated by corresponding two-party
protocols πinp and πcomp, which exchange messages with the mediator. In fact, one can verify that
for CP-realizing Finp and Fcomp when ideally secure communication channels among the parties are
assumed,27 we can use protocols that GUC realize the corresponding GUC functionalities [Finp]
and [Fcomp], as long as these protocols are setup-off-line (Lemma Lemma 2.6). Such protocols are
described in [11]. As syntactic sugar, we denote by πAinp and πBinp the code of Alice and Bob in πinp,

respectively; analogously we define πAcomp and πBcomp.

27By ideally secure channels we mean channels that resemble the communication means of the interface between
the parties and the mediator. We refer to the following section for a detailed description.
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The Mediator MF . We now turn to describing the mediator MF . In a nutshell, it’s role is to
emulate an execution of π. This is done by maintaining an n-tuple of shares of states for π (one
per player), a counter ρ to keep track of the current round in the emulation, and two n-tuple of
message bursts ~mi which contain the messages exchanged during the current round.

Initially ρ := 0. The mediator can perform two types of operations. Upon request by a player
Pi the mediator engages with Pi into an execution of πinp(MF ,Pi) for evaluating Finp(MF ,Pi)
to initialize Pi’s state. This is done exactly once for each i ∈ [n]. Once all states have been
initialized M′F sets ρ := 1. The second operation (also upon request by some Pi) consists of
invocation of protocol πcomp(MF ,Pi) for evaluating Fcomp(MF ,Pi) on the current (sharing of) the
state. These calls are performed upon any request by any player unless the state of that player
has not been initialized yet. In particular, multiple calls to πcomp(MF ,Pi) for the same Pi may be
made sequentially during any given round –though only one is needed per round (for details on
why accepting multiple computation-requests per round in useful see Remark 3). More precisely,
during each round of the emulation the mediator makes at least one call to πcomp(MF ,Pi) for every
value of i ∈ [n]. Once this is done MF increments ρ := ρ+ 1.

For a formal description of the mediator MF see Figure 6.

The Mediator MF

On Start: Set ρ := 0 and for each i ∈ [n] initialize the pair of message bursts ~ini = ~outi = {0}n−1.

Initialize State: Upon receipt of the first message of the form (input session, SID) from Pi invoke

protocol πinp(MF ,Pi) and, once it produces output store it as ~Di. If all other players have already
sent this message to M′F then set ρ := 1. (Any future messages of this type from Pi are ignored.)

Next State: Upon receipt of a message of the form (compute session, SID) from Pi:

1. If no input session message has been received from Pi or an instance of πinp(MF ,Pi) or
πcomp(MF ,Pi) is currently executed, then do nothing.

2. Otherwise:

1. If all players (including Pi) have already sent a message compute session during round
ρ then increment ρ := ρ+ 1.

2. Invoke πcomp(MF ,Pi) with input ( ~ini, ~Di); once πcomp(MF ,Pi) generates output, store it

as ( ~outi, ~D).

Figure 6: A detailed description of the mediator MF .

Remark 3 (Round Obliviousness). As mentioned in Section 4, the functionality F which we compute
is output-synchronized. This implies that it allows the simulators to ensure that they produce their
output to Z only when the last (simulated) round kicks in. However, the simulators are not
aware of the following events: (1) every party has been activated for giving input, and (2) the
same simulator is activated multiple times in the same round. For this reason, we have designed
the mediator to hide this information from the adversaries as well. In particular, whenever the
mediator receives a compute session request from some Pi, he invokes the protocol πcomp(MF ,Pi)
for updating the state, irrespective of whether Pi’s state for this round has already been updated
(by another invocation of πcomp(MF ,Pi). By definition of Fcomp, if Pi’s state for the current round
has already been computed, it will not be changed, but a new sharing of this state will be computed
to hide from the adversaries this information.

The Protocol CP(π). Having described the code of MF , the protocol CP(π) can be described in
a straight-forward manner. In a nutshell, the code CPi(π) of each party Pi is described as follows:
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whenever MF invokes any of the protocols πinp(MF ,Pi) or πcomp(MF ,Pi), the party Pi executes his
part (i.e., Bob’s role) of that protocol. More precisely, Pi receives input xi from the environment
Z and maintains a share ~C of the state of πi. The vector ~C is initialized with an invocation of
πinp(MF ,Pi) and updated via multiple (sequential) invocations of πcomp(MF ,Pi). Eventually πcomp
returns the output of πi which is passed back to Z. For a formal description see Figure 7.

Protocol CPi(π)

Input: Upon receiving the first message (input, x) from environment Z do the following (and ignore
any future such messages).

1. Send the message (input session, SID) to MF .
2. Engage with MF into an execution of the protocol πinp with input x and, once it produces

output store it as ~C and output y to Z.

Compute: Upon receiving a message (compute) from environment Z do the following:

1. If no input message has been received from Z or an instance of any of the protocols
πinp(MF ,Pi) or πcomp(MF ,Pi) is currently running, then do nothing.

2. Otherwise send the message (compute session, SID) to MF and

3. Engage with MF into an execution of the protocol πcomp with input ~C. Once it produces

output store it in (y, ~C).
4. Output y to Z.

Figure 7: A detailed description of protocol CPi(π).

5.2.2 Completing the Proof of Lemma 5.3

To complete the proof, we show for the above described mediator MF and protocol CP(π), the
statement of Lemma 5.3 holds. To help the reader we give an outline of the rest of proof: We
consider a world where the mediator is replaced by and extra party PM 6∈ [n]. PM might be
programmed in one of two different manners (depending on the program of PM we get CP or GUC-
fallback security): in one version, denoted as PMF , he executes exactly the code of the mediator
MF , whereas in the other version, denoted as PM∗ , the code of the dummy mediator M∗ (see
Section 4). PM communicates with the parties over bi-directional ideal communication channels
Fideal. These are functionalities that resemble the interaction of the mediator with the party, e.g.,
in Fideal(PM,Pi), PM might send a message which is immediately delivered to Pi. Furthermore,
Fideal allows PM to exchange messages with the adversaries in A[n] (note that PMF will never use
this additional functionality, but PM∗ will). We denote the star-network of such ideal channels
where PM sits in the middle as F?ideal = {Fideal(PM,Pi),Fideal(Pi,PM) |i ∈ [n]}. Apart from this
star-network there is no other communication resource among the parties.

