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Abstract

In recent work, Ishai, Prabhakaran and Sahai (CRYPTO 2008) presented a new compiler
(hereafter the IPS compiler) for constructing protocols that are secure in the presence of mali-
cious adversaries without an honest majority from protocols that are only secure in the presence
of semi-honest adversaries. The IPS compiler has many important properties: it provides a rad-
ically different way of obtaining security in the presence of malicious adversaries with no honest
majority, it is black-box in the underlying semi-honest protocol, and it has excellent asymptotic
efficiency.

In this paper, we study the IPS compiler from a number different angles. We present an
efficiency improvement of the “watchlist setup phase” of the compiler that also facilitates a
simpler and tighter analysis of the cheating probability. In addition, we present a conceptually
simpler variant that uses protocols that are secure in the presence of covert adversaries as its
basic building block. This variant can be used to achieve more efficient asymptotic security,
as we show regarding black-box constructions of malicious oblivious transfer from semi-honest
oblivious transfer. In addition, it deepens our understanding of the model of security in the
presence of covert adversaries. Finally, we analyze the IPS compiler from a concrete efficiency
perspective and demonstrate that in some cases it can be competitive with the best efficient
protocols currently known.
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1 Introduction

In the setting of secure multiparty computation, a set of parties wish to jointly compute some func-
tion of their inputs while preserving security properties such as privacy, correctness, independence
of inputs, and more. These properties must be preserved in the face of adversarial behavior. In this
paper, we consider security in the presence of three types of adversaries. The two classic adver-
sary models are those of semi-honest adversaries that follow the protocol specification exactly but
attempt to learn more than they should, and malicious adversaries that can behave as they wish
and as such can arbitrarily deviate from the protocol specification. A more recent model, called
security in the presence of covert adversaries, guarantees that if a malicious adversary behaves in
a way that enables it to break the protocol in some way, then it will be caught cheating by the
honest parties with some probability ϵ [1].

There are two rather distinct settings for studying this problem. In the first, it is assumed
that a majority of the parties are honest. In such a case, it is possible to securely compute any
efficient functionality with information-theoretic security [4, 7, 34, 2] assuming private channels
(and broadcast, for the case of n/3 ≤ t < n/2 corrupted parties). In the second setting, any
number of the parties may be corrupted; this case includes the important two-party setting where
one party may be corrupted. In this case of no guaranteed honest majority, information-theoretic
security cannot be achieved. Nevertheless, assuming the existence of oblivious transfer, which can
be constructed from enhanced trapdoor permutations and homomorphic encryption, it has been
shown that any efficient functionality can be securely computed without an honest majority [36, 19].

Beyond proving an important theorem stating that any functionality can be securely computed
without an honest majority, the construction of [19] shows how to compile any protocol that is
secure in the presence of semi-honest adversaries into a protocol that is secure in the presence of
malicious adversaries, using one-way functions alone. This result is therefore often referred to as
the GMW compiler. Recently, a new compiler was presented by Ishai, Prabhakaran and Sahai
(IPS) [27]. This compiler works in a completely different way to that of the GMW compiler. First,
unlike GMW, it does not compile an m-party protocol for securely computing a functionality f
in the presence of semi-honest adversaries into an m-party protocol for securely computing the
same f in the presence of malicious adversaries. Rather, the IPS compiler uses m-party protocols
that securely compute some basic operations (like addition and multiplication of shares in a finite
field) in the presence of semi-honest adversaries with no honest majority, in order to transform a
multiparty protocol that securely computes f in the presence of malicious adversaries with an honest
majority, to an m-party protocol that securely computes f in the presence of malicious adversaries
with no honest majority. As a specific example, note that by setting m = 2 the IPS compiler can
generate a two-party protocol for computing f that is secure against malicious adversaries, from
two-party protocols for computing basic functionalities (secure against semi-honest adversaries),
and a multiparty protocol for computing f (secure against malicious adversaries which can corrupt
only a minority of the parties). Intriguingly, the IPS compiler utilizes the world of information-
theoretic secure computation in order to achieve security in the setting of no honest majority, since
the basic protocol computing f , to which the compiler is applied, can be defined in an information-
theoretic setting.

The IPS compiler has a number of important properties. First, it is black box in the underlying
constructions; see [22] as to why this is of importance. Second, it provides a uniform approach
to both the two-party and multiparty settings, like the GMW compiler. Third, in some settings,
it has excellent asymptotic efficiency. This is due to the fact that in some cases (e.g., when
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an arithmetic circuit computing f is significantly smaller than a Boolean circuit computing f),
information-theoretic protocols for the setting of an honest majority are much more efficient than
computational protocols for the setting of no honest majority. The compiler can be applied to these
more efficient protocols. This property has already been utilized to present protocols that have
excellent theoretical, asymptotic efficiency [28]. Despite the above, it is unclear as to whether this
approach can be used to achieve concrete efficiency for functionalities of interest [24].

1.1 The IPS Compiler

The compiler of [27] utilizes the following components in order to achieve the secure m-party
computation of a functionality f , with no honest majority.

• A multiparty information-theoretic protocol π computing f with m clients who provide input
and n = O(m2k) servers who carry out the computation (where k is a security parameter
analyzed in our work), which is secure in the presence of a malicious adversary corrupting a
minority of the servers. This is called the outer protocol by [27].

• m-party subprotocols and local client instructions for simulating the server computation in π,
that are secure as long as the adversary behaves in a semi-honest manner. Given the known
techniques for information-theoretic secure multiparty computation, it suffices for example
to use m-party subprotocols for securely computing additive shares of the product of shares
(all other steps can be carried using local client instruction for generating shares, adding
shares, and so on). We stress that these subprotocols need only be secure in the presence of
semi-honest adversaries. These are called the inner protocols by [27].

The way that the compiler works is for the m real parties to run the information-theoretic protocol
π by emulating the operations of the n servers in π. This emulation is carried out using the secure
m-party subprotocols, run between the m real parties (clients), to compute the next step of all
parties in π. Thus, the n parties running π are virtual and are emulated by the m real parties
running the protocol. Observe that if the real adversary were to behave in a semi-honest manner
in each subprotocol, then the overall computation would clearly be secure. This is due to the
fact that the emulation of the n parties in π is carried out using a protocol that is secure in the
presence of semi-honest adversaries. Thus, f is securely computed, as guaranteed by π. However,
the adversary here may be malicious.

The magic in the IPS compiler is how to leverage the semi-honest security of the subprotocols
in order to achieve security in the presence of malicious adversaries. The central observation is that
in order for a malicious adversary to cheat, it must cheat in at least n/2 of the subprotocols. This
is due to the fact that π is secure unless a majority of the servers, namely at least n/2 of them,
behave maliciously. In order to prevent such cheating, the IPS compiler sets up watchlists, which
enable the honest parties to verify that malicious parties are not cheating. These watchlists are
generated as follows. Each real party (client) chooses the randomness that it will use when running
the semi-honest subprotocol for each virtual server. Then, using oblivious transfer, each other client
obtains k of the random strings of all other clients. Now, given the randomness that a party is
supposed to use in the semi-honest subprotocol, it is possible to check that it is indeed behaving
honestly. Furthermore, since oblivious transfer is used to obtain these strings, no client can know
which semi-honest executions are being “watched” (this is why these k strings obtained are called
a watchlist). It is important to note, however, that it is not possible to make the watchlists too
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large since corrupted parties view the same number of servers via the watchlists as honest parties.
Now, each time the randomness of a client (used with respect to some server) is watched by a
corrupted party, the internal state of the server is seen and that server is essentially corrupted. It
is shown in [27] that n = O(k2m) servers are required in order to obtain security with a probability
of cheating that is negligible in k. This number is important because it determines the number of
servers in the information-theoretic protocol and thus its complexity.

In our description of our results below, we assume that the reader is familiar with the details
of the IPS construction. For those not so familiar, Section 2 contains a detailed description and
tutorial-like explanation of the IPS compiler and how it works.

1.2 Our Results

1.2.1 Optimizations

As will become clear in our concrete analysis of the efficiency of the compiler, see Sections 1.2.3
and 6, the number n of servers can become very large for some choices of parameters. This can
have a severe effect on the efficiency of the protocol in a number of ways, one of those being the
watchlist setup phase where m2n executions of Rabin oblivious transfers must be carried out (each
of these costing log n regular oblivious transfers; see Section 4 for a detailed explanation). This
can therefore quickly become the bottleneck of the protocol. We therefore first devise a method for
reducing the required number of servers to n = O(mk) rather than n = O(m2k), and second for
setting up the watchlists in a way that costs an equivalent of O(mn) regular oblivious transfers,
rather than O(m2n log n) oblivious transfers. These optimizations are significant since they enable
a better choice of parameters for the outer information-theoretic protocol. Specifically, the best
efficiency is obtained by using a protocol with many servers and a small fraction of corrupted
parties; this enables the heavy use of the packed or multi-secret sharing methodology of [14]. Using
our method, a smaller number of virtual servers can be corrupted and so a more efficient protocol
can be used. We stress that when measuring concrete complexity, our new watchlist setup protocol
is substantially more efficient, even for the two-party case where m = 2.

In addition to the above, we observe that it is possible to use an outer information-theoretic
protocol that provides hybrid security in the presence of some malicious parties and some semi-
honest parties. This is due to the fact that the corruptions that are due to a malicious party
actively cheating in a semi-honest protocol without getting caught are “malicious corruptions”,
whereas corruptions that are due to a malicious party watching a server through its legitimate
watchlists are “semi-honest corruptions”. This provides more flexibility in constructing the outer
protocol and can yield better efficiency, as was shown in [13].

1.2.2 Variants

A simple compiler from covert to malicious adversaries. We present an analog of the
IPS compiler that uses subprotocols that are secure in the presence of covert adversaries instead of
protocols that are secure in the presence of semi-honest adversaries. Recall that a protocol is secure
in the presence of covert adversaries, with a deterrent parameter ϵ, if any cheating by an adversary
is detected by the honest parties with probability at least ϵ [1]. (For our purposes, it is convenient
to assume that ϵ = 1/2.) The use of subprotocols with this level of security fits naturally with the
IPS paradigm: the information-theoretic outer protocol is emulated using protocols that are secure
in the presence of covert adversaries with deterrent ϵ = 1/2. Then, if the adversary tries to cheat in
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k of the subprotocol executions, it will be caught except with probability 2−k. Observe that there
is no need for any watchlists. In addition, the analysis and proof of security of this compiler is
extraordinarily straightforward, since the cheating probability can be measured exactly with ease.

Beyond being a significant conceptual simplification, the usage of covert protocols also enables
us to use an information theoretic protocol with just n = m + 2k parties (tolerating up to k
corruptions), rather than O(m2k) or O(mk) parties when using semi-honest security. Relying on
the fact that protocols that are secure in the presence of covert adversaries with deterrent ϵ = 1/2
are only about 2–3 times the cost of semi-honest protocols, this results in an asymptotic efficiency
improvement over the original compiler. We stress, though, that by our concrete analysis, the
original compiler of [27] will typically be more efficient for concrete parameters since the use of
watchlists means that local computation by a party can be checked directly and need not be
distributed.

Covert security from semi-honest security. We observe that the IPS compiler with some
minor modifications can be used to obtain, in a black-box manner, security in the presence of
covert adversaries from protocols that are secure in the presence of semi-honest adversaries. We
show that it suffices to use watchlists of size O(m) and an oblivious transfer protocol that is secure
in the presence of covert adversaries to set up those watchlists. (We also show that covert oblivious
transfer can be constructed at the cost of only a constant number of semi-honest oblivious transfers.)
This answers a major open question left by the work of [10]. They show how to construct protocols
that are secure in the presence of covert adversaries from protocols that are secure in the presence
of semi-honest adversaries, in the information-theoretic setting with an honest majority. However,
their techniques do not extend at all to the setting of no honest majority. We stress that our result
is not a GMW-type compiler that takes a semi-honest protocol computing f and generates a covert
protocol computing f . Rather, it is a black-box reduction that works exactly like IPS, combining
semi-honest protocols for related subprotocols with an information-theoretic protocol computing f .

IPS compilation and covert adversaries. Based on the above, we have that the IPS paradigm
significantly contributes to our understanding of security in the presence of covert adversaries, and
enables us to position covert adversaries in their natural place between semi-honest and malicious
adversaries with respect to protocol constructions.

Black-box malicious OT from semi-honest OTs with linear overhead. We demonstrate
the usefulness of working through covert security as in the above two IPS variants by showing that
there is a quantitative advantage to be gained. Specifically, we show how to construct malicious
oblivious transfer from one-way functions and semi-honest oblivious transfer in a black-box way,
using only a linear number of invocations of the underlying semi-honest oblivious transfer protocol.
The previously known construction for this problem required a quadratic number of invocations of
the underlying semi-honest protocol [22]. (We remark that this result is of interest when a single
or small number of oblivious transfers are being computed. When many oblivious transfers are
being run, the original compiler of [27] suffices for obtaining constant asymptotic overhead.) The
reason that our new techniques are able to obtain this asymptotic efficiency improvement is due to
the fact that the watchlist setup phase of IPS requires oblivious transfer that is already secure in
the presence of malicious adversaries, and the best known black-box construction of this requires a
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quadratic number of semi-honest oblivious transfers. In contrast, our compilation using the covert
model requires only oblivious transfer that is secure in the presence of covert adversaries.

1.2.3 Concrete Efficiency

On an abstract level, the IPS compiler provides an elegant and conceptually simple way of con-
structing protocols that are secure in the presence of malicious adversaries. However, the actual
instantiation of a protocol using the IPS approach is dependent on many different parameters and
choices, all having a significant effect on the concrete efficiency of the result. To start with, appro-
priate inner and outer protocols must be chosen, and these choices are interdependent. This is due
to the fact that the most efficient information-theoretic outer protocol may require more invocations
of the inner protocol for computing multiplications (which may be more expensive than other oper-
ations) than a less efficient protocol, when judging efficiency in the standard information-theoretic
setting. Thus, the cost of running the inner multiplication protocol must be traded off with the
cost of other operations in the outer protocol. In addition, there may be other outer protocols that
can utilize different inner protocols and obtain higher efficiency.

Another parameter that must be chosen is the exact number of servers n = O(mk). It is clear
that n > mk + O(k) since m − 1 corrupted parties have already effectively corrupted (m − 1)k
servers since they see (m−1)k servers in their watchlists of the honest parties. However, how large
should n be? A naive approach which is to take n to be the smallest possible function of k actually
may have the opposite effect. For example, if m = 2 and n = 4k then the corrupt party, which
corrupts k servers through its watchlist, needs to control k more servers, or a fraction of 1/4 of
the servers, in order to cheat in the outer protocol. If n = 3k then the adversary needs to control
k/2 more servers, namely a fraction of 1/6 of the servers. The probability of it being caught in the
latter case is smaller, and therefore k, and subsequently n, might have to be larger in that case
than when n = 4k.

In order to be concrete, let the number of clients m equal 2, and consider an outer protocol
that tolerates any t < n/2 corruptions. We briefly analyze the difference between setting n = 4k
and n = 3k, where k is the number of servers in the watchlist. In the case of n = 4k, the adversary
needs to corrupt an additional k servers in order to have a dishonest majority of 2k servers, and
this requires cheating in the simulation of at least k servers in the inner semi-honest protocols.
The honest party does not detect this if its watchlist contains only servers in the other 3k (out of
4k) servers. A rough analysis gives that the probability that the adversary succeeds in this case is
(3/4)k. In contrast, if n = 3k then the adversary needs to corrupt an additional k/2 servers and
so it successfully cheats with probability only (2.5/3)k = (5/6)k. Setting a fixed error of 2−40, we
have that when n = 4k we need to set k = 97 and so n = 388, and when n = 3k we need to set
k = 152 and so n = 456. We therefore conclude that it is better to take n = 4k than n = 3k since
this results in a lower number of servers n relative to the same cheating probability of 2−40.