Denote by π? the (n + 1)-party protocol, i.e., among the parties in [n] ∪ {PM}, in which PM

executes his program (i.e., either PMF or PM∗) and for each i ∈ [n] party Pi executes his code from
CPi(π), where the interaction with the resource MF or M∗ is replaced by interaction with PM. We
compare the execution of π? with the one of CP(π) conditioned on PM being honest, and show that:
28

1. When PM = PMF : if the functionality F (among the parties in [n]) is CP realized from π?

then it is also CP-realized from CP(π) (in the MF -hybrid model)

28In slight abuse of notation we use CP(π) for denoting both the M∗-hybrid and the MF -hybrid protocol.
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2. When PM = PM∗ : if the functionality {F ,Rins} is CP-realized from π? then it is also CP
realized from CP(π) (in the M∗-hybrid model)

Next, we show that

3. When PM = PMF : the protocol π? CP-realizes the functionality F ; this together with State-
ment 1 imply that the protocol CP(π) CP-realizes F in the MF -hybrid model.

4. When PM = PM∗ : the protocol π? CP securely realizes the functionality {F ,Rins}; this
together with Statement 2 imply that the protocol CP(π) CP-realizes {F ,Rins} in the M∗-
hybrid model (GUC fallback).

Steps 3 and 4 are first proved for the setting where π? is executed in the {Finp,Fcomp}-hybrid
model (i.e., invocations of πinp and πcomp are replaced by calls to Finp and Fcomp, respectively). The
actual statements are then obtained by applying the composition theorem.

In the remaining of this section we prove the above steps.

Steps 1 and 2: The first two steps are relatively easy. Indeed, when PM = PMF then the
environment witnesses essentially the same interaction as in the case where MF is playing instead
of PM (recall that we assume PM to be honest). The same holds for PM = PM∗ and M∗. We only
need to take care of the following (technical) issue: In the execution of π? we have one more party
and adversary than in the execution of CP(π). We argue that this is not a problem: indeed, one
can consider the extra party PM also in the MF/M∗-hybrid world, but have him do nothing, i.e.,
ignore all inputs from Z. As, by assumption, PM is honest and F?ideal does not interact with PM’s
adversary, such an extension cannot change Z’s distinguishing advantage.

Step 3 We next show that when PM = PMF then the protocol π? CP-securely realizes the func-
tionality F . We show this statement in two sub-steps:

Sub-step 3.1. We consider the protocol π?F?inp,F?comp,F?ideal which works as follows: π?F?inp,F?comp,F?ideal is

a version of π? where calls to protocols πinp and πcomp are replaced by calls to the functionalities
Finp and Fcomp. As syntactic sugar we denote the star-networks of such functionalities, where PM

sits in the middle, by F?inp = {Finp(PM,Pi) |i ∈ [n]} and F?comp = {Fcomp(PM,Pi) |i ∈ [n]}
Claim 5.4. Assuming PM = PMF is honest, the protocol π?F?inp,F?comp,F?ideal CP-securely realizes the

functionality F .

Proof. We show the claim for the notion of SCP security, i.e., where the environment invokes
only one instance of π?F?inp,F?comp,F?ideal and the assumed adversaries are “dummy”. The idea for

the simulation is the following: Before the output is generated from F , the only thing that any
adversary Ai of some corrupted Pi sees is the commitments to the state that are output from Finp
and Fcomp and the de-commitment information on the input x. Because these commitments are
generate with independent randomness, they can be easily simulated. In the following we sketch
how the simulator Simi for Ai works. The program of all simulators is the same, except from Sim1

who, in addition to what the other simulators do, starts of by sending the maximum round rmax

to the (synchronizing shell of) the functionality F . The simulator Simi works as follows (we only
consider the case where Pi is corrupted, as in the case where Pi is honest Ai does not see anything
from the interaction):

1. When Simi receives from Z a request to invoke Finp with input x′, if a request of this
type has already been received he ignores it. Otherwise: he sends x′ to the function-
ality F , who acknowledges the reception. Subsequently, Simi choose some random value

28



r′i, and computes decommitment information Dec(x′i) and Dec(r′i); furthermore, Simi com-

putes commitments Com(1) and Com(⊥). Finally, Simi hands (y′, ~C) to Z, where ~C =
(Dec(x′i), Dec(r′i), Com(1), Com(⊥).

2. When Simi receives from Z a request to invoke Fcomp with input x′: he notifies F , which
acknowledges the activation (to ensure output synchronization) and answers back to Simi with
either y or ⊥. Simi sets y′ to this answer. Simi computes (fresh) decommitment information
Dec(x′i) and Dec(r); furthermore, Simi computes (fresh) commitments Com(1) and Com(⊥).

Finally, Simi hands (y′, ~C) to Z, where ~C = (Dec(x′i), Dec(r′i), Com(1), Com(⊥).

We argue that the simulators described above produce a view, for Z, which is indistinguishable
from the view of the execution of π?F?inp,F?comp,F?ideal . One of the difficulties is the fact that at round

rmax the output y′ is set to the actual output of the computation. However, this behavior is
simulated with the help of the synchronizing-shell, which ensures that also the simulators will
be informed (and given the output) as soon as the simulated protocol reaches round rmax. The
indistinguishability of the real and the simulated view follows then from the GUC security of the
used commitment scheme. Indeed, the only difference in the real/simulated view is that in the real
view Z sees commitments on the actual round ρ and state Mi of the protocol (or to ρ and ABRT’s
in case it forces an early abort), whereas in the simulated execution those are commitments to the
default values ρ = 1 and Mi = ⊥. The GUC security of the commitment scheme ensures that the
environment cannot distinguish between these two sequences of commitments.

Sub-step 3.2. Second, we observe that, by definition, πinp and πcomp are CP secure realizations of
functionalities Finp and Fcomp, respectively. The composition theorem applied to Claim 5.4 implies
that π? CP-securely realizes the functionality F .

Step 4. We next show the GUC fallback, i.e., that when PM = PM∗ then the protocol π? CP-
securely realizes the functionality {F ,Rins}, where Rins denotes a complete network of insecure
channels among the parties in [n]. This is also split in two sub-steps, along the lines of Step 3:

Sub-step 4.1. As in Step 3.1, we start with the {F?inp,F?comp,F?ideal}-hybrid protocol
π?F?inp,F?comp,F?ideal (note however that now PM executes the code defined by PM∗).

Claim 5.5. Assuming PM = PM∗ is honest, the protocol π?F?inp,F?comp,F?ideal CP-securely realizes the

functionality {F ,Rins}.
Proof. By assumption of Lemma 5.3 we know that {Ḡ,Rins,F} vCPπ {Ḡ,Rins}. In order to show
the statement of the claim, it suffices to show that π?F?inp,F?comp,F?ideal CP emulates the Rins-hybrid

protocol π.29 Indeed, this would imply that

{Ḡ,Rins,F} vCPπ?F?comp,F?inp,F?ideal
{Ḡ,Rins,F?comp,F?inp,F?ideal} (6)

hence, in order to obtain the statement of the claim from Reduction 6 we need to remove Rins from
the left-hand side. To this direction, we observe that

{Ḡ,Rins} vCPDF?ideal {Ḡ,F
?
ideal}, (7)

where DF?ideal denotes the dummy F?ideal-hybrid protocol. Indeed, similar to the dummy-mediator
lemma, in order to simulate the behavior of Rins in the F?ideal-hybrid world, the simulators use the

29Recall that π is an n-party protocol which includes no instruction from PM.
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party PM∗ that allows them to communicate arbitrarily. Using Reduction 7 and the composition
theorem, we can remove Rins from the right side of Reduction 6.

In the remaining of the proof we show that π?F?inp,F?comp,F?ideal CP emulates protocol π. To this

direction, we considered a modified version of the protocol π?F?comp,F?inp,F?ideal as follows: the hybrid

functionalities Fcomp and Finp are removed and each honest Pi executes the code of these function-
alities internally and sends to PM his outputs over the channel Fideal(Pi,PM). More concretely,
any call to Finp(PM,Pi) or Fcomp(PM,Pi) (in protocol π?F?comp,F?inp,F?ideal) is replaced by PM handing his

input (for Finp or Fcomp) to Pi, who executes the code of the corresponding functionality and sends
PM his output (i.e., his share of the state and the next round messages) and to the environment
the output that he (i.e., Pi) would receive from the functionality. We denote this modified protocol
as π?′. We show that:

i. the protocol π?F?comp,F?inp,F?ideal CP-emulates the protocol π?′

ii. the protocol π?′ CP-emulates the protocol π

and then use the composition theorem to conclude that π?F?comp,F?inp,F?ideal CP-emulates the protocol π.

We start with Step i: We argue that protocol π?F?comp,F?inp,F?ideal SCP-emulates the protocol π?′

(from this we can directly derive that it also CP emulates it by means of Theorem 2.3): We
describe a simulator-profile Sim[n] for the dummy adversary-profile A[n] (denote by I ⊆ [n] the set
of corrupted players):

1. For i ∈ ([n]∪ {PM}) \ (I ∪ {1}) Simi simply follows Z’s instructions as the dummy adversary
would do. This is a sound simulation because both the adversary and the simulator of such
an honest party is completely cut-off by the assumed hybrids).

2. Let us consider the adversary Ai of some corrupted i ∈ I: other than performing local
computation, Z might give Ai the instruction to send a message to PM∗ over the ideal channel.
When the simulator Simi receives such an instruction, he simply sends this message to PM∗ .
Any message which Simi receives from PM∗ , he forwards it to Z. Additionally, Sim1 might
receive from Z messages of the form (send,m, ID) to be sent to PM∗ ; when Sim1 receives
such a message he simply forwards it to PM∗ .

It is straight-forward to verify that with the above simulator protocol π?F?comp,F?inp,F?ideal SCP-

emulates the protocol π?′ .

We go on with Step ii: The idea of the simulation is the following: the distribution of π-messages
exchanged by parties executing π?′ is identical to the input/output distribution of parties executing
π. Hence the simulators needs only to simulated the commitments which PM∗ receives as part of
the shared state between PM∗ and honest parties Pi.

Because the simulators can use the complete network of insecure channel to coordinate their
actions, we assume that the only simulator who has a non-trivial program is Sim1. Every Simi

with i 6= 1 acts as “slave” of Sim1, i.e. forwards everything he receives to Sim1 and follows Sim1’s
instructions. The simulator Sim1 works as follows:

1. He makes sure, by using Rins to co-ordinate with the slave-simulators, that whenever Z
expect to see some message from some adversary Ai, it is Simi who outputs the corresponding
simulated message to Z.
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2. He keeps track of the current round index ρ. Sim1 can do that as he has the overview of the
execution of π, i.e., he gets informed for every activation coming from Z.

3. For each round ρ (initially ρ = 0) and each honest party Pi, Sim1 stores in a variable M ′i
the message-bursts ~m ∈ (M∪ {⊥})n−1 that Pi receives in the execution of protocol π (M ′i
is updated similar to how Finp and Fcomp update Mi). As in the original protocol, M ′i is an
rmax× (n− 1) matrix initially filled with ⊥’s.

4. Whenever in the simulated π?′ PM∗ would interact with some honest party Pi to
have him run the code of πinp, Sim1 simulates PM∗ ’s output, i.e., PM∗ ’s share ~D =

[Com(xi), Com(ri), Dec(0), Dec(Mi)], by ~D′ = [Com(0), Com(r′i), Dec(0), Dec(M ′i)] for some uni-

formly random value r′i. Finally, Sim1 sets PM∗ ’s output to ( ~out
′
, ~D′).

5. Whenever in the simulated π?′ PM∗ would interact with some honest party Pi to
have him run the code of πcomp, Sim1 simulates PM∗ ’s output, i.e., PM∗ ’s share ~D =
[Com(xi), Com(ri), Dec(ρ), Dec(⊥)] and the message-burst ~out for the current round as follows:
Sim1 hands Pi his round ρ messages (which are copied from M ′i) and receives back the mes-

sages for round r + 1. Sim1 sets ~out
′

to be the messages he received from Pi and uses these
messages to update the corresponding entries in M ′i . Subsequently, he simulates the vector
~D = [Com(xi), Com(ri), Dec(ρ), Dec(Mi)] by ~D′ = [Com(0), Com(r′i), Dec(ρ), Dec(M ′i)]. Finally,

Sim1 sets PM∗ ’s output to ( ~out
′
, ~D′).

It is straight forward to verify that for every honest Pi the simulated M ′i is distributed identically
to Mi that Pi would store in the execution of π?′. Indeed, the functionalities Finp and Fcomp
correspond to the parties’ state-transition functions, and are defined to generate the same protocol-
messages as the party would generate if they would be executing the protocol π. Hence the only
difference between the real and the simulated transcript is that for each honest Pi, the commitments
Com(xi) and Com(ri) to Pi’s input xi and randomness ri are replaced by commitments Com(0) and
Com(r′i). The GUC-security of out commitment scheme ensures that Z cannot distinguish between
the two views.

Sub-step 4.2. As in Sub-step 3.2, we observe that, by definition, πinp and πcomp are CP secure
realizations of functionalities Finp and Fcomp, respectively. The composition theorem applied to
Claim 5.4 implies that π? CP-securely realizes the functionality F .

This completes the proof of Lemma 5.3.