The above analysis relates to an outer protocol that tolerates any t < n/2 corruptions. However,
the best protocols for this setting [11] use the packed secret sharing methodology of [14]. This
methodology, described in Section 6, enables the effective multiplication of an entire block of shares
using a single multiplication protocol, as well as other efficiency improvements. Thus, large blocks
can significantly lower the complexity of the protocol. However, the outer protocol must have
the property that the number of corrupted parties that can be tolerated is upper bounded by the
difference between the secret sharing threshold (which for [11] must be less than n/4) and the
block size. For example, if we take a block of size n/5 then the number of corrupted parties in the
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outer protocol must be at most n/4 − n/5 = n/20. However, the calculation that we carried out
above regarding the size of n assumed that n/2 corruptions can be tolerated. Thus, many more
servers are needed, and we need to recalculate the required number from scratch. For example, if
we simply take 3, 880 servers (10 times the above) and use the same k = 97, then we have that
at most 3880/20 = 194 parties can be corrupted and the adversary needs to corrupt an additional
97 parties. Thus, it successfully cheats with probability approximately (3783/3880)97 which equals
0.08. Thus, the adversary can cheat successfully with probability that is way too high and different
parameters must be chosen. This demonstrates the complexity of choosing good parameters since
they are all interdependent. Observe that in our concrete analysis, we use k as the size of the
watchlists and not an independent security parameter; in the above asymptotic treatment these
were the same.

We remark finally that additional complications that arise are due to the specific structure of
the circuit being used (some circuits can utilize the packed secret sharing optimization more than
others), and the fact that the number of servers needed here is typically much more than that
considered in the standard information-theoretic setting. In order to see why this is significant,
we consider the concrete example of secure computation of the AES function. A small arithmetic
circuit of only 2,400 gates was constructed for this function [12]. Since the size of the circuit has a
huge impact on the complexity of the protocol, the fact that such a small circuit can be designed
for this function is significant (note that an analogous Boolean circuit is of size 33,000 gates [31]).
However, the circuit design relies inherently on the fact that the field used is GF [28]. In the IPS
setting, the number of servers will almost always be considerably larger than this, and so either
this circuit cannot be used, or secret sharing based on algebraic-geometric codes must be used [8],
resulting in a different inner protocol.

2 A Description the IPS Compiler

In this section we describe the IPS compiler in detail. The aim of the presentation here is to present
the compiler and explain how and why it works on an intuitive level. For a formal presentation
and proofs of security, we refer the reader to the original IPS papers [27, 28].

The basic idea. The main idea behind the IPS construction is to have a number of parties,
amongst which any number may be corrupted, simulate the execution of an information-theoretic
protocol that is secure when a majority of the parties are honest. From here on we call the real
parties running the protocol (with no honest majority) clients, and we call the simulated parties
for the information-theoretic protocol servers. In Figure 1, two real clients P1 and P2 simulate
an information-theoretic protocol with n servers S1, . . . , Sn. This simulation is carried out by
distributing the computation of each server amongst the clients, using appropriate subprotocols
π1, . . . , πn for this task. That is, for each simulated server Si, the clients P1 and P2 run a secure
protocol πi computing the next message that Si should send. These subprotocols must be secure for
any number of corrupted clients, since the clients run these subprotocols and no honest majority is
guaranteed for them. In [27] the real subprotocols run by the clients are called the inner protocols,
and the simulated protocol run by the simulated servers is called the outer protocol. We remark
that the outer protocol is actually a protocol involving clients and servers, where the clients provide
input and receive output and the servers just aid in the computation. The security requirement is
that the protocol be secure for any number of corrupted clients as long as a majority of the servers
are honest. Standard information-theoretic protocols can be cast in this model by simply having
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the clients share their inputs (via VSS) with the servers, who then carry out the computation and
return the output shares to the clients for reconstruction.

Figure 1: The IPS compiler – two parties simulate an n-party honest-majority protocol

It is clear that if the clients run inner protocols that are secure in the presence of a malicious
adversary, then the simulation of the outer protocol will emulate an execution with an honest
majority of servers. In fact, this simulation will emulate an execution where no servers are corrupted
at all (this is because the the inner protocols are secure in the presence of malicious adversaries and
so no malicious adversary can cause any server emulation to deviate from the protocol specification).
However, the aim of the IPS compiler is to construct a protocol that is secure in the presence of
malicious adversaries from inner protocols that are only secure in the presence of semi-honest
adversaries (the outer protocol does need to be secure in the presence of malicious adversaries,
but this can be information theoretic and so in some sense “simpler”). However, if the clients run
inner protocols that are only secure in the presence semi-honest adversaries, then it is possible
for a malicious client to actively cheat and possibly completely break the outer protocol. Thus, a
mechanism is needed to prevent the clients from cheating “too much” in the inner protocol (we say
“too much” because by the resilience of the outer protocol to a dishonest minority, we can tolerate
cheating in some of the inner protocols). This mechanism uses a novel technique called watchlists.

The inner protocol and the watchlist mechanism. The servers in the outer protocol have
no input, and therefore their actions in every step are a function of their random tapes and the
incoming messages that they see (equivalently, their actions are a probabilistic function of the
messages sent in the protocol). For each server Si, the clients run “inner protocols” that compute
the actions of Si, with security in the presence of semi-honest adversaries. In order to explain how
cheating is prevented in the protocol that simulates Si, denote by πi the semi-honest protocol used
to simulate Si. This protocol is reactive, meaning that it is invoked in stages where each stage
represents a round in the outer protocol. Furthermore, in each stage, its input is its state after the
previous invocation and the vector of messages sent by all other servers in the previous round; of
course, these inputs are shared between the parties (this sharing can be simple additive sharing).
The protocol then outputs a sharing of the state after this execution, and a sharing of the messages
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sent by server Si to all other servers in this round.
Now, in order to prevent a client from cheating in πi, we must verify two things. First, we must

ensure that it runs the instructions of the honest party in every invocation of πi, relative to some
random tape.1 Second, we must ensure that it uses the correct inputs in every invocation. That
is, we must verify that it inputs its share of the state after the previous invocation and its shares
of all of the messages of the previous round that are intended for server Si. If both of the above
are enforced, then by the security of πi the simulation of server Si yields an “honest” server in the
outer protocol. We now describe how each type of check is carried out:

1. Watchlist for protocol instructions: The purpose of this watchlist is to ensure that each
client runs the instructions of the honest party in every invocation of πi, relative to some
random tape. In order to see how this works, observe that each client’s actions in πi are fully
determined by its random tape and its input in this invocation. Thus, if one client (say, P2)
is given the random tape of another client (say, P1) in protocol πi, then P2 can verify that P1

follows the instructions exactly by just comparing the messages sent to those that should be
sent. We stress that P2 can compute these messages exactly because they are a deterministic
function of the random tape and input. (Recall that there are two types of input: the sharing
of the state from the previous invocation and the sharing of all the messages sent to the server
from the previous round. The former is known since P2 has the random tape of P1 and so can
compute P1’s output from the previous invocation, which includes the sharing of the state;
the latter is dealt with below by the second type of watchlist.) See Figure 2 for this type of
watchlist.

Figure 2: Protocol-instruction watchlist – client P2 checks P1 in the simulation of server S2

In order to set up this watchlist, P1 chooses random tapes r11, . . . , r
n
1 where ri1 is the random

tape that it uses in subprotocol πi (for simulating Si), and likewise P2 chooses random tapes
r12, . . . , r

n
2 . Then, P2 obtains from P1 a random subset W1 ⊂ {r11, . . . , rn1 } of k out of the

1In actuality, a semi-honest protocol may only be secure when the random tape is uniformly distributed, and
not chosen in an arbitrary way by the party. In such a case, a coin tossing protocol must be used. To simplify the
explanation here, we assume that πi is secure for any choice of random tape. This additional property is often not
difficult to achieve.
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n random tapes chosen by P1; likewise, P1 obtains a random subset W2 of k out of the n
random tapes chosen by P2. We say that P2 watches P1 for server Si if r

i
1 ∈W1, and we say

that P1 watches P2 for server Si if r
i
2 ∈ W2. These subsets are obtained using an oblivious

transfer type protocol, so that P1 knows nothing about which strings are in W1, and P2 knows
nothing about which strings are in W2.

2. Watchlist for protocol inputs: As we have discussed, it is also necessary for a client to verify
that each client uses the correct inputs in every invocation of the subprotocols. In particular,
the check that we have described for protocol instructions can only be carried out when the
client carrying out the check knows the input that the other client is supposed to use in this
invocation. Furthermore, the check is only meaningful if the input is correct. Specifically, if
the only checks carried out are via the protocol instruction watchlists, then it may be possible
to cheat by simply changing the inputs in every invocation. Thus, we need to ensure that
the input used is correct. (Note that the part of the input relating to the messages sent to
Si in the previous phase is comprised of output generated in the previous invocations of all
π1, . . . , πn, since the message sent by Sj to Si is computed in πj .)

In order to carry out this check, each client chooses a different secret key for each server. To
be concrete, denote the keys chosen by P1 by k11, . . . , k

n
1 , and denote the keys chosen by P2 by

k12, . . . , k
n
2 . Then, for every j = 1, . . . , n, at the end of the execution of the inner protocol πj

for a given round of the outer protocol, client P1 (resp., P2) encrypts the share of the message
that Sj should send to Si in this round under the key ki1 (resp., ki2); recall that the shares of
the message that Sj sends to Si are part of the output of πj . Thus, given ki1 it is possible for
P2 to reconstruct all of the messages sent to Si from all servers S1, . . . , Sn in any given round.
Furthermore, for every rj1 ∈ W1, party P2 knows the output that P1 should have received in
this invocation of πj and in particular the share of the message that Sj sends to Si. Thus,
P2 can verify that P1 encrypts this exact share under ki1. This prevents P1 from changing
the shares of the messages sent. Of course, this is symmetric and so P1 carries out the same
checks. See Figure 3.

Figure 3: Protocol-input watchlist
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As with the previous type of watchlist, the clients obtain the subset of keys obliviously so
that the other party does not know where it is being checked. We stress that the clients must
choose the random tapes and keys to watch consistently (i.e., ri1 together with ki1 and so on)
so that the checks can be made.

It is important to note that when a malicious client P1 has the pair of values ri2, k
i
2, this is

equivalent to it corrupting server Si in the outer protocol. This is due to the fact that P1 can see
all of Si’s internal state. Thus, when the watchlists are of size k, this is equivalent to a malicious
party already corrupting k servers. In addition, it is possible for a party to actively cheat in a small
number of inner protocol executions, and the probability that it will be caught is not high. The
combination of these two factors implies that the number of servers must be not too low. In the
analysis carried out by [27], they cite that the number servers n must be O(m2k). We reduce this to
O(mk) here. Intuitively, this number of servers is needed since m−1 corrupt clients view (m−1) ·k
servers via their watchlists and so have “corrupted” (m− 1) · k servers already, as described above.
In addition, if a malicious adversary tries to have corrupted clients cheat in k or more of the inner
protocols π1, . . . , πn, then it will be caught with overwhelming probability. (This is because it only
escapes being caught if the k servers in the watchlist of the honest client do not intersect at all
with the k inner protocols in which it cheats. For a constant m, the probability of this happening
is negligible in k.) We therefore have that with n = 2mk servers, an honest majority is guaranteed
except with negligible probability. We observe that some more efficient outer protocols tolerate only
a quarter or even less corrupted parties; in these cases we can take n = 4mk or more, depending
on the required tolerance.

A concrete instantiation of IPS for the VSS protocol of BGW [4]. In order to illustrate
how the above method works, we informally describe how the computation would work with two
parties running the BGW protocol for verifiable secret sharing (VSS) [4]. We assume familiarity
with this protocol, but nevertheless begin by briefly describing it (we assume that the secret s is
from some finite field of size at least n, and we let α1, . . . , αn be some fixed field elements). In
order to make this description consistent with IPS, we refer to “servers” rather than to “parties”:

1. The dealer, with secret s, selects a uniformly distributed bivariate polynomial S(x, y) of
degree t in both variables, under the constraint that S(0, 0) = s.

2. For every i = 1, . . . , n, the dealer sends server Si the two univariate polynomials fi(x) =
S(x, αi) and gi(y) = S(αi, y); these are Si’s shares.

3. For every i = 1, . . . , n, server Si sends fi(αj), gi(αj) to server Sj , for every j = 1, . . . , n.

4. For every i = 1, . . . , n, server Si denotes the pair of elements received from Sj by (uj , vj). If
uj ̸= gi(αj) or vj ̸= fi(αj) then Si broadcasts a message complaint(i, j, fi(αj), gi(αj)) to all
parties (in such a case, we say that these values are inconsistent).

5. The remainder of the protocol deals with the complaint resolution; as we will see below this
is not needed in the IPS setting.

We now proceed to describe one possible IPS instantiation of the above VSS protocol for two
parties. Let P1 be the client playing the dealer, with the secret s.
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1. Watchlist setup for P1: Client P1 chooses n random strings and key pairs (r11, k
1
1), . . . , (r

n
1 , k

n
1 ).

The parties then run an oblivious watchlist setup protocol in which P2 receives a random
subset of k pairs (ri1, k

i
1).

2. Watchlist setup for P2: Client P2 chooses n random string and key pairs (r12, k
1
2), . . . , (r

n
2 , k

n
2 ).

The parties then run an oblivious watchlist setup protocol in which P1 receives a random
subset of k pairs (ri2, k

i
2).

3. The dealer client P1 sends shares to all servers: In order to do this, P1 first sends the shares
over the watchlist for protocol inputs. Technically, it encrypts the univariate polynomials
fi(x), gi(y) to be obtained by server Si with the key ki1, and sends all the encrypted values to
the other client P2.

4. The servers exchange subshares fi(αj), gi(αj): This step seems to require a subprotocol πi
for every server Si in order to compute fi(αj), gi(αj) from an encryption of fi(x), gi(y).
However, since this step does not modify the state of any server and is deterministic, it
can actually be computed singlehandedly by the client (this is called a type I computa-
tion in [27]). Thus, the dealer P1 computes fi(αj), gi(αj) for every i and j, and encrypts

⟨f1(αj), g1(αj), . . . , fn(αj), gn(αj)⟩ under key kj1 and sends all of the ciphertexts to P2 (for all
j = 1, . . . , n).

5. The servers check consistency: Client P2 decrypts the polynomials fi(x), gi(y) and the sub-
shares ⟨f1(αi), g1(αi), . . . , fn(αi), gn(αi)⟩ for every i on its watchlist and verifies consistency
(i.e., that gi(αj) = fi(αj) and fi(αj) = gj(αi), for every j).

6. Accept or abort: In the VSS protocol above, in the case of inconsistency the servers broadcast
complaints and then begin a phase of complaint resolution. The aim of this resolution phase
is to determine whether the complaints are due to the fact that the dealer sent invalid shares,
or due to the fact that some servers sent incorrect subshares. However, in the IPS translation
of such a protocol, there is no need to resolve complaints since whenever cheating is detected
the honest parties can just abort. Thus, if P2 finds any inconsistent values it immediately
aborts; otherwise P2 accepts.

We informally describe why the above very simple protocol achieves the desired properties. In the
proof of this VSS protocol for the standard multiparty setting, it is shown that as long as consistent
values are dealt to at least t + 1 honest servers, the secret that is shared is well defined and fixed
(and the polynomial is guaranteed to be of degree at most t). However, in the multiparty setting
of the outer protocol, it is necessary that at the end of the VSS protocol all the shares of the at
least 2t+1 honest parties are consistent. Thus, we need to guarantee that at most t servers receive
inconsistent values. Translating this to the IPS setting, we need P2 to detect cheating if more
than t servers receive inconsistent values, or equivalently, if the subshares encrypted and sent by
P1 on the watchlist are inconsistent for more than t servers. By setting k and n appropriately, it is
possible to guarantee that this is not the case, except with negligible probability.