5.3 A Concrete Instance

Thus far the results have been stated for an abstract GUC-AuthComplete setup. For a concrete
instance we can use the KRK setup of [11, 16]. Recall that in those works the Key Registration with
Knowledge (KRK) functionality (hence forth the GUC-KRK) allows the (monolithic) adversary to
register and/or ask for the key of any corrupt player. We modify this to obtain the CP setup KRK
such that the ith adversary is allowed only to register and ask for the keys of the ith player. One can
easily verify that any protocol which is GUC secure in the original GUC-KRK hybrid world, is also
GUC secure when using setup [KRK].30 Moreover all protocols of [11, 16] using GUC-KRK are
setup off-line. In [16] the GUC-KRK is used to register public keys which allow for non-interactive

30The only difference is that when the (monolithic) adversary makes a registration or secret key request for some
party to [KRK] , it needs to append the ID of this party to the message. But this has no effect on the protocol.
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key agreement. Such public/secret key pairs can easily be constructed based on the Decisional
Diffie-Hellman (DDH) assumption. Therefor we obtain the following corollary.

Corollary 5.6. If the DDH assumption holds, there exist (efficient) setup Ḡ and a programmable
resource M = {Mx}x∈{0,1}∗ such that for every well-formed aborting functionality F , there exists a
protocol π which CP realizes F with GUC fallback in the {Ḡ,MF}-hybrid model.

6 Implications for Mechanism Design

In this section we translate our results into the language of game theory and interpret them in terms
of reducing trust in mechanisms. We first translate the cryptographic language of the CP framework
into that of computational game theory and define the model of games we work with. For this we
adapt the language of [36] and we refer to it for a more detailed discussion. Next we formalize some
relations between strategies and give the game theoretic interpretation of Theorem 5.1. Finally we
describe our equivalence notion between games and use our main construction from the proof of
the theorem to show how to reduce trust in the mechanism for a large class of games.

6.1 Viewing Protocols as Games

We view CP protocols as mediated (extensive form) games of incomplete information [28]; a very
general model of games. We call an n-party (adversary oblivious31) functionalityM a mechanism.
The environment’s input xi for player Pi is it’s type, the protocol πi run by Pi is it’s strategy and
the messages sent by πi are called actions. We call Pi’s view at the end of an execution it’s output.
The view includes xi, the random tape, a description of πi and all messages received during the
execution.

We call a vector of these objects with one dimension per user profiles. We use standard notation
to construct strategy profiles as (π−i, φi) = (φ1, . . . , φi−1, πi, φi+1, . . . , φn).

A game is also equipped with an efficiently computable interpretation function Ω mapping
output profiles to outcome profiles in an arbitrary outcome space.32 Moreover, for each player Pi
we assume the existence of a real valued functions µi called the utility function defined over the
outcome space. For a outcome y the value of µi(y) ∈ R is denoted as the payoff of Pi.

In a mediated game Γ players are perfectly isolated from each other beyond their interfaces with
the mechanismM. First they are given their types, then they run their strategy withM eventually
obtaining an output for the execution. The game is played as a sequence of rounds r1, r2, . . .. In
each round r` all players take an action. Once all players are doneM computes a vector of messages
m` (which may depend on all previous actions taken in the game) and sends player Pi component
m`,i. The notion of rationality predicts that each player chooses their strategies so as to maximize
the expected value of their payoff.

Definition 6.1 (Mediated Game). A computational extensive form mediated game of incomplete
information (or just game for short) is a 4-tuple Γ = (M,Ω, µ, T ) with mechanism M, interpre-
tation function Ω, utility profile µ, and public distribution over type profiles T . Additionally M,Ω
and µ are efficiently computable and T is efficiently samplable.

31The output of an adversary oblivious functionality is defined as not depending on the adversarial interfaces.
32Keeping in line with standard game theoretic models we restrict the output of Ω to not depend on the choice of

strategy used (i.e. the value of the code for the ITM in the views).
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6.2 CP Realizing Mechanisms

We begin by interpreting the definition of CP realization in the game theoretic setting. For this we
develop a formal means for comparing and relating games to each other.

Using “small o-notation” we denote by NEGL = {υ(·) | ∀c ∈ N, υ ∈ o(λ−c)} the set of negligible
functions in security parameter λ. For game Γ = (M,Ω, µ, T ) let S(Γ) be the set strategy profiles.
For π ∈ S(Γ) let µi(π) be a random variable over R describing Pi’s payoff induced by playing Γ
with π using type profile t ← T and fresh randomness for π and M and letµi(π)) = E(µi(π)) be
it’s the expected value. A pair of strategy profiles are equivalent if they induce the same payoff
profiles. That is for games Γ and G with utility profiles µ and ν we call strategy profile π ∈ S(Γ)
and φ ∈ S(G) equivalent (write µ(π) ≈ ν(φ)) if:

∀ D ∈ PPT Pr[p0 ← µ(π), p1 ← ν(φ), b← {0, 1} : D(pb) = 1] ∈ NEGL.

In this case we abuse notation and write π ≈ φ. 33

We call a function over n dimensional vectors an efficiently and locally computable function if
it can be described as the product of n independent efficiently computable functions where the ith

function maps the ith input coordinate to the ith output coordinate. We would like to say that a
game Γ “contains” a game G if for every strategy profile in G there is an equivalent strategy profile
in Γ. As we work in a computational setting though we make the additional requirement that the
mapping be efficiently and locally computable.

Definition 6.2 (Containing a Game). Let Γ = (M,Ω, µ, T ) and G = (R,Π, µ, T ) be a pair of n-
party mediated games. We say that Γ contains G if there exists an efficiently and locally computable
function f : S(G)→ S(Γ) such that:

∀φ ∈ S(G) π ≈ f(π).

In this case we write G ⊆ Γ.

We are now ready to prove the primary tool which relates the CP framework to that of com-
putational games. Intuitively, the following theorem states that if a mechanism R can be used to
CP realize a mechanism M, then for any game Γ using M there exists a game G using R (with a
different interpretation function but) with the same types and utilities with G ⊆ Γ.

Theorem 6.3. Let R and M be a pair of mechanisms such that M vCP R. Then for any
computational mediated game Γ = (M,Ω, µ, T ) there exists a game G = (R,Π, µ, T ) for which it
holds that G ⊆ Γ.

Proof. We construct a game G and prove the theorem. As R, µ and T are fixed it only remains to
define interpretation function Π and utility profile ν.

Let Υ be a function which maps R-hybrid views to computationally indistinguishable M-
hybrid views. More precisely Υ takes as input an n-tuple of views (one per player) generated by
an execution in the R-hybrid world using arbitrary (efficient) n-party protocol φ[n] in the F-hybrid
world.

1. It extracts the description of φ[n], their inputs xn] and all random tapes used to run φ[n].
2. It computes a description of the protocol σ[n] = Sim[n](φ[n]).