We remark that if computations must now be carried out by the servers based on these shared
values, then the client P1 must provide P2 with an additive sharing of the VSS shares fi(x), gi(y)
for every Si. This is achieved as described above. Specifically, P2 has a subset of the random tapes
that P1 will use for computing π1, . . . , πn to simulate S1, . . . , Sn. Each random tape determines the
additive share that P1 generates. Thus, P1 computes the additive sharing based on the random
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tape, and sends the share for P2 of fi(x), gi(y) on the watchlist for protocol inputs by encrypting
the shares with ki1. Client P2 verifies that the sum of the share sent on the watchlist with the share
defined by the random tape for Si equals the share fi(x), gi(y) sent above over the watchlist. From
this point on, the parties can carry out computations using inner protocols, as described.

3 Definitions

We refer the reader to [18, Chapter 7] for the definition of security for computation in the presence
of semi-honest and malicious adversaries, and to [6] for the definition of universal composability.
The notion of security in the presence of covert adversaries is defined in [1]. However, since it is less
well known, we present the definition in Appendix A. We also need some very minor modifications
to the definition to address the usage of a broadcast channel and of reactive functionalities; these
modifications are described in Appendix A.3.

4 Optimizations of the IPS Compiler

4.1 Efficient Watchlist Setup

As we have mentioned, the first step in the IPS compiler involves the setup of watchlists. Recall
that the number of real parties is m and the number of virtual servers is n. Denote the real parties
by P1, . . . , Pm. Technically, each party Pi chooses n random strings r1i , . . . , r

n
i (say, of length the

security parameter k) and runs a two-party protocol with every other party Pj in which Pj receives
k of the strings without Pi knowing which. (In Section 2, we explained that there are actually two
types of watchlist, each with its own random string or key. Here we consider only a single random
string, with the understanding that a longer string can be transferred and then different parts of
it used for each type of watchlist.)

The IPS setup. The method proposed in [27] is for each pair of parties Pi, Pj to run n executions
of Rabin oblivious transfer [33]; in the ℓth execution the sender Pi inputs rℓi and the receiver Pj

obtains this string with probability k/n, and obtains nothing otherwise. The result of this procedure
is that the expected number of strings obtained by the receiver is n · k/n = k, as required. As
described in [27] it is possible to construct a single Rabin oblivious transfer with receipt probability
k/n by running a single 1-out-of-n oblivious transfer, which in turn can be constructed using log n
regular 1-out-of-2 oblivious transfers [30]. Thus, the cost of this setup phase is n log n oblivious
transfers for Pi as sender and each Pj as receiver, with an overall of m(m − 1)n log n oblivious
transfers between all pairs of parties. With n = O(m2k) as stated in [27] we have that the cost is
about O(m4k logm2k) oblivious transfers.

Concretely, this can be carried out in two ways; one is to use the efficient extending of oblivious
transfers of [26]. However, in the case of malicious oblivious transfer the oblivious transfer extension
is not so efficient since it is based on the cut-and-choose methodology; in addition, it requires the
use of the less standard assumption of correlation-robust hash functions. Alternatively, one can
use a highly efficient OT protocol with O(1) exponentiations per transfer [32] (the cost here is 11
exponentiations per transfer, with UC and stand-alone variants at essentially the same cost).

12



A new watchlist setup. We propose a new watchlist setup with the following properties. First,
the method guarantees that each malicious party views the same k servers in all of its watchlists
(i.e., for every honest party). As we will see, this means that it suffices to set n = O(mk) instead of
O(m2k). Second, it guarantees that each party views exactly k servers in each of its watchlists; this
enables a tighter and more straightforward analysis of the probability that an adversary can cheat.
Finally, we present a concrete protocol that results in a considerable efficiency improvement over
the IPS setup, for both aforementioned implementation options, and even when the same number
of m clients and n servers are used (namely, when taking n = O(mk) for both setups).

Recall that the aim of the watchlist setup procedure is for each party to obtain a watchlist of
size k that it can view, from all other parties. Rather than achieving this by having each pair of
parties run a separate procedure, we have the parties run a protocol for what we call multi-sender
k-out-of-n oblivious transfer. This m-party functionality enables a receiver Pm to obtain k-out-of-n
strings from m− 1 different senders P1, . . . , Pm−1 (each with a set of n strings). The functionality
is formally defined in Figure 4.1.

Figure 4.1 (Multi-Sender k-out-of-n Oblivious Transfer Fk
n)

• Inputs:

1. For every j = 1, . . . ,m− 1, party Pj inputs a vector of n strings (xj
1, . . . , x

j
n).

2. The receiver Pm inputs a set of indices I ⊂ [n] of size exactly k.

• Outputs:

1. If |I| ̸= k then all parties receive ⊥ as output.

2. Otherwise, for every j = 1, . . . ,m−1, party Pm receives the set {(i, xj
i )}i∈I of k strings

(and nothing else).

3. Parties P1, . . . , Pm−1 receive no output.

We stress that that the receiver is forced to use the same index set I for all sender parties.
In the context of the IPS compiler, this means that each party can choose k servers for which it
watches all parties. Now, let t be the number of corrupted real parties in the protocol. Then,
the parties can together view t · k servers, which is equivalent to these servers being corrupted. In
addition, the probability that the corrupted real parties can cheat in the semi-honest subprotocols
for more than L servers equals the probability that none of the honest parties have any of these
servers in their watchlists. A single honest party chooses k out of n servers in its watchlist and so

the probability that it does not detect such cheating equals
(
n− L

k

)
/
(
n
k

)
.

Let m = 2 and let n = 4k. We have that the corrupted real party views k of the servers in its
watchlist and needs to cheat in L = k more in order to have corrupted at least half of the servers.
The probability that it can do this without being detected is therefore(

3k
k

)
(
4k
k

) =
(3k)!

(2k)! · k!
· (3k)! · k!

(4k)!
=

(3k)!

(2k)!
· (3k)!
(4k)!

=
3k

4k
· 3k − 1

4k − 1
· · · 2k + 1

3k + 1
<

(
3

4

)k

.

Now consider the general case of m real parties and n = 4mk. We first analyze the case that
m − 1 parties are corrupted. Then, the adversary can view (m − 1)k different servers, and needs
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to corrupt (m + 1)k additional servers in order to have corrupted half of the servers. Thus, the
probability that it goes undetected is(

3mk
k

)
(
4mk
k

) =
(3mk)!

(3mk − k)!
· (4mk − k)!

(4mk)!
=

3mk

4mk
· 3mk − 1

4mk − 1
· · · 3mk − k + 1

4mk − k + 1
<

(
3

4

)k

.

Thus, we conclude that it suffices to use n = 4mk virtual servers rather than O(m2k). In
addition, as is evident, the proof of this fact is straightforward. (We stress that as shown in
Section 6, this is not necessarily the best way to choose the parameters for concrete efficiency.
However, here we are dealing with asymptotic efficiency.)

We conclude with the following somewhat informal claim; it’s proof follows from the analysis
above and the proof of security of [27].

Claim 4.2 The IPS compiler with the alternative watchlist setup phase using the multi-sender
k-out-of-n oblivious transfer functionality is secure with n = O(mk) servers.

4.2 A Secure Protocol Realizing the Multi-Sender k-out-of-n OT Functionality

A general protocol from oblivious transfer. It is possible to securely realize the multi-sender
k-out-of-n oblivious transfer functionality in a straightforward way using committed oblivious trans-
fer, which in turn can be constructed in a black-box way from any 1-out-of-2 oblivious transfer [9].
This construction has the advantage of preserving the IPS general structure of working under gen-
eral assumptions and using any oblivious transfer protocol that is secure in the presence of malicious
adversaries. Thus, we obtain the efficiency improvement regarding the number of servers and the
simpler analysis, while remaining within the same framework. We note, however, that this strategy
will not yield a concretely efficient watchlist setup.

A concrete protocol with greater efficiency. One of the aims in this paper, which is dealt
with in detail in Section 6, is to consider the concrete efficiency of the IPS compiler. As such,
in this section we present a highly-efficient protocol for securely computing the multi-sender k-
out-of-n oblivious transfer functionality in the presence of malicious adversaries. The security of
the protocol is based on the DDH assumption and requires just O(n) exponentiations. Below,
we compare the concrete efficiency of our watchlist setup method based on this protocol to the
best-known concrete instantiations of the original IPS watchlist setup, and show that the efficiency
improvement is dramatic. As we will see, the use of this protocol enables the use of significantly
more servers than otherwise (in Section 6 it will become apparent why this is so important).

Our protocol uses ideas from the cut-and-choose oblivious transfer protocol of [29]. The idea
is for the receiver Pm to choose n pairs of group elements (ai, bi) so that relative to two fixed
group elements g, h it holds that at most k out of the n tuples (g, h, ai, bi) are Diffie-Hellman
tuples (and all the others are non-DH tuples). The receiver then broadcasts all of these pairs to
the sending parties P1, . . . , Pm−1. Following this, all of the sending parties send values with the
property that Pm can obtain the ith string if and only if (g, h, ai, bi) is a DH tuple. This ensures
that Pm receives k-out-of-n of the strings and no more. Furthermore, since the pairs are broadcast
to all P1, . . . , Pm−1, it is guaranteed that Pm receives the ith string from every P1, . . . , Pm−1 if and
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Protocol 4.3 (Multi-Sender k-out-of-n Oblivious Transfer)

• Inputs: For every j = 1, . . . , n − 1, party Pj inputs a vector of n strings (xj
1, . . . , x

j
n). The

receiver Pn inputs a set of indices I ⊂ [n] of size exactly k.

• Auxiliary input: All parties hold (G, q, g), where G is an efficient representation of a group
of order q with a generator g.

1. Step 1 – choose and broadcast pairs:

(a) Pm chooses a random y ← Zq and sets h = gy.

(b) For every i ∈ I, Pm chooses a random αi ← Zq and computes ai = gαi and bi = hαi .

(c) For every i /∈ I, Pm chooses a random αi ← Zq and computes ai = gαi , bi = hαi+1.

(d) Pn broadcasts (h, a1, b1, . . . , an, bn) to P1, . . . , Pm−1.

2. Step 2 – prove valid choice of pairs: For every j = 1, . . . ,m − 1, Pm proves to Pj

using a zero-knowledge proof of knowledge that at least n− k of the tuples (g, h, ai,
bi
h )

are DH tuples. (Pm must actually prove that at most k of the tuples (g, h, ai, bi) are DH
tuples which is equivalent to proving that at least n− k of them are not. This in turn is
equivalent to proving that at least n− k of the tuples (g, h, ai,

bi
h ) are DH tuples. This

can be proven at the cost of just 7n exponentiations; see [29].)

If Pj rejects the proof then it broadcasts ⊥ to all other parties and halts. If any party
receives ⊥, then it halts.

3. Step 3 – each party Pj sends values: Define the function RAND(w, x, y, z) = (u, v),
where u = (w)s · (y)t and v = (x)s · (z)t, and the values s, t ← Zq are random. Then,

for every i = 1, . . . , n, each party Pj computes (uj
i , v

j
i ) = RAND(g, ai, h, bi), and sends

Pn the values {(uj
i , w

j
i )}ni=1 where wj

i = vji · x
j
i .

4. Step 4 – compute output: For every j = 1, . . . ,m − 1 and every i ∈ I, party Pm

computes and outputs xj
i = wj

i /(u
j
i )

αi .

only if (g, h, ai, bi) is a DH tuple. Thus, intuitively, the protocol securely computes the multi-sender
k-out-of-n oblivious transfer functionality. See Protocol 4.3 for a full description.

Before proving security, observe that if the parties behave honestly then

wj
i

(uji )
αi

=
vji · x

j
i

(uji )
αi

=
(ai)

s · (bi)t

(gs · ht)αi
· xji =

(ai)
s · (bi)t

(gαi)s · (hαi)t
· xji =

(ai)
s · (bi)t

(ai)s · (bi)t
· xji = xji ,

as required, and therefore Pm obtains the correct output. We now prove security.

Proposition 4.4 Assume that the Decisional Diffie-Hellman assumption holds in the group (G, q, g).
Then, Protocol 4.3 securely computes the multi-sender k-out-of-n oblivious transfer functionality in
the presence of a malicious adversary controlling any number of parties.

Proof Sketch: The intuition behind the security of the protocol appears above; we therefore
proceed directly to the proof. First, consider the case that Pm is corrupted and all P1, . . . , Pm−1 are
honest. In this case, the simulator can learn the index set I for which the tuples (g, h, ai, bi) are of the
Diffie-Hellman type by extracting the witness from the zero-knowledge proof of knowledge protocol.
The simulator then sends I to the trusted party and receives back the strings {xji}i∈I;1≤j<m. For

every i ∈ I, the simulator computes the pair (uji , w
j
i ) exactly like an honest sender; in contrast
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for every ℓ /∈ I the simulator sets ujℓ , w
j
ℓ to be random group elements. The distribution of these

messages is identical to a real protocol execution (when considering an ideal zero-knowledge proof
of knowledge functionality) since for every ℓ /∈ I the tuple (g, h, aℓ, bℓ) is not a Diffie-Hellman tuple.
By the property of the RAND function, see [32], this implies that the values ujℓ , v

j
ℓ are independent

random elements of G. Next observe that when Pm is corrupted and some other parties Pj (j < m)
are also corrupted, the same simulation strategy works. This is due to the fact that every sender
behaves independently. Finally, consider the case that Pm is honest and some of the sending parties
Pj are corrupted. In this case, the simulator chooses all of the (ai, bi) pairs so that (g, h, ai, bi) are
Diffie-Hellman tuples and then “cheats” in the zero-knowledge proof by running the simulator. As
a result, the simulator receives all of the strings (xj1, . . . , x

j
n) from every corrupted Pj and can send

them to the trusted party computing the functionality. The view of the corrupted parties Pj is
indistinguishable by the Decisional Diffie-Hellman assumption, and the joint output of the honest
parties and the corrupted parties’ views are indistinguishable since the distribution over the values
sent by the corrupted parties is also computationally indistinguishable.

Concrete efficiency. The cost of the protocol is as follows: Pm computes 4n+1 exponentiations
in the first step. Then, the cost of the zero-knowledge proof in the second step is 7(m − 1)n
exponentiations overall (recall that the proof is run m− 1 times with every Pj (j < m) playing the
verifier). In the third step, each Pj computes 4n exponentiations (with an overall of 4(m − 1)n),
and finally, Pm computes k(m − 1) exponentiations in order to obtain the output. We have that
the number of overall exponentiations is 4n+7(m− 1)n+4(m− 1)n+k(m− 1). (For large m, this
is approximately 11mn+km exponentiations. For the special case of m = 2 this comes to 15n+k.)

A comparison of concrete efficiency. We now compare the concrete cost of running our
watchlist setup protocol to the method of [27]. Recall that the IPS setup requires m(m− 1)n log n
oblivious transfers and this can be implemented using [32] at the cost of 11 · m(m − 1)n log n
exponentiations, or using the method of extending oblivious transfers of [26]. In contrast, our
protocol requires 11mn+mk exponentiations. (All exponentiations here are in any group in which
the DDH assumption holds.)

For the sake of comparison, assume that the same level of security is obtained using both se-
tups and so the same values of k and n can be used.2 We compare this for two sets of concrete
parameters given in Section 6.3, optimizing the performance of the inner protocol for the case of
m = 2 parties. For the AES-type circuit, we have k = 207 and n = 1752. Then, the cost of
the original IPS setup is m(m − 1)n logn ≈ 37, 754 oblivious transfers. This can be implemented
using [32] at a cost of 11 exponentiations per oblivious transfer, resulting in 415, 294 exponentia-
tions. Alternatively, using the method of extending oblivious transfers of [26], the cost is about
5, 632 oblivious transfers (requiring about 62, 000 exponentiations) and approximately 4, 153, 000
hash function computations.3 In contrast, our new setup costs 15n+ k = 15 · 1752 + 207 = 26, 487
exponentiations, which is much less (even than the solution using [26]). An even more illustrative
example relates to the two settings of parameters given for the case of a circuit of size 30, 000 in

2This is clearly not the case. First, the analysis of [27] requires O(m2k) servers whereas for us it suffices to use
O(mk) servers. Second, the error of [27] must take into account the fact that with some probability the size of
the watchlists may deviate from k (and so the honest parties may have watchlists that are too small to catch the
malicious, and the malicious may have watchlists that are too big thereby breaking the outer protocol). This can be
bound without too much difficulty, but when taking concrete values, this will have a noticeable influence.