33We observe that this is stronger then only comparing the expected values of the two distributions; the only
property of payoffs considered in an a computational Nash equilibria. In fact any poly-time testable property of the
payoff distributions is preserved in the above equivalence notion.
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3. It selects fresh randomness for M and runs σ on input x[n] with the matching extracted
random tapes to simulating an execution in the M-hybrid world.

4. Finally it outputs the n-tuple of views of φ[n] generated by the simulation.

Then let Π = Υ◦Ω be the function that takes as input an n-tuple of views of a R-hybrid execution
and maps them to a real number by first applying Υ and then Ω.

It remains to prove that G is contained in Γ. Assume for the sake of contradiction that G 6⊆ Γ.
That is ∃ φ ∈ S(G) such that for any efficiently and locally computable function f : S(G)→ S(Γ)
there exists an efficient distinguisher D for ν(φ) and µ(f(φ)). We use φ and D to construct
adversaries and an environment for which there are no simulators contradicting MvCP R.

Let A[n] be the set of R-hybrid world adversaries which corrupt their respective players and run
φ on them with input (type) supplied by the environment Z and at the end of the execution return
their entire view to Z. By definition a mechanism is an adversary oblivious functionality and so it
ignores adversarial interfaces. In other words the actions of any adversaries σ[n] in the M-hybrid
world depend only on their input from Z, random tapes and the messages they receive on the
corrupt players interface to M. In particular they can be viewed as a strategy profile π ∈ S(Γ)
where the ith strategy πi behaves precisely as σi simply dropping any output σi might produce on
it’s adversarial interface to M and letting player Pi act on behalf of the environment (in order to
supply a type argument).

Consider the environment Zσ which samples t ← T , gives it to A[n] and then runs D on the
n-tuple of views it receives as output. Then by assumption of D distinguishes between the outputs
of σ[n] and A[n]. But this implies that for every set ofM-hybrid simulators σ[n] for A[n] there exists
a distinguishing Zσ which contradicts MvCP R.

6.3 Reducing Trust in Mechanisms

In this subsection we prove Theorem 6.8. For this we first formalize what it means for a pair of
games to be equivalent. Then we prove a lemma stating that if two games contain each other then
they are equivalent. Next we prove a lemma that, for any game with mechanism M constructs an
equivalent game but with the synchronization wrapper M̂ applied to the mechanism. Finally we
prove the central theorem of this section showing how to reduce the trust in a mechanism while
building an equivalent game.

6.3.1 Equivalent Games

The following definition of a computational Nash Equilibrium is taken from [37]. We note that
these are one of the most general types of (computational) equilibria and so if we can preserve these
between games then in particular we also preserve other more resilient (and desirable) equilibria
such as k-resilient equilibria, dominant strategies and also correlated equilibria.

Definition 6.4 (Computational NE). For game Γ = (M,Ω, µ, T ) strategy profile π ∈ S(Γ) is called
a computational Nash Equilibrium (cNE) if:

∀ φ ∈ S(Γ) ∃ ε ∈ NEGL ∀i ∈ [n] : µi(π) ≥ µi(φi, π−i)− ε.
We denote the set of cNE of Γ with E(Γ) = {π ∈ S(Γ) | π is a cNE}.

As before, besides equating the sets of cNE we make the additional requirement that there be
an efficiently and locally computable function mapping cNE in one game to cNE in the other.

Definition 6.5 (Equivalent Computational Games). We call a pair of n-party computational me-
diated games Γ = (M,Ω, µ, T ) and G = (R,Π, µ, T ) equivalent if there exist a pair of efficiently
and locally computable functions f : E(Γ)→ E(G) and g : E(G)→ E(Γ) such that:
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• ∀π ∈ E(Γ) π ≈ f(π)
• ∀φ ∈ E(G) φ ≈ g(φ).

In this case we abuse notation and write Γ ≈ G.

It is easy to verify that ≈ is transitive. Next we show that if a pair of games contain each other
then they are equivalent.

Lemma 6.6. For n-party mediated games Γ and G:

Γ ⊆ G ∧ G ⊆ Γ =⇒ G ≈ Γ.

Proof. We need to show that every cNE in Γ can be efficiently and locally mapped to cNE in G
and vice versa. We show the first part and the second follows with an identical argument switching
the roles of G and Γ.

Let f : S(Γ) → S(G) be the mapping given by Γ ⊆ G. Let equilibria π ∈ E(Γ) with g(π) =
φ ∈ S(G). Suppose for the sake of contradiction that φ 6∈ E(G). This implies that for some
i ∈ [n] there is a strategy φ′i with an expected payoff significantly34 larger then that of φ. In
symbols ν(φ) ≤ ν(φ′i, φ−i) + δ for some function δ growing faster then any function in NEGL.
By Definition 6.2 f is locally computable and preserves payoff profiles it follows that there exists a
strategy π′i for Pi in Γ such that:

µ(π) ≈ µ(f(φ)) ≈ µ(φ) ≤ µ(φ′i, φ−i) + δ ≈ µ(f(φ′i, φ−i)) + δ ≈ µ(π′i, π−i) + δ

which contradicts π ∈ E(Γ).

6.3.2 On Output Synchronization in a Stand-Alone Game

To formally apply the results of Theorem 5.1 we first need to address the issue of output syn-
chronization. As the CP security notion is composable it is equipped with an online distinguisher
(namely environment Z). Thus a protocol which takes say 2 rounds of communication to produce
output can at most realize a functionality which waits till all players have been activated 2 times
(in an appropriate order) before it gives them output. Otherwise Z can trivially distinguish by
activating all player once and then checking if they already have output before it continues the
execution. (See Section 4 for a more detailed discussion.)

While we briefly address the more general composable mediated games setting later on, for now
we take the common view in game theory and consider a game as being an isolated event (or at
least that no players are involved in concurrent interactions). In this setting output synchronization
has no effect on the game.

To see why this is we first describe the effects of the output synchronization wrapper in game
theoretic terms. LetM be an efficient mechanism and M̂ be it’s output synchronized version such
that we are given a R-hybrid protocol π which CP realizes it. Moreover let u be an upper-bound
on the number of rounds of π. As we need M̂ to be adversary oblivious we fix the value of R = u
in it’s wrapper instead of having it query an simulator for the value. This guarantees that on the
one hand simulators in the M̂-hybrid world obtain at least as much output synchronization as
obtained from an execution of π, but on the other hand M̂ is adversary oblivious making it a valid
mechanism.

Now when viewed as mechanisms M̂ behaves exactly as M except that for any round r` the
mechanism only produces the output m` once all players have made (at least) R attempts at taking

34By “significant” we mean a function in λ larger then any ε ∈ NEGL.
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action for r`. Although the first attempted action is the one that is actually used to compute m`,
mechanism M̂ does not deliver m` until all players have made R attempts.

Translating this observation to the (stand-alone) game theoretic setting we obtain the following
lemma.

Lemma 6.7. For any mechanism M and M̂ and computational mediated game Γ = (M,Ω, µ, T )
there exists an interpretation function Π such that the computational mediated game G =
(M̂,Π, µ, T ) is equivalent to Γ.

Proof. We show the lemma in two parts. First we show that G ⊆ Γ and then we show that Γ ⊆ G
which implies Γ ≈ G by Lemma 6.6.

Fix any positive integer R (of size polynomial in the security parameter). To show G ⊆ Γ we
first define an efficient and locally computation function g : S(G)→ S(Γ). It consists of n efficient
functions gi that take input a strategy φi and output strategy φ′i. The ITM φ′i runs φi internally
such that for all rounds r` once φi has made its first attempt taking action, any resulting messages
m`,i fromM to φi are only made visible to φi once it has made (at least) R−1 additional attempts
taking action. The remaining R − 1 attempts are simply dropped. Other then that φ′i behaves
exactly as directed by it’s internal copy of φi.

We are now ready to construct interpretation function Π from Ω. Function Π takes in an n-
tuple of outcomes of a run of G. Much like the function Υ described in the proof of Theorem 6.3
Π extracts the strategy profile φ, the types and the random tapes used in G to runs g(φ) with the
same inputs in a new game with mechanism M. Thus by construction, for every strategy profile
φ ∈ S(G) there exists strategy profile g(φ) ∈ Γ inducing identical payoff distribution. In particular
G ⊆ Γ.

Next we show that Γ ⊆ G. We define an efficient and locally computable function f : S(Γ) →
S(G). It too consists of n efficient functions fi that take in a strategy πi for Γ and output a strategy
π′ for G. The only difference between πi and π′i is that for every action taken by the former the
later repeats the action an additional R− 1 times. Then by construction of f (i.e. Π) and the fact
that Ω does not depend on the particular choice of strategy used to compute the output profile we
get:

Ω(π) = Ω(g(f(π))) = Π(f(π))

which implies that Γ ⊆ G.

6.3.3 Implications of CP Compiler to Game Theory

We apply the game theoretic interpretation of CP security (Theorem 6.3) to our main feasibility
result for CP security with GUC fallback (Theorem 5.1). This results in a transformation mapping
any mediated game Γ = (M,Ω, µ, T ) to an equivalent mediated games G = (R,Π, µ, T ) which
places significantly less trust it’s mechanisms. Borrowing some cryptographic concepts the change
in trust intuitively be expressed as follows: while Γ relies on M to act as an ideal functionality
computing the output correct, the new game G only trusts R to act as a network of insecure
channels over which a GUC secure protocol is run.35 In particular players in G no longer have
to trust the mechanism to maintain the privacy of their actions nor do they have to trust that
R computes the correct output. On the other hand they do still have to trust the mechanism to
enforce isolation of colluding players as well as fairness.

35A more formal interpretation is obtained from the fallback security achieved in Theorem 5.1.
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Well Motivated Games. We view any game as having a special input ⊥ modeling the case
when a player aborts the game or simply refuses to play. The construction of Theorem 5.1 permits
simulating a mechanism which handles such actions by producing outcome ⊥ for all players. How-
ever we opt instead to place the reasonable assumption on the utility profile of the game ruling
out such behavior as irrational. In particular we call a game Γ well motivated if for all i ∈ [n]
the expected utility of any outcome obtained with an abort is less then the utility of all outcomes
obtained without an abort.

Next we state and prove the central theorem of this section.

Theorem 6.8 (Replacing Mechanisms). Let Ḡ be a functionality satisfying the conditions of The-
orem 5.1 and let M be the corresponding programmable resource. Then for any well motivated
computational mediated game Γ = ({M, Ḡ},Ω, µ, T ) there exists a computational mediated game
G = ({MM, Ḡ},Π, µ, T ) such that Γ ≈ G.

Proof. Using protocol compiler in the proof of Theorem 5.1 we obtain a protocol π with number
of rounds upper bounded by some fixed u such that {M̂, Ḡ} vCPπ {MM, Ḡ}.36 Suppose we can

construct a game G equivalent to Γ but using mechanism M′ = {M̂, Ḡ} then the theorem follows
directly by Lemma 6.7.

Let G be a computational mediated game with mechanismM′, utility profile µ and type profile
T . We construct G’s interpretation function Π from Ω as in the proof of Theorem 6.3 thus G ⊆ Γ.
So if we can also show that Γ ⊆ G then the theorem follows directly from Lemma 6.6.

To show that Γ ⊆ G we define a function g : S(Γ) → S(G) and show that it satisfies Defini-
tion 6.2. By assumption there exists a protocol (strategy profile) φ suchMvCPφ R. Let π ∈ S(Γ).
Then define g(π) := π ◦ φ which is the protocol that uses φ in the R-hybrid world to simulate an
instance of M which it uses in turn to run π. In particular g is efficiently and locally computable
as the ith output component πi ◦ φi depends only on the value of πi.

Moreover for any π ∈ S(Γ) we claim that π ≈ g(π). Suppose for a moment that this were not
so. That implies that there exists of an efficient distinguisher D for µ(π) and µ(g(π)). But if this
were the case then an environment Zπ can use π and D to attack φ. More precisely Zπ samples
t← T and runs π(t) forwarding all messages from πi(ti) forM to Pi and feeding the responses back
to πi(ti). Let V be the n-tuple of views of the emulated π’s in the execution. Then Zπ produces
the output bit computed as D(µ(Ω(V ))). That is it interprets the views as outputs for Γ, computes
the payoff profile and gives the result to the distinguisher returning it’s output. As D is a good
distinguisher so must Zπ be.

At this point a traditional game theorist will no doubt be concerned with the fact that the
compiled CP protocol of Section 5 requires the use of a setup functionality. We address two issues
the presence a setup may introduce.

On Games with Setup. As observed already in Section 6 an undesirable side effect of using our
protocol compiler is the presence of a shared setup functionality.

However, we note that the setup is only used at the beginning of the computation and the
interaction is independent of players type. Thus, to apply the compiler to any efficient mechanism
(rather then ones with setup) one could also adopt a model similar to that of [31] where games
are preceded by a pre-computation round which is run before types are distributed. Moreover, in
contrast to [31] players need only be isolated just before they receive their types (but after they have

36As discussed above to make M̂ adversary oblivious (i.e. a valid mechanism) we fix the value of R = u in the
synchronization wrapper (rather then have it query the adversary).
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finished the pre-computation phase). In this setting any signaling (or more generally correlation)
that may occur due to the setup is not a problem as types are not known yet.