3We calculated this based on a seed length of 128 bits, and using σ of size 44 in order to obtain an error of 2−40

in the oblivious transfer extension protocol. For these parameters, 44 × 128 = 5, 632 actual oblivious transfers are
run, and then an additional 110 hash computations are carried out per oblivious transfer; see [26, Figure 2].
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Section 6.3; for this we just directly use the extending oblivious transfer alternative. With the
first choice of parameters, n = 19554 and k = 729, we have that the IPS setup costs 62, 000 expo-
nentiations and 61, 324, 000 hash operations, versus 294, 039 exponentiations for our protocol. In
addition, the bandwidth required to run an OT extension of this size would be huge. The other
choice of parameters, of n = 3362 and k = 292, requires 62, 000 exponentiations and 8, 664, 000
hash operations, versus 50, 772 exponentiations for our protocol. Thus, using our setup protocol,
it is still feasible to choose either of the optimal choices of parameters and tradeoff the cost for the
rest of the protocol. In contrast, using the IPS setup, only the latter setting of k and n can be
reasonably used.

Significance. As will be demonstrated in Section 6, the ability to work with a large number
of servers yields a much more efficient outer protocol and reduces the number of semi-honest
subprotocols that need to be run when emulating the outer protocol. In the example parameters
shown above, the cost of the watchlist setup phase is prohibitive for the original IPS solution and
so this choice of parameters will not be optimal. In contrast, the cost of running our new setup
protocol for the same number of servers is reasonable and so such parameters can be chosen. We
stress that for larger values of m (i.e., in multiparty computation settings), the efficiency gain will
be even more dramatic.

4.3 Flexibility of the Outer Protocol

In this section, we describe an additional optimization for the IPS compiler. In the original analysis
carried out by [27] and that discussed above, the outer protocol chosen is secure in the presence
of a malicious adversary that can adaptively corrupt up to t servers, for an appropriately chosen
t. However, the corruptions of the servers are actually of two distinct types. The up to (m − 1)k
corruptions that are due to the fact that the watchlists that the adversary has of the honest par-
ties, are actually semi-honest corruptions, meaning that the adversary sees the internal state of
these servers but does not cause them to deviate from the protocol specification. In contrast, the
corruptions that are due to the corrupted real parties cheating in the semi-honest server simulation
(without being caught) are malicious corruptions. Thus, it is possible to use an outer protocol
that provides hybrid security in the presence of t1 malicious corruptions and t2 semi-honest cor-
ruptions. This model has been studied, and it has been demonstrated that better resilience can be
achieved [13].

We conclude that it suffices to use an outer protocol with hybrid security of the flavor of [13],
providing more flexibility in choosing parameters with the aim of using a more efficient outer pro-
tocol. A concrete example of where this can be utilized is in the simple and efficient multiplication
protocol of BGW [4] for the case of t < n/4 malicious corruptions. This multiplication protocol
can also be used in the case of t1 < n/6 malicious corruptions together with t2 < n/6 semi-honest
corruptions. Thus, although the overall number of corruptions is t < n/3, the simpler and more
efficient multiplication protocol can be used. This can be heavily utilized in the setting of IPS
compilation.
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5 IPS Variants Using Covert Adversaries

In this section we present variants of the IPS compiler in order to obtain security in the presence
of malicious adversaries from security in the presence of covert adversaries, and security in the
presence of covert adversaries from security in the presence of semi-honest adversaries. In addition,
we show that this approach has a quantitative advantage regarding the black-box construction of
malicious oblivious transfer from semi-honest oblivious transfer.

5.1 Secure Computation for Malicious from Covert Adversaries

In this section we show an extraordinary simple analog of the IPS compiler when the starting point
is a protocol for secure computation in the presence of covert adversaries (instead of a protocol for
semi-honest adversaries). As we have already discussed the idea behind our construction in the
Introduction, we proceed directly to the construction.

5.1.1 The Protocol in the Hybrid Model

We construct a protocol for computing a function f form parties, where any number can be corrupt.
The protocol is secure against malicious adversaries. The security parameter is denoted by k.

Tools:

• Let π be a multiparty (outer) protocol for m clients and n = 2k servers, which is secure
for any number of corrupted clients and as long as less than k servers are corrupted by an
adaptive malicious adversary. For simplicity, the protocol π is such that all messages are sent
over a broadcast channel. In addition, every party broadcasts in every round (if π does not
instruct a party to broadcast in some round, then it sends an empty message λ). π computes
the function f where parties P1, . . . , Pm provide input and receive output; all other parties
Pm+1, . . . , Pm+n have no input or output. The parties P1, . . . , Pm are called clients, and the
parties Pm+1, . . . , Pm+n are called servers.

• Let π1, . . . , πm+n be the instructions for the parties in π. That is, the clients P1, . . . , Pm run
π1, . . . , πm and the ith server runs πm+i.

For the servers, namely for i = 1, . . . , n, let Fm+i be the reactive ideal functionality computing
πm+i. Loosely speaking, Fm+i is a functionality that receives m+n− 1 inputs in each round
and generates a single output; the m+n− 1 inputs are the values broadcast by all parties Pj

for j ̸= i in the previous round and the output is the value that Pi should broadcast in this
round. The exact description of the functionality Fm+i is more involved. This functionality
is actually run by the m real parties. Thus, each party inputs a vector of length m+ n with
the values broadcast in the previous round. The functionality then verifies that all vectors
input by the m clients are identical. If not, it outputs ⊥. If yes, it computes the next message
that Pm+i would send and hands it to all the m clients.

• We denote by F ϵ
m+i the functionality Fm+i in the covert model with deterrent ϵ. This means

that we consider an ideal functionality that computes Fm+i with the additional instructions
of the trusted party of the ideal model of the definition of covert adversaries; see Section A.2.
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Protocol 5.1 (Secure Computation for Malicious from Covert in the hybrid model)

• Inputs: Real parties P1, . . . , Pm hold respective inputs x1, . . . , xm

• The protocol: For every round of protocol π, the parties P1, . . . , Pm work as follows:

1. Each party Pj (1 ≤ j ≤ m) broadcasts the message that π instructs the client Pj to send
in this round (using πj), based on the messages from the last round.

2. For every i = 1, . . . , n, each party Pj (1 ≤ j ≤ m) sends Fϵ
m+i the vector of all messages

broadcast in the previous round. (In the first round, the vector contains m + n empty
values λ.)

3. For every i = 1, . . . , n, each party Pj (1 ≤ j ≤ m) receives an output from Fϵ
m+i. If the

output is corruptedℓ or abortℓ (see [1]), then Pj halts and outputs abortℓ. Otherwise, it
records the output as the message “broadcast” by server Pm+i in this round.

• Output: Each party Pj (1 ≤ j ≤ m) outputs the value that π instructs client Pj to output.

Protocol 5.1 uses these tools to obtain security in the presence of a malicious adversary con-
trolling an arbitrary number of the m parties. The protocol is defined in a hybrid model where the
functionalities F ϵ

m+1, . . . ,F ϵ
m+n are executed by a trusted party. Below, we derive security when

these functionalities are instantiated by real protocols.
We now state the security of Protocol 5.1. It is very straightforward, and this highlights the

conceptual advantage of this alternative IPS compiler.

Theorem 5.2 Let π be a protocol for m clients and n = 2k servers that securely computes the m-
party functionality f with abort, in the presence of an adaptive malicious adversary corrupting any
number of clients and less than k of the servers, and let ϵ > 0 be any constant. Then, Protocol 5.1
securely computes f with abort in the F ϵ

m+1, . . . ,F ϵ
m+n hybrid model, in the presence of an adaptive

malicious adversary corrupting any number of corrupted parties.

Proof: The intuition behind the proof has been described above. On the one hand, if an adversary
attempts to cheat in at least k of the F ϵ

m+i executions then it will be caught except with probability
(1 − ϵ)k; for constant ϵ this is negligible. On the other hand, if an adversary attempts to cheat
in less than k of the F ϵ

m+i executions, then π will maintain security because less than k = n/2
servers were corrupted. The formal proof works by showing how to simulate the real execution in
this setting.

Let A be an adaptive adversary for Protocol 5.1. We begin by constructing an adaptive adver-
sary Aπ for π that corrupts less than k servers and any number of clients, such that{

realπ,Aπ(x)
}

s≡
{
hybrid

Fϵ
m+i

Π,A (x)
}

(1)

where Π denotes Protocol 5.1. The adversary Aπ externally runs protocol π while internally
emulating an execution of Protocol 5.1 for A, as follows:

1. Whenever A corrupts a party from the set {P1, . . . , Pm} of clients, then Aπ corrupts that
party.

2. Whenever A broadcasts a message from some corrupted Pj with j ∈ {1, . . . ,m}, adversary
Aπ broadcasts the same message to all parties P1, . . . , Pm+n.
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3. Whenever A participates in an execution of F ϵ
m+i, adversary Aπ acts as follows:

(a) If A participates in the execution, and does not send abort, corrupted or cheat as input
to the trusted party (and so the honest parties receive output), then Aπ sets the output
of F ϵ

m+i for A to be the real message broadcast by Pm+i in this round of π.

(b) If A participates in the execution and sends corrupted or abort to the trusted party, then
Aπ broadcasts abort to all honest parties in π and halts.

(c) If A sends cheatm+i for some corrupted Pm+i for i ∈ {1, . . . , n} to the trusted party,
then with probability ϵ adversary Aπ broadcasts abort to all honest parties and halts.
In contrast, with probability 1 − ϵ (modeling the case that the cheat was undetected),
adversary Aπ corrupts party Pm+i in the execution of π. Then, it internally sends
undetected to A and receives back the output that A determines in this execution and
the internal state of the functionality. Aπ then sends this output to all honest parties in
π as the message from Pm+i in this round, and sets the state of Pi to be as sent by A.
From here on, Aπ runs Pm+i from this given state. (We note that if A sends cheatm+i

again for F ϵ
i then it works in exactly the same way, except that it does not need to

corrupt Pm+i again.)

The above instructions are followed unless undetected occurs k times. In this case, Aπ

does not corrupt any party, and just halts with output fail instead.

4. At the conclusion of the execution of π, adversary Aπ outputs whatever A outputs.

Let fail be the event that in k of the times that A sends cheatm+i to the trusted party (in the real
execution of π with Aπ or in the execution of Protocol 5.1 with A), the result is undetected. We
claim that {

realπ,Aπ(x) | ¬fail
}
≡
{
hybrid

Fϵ
m+i

Π,A (x) | ¬fail
}

. (2)

This follows almost immediately from the fact that each F ϵ
m+i runs the instructions of party Pm+i

in π exactly. Thus, the only deviation is in the case that A sends cheat in an F ϵ
m+i execution

and the result is undetected (in the case that the cheating is detected, then abort is received by
all in both cases). In this case of undetected, in Protocol 5.1 adversary A can fully determine the
message sent by Pm+i. However, this exact same behavior is achieved in the execution with Aπ by
having Aπ corrupt Pm+i and send the message determined by A. Thus, the output distributions
are identical.

The only difference that occurs is therefore in the case that k or more cheat attempts are made
and all are undetected (i.e., when the fail event occurs). The reason that this causes a discrepancy
is that Aπ is only able to corrupt less than k parties when running π, and it needs to corrupt a
new party every time undetected is obtained. Nevertheless, when conditioning on this event not
happening, we have that the executions are identical.

Combining (2) with the fact that Pr[fail] equals exactly ϵk in both the real execution of π with
Aπ and in the execution of Protocol 5.1 with A, and the fact that ϵk = ϵn/2 is negligible in n, we
obtain that (1) holds.

Now, by the security of π and the fact that Aπ corrupts at most m clients and less than k
servers, we have that there exists a simulator Sπ such that{

idealf,Sπ(x)
}

c≡
{
realπ,Aπ(x)

}
. (3)

We are now ready to construct our simulator S for Protocol 5.1. Simulator S works as follows:
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1. S defines the adversary Aπ based on A, as described above. (This can be done even if S is
given only black-box access to A because Aπ is just a “wrapper” for A.)

2. S runs the simulator Sπ on adversary Aπ.

3. When Sπ sends inputs to the trusted party for corrupted parties amongst the clients P1, . . . , Pm,
simulator S sends these same inputs to its trusted party. (Recall that by the protocol defini-
tion only parties P1, . . . , Pm have inputs or outputs.)

4. When S receives back outputs for corrupted parties amongst P1, . . . , Pm, it hands these
outputs to Sπ.

5. S outputs whatever Sπ outputs.

It is immediate that the output distribution of S and Sπ is identical; that is:{
idealf,S(x)

}
≡
{
idealf,Sπ(x)

}
. (4)

Combining Equations (1), (3) and (4), we have that{
idealf,S(x)

}
c≡
{
hybrid

Fϵ
m+i

Π,A (x)
}
,

completing the proof that Protocol 5.1 securely computes f .

The protocol in the real model. The above description and analysis refer to a hybrid model
where a trusted party is used to compute all of the F ϵ

m+i functionalities. In order to achieve security
in the presence of static adversaries in the stand-alone model, it suffices to securely compute these
functionalities in the presence of covert (static) adversaries. However, since these functionalities
are called in parallel (note that because the functionalities maintain a state between invocations,
calling them sequentially is still not “sequential composition” as in the sense of [5]), we require that
the protocols securely computing them be secure under parallel composition. Thus, applying the
sequential composition theorem of [5], as modified to the covert setting in [1], we have:

Corollary 5.3 Let π be a protocol for m clients and n servers that securely computes the m-party
functionality f with abort, in the presence of an adaptive malicious adversary corrupting any number
of clients and a minority of the servers. Furthermore, let πm+1, . . . , πm+n be m-party protocols that
securely compute F ϵ

m+1, . . . ,F ϵ
m+n for some constant ϵ > 0, and maintain security in the presence

of a static adversary when run in parallel. Then, the real protocol derived by running Protocol 5.1
with πm+1, . . . , πm+n securely computes f in the presence of a static malicious adversary corrupting
any number of corrupted parties.

Constructing protocols πm+1, . . . , πm+n to be secure under parallel composition can yield ad-
ditional complexity. We remark that if we redefine the functionalities F ϵ

m+i so that instead of
maintaining state between executions, the parties share an authenticated state (so that it cannot
be modified by a malicious party), then the requirement for parallelism is no longer needed. If
m = 2 then the protocols πm+1, . . . , πm+n can be implemented as is described in [1]. If m > 2,
then these protocols can be constructed using the efficient multiparty constructions, secure in the
presence of covert adversaries, appearing in [20].
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Adaptive security and universal composability. Corollary 5.3 refers to static adversaries
and the stand-alone model. In order to obtain adaptive security, the protocols πm+1, . . . , πm+n

need to be adaptively secure. Likewise, if π and πm+1, . . . , πm+n are all universally composable,
then the result is also universally composable.

5.2 Secure Computation for Covert from Semi-Honest Adversaries

We describe a black-box transformation from semi-honest protocols to covert protocols, using a
covert oblivious transfer protocol. This result answers an open question left by the work of [10],
which showed a similar transformation in the information-theoretic setting with an honest majority,
but did not cover the case of a majority of corrupt parties. The construction is very similar to
the original construction of IPS [27] with two exceptions. First, only small watchlists are used.
Second, it suffices for us to use an oblivious transfer protocol with security for covert adversaries,
rather than security for malicious adversaries, in order to set up the watchlists. (Oblivious transfer
protocols with security for covert adversaries were described in [1], based on homomorphic encryp-
tion. Alternatively, one can use the black-box construction of covert OT from O(1) invocations of
semi-honest OT described in Lemma 5.7 below.)