Another mitigating factor is that the CP compiler can use all known GUC setup functionalities.
The KRK model of [11] calls for players to place their public keys into a publicly viewable file
which they could potentially use to signal by skewing the distribution of their keys. However
the Augmented CRS (ACRS) setup in the same paper only contains the master public key of an
IBE. In particular the shared view of players contains a random sample from an honestly sampled
distribution. Thus the most they can gain in this setting is added correlation (aka randomness
pollution). However actually communication is no longer an option. One issue here is that [11]
already assumes authenticated channels so the CP compiler requires a setup in the form of PKI to
realize these (as described in [17]). But using identity based signatures [23] this too can be achieved
with out having players choose values in the public view.

Randomness Pollution and Setup. In order to apply our CP protocol to reduce trust in
mechanisms players need to interact with a setup functionality. Formally this means a game with
mechanismM also needs to give players access to a setup Ḡ which we denote with a mechanism of
the form {M, Ḡ} and indeed, this is the language we use in the theorem bellow.

However this causes randomness pollution i.e. the presence of unwanted randomness in the
public view of players. We point out three mitigating factors. First the interaction with Ḡ can
take place before types are distributed (as in [31]) after which Ḡ can disappear. Moreover if the
ACRS of [11] is used in combination with identity based signatures [23] then in particular, players
no longer have any influence over the public view (unlike a normal PKI such as the KRK setup
where users choose their public keys). Finally the setup can be reused indefinitely across many
runs of many (possibly different) games. So taking an an asymptotic view of game play (such as
for repeated games) the randomness pollution tends towards 0.

6.4 Concurrent Games

In this section we have so far opted for the standard model of a single game being played in a
stand-alone setting. However the cryptographic results obtained above would actually allow for
more general statements about games running concurrently.

By concurrently we mean the intuitive model where each rational player may be taking part
in multiple mediated games concurrently, each with different player sets and mechanisms. While
mechanisms still operate only on actions of a single game, the notions of strategies, interpretations,
utilities, types distributions and payoffs are generalized to cover all games a particular player is
involved in simultaneously. Thus an equilibrium spans all games being run in parallel and is
described as a strategy profile with one strategy for every player taking part in at least one game.

Even in this setting a CP protocol can still be used to replace a particular mechanism. However
an interesting subtlety concerns the inherent synchronization a protocol might contain. Indeed,
in Theorem 5.1 this is addressed by adding the synchronization shell to F . We note that this issue
also arises with the protocols of [28, 26, 24] as the many publicly verifiable actions also provide
new means for synchronization between players. In a concurrent setting sets of players could well
leverage their common view of these events in one game to coordinate actions “illegally” in other
games running concurrently or even to communicate illegally.

We envisage two solutions for this issue. The first is to assume that protocols are executed
atomically. Thus players can not use the more fine grained synchronization obtained from a pro-
tocol execution effectively in a different game. Indeed, on an implicit level this is the approach
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of [26]. However it could be argued that such a solution does not really capture the intuition be-
hind “universally composable” mechanism design. Instead it’s closer to sequential composability,
especially for normal form games.

In order to salvage the intuition behind the nature of strong composition we propose a second
variant more along the lines of Theorem 5.1. In particular extra the means for synchronization
must be modeled explicitly in the original mechanism M. For example suppose we can CP realize
M in a R-hybrid world with some protocol π which uses c rounds. Further, supposeM is modified
by applying the synchronization wrapper as described above in this appendix to obtain mechanism
M̂. In particular at the beginning of each round M̂ asks for c actions from each player where only
the first action per player is actually used to compute the next output message of the M̂. However
the output is only produced and delivered to the players once all players have made handed in
their inputs c. Somewhat more precisely M̂ also has to ensure that the activations happen in an
appropriately interleaved manner reflecting the constraints of how a protocol replacing M̂ would
be executed. For example if Pi hasn’t made his attempt yet then any other is allowed at most one
action counting towards it’s c’.
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A Common Elements of (G)UC Models.

In order to describe the CP framework formally first clarify the paradigms inherited form the GUC
framework [11] and fix some common notation for comparing protocol executions with each other.

Ensembles and Distance. We briefly review the notions of distribution ensembles and (com-
putational) indistinguishability. A pair of ensembles X and Y indexed by a set S is an infinite set
of random variables each associated with a unique element in S.

Definition A.1. We say that a pair of distribution ensembles X and Y indexed by S are (compu-
tationally) indistinguishable if for all non-uniform PPT turing machines D the following function
∆X,Y (s) with domain S is negligible in s:

∆X,Y (s) := |Pr[D(Xs) = 1]− Pr[D(Ys) = 1]| .

In this case we write X ≈ Y to denote the relation.

Modeling Functionalities. As in the UC framework we model functionalities as PPT ITMs.
A functionality might consist of a set of functionalities F := {F1, . . . ,Fm} available to the parties
in parallel, where it is assumed that there exists some addressing mechanism for the players to
interact with the component functionalities F1, . . . ,Fm.

A primary feature of the CP model are the split adversaries. Thus the main difference between
the CP and UC functionalities lies in the interface(s) made available to the adversaries. In addition
to its interfaces to the (honest) parties an n-party resource F has a dedicated interfaces to each of
the n adversaries A1, . . . ,An. For any message which is sent/received on an adversarial interface, the
specification of F defines the adversary-ID (in particular the matching interface) of the adversary
that should send/receive the message (just as is already the case for messages sent/received by
honest parties).

Simulation-based Security. Simulation-based security definitions follow the real-world/ideal-
world paradigm: In the real world, the players execute the protocol and can communicate over
channels as defined by the model. In the ideal world, the players securely access an ideal function-
ality F that obtains inputs from the players, runs the program that specifies the task to be achieved
by the protocol, and returns the resulting outputs to the players. Intuitively, a protocol securely
realizes the functionality F if, for any real-world adversary A attacking the protocol execution,
there is an ideal-world adversary Sim, also called the simulator, that emulates A’s attack in the
ideal evaluation of F . The “quality” of the simulation is specified by considering a distinguisher
Z, called the environment, which interacts, in a well defined manner, with the parties and the
adversary or the simulator and tries to distinguish between the two worlds.