We construct a protocol for computing a function f for m parties, where any number of them
can be corrupt. The security parameter is denoted by k. As in Protocol 5.1, we assume that all
messages are broadcast in π and there is no point-to-point communication (private point-to-point
communication can be implemented using public-key encryption over the broadcast channel). This
enables us to use only the first type of watchlist described in Section 2 since the inner protocols
output the actual broadcast message to all clients, and not just shares of the messages sent. Thus,
the parties all know the messages sent in the previous round and it suffices to use watchlists to just
check that the semi-honest protocol instructions are faithfully followed.

Tools:

• Let π be a multiparty protocol for m clients and n = 4m servers, which is secure for any
number of corrupted clients and less than n/2 corrupted servers. As in Protocol 5.1, all
messages of π are sent over a broadcast channel and every party broadcasts in every round.
Furthermore, the clients P1, . . . , Pm are the only ones who provide input and receive output.

• Let π1, . . . , πm+n be the instructions for the parties in π, and let Fm+i be the reactive ideal
functionality computing πm+i, for i = 1, . . . , n. The functionality is as defined for Protocol 5.1.

• Let ρm+1, . . . , ρm+n be protocols such that ρm+i securely computes πm+i between m parties
in the presence of semi-honest adversaries. Without loss of generality we assume that the
random-tape of each party in each ρi is of length exactly k (a pseudorandom generator can
be used if it is longer).

The compiler is described in Protocol 5.4.

Security. The proof of security of this compiler is almost exactly the same as the original compiler
of [27]. In order to see this, observe that Protocol 5.4 is exactly the same as that of [27] with two
exceptions. First, we use a 1-out-of-4m oblivious transfer and not a Rabin oblivious transfer (this
difference is already discussed in Section 4.1). Second, we use oblivious transfer that is secure in
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Protocol 5.4 (Secure Multiparty Computation for Covert from Semi-Honest)

• Inputs: Real parties P1, . . . , Pm hold respective inputs x1, . . . , xm

• The protocol:

1. Phase 1 – set up watchlists:

(a) For every j = 1, . . . ,m, party Pj chooses a vector of n = 4m random seeds

sj1, . . . , s
j
4m ∈ {0, 1}n. The parties all then run m multi-sender 1-out-of-4m oblivious

transfers that are secure in the presence of covert adversaries, so that each party
receives Pj receives {sirj}

m
i=1 for some rj ∈R {1, . . . , n}.

(b) At the conclusion of this phase, each client Pj holds the following:

i. A vector sj = (sj1, . . . , s
j
n) of random seeds

ii. A set of strings {sirj}
m
i=1

2. Phase 2 – emulate π: For every round of the n = 4m-party protocol π, the parties
P1, . . . , Pm work as follows:

(a) Each party Pj (1 ≤ j ≤ m) broadcasts the message that π instructs the client Pj

to send in this round, based on the messages from the last round.

(b) For every i = 1, . . . , n, each party Pj (1 ≤ j ≤ m) runs ρm+i using the input as the

vector of all messages broadcast in the previous round and random-tape sji .

(c) Each party Pj checks its watchlists for the executions run in the previous step.
Specifically, for every ℓ = 1, . . . ,m (ℓ ̸= j), party Pj verifies that party Pℓ used the
random tape sℓrj for the computation of protocol ρm+rj . If no, then Pj outputs
abort.

(d) For every i = 1, . . . , n, each party Pj (1 ≤ j ≤ m) receives from ρm+i an output
and records it as the message “broadcast” by Pi in this round.

• Output: Each party Pj (1 ≤ j ≤ m) outputs the value that π instructs client Pj to output.

the presence of covert and not malicious adversaries. This is also of little consequence, because
there exist modular composition theorems for the covert setting that are analogous to those of
the malicious setting. Thus, all that remains is to observe that setting n = 4m where m is the
number of clients, and using a protocol π that is secure for any t < n/2 = 2m corruptions, it
suffices to use only a watchlist containing a single server and security is obtained in the presence of
covert adversaries. Based on the concrete parameters we used above, we have that in order for the
corrupted parties to cheat, they must cheat in more than m of the emulated executions. In order to
see this, observe that there are at most m− 1 corrupted clients. Furthermore, together they view
at most m−1 servers via their watchlists, because each party’s watchlist has just one server. Thus,
overall they have the effect of having “corrupted” m− 1 of the 4m servers in π. Thus, in order to
cheat in π they must cheat in over m of the server emulations. In order to cheat without being
detected, these incorrect server emulations must all go undetected, meaning that none of them took
place on the honest party’s watchlist. Now, the probability that a single incorrect emulation will
be detected is at least 1/4m (at least one corrupted party must cheat, and then it will be caught
if it cheats where the watchlist with the honest party is). Thus, the probability that none of the
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incorrect emulations will be detected is strictly less than

(
1− 1

4m

)m

=

((
1− 1

4m

)4m
) 1

4

<

(
1

e

) 1
4

(5)

and so we obtain security with ϵ-deterrent for ϵ > 1− e−0.25 ≈ 0.22. We therefore conclude:

Theorem 5.5 Let π be a protocol for m clients and n = 4m servers that securely computes the
m-party functionality f with abort, in the presence of an adaptive malicious adversary corrupting
any number of clients and a minority of servers. Then, Protocol 5.4 securely computes f in the
Fm+1, . . . ,Fm+n (semi-honest) hybrid model, where n = 4m, in the presence of an adaptive covert
adversary corrupting any number of corrupted parties, with ϵ-deterrence for ϵ > 1− e−0.25.

We have just taken one set of parameters, in order to demonstrate that one can set k = O(m)
here. It is possible to choose different values, in order to achieve whatever value of ϵ is desired.
Recall also that Protocol 5.1 works well even for values of ϵ that are small. Thus, it is not necessary
to increase the number of servers too much.

5.3 The Semi-Honest Cost of Malicious Oblivious Transfer

In this section, we present an application of our modified IPS compiler to the question of the cost of
black-box constructions of oblivious transfer that is secure in the presence of malicious adversaries,
from oblivious transfer that is secure only in the presence of semi-honest adversaries.

Currently, the only known black-box construction of malicious from semi-honest oblivious trans-
fer is due to [25, 21]; see [22] for the combined result. The cost of this construction is O(k2) invoca-
tions of a semi-honest oblivious transfer for every malicious oblivious transfer for security parameter
k. This count is obtained as follows. First, defensible oblivious transfer is constructed, at the cost
of just a single semi-honest oblivious transfer.4 Next, the defensible oblivious transfer is boosted
so that defensible security is obtained if one of the parties is corrupted, and malicious security is
obtained if the other party is corrupted. The cost of this transformation is O(k) defensible oblivi-
ous transfers. Finally, fully secure oblivious transfer is obtained by transforming the intermediate
construction, where the cost of this transformation is O(k) of these intermediate oblivious transfers.
Thus, the overall cost is O(k2) semi-honest oblivious transfers, where k is the security parameter.

We stress that we do not count the cost of commitments, coin tossing and any other primitives
that can be obtained from one-way functions. This makes sense because oblivious transfer is more
“expensive”, both in terms of the fact that it is a strictly stronger hardness assumption in the
black-box world, and because it is typically also computationally more expensive. We stress also
that the original IPS compiler cannot be used for this task since it requires malicious oblivious
transfer to start with.

We now use our IPS-type compilers via covert adversaries in order to obtain a black-box con-
struction of an oblivious transfer protocol that is secure in the presence of malicious adversaries, at
linear rather than quadratic cost. That is, the construction uses only O(k) semi-honest oblivious

4A defensible oblivious transfer provides privacy against adversaries which provide a good “defense”. A defense
is an input and random-tape that is provided by the adversary after the execution of the protocol. A defense is
“good” if an honest party, given that input and random-tape, would have sent the same messages as those sent in
the protocol.
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transfers. This demonstrates that our optimized compiler has quantitative benefits from a theo-
retical perspective, as well as deepening our understanding of security in the presence of covert
adversaries. We have the following theorem:

Theorem 5.6 There exists a black-box reduction from bit oblivious transfer that is secure in the
presence of malicious adversaries to one-way functions and O(k) invocations of bit oblivious transfer
that is secure in the presence of semi-honest adversaries.

Proof: The oblivious transfer functionality is computed betweenm = 2 parties using an arithmetic
circuit of constant size (just compute (1− σ) · x0 + σ · x1). We use Protocol 5.1 for computing this
circuit, by running a protocol π for 2 clients and n = 2k servers computing the circuit implementing
the oblivious transfer functionality. By [1], and since ϵ is constant, each F ϵ

m+i used in Protocol 5.1 to
implement a basic step of protocol π, can be securely computed in the presence of covert adversaries
with O(1) covert oblivious transfers (and one-way functions). In Lemma 5.7, we use the results
of [22] to show that there exists a black-box reduction from oblivious transfer that is secure in the
presence of covert adversaries to one-way functions and O(1) invocations of oblivious transfer that
is secure in the presence of semi-honest adversaries. Therefore, each F ϵ

m+i can be computed using
O(1) semi-honest oblivious transfers. There are a constant number of multiplication gates, and
each of these requires O(k) invocations of F ϵ

m+i protocols. We therefore conclude that the overall
number of semi-honest oblivious transfers is O(k), as required.

It remains to prove that there exists the aforementioned reduction from covert oblivious transfer
to one-way functions and O(1) semi-honest oblivious transfers.

Lemma 5.7 There exists a black-box reduction from oblivious transfer that is secure in the presence
of covert adversaries to one-way functions and O(1) invocations of oblivious transfer that is secure
in the presence of semi-honest adversaries.

Proof: It is possible to provide a direct proof of this fact. However, this would essentially be no
more than reproving claims that appear in [22]. Specifically, it is shown in [21, 22] that there exists
a black-box reduction from oblivious transfer that is secure in the presence of defensible adversaries
to one-way functions and a single invocation of oblivious transfer that is secure in the presence of
semi-honest adversaries. (Recall that a protocol is secure in the presence of defensible adversary
if it is secure as long as no malicious adversary can simultaneously break privacy and provide a
“defense” which is a retroactive proof that it behaved honestly.) Next, it is shown in [25, 22] that
there exists a black-box reduction from oblivious transfer that is secure in the presence of malicious
adversaries to one-way functions and O(k2) invocations of oblivious transfer that is secure in the
presence of defensible adversaries (this is actually proven in two steps as we will see below). The
transformations of [25, 22] are such that O(k2) invocations are used to obtain an error of 2−k,
where “error” means cheating that is undetected. This construction works by having the parties
run multiple defensible oblivious transfers on random inputs, and then uses cut-and-choose to have
the parties prove that they behaved honestly. This cut-and-choose is a request by one party to
the other to provide defenses for a subset of the oblivious transfers that were run. The proof of
security demonstrates that the resulting protocol is simulatable, and thus secure in the presence of
malicious adversaries, if the adversary can provide defenses for the unopened oblivious transfers.
Stated differently, the protocol is simulatable unless the adversary is caught cheating, and thus
is secure in the presence of covert adversaries even when fewer oblivious transfers are executed.
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It can be verified in a straightforward way that two defensible transfers are needed to boost the
security of the defensible oblivious transfer so that it provides security in the presence of a covert
receiver with ϵ = 1/2. (See [22, Section 4], and specifically the proof of Claim 4.3.) This can
then be further boosted to provide security in the presence of a covert sender and receiver using
two oblivious transfers of the previous type. Thus, overall four semi-honest oblivious transfers are
required.5 This completes the proof.

Remark 1: It is tempting to apply the notion of extending oblivious transfers [3, 26] in order to
obtain a linear reduction, by first extending O(k) semi-honest oblivious transfers to O(k2) semi-
honest oblivious transfers and then applying [22] to obtain a single malicious oblivious transfer.
However, this does not work since the construction of [3] is not black-box in the one-way function.
Furthermore, the construction of [26] relies on the assumption of correlation-robust hash functions.

Remark 2: In the case of many oblivious transfers, the results of [27, 22] imply constant overhead.
That is, they demonstrate that it is possible to obtain N oblivious transfers that are secure in the
presence of malicious adversaries givenN+poly(k) oblivious transfers that are secure in the presence
of semi-honest adversaries. For an asymptotically large N , this implies constant overhead. Our
above result relates to the different case of a single or few oblivious transfers. In such a case, we
obtain a linear reduction, in contrast to the quadratic reduction of [22].

Remark 3: We stress that in writing O(k) or O(k2), we consider protocols that achieve security
except with probability 2−k. (Equivalently, we could write that the construction of [25, 21] requires
ω(log2 k) semi-honest oblivious transfers, while our protocol requires ω(log k) semi-honest oblivious
transfers, and security would hold except with negligible probability, i.e., except with probability
k−ω(1).)

6 The Concrete Efficiency of IPS

In this section, we describe our analysis of the concrete efficiency of the best IPS-type protocols.
Due to the high level of abstraction in the IPS construction, its concrete complexity was completely
unknown.

The protocol that we examined is based on sharing values using block secret sharing as in [14], in
which ℓ values are encoded in a single polynomial. Thus, given blocks a = (a1, ..., aℓ), b = (b1, ..., bℓ)
which are shared using two polynomials of degree δ, addition results in a sharing of a polynomial
of degree δ that hides the block a+ b = (a1 + b1, ..., aℓ + bℓ), while multiplication results in sharing
a polynomial of degree 2δ which hides the block ab = (a1b1, ..., aℓbℓ); as usual, a protocol is used to
reduce the degree of the polynomial to δ.

In the two-party protocol, after sharing the inputs, one side (Bob) will provide shares for
blinding the output of the gates, and the other side (Alice) will receive these blinded outputs. Alice
will then recover the blinded results and form the inputs for the next layer (proving to Bob that

5It is possible to prove that two defensible – and thus semi-honest – oblivious transfers actually suffice. However,
this is not of significance for this theoretical result, and we therefore did not see this as justifying reproving much
of [22].
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they were formed correctly). Bob will provide the un-blinding shares (proving to Alice that they
were formed correctly). This will be done for each layer, until the final outputs are computed.

In the IPS setting the sharing of inputs among n servers is simulated by additively sharing those
shares between the two clients, and the operations on shares are simulated as described in [27].
Type I computations will be encountered during the proofs described below, these are computations
for which one side can perform by itself and send the results on the watchlists for verification by
the other side. Type II computations are ones that must involve both sides. Addition is easily
simulated by local computations by each client, while multiplication involves a semi-honest inner
protocol for its simulation, as described below.

Our in-depth analysis of the protocol, described in Appendix B, reveals that overall complexity
of the protocol is dominated by the number of multiplications and the number of OTs (both the
communication complexity and other computational operations are negligible in comparison to
these). Our efficiency analysis will therefore present those two factors. The OTs are only needed
for the inner semi-honest multiplication protocols,6 and so the other building blocks will be analyzed
only in terms of the number of multiplications. We emphasize that these OTs must only be secure
against a semi-honest adversary, and not a malicious one.

6.1 An Analysis of the Building Blocks

Secret sharing for blocks: This secret sharing scheme is a variant of Shamir’s secret sharing
[35], presented in [14]. Each polynomial encodes a block of ℓ values. The cost of sharing w elements
among n servers, using blocks of size ℓ and polynomials of degree δ, is (w/ℓ)(δ2+nδ) multiplications.
Details are given in Appendix B.1.

Proving that shares lie on δ-degree polynomials: After sharing the secrets it must be proved
that the shares are indeed encoded by z polynomials, each of degree δ (each polynomial is used to
hide ℓ field elements; depending on the number of inputs, multiple polynomials must be used for
the sharing). A protocol for such a proof is presented in [28]. It requires δ(z+n+k) mutliplications
(details are in Appendix B.2).

Proving some replication pattern of shared blocks: The protocol requires parties to prove
that certain shared blocks follow some replication pattern (namely that a certain output value is
used as an input value for the next layer). The protocol we used is mentioned in the computation
complexity analysis of [28]. See details in Appendix B.3. The cost is (4δ)2+4δn+2((2δn+(2δ)2)u+
(δn + δ2)v) + 2(n + k)(u + v) mutliplications, where u (resp. v) is the number of output (resp.
input) blocks represented by 2δ-degree (resp. δ-degree) polynomials.

Semi-honest inner multiplication: For multiplication gates the parties run a semi-honest pro-
tocol for the functionality (x1, x2) 7→ (x1x2− r, r) for a random r ∈R F . Six different protocols are
presented for this functionality in [28]. We present the analysis for the most efficient protocols only
(based on our concrete analysis for all options). The first protocol is based on packed Reed-Solomon

6We remark that the OTs needed for setting up the watchlists (which must be secure against malicious adversaries)
are also a factor. However, they depend only on the number of servers n and so can be considered at the end.
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encoding and is black-box in the field [28], and the second protocol is due to Glboa [17] and makes
nonblack-box usage of the field and assumes standard bit representation of elements.7

As is detailed in Appendix B.4, for a security parameter s = 40 giving error 2−40, the packed
Reed-Solomon encoding protocol costs 2734 multiplications and 16 1-out-of-2 OTs per inner mul-
tiplication, while the protocol of [17] uses 40 multiplications and 40 1-out-of-2 OTs. Namely, one
protocol is more efficient in terms of OTs and the other is more efficient in terms of multiplications.
For concrete numbers this phenomenon might present implementers with a real dilemma.

6.2 Instantiating the parameters

In order to count concrete efficiency, the values of the different parameters must be set. We do not
claim to have found the absolute optimal parameters, as the analysis of their effect on the overhead
is very complex. We do present for each parameter the different considerations affecting the choice
of its value, and eventually show that the protocol is comparable in its efficiency to other protocols
from the literature and may be competitive in some settings.

The four main parameters that must be set are the degree of the polynomials δ, the block
size ℓ, the number of corrupted parties tolerated t, and the number of servers n. Three out of
the four different parameters, the degree, the block size and the corruption threshold, are tightly
interconnected in that setting any two of them determines the third one. In addition, these three
parameters are all chosen as a function of the number of servers n, and given their descriptions
the actual concrete value of n is chosen (independently of the circuit). As we will see below, the
determination of the degree δ is a straightforward choice. We then determine the block size based
on the actual circuit being computed, thereby essentially setting the threshold.

The degree δ: Due to the replication proving protocol it must hold that δ < n
4 . This is due to

the fact that we need to be able to reconstruct a polynomial which has degree 4δ (this is because
two multiplications are applied to the original polynomial; one from a multiplication dictated by
the circuit itself, and another one coming from the protocol to prove replication patterns). Other
than that, it seems that we should take the δ to be as big as we can, allowing us later to use a
bigger block size. For simplicity we will take δ = n

4 , although in reality we need δ = n
4 − 1.

The block size ℓ: The block size has to be strictly smaller than the degree δ, but otherwise the
larger the block size, the more efficient the outer protocol gets. This is because more multiplications
are carried out together (note that there is no use in having a block size larger than the width of a
layer in the circuit since this already upper bounds the number of multiplications that can be carried
out together). However, the number of corrupted servers that the outer protocol can tolerate is
δ− ℓ, thus the closer ℓ is to δ, the smaller the fraction of corrupt servers that can be tolerated. As
a result, more servers are required in order to ensure that the probability of catching the adversary
cheating in the server simulation does not go down.

It is clear that the block size should not be bigger than the number of multiplication gates in
a layer (this is because we work with blocks in the same layer and not across layers). Note that if
the block size equals the number of multiplication gates in a layer, then we can multiply the whole
layer at the cost of multiplying just the shares of one block. Below we present specific efficiency

7We do not present protocols based on homomorphic encryption since, even though they might be efficient,
comparing them to the other protocols is more complex as they use completely different building blocks.
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values for two concrete circuit parameters. We do not present a general optimum for every possible
circuit structure.

The corruption threshold t: The number of the corrupt servers that we can tolerate is dictated
by the chosen degree δ and block size ℓ. As shown in [14], up to t < δ− ℓ corrupt servers receive no
information about the secret block when using block secret sharing with degree δ and block size ℓ.
Thus, t is set to δ − ℓ− 1.

The number of servers n: We have already established that n = O(mk) is enough in order for
the adversary to be caught with an overwhelming probability if it tries to cheat in t servers. Let us
denote τ = n

t , and so 1
τ is the ratio of servers that the adversary needs to corrupt. In general we

can say that n = O(mk) = amk for some parameter a, and what we wish to analyze now is what
is the best a to choose. Because a does not affect any other parameter than the number of servers,
we conclude that we should choose the value that will minimize that number n. We have already
seen in Section 1.2.3 that the naive approach of choosing a as low as possible is not optimal, since
a small a allows for a higher cheating probability of the adversary which in turn must be reduced
by raising k. Since n = amk, the aim is to find the optimal tradeoff between a and k that gives
the smallest n for a given error probability. The analysis below reveals that for the two-party case
the best choice is to take a = τ , and use n = 2τk servers.

The adversary observes (m− 1)k servers in its watchlists and so in order to cheat in the outer
protocol it needs to corrupt more than amk

τ − (m− 1)k more servers (this is because t = amk
τ and

it needs to corrupt more than t servers in order to cheat). The adversary succeeds in corrupting
this many servers (i.e., cheat in this many inner protocols) without being caught when none of the
corrupted servers are in the honest client’s set of k watchlists. Since there are amk servers, this
happens with probability (

amk − k
amk
τ

− (m− 1)k

)
(

amk
amk
τ

− (m− 1)k

) .

We now wish to minimize this cheating probability. Observe that this function depends on a, m,
k and τ , where m and τ are fixed (m is the number of clients, and τ is fixed by the outer protocol
that is being used). Thus, for any given error probability, fixing one of a and k determines the
other. Specifically, if we fix the allowed error probability to be 2−40, for example, then for any given
a there exists a smallest possible k that gives an error probability of at most 2−40. We therefore
fix the error probability and find the value of a that minimizes k and thus the number of servers
n, while staying within the given error probability.
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Denote ζ = amk
τ − (m− 1)k. Then, we have:

Pr[cheat] =

(
amk − k

amk
τ

− (m− 1)k

)
(

amk
amk
τ

− (m− 1)k

) =

(
amk − k

ζ

)
(
amk
ζ

)
=

(amk − k)!

ζ! · (amk − ζ − k)!
· ζ! · (amk − ζ)!

(amk)!

=
(amk − k)!

(amk)!
· (amk − ζ)!

(amk − ζ − k)!

=
1

amk · (amk − 1) · (amk − k + 1)
· (amk − ζ) · (amk − ζ − 1) · · · (amk − ζ − k + 1)

=
amk − ζ

amk
· amk − ζ − 1

amk − 1
· · · amk − ζ − k + 1

amk − k + 1

≤
(
amk − ζ

amk

)k

Plugging in the value of ζ = amk
τ −mk + k, we obtain

Pr[cheat] ≤

(
amk − amk

τ +mk − k

amk

)k

=

(
1− 1

τ
+

1

a
− 1

am

)k

.

We wish to have Pr[cheat] = 2−40 and thus

k · log
(
1− 1

τ
+

1

a
− 1

am

)
= −40,

or equivalently

k =
−40

log
(
1− 1

τ + 1
a −

1
am

) ≈ 40
1
τ −

1
a + 1

am

,

using the fact that log(1− x) ≈ −x. Since n = amk, we derive that

n ≈ am ·

(
40

1
τ −

1
a + 1

am

)
=

40am
1
τ −

1
a + 1

am

.

Deriving by a and solving, we have that a minima is reached when

a ≈ 2τ ·
(
1− 1

m

)
.

We conclude that for an error probability of 2−40, the constant a should be set at about 2τ ·(1−1/m).
In the special case of m = 2 clients, this means that a should be set to τ . In Section 1.2.3, we
analyzed the concrete parameters for the case of m = 2 clients, and an outer protocol tolerating
t < n/2 corruptions. In that case, we showed that it is better to set n = 4k than n = 3k. Observe
that this is exactly the result of the above general analysis: For m = 2 and τ = n/t = 2, we have
that n = amk = τmk = 4k is optimal.
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Numerical experiments. We have run a Python script to find the best choice of a for for many
different block sizes (and thus various corruption thresholds), ranging from ℓ = n/5 to ℓ = n/105,
for an error probability of less than 2−40). We ran this script for different values of m (the number
of clients). The results of these experiments are that for the two party case (m = 2) the best choice
is to take a = τ , and have n = 2τk servers. For larger values of m the results are different: for
example, for m = 5 the best choice is a ≈ 1.5τ , and for m = 10 the best choice is a ≈ 2τ . These
results support our analysis above stating that a should be approximately 2τ · (1− 1

m); observe that
for m = 2, m = 5 and m = 10 we obtain respective values of a = τ , a = 1.6τ and 1.8τ , which are
close to the numerical results.

6.3 Setting Concrete Values

We now show the concrete cost of IPS based on the results of our analysis regarding parameter
instantiation. The choices of parameters are demonstrated for two different circuits, which clarify
the dilemmas that arise in practice. As stated above the only parameter which we did not set
independently of the circuit, but rather want to optimize for the concrete circuit, is the block size.
We therefore calculated the number of operations required for a large range of block sizes. Our
calculations are based on a combination of an analytic and numerical analysis of the parameters
that yield a cheating probability of at most 2−40.

The first example uses circuit parameters similar to the AES circuit of [12], assuming 2400
multiplication gates split over 100 layers. Based on our Python script, we found that in this
case minimal values for the number of OTs and the number of multiplications occur for the same
block size of ℓ = n/73 (as we will see in the next example, both of these costs are not necessarily
minimized with the same choice of block size). Remembering that δ = n/4, the threshold ratio is
τ = 1

(δ−ℓ)/n ≈ 4.231. Setting a = τ as suggested above results in n = 4.231 · 2k. In order to obtain

a cheating probability of 2−40, each client must have a watchlist of size k = 207, and the number of
servers is n ≈ 1752. Note that as expected, the block size, of n/73 = 24, is equal to its maximum
reasonable value, namely to the width of a layer of the circuit, which is also 24.

The number of OTs and multiplications which are required in this setting depends on the inner
multiplication protocol that is used (based on Reed-Solomon codes, or on the protocol of [17]).
The first choice results in approximately 5.5 · 106 OTs and 5.5 · 109 multiplications, while the latter
choice requires approximately 13.8 · 106 OTs and 4.5 · 109 multiplications. The choice of the inner
protocol is therefore not trivial, and depends on the properties of concrete implementations of
the OT and multiplication primitives. Recall that multiplications are in a finite field of size 240

and therefore elements fit in a single word of a modern 64-bit architecture, and can be done very
efficiently. The OTs need only be secure against semi-honest adversaries, and so can be efficiently
implemented using methods of extending OT as in [26]. Given these two observations, the run
time of the protocol seems reasonable in comparison to that of other protocols providing security
against malicious adversaries.

The second example is of a circuit of 30000 multiplication gates split over 10 layers, and results
in another optimization dilemma. Setting the block size ℓ = n/5.7 results in the minimal number
of OTs, but minimizing the number of multiplications requires setting ℓ = n/13.1. The actual
numbers of operations are described below.

n k RS OT Gilboa OT RS mult Gilboa mult

ℓ = n/5.7 19554 729 5.6 · 106 11.1 · 106 54 · 109 53 · 109
ℓ = n/13.1 3362 292 12 · 106 31 · 106 13 · 109 11 · 109
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The reason for this tradeoff is that the number of OTs is minimized when the block size can
accommodate an entire layer in a single block, but this setting requires more servers (compared to
a smaller block size), and so multi-point evaluation and interpolation become more expensive (as
they depend on the number of servers), which results in an increased amount of multiplications.
Observe also that setting ℓ = n/5.7 results in a much larger number of servers which in turn affects
the cost of the watchlist setup protocol. Plugging in the cost of our watchlist setup (15n + k
exponentiations), we have that when ℓ = n/5.7 the setup cost is 294, 039 exponentiations, versus
just 50, 722 when ℓ = n/13.1. This cost may also weigh in as a factor. (The actual optimum might
be taking some block size between these two given values, but this depends on the cost of a single
OT compared to the cost of a single multiplication.)

We conclude that the IPS protocol may be competitive in some settings. We are currently
implementing the protocol in order to empirically verify our analysis and conclusions.
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A Security in the Presence of Covert Adversaries

A.1 Motivation

The definition of security in this model is based on the ideal/real simulation paradigm (as in the
standard definition of security today; see [5, 18]), and provides the guarantee that if the adversary
cheats, then it will be caught by the honest parties (with some probability). In order to understand
what we mean by this, we have to explain what we mean by “cheating”. Loosely speaking, we say
that an adversary successfully cheats if it manages to do something that is impossible in the ideal
model. Stated differently, successful cheating is behavior that cannot be simulated in the ideal
model. Thus, for example, an adversary who learns more about the honest parties’ inputs than
what is revealed by the output has cheated. In contrast, an adversary who uses pseudorandom
coins instead of random coins (where random coins are what are specified in the protocol) has not
cheated.

We are now ready to informally describe the guarantee provided by this notion. Let 0 < ϵ ≤ 1
be a value (called the deterrence factor). Then, any attempt to cheat by a real adversary A is
detected by the honest parties with probability at least ϵ. Thus, provided that ϵ is sufficiently
large, an adversary that wishes not to be caught cheating will refrain from attempting to cheat,
lest it be caught doing so. Clearly, the higher the value of ϵ, the greater the probability adversarial
behavior is caught and thus the greater the deterrent to cheat. This notion is therefore called
security in the presence of covert adversaries with ϵ-deterrent. Note that the security guarantee does
not preclude successful cheating. Indeed, if the adversary decides to cheat it may gain access to
the other parties’ private information or bias the result of the computation. The only guarantee
is that if it attempts to cheat, then there is a fair chance that it will be caught doing so. This
is in contrast to standard definitions, where absolute privacy and security are guaranteed for the
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given type of adversary. We remark that by setting ϵ = 1, the definition can be used to capture a
requirement that cheating parties are always caught.

The above intuitive notion can be interpreted in a number of ways. We present the main
formulation here. The definition works by modifying the ideal model so that the ideal-model
adversary (i.e., simulator) is explicitly given the ability to cheat. Specifically, the ideal model is
modified so that a special cheat instruction can be sent by the adversary to the trusted party. Upon
receiving such an instruction, the trusted party tosses coins and with probability ϵ announces to
the honest parties that cheating has taken place (by sending the message corruptedi where party
Pi is the corrupted party that sent the cheat instruction). In contrast, with probability 1 − ϵ, the
trusted party sends the honest party’s input to the adversary, and in addition lets the adversary
fix the output of the honest party. We stress that in this case the trusted party does not announce
that cheating has taken place, and so the adversary gets off scot-free. Observe that if the trusted
party announces that cheating has taken place, then the adversary learns absolutely nothing. This
is a strong guarantee because when the adversary attempts to cheat, it must take the risk of being
caught and gaining nothing.

A.2 The Actual Definition

We begin by presenting the modified ideal model. In this model, we add new instructions that the
adversary can send to the trusted party. Recall that in the standard ideal model, the adversary can
send a special aborti message to the trusted party, in which case the honest party receives aborti as
output. In the ideal model for covert adversaries, the adversary can send the following additional
special instructions:

• Special input corruptedi: If the ideal-model adversary sends corruptedi instead of an input,
the trusted party sends corruptedi to the honest party and halts. This enables the simulation
of behavior by a real adversary that always results in detected cheating. (It is not essential
to have this special input, but it sometimes makes proving security easier.)