The advantage of simulation-based security is that it satisfies strong composability properties:
let π1 be a protocol that securely realizes a functionality F1. If a protocol π2, using the functionality

F1 as a subroutine, securely realizes a functionality F2, then the protocol π
π1/F1

2 , which results when
replacing the calls to F1 by invocations of π1, securely realizes F2 (without calls to R1). therefore,
it is sufficient to analyze the security of the simpler protocol π2 in the F1-hybrid model, where
the players run π2 with access to the ideal functionality F1. For more details on composability of
protocols and a formal handling of composition, the reader is referred to, e.g., [7, 18, 9, 13, 5, 35].
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UC with Global Setup (GUC). In defining the model of execution we use as a starting point
the UC with global setup (GUC) framework of Canetti et al. [11]. The main difference between
UC and GUC is that in the GUC model any global setup is present in both the real and the ideal
worlds, and is accessible by the environment. Thus, in the GUC framework, a simulator must work
with the setup it is provided; this is in contrast to the UC framework where the simulator gets to
simulate the setup (which provides the simulator with extra power). For the purpose of collusion
preservation, this latter approach will not work since we will, in general, have many simulators
running in parallel, with no mechanism for coordinating the setup among themselves.37 It is for
this reason that we use GUC as our starting point.

Execution Notation. In this work we often compare the outcome of executions of different
arrangements of ITMs with each other. To this end we extend the notation of [9, 11] which we now
briefly review as it applies to the case of the GUC framework. For more details we refer the reader
to the original works. We denote by Ḡ the ACRS setup functionality of [11]. For an R-hybrid
protocol π, setup Ḡ, adversary A, and environment Z, we denote the output of Z after witnessing

an execution of π in the GUC R-hybrid model in the presence of A as the ensemble EXECḠ,Rπ,A,Z .
To be precise, by this we denote the ensemble of random variables, parameterized by the security
parameter k and the auxiliary input z of the environment (for details the reader is referred to
[11]). For notational simplicity, similarly to [9, 11], if for a particular player Pi, no ITM is given
in the subscript then it is implicitly meant that Pi acts as the dummy player simply forwarding all
messages faithfully between Z and R.

Definition A.2 (UC Computation with Global Setup). Let Ḡ be a global setup, R be a resource. For
an n-party efficient protocol π and functionality F we say that π GUC-realizes F , if ∀A ∃Sim∀Z :

EXECḠ,Rπ,A,Z ≈ EXECḠ,FSim,Z

B Relations to Abstract Cryptography

We briefly discuss some of the many relations between the CP framework and the Abstract Cryp-
tography (AC) framework of [35]. In particular we describe how our model can be described using
the language of the Abstract Cryptography framework. We assume the reader is familiar with the
definitions and results of [35].

We begin at the highest level of abstraction and briefly provide a concrete instance of many of
the most important notions defined by the AC framework. We view CP as living at Level 3, the
most concrete level of AC. In the following discussion, reflecting the absence of adversaries in AC,
we use the term party to denote the union of the players and adversaries in CP.

A Concrete Isomorphism. CP uses the pseudo-metric of computational indistinguishability
defined over sets of random variables which is, in particular, an equivalence relation. Moreover
CP implicitly equips random variables with a parallel composition operator: informally, composed
variables are simply viewed as a single variable. In the words of [35] this composition operation

37For concreteness consider a 2-party protocol which realizes F : a secure unidirectional transfer of a single bit
using a CRS as setup. Suppose both parties are corrupt with the strategy that they obtain the CRS, output it and
terminate. Of course in the real world their outputs will be randomly distributed and identical. However, in an ideal
world with no CRS functionality but only F made available to the two simulators they have no way to feed random
but identical values for the CRS to their emulations.
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(denoted by “||”) is non-expanding. Taking this view in turn induces the CP notion of an iso-
morphism. Intuitively, in CP we consider two executions (captured by the collection of random
variables they induce as the output of the environment Z) to be equivalent (i.e. isomorphic) if they
are computationally indistinguishable. More precisely, the CP framework implicitly realizes the
definition of isomorphisms using functions f and g that are defined via 2 sets of ITMs (including
all ITMs of parties and available ideal functionalities) participating in an execution. The functions
map sets of 2n-inputs (one per party) to random variables describing the output of Z. The relation
ρ is essentially the identity relation on the possible inputs of players and the pseudo-metric ’'’ is
computational indistinguishability. One caveat is that CP implicitly only requires isomorphism to
hold for input tuples which can actually be sampled by Z where as AC requires isomorphism to
hold for all possible inputs.

Components and Constructors. AC introduces the notion of a component set which in the
case of CP consists of the set of ideal functionalities (i.e. PPT ITMs with one interface per party).
As required by AC, they can be composed in parallel by making several such functionalities available
to players in a hybrid world setting. As a concrete constructor set CP uses ITMs run by parties.
Viewed this way, serial composition consists of running a “protocol stack” (as is done in several
proofs in this work) while parallel composition corresponds to simply grouping the interfaces of
several ITMs together into a single ITM.38 Finally the neutral element of the constructor set is the
dummy protocol (also called dummy adversary depending on the party).

Choice Sets and Abstractions. In the CP framework an 2n-choice setting is a function defined
implicitly by the specification of all ITMs taking part in an execution. It maps 2n-inputs (one per
party) to the output random variable of Z. By extension the CP framework is primary concerned
with 2n-specifications defined by sets of 2n-choice settings that share the same ideal functionalities
and protocols (but different adversaries). A statement about CP-emulation is really a statement
relating two such sets. Moreover the primary instance of ith guaranteed choice domains in a CP
“real” world is the set of “ideal” inputs available to Pi while the ith guaranteed choice domain in
of interest in “ideal” CP worlds are the set of real world inputs available to adversary Ai.

Viewed in this light a π-abstraction in CP is given by the specifications of all ITMs taking part
in a pair of executions whenever one CP-emulates the other. Intuitively it tells us how to obtain
the same behavior from Z using a different (presumably more realistic) arrangement of ITMs.
Specifically, by viewing parties as dummy entities which forward their input to the resource a CP
abstractions describes how to map an input xi for (ideal world) player Pi to the ”input” πi(xi).
Moreover for every input x̄i accepted by an ideal world adversary Simi(Ai) a CP π-abstraction tells
us that in the real world with adversary Ai the same input can be used. Moreover the facts that:

1. The code of the ith protocol depends only the interfaces available to player Pi.
2. The transformations describing the ith simulator depends only on the code of the ith adversary.

imply that the π-abstraction of CP induce a complete factorisable relation between choice sets
satisfying Def.11 of [35]. We note that by taking this (admittedly rather informal) view of the CP
framework Theorem 1 of [35] provides an alternative proof of the CP composition theorem.

Simplified CP Security. We note that compared to CP, SCP is even closer in spirit to the
Abstract Cryptography framework. In particular AC does not distinguish between honest players

38For example a in a hybrid world with two resources F and R the dummy protocol DF,R can be seen as the
parallel composition of the protocols DF and DR.
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and adversaries. In contrast to the flexibility (and variability) available to adversaries in the CP
model, SCP essentially fixes the ITMs of all adversaries in both the ideal and real worlds bringing
it one step closer to the spirit of AC.
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