• Special input cheati: If the ideal-model adversary sends cheati instead of an input, the trusted
party tosses coins and with probability ϵ determines that this “cheat strategy” by Pi was
detected, and with probability 1− ϵ determines that it was not detected. If it was detected,
the trusted party sends corruptedi to the honest party. If it was not detected, the trusted
party hands the adversary the honest party’s input and gives the ideal-model adversary the
ability to set the output of the honest party to whatever value it wishes. Thus, a cheati
input is used to model a protocol execution in which the real-model adversary decides to
cheat. However, as required, this cheating is guaranteed to be detected with probability at
least ϵ. Note that if the cheat attempt is not detected then the adversary is given “full cheat
capability”, including the ability to determine the honest party’s output.

The idea behind the new ideal model is that given the above instructions, the adversary in the
ideal model can choose to cheat, with the caveat that its cheating is guaranteed to be detected
with probability at least ϵ. We stress that since the capability to cheat is given through an “input”
that is provided to the trusted party, the adversary’s decision to cheat must be made before the
adversary learns anything (and thus independently of the honest party’s input and the output).

We are now ready to present the modified ideal model. Let ϵ : N→ [0, 1] be a function. Then,
the ideal execution for a function f : {0, 1}∗×{0, 1}∗ → {0, 1}∗×{0, 1}∗ with parameter ϵ proceeds
as follows:
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Inputs: Each party obtains an input; the ith party’s input is denoted by xi; we assume that all
inputs are of the same length, denoted n. The adversary receives an auxiliary-input z.

Send inputs to trusted party: Any honest party Pj sends its received input xj to the trusted
party. The corrupted parties, controlled by A, may either send their received input, or send
some other input of the same length to the trusted party. This decision is made by A and
may depend on the values xi for i ∈ I and the auxiliary input z. Denote the vector of inputs
sent to the trusted party by w.

Abort options: If a corrupted party sends wi = aborti to the trusted party as its input, then the
trusted party sends aborti to all of the honest parties and halts. If a corrupted party sends
wi = corruptedi to the trusted party as its input, then the trusted party sends corruptedi to
all of the honest parties and halts. If multiple parties send aborti (resp., corruptedi), then the
trusted party relates only to one of them (say, the one with the smallest i). If both corruptedi
and abortj messages are sent, then the trusted party ignores the corruptedi message.

Attempted cheat option: If a corrupted party sends wi = cheati to the trusted party as its
input, then the trusted party works as follows:

1. With probability ϵ, the trusted party sends corruptedi to the adversary and all of the
honest parties.

2. With probability 1 − ϵ, the trusted party sends undetected to the adversary along with
the honest parties’ inputs {xj}j /∈I . Following this, the adversary sends the trusted party
output values {yj}j /∈I of its choice for the honest parties. Then, for every j /∈ I, the
trusted party sends yj to Pj .

If the adversary sent cheati, then the ideal execution ends at this point. Otherwise, the ideal
execution continues below.

Trusted party answers adversary: The trusted party computes (f1(w), . . . , fm(w)) and sends
fi(w) to A, for all i ∈ I.

Trusted party answers honest parties: After receiving its outputs, the adversary sends either
aborti for some i ∈ I, or continue to the trusted party. If the trusted party receives continue
then it sends fj(w) to all honest parties Pj (j /∈ I). Otherwise, if it receives aborti for some
i ∈ I, it sends aborti to all honest parties.

Outputs: An honest party always outputs the message it obtained from the trusted party. The
corrupted parties output nothing. The adversary A outputs any arbitrary (probabilistic
polynomial-time computable) function of the initial inputs {xi}i∈I , the auxiliary input z, and
the messages obtained from the trusted party.

The output of the honest parties and the adversary in an execution of the above ideal model is
denoted by idealscϵ

f,S(z),I(x, n).
Notice that there are two types of “cheating” here. The first is the classic abort and is used to

model “early aborting” due to the impossibility of achieving fairness in general when there is no
honest majority. The other type of cheating in this ideal model is more serious for two reasons: first,
the ramifications of the cheating are greater (the adversary may learn the honest party’s input and
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may be able to determine its output), and second, the cheating is only guaranteed to be detected
with probability ϵ. Nevertheless, if ϵ is high enough, this may serve as a deterrent. We stress that
in the ideal model the adversary must decide whether to cheat obliviously of the honest party’s
input and before it receives any output (and so it cannot use the output to help it decide whether
or not it is “worthwhile” cheating). We have the following definition.

Definition A.1 (security – strong explicit cheat formulation [1]): Let f be an m-party functionality
and π a protocol, and let ϵ : N→ [0, 1] be a function. Protocol π is said to securely compute f in the
presence of covert adversaries with ϵ-deterrent if for every non-uniform probabilistic polynomial-time
adversary A for the real model, there exists a non-uniform probabilistic polynomial-time adversary
S for the ideal model such that for every I ⊆ [m]:{

idealscϵ
f,S(z),I(x, n)

}
x,z,n

c≡
{
realπ,A(z),I(x, n)

}
x,z,n

where n ∈ N and x, z ∈ {0, 1}∗, and all elements of x are of the same length.

An ideal functionality F ϵ. An equivalent way of defining security in the presence of covert
adversaries is to consider a reactive functionality that includes all of the instructions for the trusted
party that are unique to the covert model. This reactive functionality is then run by the trusted
party in the standard model for malicious adversaries. This yields an equivalent definition, and it
is sometimes useful to view it in this way.

A.3 Some Small Modifications

Output agreement. Recall that when the adversary is not caught cheating, it can provide
whatever outputs it wishes to the honest parties. For our purposes here, we need to ensure that
when the functionality being computed is such that all parties are supposed to receive the same
output, then even when the adversary is not caught cheating (i.e., it is undetected) and so can
determine the honest parties’ output, all honest parties must receive the same output. When using
a broadcast channel (or Byzantine agreement), this property is easily achieved.

Reactive functionalities. Another additional modification that we need relates to the compu-
tation of reactive functionalities. Such functionalities have multiple stages of computation, and
internal state is kept between stages. In the case of a cheating adversary who is undetected, the
adversary can not only singlehandedly determine the outputs of the honest parties, but can also
singlehandedly determine the internal state of the functionality. In this way, the constructions
of [1, 20] can be modified in a straightforward way to also work for reactive functionalities (briefly,
each party’s output at the end of a stage includes a signed share of the internal state).

37



B Detailed Description of the Protocols and Their Exact Analysis

In this section, we present our “raw experimental results” of counting the number of operations in
the IPS instantiation that we studied. As such, this section is less polished and is presented only to
enable a verification of our results, and in order to be very concrete about the exact instantiation
and methodology that we used.

B.1 Secret Sharing for Blocks

This secret sharing scheme is a variant of Shamir’s secret sharing [35] which is presented in [14]. In
order to share w elements, using blocks of size ℓ and polynomials of degree δ among n servers we do
the following. First we set up the elements in w/l blocks. Next for each such block we interpolate
through δ points to get the polynomial, and then evaluate the polynomial at n other points to get
its shares. Overall this costs (w/l)(δ2 + nδ) multiplications. 8

Protocol B.1 (Block Secret Sharing)

• Input: w elements

• Output:

1. Having the input split into blocks, the appropriate share of each block sent on its match-
ing watchlist.

2. An additive share of each share sent to the other party.

• Auxiliary input:

1. ℓ - the size of a block.

2. δ - the polynomial degree.

3. ζ1, ..., ζδ - the evaluation points that hide the secrets.

4. n - the number of shares per block.

5. ξ1, ..., ξn - the evaluation points that are used to create shares.

1. Split the input into w
ℓ blocks

2. For each block b = (x1, ..., xℓ):

(a) For evaluation points ζ1, ..., ζδ set fb(ζi) = xi for 1 ≤ i ≤ ℓ, and fb(ζi) ∈R F for ℓ < i ≤ δ

(b) Interpolate to obtain fb

(c) Evaluate fb(ξi) for 1 ≤ i ≤ n (where ξi ̸= ζj for 1 ≤ i ≤ n, 1 ≤ j ≤ ℓ

(d) For 1 ≤ i ≤ n:

i. On watchlist i send the share fb(ξi)

ii. Choose afb(ξi) ∈R F , and sent it to other client, while keeping fb(ξi)− afb(ξi) (this
is additive sharing of the shares)

8We are using Horner’s rule for multi-point evaluation and interpolation in our calculations which costs O(n2).
Though asymptotically it is worse than the methods which use FFT (that require O(n log2 n log logn) operations and
can be found in [15]), for our magnitude of n using Horner’s rule is more efficient, or approximately as efficient.
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Cost analysis:

• Random elements: w
ℓ (δ − ℓ) + w

ℓ n

• Multiplications: w
ℓ (δ

2 + δn)

• Elements sent on watchlists: w
ℓ n

• Elements sent in plain: w
ℓ n

B.2 Proving that Shares Lie on δ-degree Polynomials

After sharing the secrets as described in the previous section, we will want a party to prove to
the other party that the shares indeed lie on (some number) z polynomials, each of degree δ. A
protocol for such a proof (in a generalized form) is presented in [28]. The multiplication cost for
the prover is δn (the cost of creating shares for a blinding polynomial) and zδ (the cost of forming
the linear combinations from the polynomials). The cost for the verifier is kδ (the cost of checking
results on the k watchlists he sees). So the total cost is δ(z + n+ k).

Prover cost analysis:

• Random elements: δ

• Multiplications: nδ + zδ

• Elements sent on watchlists: n

• Elements sent in plain: δ

Verifier cost analysis:

• Random elements: z

• Multiplications: kz

• Elements sent on watchlists: 0

• Elements sent in plain: z

B.3 Proving some replication Pattern in Shared blocks

We will need at some stages for a party to prove to the other party that certain shared blocks follow
some replication pattern (which represents the fact that a certain output value is indeed the one
used as the input value for the next layer). We also note that some of the blocks will be shared
by δ-degree polynomials while others by 2δ-degree polynomials (as some of them are results of a
previous layer, and others are inputs for the next layer).

Here we chose not the implementation which is presented in the main part of the original
protocol described in [28], but the one that is mentioned in its computation complexity analysis,
in the end. The idea is that given v blocks bi, we can build v random blocks ri, and from them
form a set of blocks r′i by shift cycling the values of the random blocks in the positions which are
to be verified to be equal. Then what is left to prove is that

∑
(viri) =

∑
(vir

′
i). For example,

given 2 blocks (a, b, c, d), (e, f, g, h) and a replication pattern (x, x, y, y), (x, y, x, x), we build the
random blocks ri to be (r1, r2, r3, r4), (r5, r6, r7, r8). Then the appropriate shift cycled blocks r′i will
be (r2, r5, r4, r6), (r7, r3, r8, r1).

In general we can label the different random values ri with different labels x, y, z,etc., according
to the replication pattern, similarly to the description in the above example. Then the shift cycled
blocks are created by shifting the ri’s which have the same label. The idea is that shifting along
indexes which are supposed to be equal will not change the sum.
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Protocol B.2 (Proving sets of shares lie on polynomials of degree δ)

• Input:

1. Prover: z polynomials fi

2. Verifier: k shares for each polynomial fi that it saw on the watchlists

• Output:

1. Verifier accepts the proof (or aborts if some check fails)

• Auxiliary input:

1. δ - the polynomial degree.

2. n - the number of shares per block.

3. ξ1, ..., ξn - the evaluation points that are used to create shares.

4. z - the number of polynomials that the prover has as input.

1. Prover chooses a δ-degree random polynomial fb for blinding

2. Prover evaluates fb(ξi) for 1 ≤ i ≤ n

3. Prover sends on watchlist i the share fb(ξi)

4. Verifier chooses z elements r1, ..., rz ∈R F

5. Verifier sends the z random elements to the prover

6. Prover computes f(x) =
z∑

i=1

(rifi(x)) + fb(x), where fi is the ith polynomial, and fb is the

blinding polynomial from step 1

7. Prover sends f to the verifier

8. Verifier checks for the k watchlists it sees that: f(κ) =
z∑

i=1

(rifi(κ)) + fb(κ)

(we note that fi(κ), fb(κ) are shares that have been sent on the watchlist)

The cost for the prover encompasses the sharing of a 4δ-degree blinding polynomial ((4δ)2 +
4δn multiplications), creating shares of the 2(u + v) (where u is the number of output blocks
represented by 2δ-degree polynomials, and v is the number of input blocks represented by δ-degree
polynomials) random polynomials sent by the verifier (2(2δnu + δnv) multiplications) and lastly
calculating shares of the resulting polynomial (which costs 2n(u + v) multiplications). The cost
for the verifier is creating the 2(u + v) random polynomials (2((2δ)2u + δ2v) multiplications) and
checking the results on the watchlists he sees (2k(v + u) multiplications). In total we get the cost
of (4δ)2 + 4δn+ 2((2δn+ (2δ)2)u+ (δn+ δ2)v) + 2(n+ k)(u+ v).
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Protocol B.3 (Proving some replication patterns in shared blocks)

Input:

1. Prover: v blocks shared by δ-degree polynomials and u blocks shared by 2δ-degree polynomials.

2. Verifier: k shares for each polynomial that it saw on the watchlists

Output:

1. Verifier accepts the proof (or aborts if some check fails)

Auxiliary input: ℓ - the size of a block; δ - the polynomial degree; ζ1, ..., ζ2δ - the evaluation
points that hide the secrets; n - the number of shares per block; ξ1, ..., ξn - the evaluation points
that are used to create shares; z - the number of polynomials that the prover has as input; A
description of the circuit to evaluate C.

The protocol:

1. Prover P sets for evaluation points ζ1, ..., ζ4δ: f0(ζj) = 0 for 1 ≤ j ≤ ℓ, and f0(ζj) ∈R F for
ℓ < j ≤ 4δ

2. P interpolates to obtain f0

3. P evaluates f0(ξi) for 1 ≤ i ≤ n

4. P sends on watchlist i the share f0(ξi)

5. Verifier V chooses (v + u)ℓ elements r1, ..., r(v+u)ℓ ∈R F and sets blocks qh =
(r(h−1)+1, ..., r(h−1)+ℓ) for 1 ≤ h ≤ v + u

6. For each block qh where 1 ≤ h ≤ v:

(a) V sets for evaluation points ζ1, ..., ζδ: fqh(ζj) = r(h−1)+j for 1 ≤ j ≤ ℓ, and fqh(ζj) ∈R F
for ℓ < j ≤ δ

(b) V interpolates to obtain fqh

(c) V sends fqh to P

7. For each block qh where v < h ≤ v + u:

(a) V sets for evaluation points ζ1, ..., ζ2δ: fqh(ζj) = r(h−1)+j for 1 ≤ j ≤ ℓ, and fqh(ζj) ∈R F
for ℓ < j ≤ 2δ

(b) V interpolates to obtain fqh

(c) V sends fqh to P

8. V sets the shift cycled blocks ph according to the desired replication pattern and repeats steps
6 and 7 for ph

9. P evaluates fqh(ξi), fph
(ξi), for 1 ≤ i ≤ n, for each of the polynomials fqh , fph

10. For 1 ≤ i ≤ n: P computes fres(ξi) =
v+u∑
h=1

(fh(ξi)fqh(ξi)− fh(ξi)fph
(ξi)) + f0(ξi), where fh is

the polynomial used to share the original hth block

11. P sends to V all resulting shares

12. V interpolates over the shares to get fres

13. V evaluates fres(ζj) for 1 ≤ j ≤ ℓ

14. V validates that
ℓ∑

j=1

fres(ζj) = 0

15. V validates for every server on its watchlist that it sees that: fres(κ) =
v+u∑
h=1

(fh(κ)fqh(κ) −

fh(κ)fph
(κ)) + f0(κ)
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Prover cost analysis:

• Random elements: 4δ − ℓ

• Multiplications: (4δ)2 + 4δn + 2(δnv +
2δnu) + n(2(v + u))

• Elements sent on watchlists: n

• Elements sent in plain: n

Verifier cost analysis:

• Random elements: (v + u)ℓ + 2(v(δ −
ℓ) + u(2δ − ℓ))

• Multiplications: 2(δ2v+(2δ)2u)+(4δ)2+
4δℓ+ k(2(v + u))

• Elements sent on watchlists: 0

• Elements sent in plain: 2(δv + 2δu)

B.4 Semi-honest Inner Multiplication Protocol

As we have mentioned multiplication gates involve having the parties engage in a semi-honest
protocol for the following functionality:

(x1, x2) 7→ (x1x2 − r, r)

for some r ∈R F .
Six different protocols are presented for this functionality in [28], that fall in three categories:

statistically secure, based on noisy linear codes and based on homomorphic encryption. We analyze
here only the most efficient protocol of the six which is the packed Reed-Solomon encoding based
protocol, and an alternative non black-box protocol from [17] which makes non black-box usage of
the underlying field and assumes standard bit representation of elements, but achieves comparable
efficiency. 9

In the packed Reed-Solomon encoding based protocol we are multiplying w = s/2 elements in a
single run of the protocol (where s is a security parameter). We will also set n which is the length
of the codeword to be 8s as suggested in [28].

A detailed inspection of the protocol results in a cost of s2 + (2s− 1)s+ (2s)2 + 2sw = 8s2 − s
multiplications for side B, and s2+8s2+16s2+8s+2sw = 26s2+8s for side A, and 8s instances of
1-out-of-2 OT. Which means that per inner multiplications the cost is (34s2+7s)/(s/2) = 68s+14,
and 8s/(s/2) = 16 1-out-of-2 OTs.

Setting s = 40 we get the cost of 2734 multiplications and 16 1-out-of-2 OTs per inner multi-
plication.

The protocol from [17] is much simpler and it is easy to see that it requires log |F|multiplications
and log |F| 1-out-of-2 OTs. Remembering that we assumed F that is big enough to allow a single
invocation of the different proofs above (to achieve a small enough cheating probability), we can
set |F| = 240 (as we did in the concrete computations presented later on) and get the cost of 40
multiplications and 1-out-of-2 OTs per inner multiplication.

As we can see one protocol is more efficient in terms of OTs and the other in terms of multipli-
cations. We will see that for concrete numbers this presents a real dilemma which is not simple to
resolve.

We present the analysis for the statistically secure protocol, the Reed-Solomon encoding based
protocol and the more efficient homomorphic encryption based protocol, all from [28]. In addition
we give a detailed presentation of the protocol from [17].

9We do not present the homomorphic encryption based protocols because even though they might be efficient,
their comparison to the other protocols is more complex as they use completely different building blocks.
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Basic statistically secure protocol: Following the same notations as in [28] (n > log |F |+ k)
we get:

Alice cost analysis:

• Random elements: n

• Multiplications: 2n

• Elements sent in plain: 0

Bob cost analysis:

• Random elements: 2n − 1 (and n more
random bits)

• Multiplications: 0

• Elements sent in plain: 2n

Mutual cost:

• 1-out-of-2 OTs: n

Packed Reed-Solomon encoding based protocol: Here we are multiplying w = s/2 elements
in a single run of the protocol (where s is a security parameter), and so in order to get a comparable
(amortized) analysis we divide all the results by s/2. We will also, as in [28] take the length of the
codeword n = 8s.

Alice cost analysis:

• Random elements: 2.5s/(s/2) = 5

• Multiplications: (26s2 + 8s)/(s/2) =
52s+ 16

• Elements sent in plain: 0

Bob cost analysis:

• Random elements: (15.5s + 1)/(s/2) =
31 + 2

s

• Multiplications: (8s2−s)/(s/2) = 16s−
2

• Elements sent in plain: 17s/(s/2) = 34

Mutual cost:

• 1-out-of-2 OTs: 8s/(s/2) = 16 (implementing a s-out-of-n OT using n instances of 1-out-
of-2 OTs)

Homomorphic encryption based protocol: This protocol should be measured in terms of
number of encryptions, decryptions and homomorphic operations on ciphertexts. The key genera-
tion can be done once and used as many times as necessary.

Alice cost analysis:

• Encryptions: 1

• Decryptions: 1

• Homomorphic operations: 0

• Ciphertexts sent: 1

Bob cost analysis:

• Encryptions: 1

• Decryptions: 0

• Homomorphic operations: 2

• Ciphertexts sent: 1
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Non black-box statistically secure protocol: This protocol works as follows:

1. Bob selects log |F | random elements s0, ..., slog |F |−1, and sets for 0 ≤ i ≤ log |F | − 1 t0i =
si, t

1
i = 2ib+ si, where b is Bob’s input.

2. Alice and Bob execute log |F | 1-out-of-2 OTs where in the ith invocation Alice chooses taii
from the pair (t0i , t

1
i ), where ai is the ith bit in the bit representation of Alice’s input a.

3. Alice outputs x =
log |F |−1∑

i=0
taii and Bob outputs y = −

log |F |−1∑
i=0

si

Assuming Bob calculates the powers of 2 once and stores them, we get the following analysis:

Alice cost analysis:

• Random elements: log |F |

• Multiplications: log |F |

• Additions and substractions: 2 log |F |

• Elements sent in plain: 0

Bob cost analysis:

• Random elements: 0

• Multiplications: 0

• Additions and substractions: log |F |

• Elements sent in plain: 0

Mutual cost:

• 1-out-of-2 OTs: log |F |

B.5 The Entire Protocol in the IPS Setting

Protocol B.4 is a detailed presentation of the entire protocol from Appendix C of [28] in the IPS
setting, using the building blocks presented before. The watchlist setup phase and its analysis is
omitted here.

In the cost analysis we leave the call for a semi-honest inner multiplication protocol (which is
used to emulate a multiplication done by a server, and called in [27] a Type II operation) as a single
operation.

The idea of the protocol is to utilize our block secret sharing in the computation by evaluating
blocks of gates. We will arrange the input wires for each layer in a way that allows us to perform
the same operation (addition or multiplication) on all the elements of the blocks.

First we show how given two input values and a blinding value which are additively shared
among Alice and Bob they can compute a blinded sum of the values, and a blinded multiplication
of them.

That is given that Alice holds
(
(a − α), (b − β), (c − γ)

)
and Bob holds (α, β, γ) for some

α, β, γ ∈R F , we show to how perform addition (have Alice hold d− λ, such that d = ((a+ b) + c)
and Bob hold λ for some λ ∈R F), and how to perform multiplication (have Alice hold d− λ, such
that d = (ab+ c) and Bob hold λ for some λ ∈R F). c here is the blinding value created by Bob in
the outer protocol, and so each operation involves the addition of this value.

Addition:
Alice sets (d− λ) = (a− α) + (b− β) + (c− γ)
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Bob sets λ = α+ β + γ
We can see that d− λ+ λ = d = a+ b+ c as required, and λ ∈R F .

Multiplication:
Alice and Bob run the semi-honest inner multiplication functionality twice:(
(a− α), β)

)
7→
(
(aβ − αβ − µ), µ

)
, for µ ∈R F(

(b− β), α)
)
7→
(
(bα− αβ − σ), σ

)
for σ ∈R F

Alice sets (d− λ) = (aβ − αβ − µ) + (bα− αβ − σ) + (a− α)(b− β) + (c− γ)
Bob sets λ = µ+ σ + αβ + γ
We can see that d− λ+ λ = ab+ c

Protocol B.4 (Appendix C Protocol in the IPS Setting)

• Input: Each client has e1 inputs.

• Output: Each client receives output as dictated by the circuit C (or aborts if cheating is
detected)

• Auxiliary input:

1. ℓ - the size of a block.

2. δ - the polynomial degree.

3. ζ1, ..., ζ2δ - the evaluation points that hide the secrets.

4. n - the number of shares per block.

5. ξ1, ..., ξn - the evaluation points that are used to create shares.

6. z - the number of polynomials that the prover has as input.

7. A description of the circuit to evaluate C.

1. Each client arranges its e1 inputs into e1
ℓ blocks as required by the structure of C and shares

these using protocol B.1

2. Each client proves using protocol B.2 that its shares lie on δ-degree polynomials

3. For layer i (having 2ei input wires, and ei outputs wires, and so ei gates):

(a) Bob chooses ei random blinding values bei

(b) Bob shares these values using 2δ-degree polynomials and protocol B.1

(c) Bob proves using protocol B.2 that these shares lie on 2δ-degree polynomials

(d) For each block of gates g:

i. For 1 ≤ j ≤ n:

A. Compute the operation of g on the two input shares and the blinding share as
described above

(e) Bob sends to Alice all his additive shares

(f) Alice sums all the additive shares to get real shares of polynomials

(g) For each output block:

i. Alice interpolates through 2δ shares to get the polynomial

ii. Alice validates that the rest n− 2δ shares lie on the polynomial
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Protocol B.5 (Appendix C Protocol in the IPS Setting (cont.))

3. (cont.)

(g) (cont.)

iii. Alice evaluates the polynomial at ℓ points to restore the secrets

(h) Alice builds from the ei outputs the 2ei+1 inputs for the next layer

(i) Alice shares these 2ei+1 elements using protocol B.1

(j) Alice proves that these shares lie on δ-degree polynomials

(k) Alice proves that these 2ei+1

ℓ input blocks and the ei
ℓ outputs blocks follow a replication

pattern dictated by the structure of C using protocol B.3

(l) Bob arranges the blinding values form step 3.(a) for the new layer according to the
structure of C

(m) Bob shares these values using protocol B.1

(n) Bob proves that these shares lie on δ-degree polynomials

(o) Bob proves that these 2ei+1

ℓ newly arranged blinding blocks and the original ei
ℓ blinding

blocks follow a replication pattern dictated by the structure of C using protocol B.3

(p) For each of the 2ei+1

ℓ blocks

i. For 1 ≤ j ≤ n:

A. Alice and Bob each substract the new blinding share from the share of the block

4. Output delivery - For each output block:

(a) If Alice should receive this output block:

i. Bob sends Alice the additive shares for the shares of the block

ii. Alice sums up the additive shares to restore the polynomial shares

iii. Alice interpolates through δ shares to get the polynomial

iv. Alice validates that the rest n− δ shares lie on the polynomial

v. Alice evaluates the polynomial at ℓ points to restore the secrets

(b) If Bob should receive this output block - Alice sends Bob the additive shares and Bob
restores the secrets as in 4.(a).

B.6 Efficiency Analysis

We denote by ei,× the number of multiplication gates at layer i, and by ei,+ the number of addition
gates at layer i (we have it that ei = ei,× + ei,+).

We present the analysis separately for each client, and for each operation (the amount of random
elements, multiplications, elements sent on watchlists and elements send in plain). For Alice we first
present the detailed step-by-step analysis followed by the sum of all steps and then an asymptotic
analysis (for Bob the step-by-step and the asymptotic analysis are omitted as they are rather similar
to these of Alice).

Alice cost analysis:

• Random elements:
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1. e1
ℓ (δ − ℓ) + e1

ℓ n - Step 1.

2. δ + e1
ℓ - Step 2 (once as prover and once as verifier).

3. ei
ℓ - Step 3.(c) (as verifier).

4. 2ei+1

ℓ (δ − ℓ) + 2ei+1

ℓ n - Step 3.(i).

5. δ - Step 3.(j) (as prover).

6. 4δ − ℓ - Step 3.(k) (as prover).

7. 2ei+1

ℓ - Step 3.(n) (as verifier).

8. (2ei+1

ℓ + ei
ℓ )ℓ+ 2(2ei+1

ℓ (δ − ℓ) + ei
ℓ (2δ − ℓ)) - 3.(o) (as verifier).

In total we get:

e1
ℓ
(δ − ℓ+ n+ 1) + δ +

d−1∑
i=1

(ei
ℓ
(4δ − ℓ+ 1) +

2ei+1

ℓ
(3δ − 2ℓ+ n+ 1) + 5δ − ℓ

)
Remembering that we have ℓ, δ = O(n) we get that the above equation is O(|C|+ nd)

• Multiplications:

1. e1
ℓ (δ

2 + δn) - Step 1.

2. nδ + e1
ℓ δ + k e1

ℓ - Step 2 (once as prover and once as verifier).

3. k ei
ℓ - Step 3.(c) (as verifier).

4.
ei,×
ℓ n - Step 3.(d).i.A (the local multiplications from computing the multiplications as

presented before).

5. ei
ℓ (2δ)

2 - Step 3.(g).i.

6. ei
ℓ (2δ)(n− 2δ) - Step 3.(g).ii.

7. ei
ℓ (2δ)ℓ - Step 3.(g).iii.

8. 2ei+1

ℓ (δ2 + δn) - Step 3.(i).

9. nδ + 2ei+1

ℓ δ - Step 3.(j) (as prover).

10. (4δ)2 + 4δn+ 2(δn2ei+1

ℓ + 2δn ei
ℓ ) + n(2(2ei+1

ℓ + ei
ℓ )) - Step 3.(k) (as prover).

11. k 2ei+1

ℓ - Step 3.(n) (as verifier).

12. 2(δ2 2ei+1

ℓ + (2δ)2 eiℓ ) + (4δ)2 + 4δℓ+ k(2(2ei+1

ℓ + ei
ℓ )) - Step 3.(o) (as verifier).

13. ed
ℓ δ

2 - Step 4.(a).ii.

14. ed
ℓ δ(n− δ) - Step 4.(a).iii.

15. ed
ℓ δℓ - Step 4.(a).iv.

In total we get:
e1
ℓ
(δ2 + δn+ δ + k) + δn+

+
d−1∑
i=1

(ei,×
ℓ

n+
ei
ℓ
(6δn+ 2δℓ+ 4δ2 + 3k + 2n)+

+
2ei+1

ℓ
(3δn+ 3δ2 + 3k + 2n+ δ) + 5δn+ 32δ2 + 4δℓ

)
+

ed
ℓ
(δn+ δℓ)

Asymptotically this is O(|C|n+ n2d)
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• Elements sent on watchlists:

1. e1
ℓ n - Step 1.

2. n - Step 2 (as prover).

3. 2ei+1

ℓ n - Step 3.(i).

4. n - Step 3.(j) (as prover).

5. n - Step 3.(k) (as prover).

In total we get:

e1
ℓ
n+ n+

d−1∑
i=1

(2ei+1

ℓ
n+ 2n

)
Which is O(|C|+ nd)

• Elements sent in plain:

1. e1
ℓ n - Step 1.

2. δ + e1
ℓ - Step 2 (once as prover and once as verifier).

3. ei
ℓ - Step 3.(c) (as verifier).

4. 2ei+1

ℓ n - Step 3.(i)

5. δ - Step 3.(j) (as prover).

6. n - Step 3.(k) (as prover).

7. 2ei+1

ℓ - Step 3.(n) (as verifier).

8. 2(δ 2ei+1

ℓ + 2δ ei
ℓ ) - Step 3.(o) (as verifier).

9. ed
ℓ n - Step 4.(b).i.

In total we get:

e1
ℓ
(n+ 1) + δ +

d−1∑
i=1

(ei
ℓ
(4δ + 1) +

2ei+1

ℓ
(2δ + n+ 1) + δ + n

)
+

ed
ℓ
n

And asymptotically this is O(|C|+ nd)

Bob cost analysis:

• Random elements:

e1
ℓ
(δ − ℓ+ n+ 1) + δ +

d−1∑
i=1

(ei
ℓ
(6δ − 2ℓ+ n) +

2ei+1

ℓ
(3δ − 2ℓ+ n+ 1) + ei + 7δ − ℓ

)
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• Multiplications:

e1
ℓ
(δ2 + δn+ δ + k) + δn+

+
d−1∑
i=1

(ei,×
ℓ

n+
ei
ℓ
(6δn+ 12δ2 + 2k + 2n+ δ)+

+
2ei+1

ℓ
(3δn+ 3δ2 + 3k + 2n+ δ) + 7δn+ 32δ2 + 4δℓ

)
+

ed
ℓ
(δn+ δℓ)

• Elements sent on watchlists:

e1
ℓ
n+ n+

d−1∑
i=1

(ei
ℓ
n+

2ei+1

ℓ
n+ 3n

)
• Elements sent in plain:

e1
ℓ
(n+ 1) + δ +

d−1∑
i=1

(ei
ℓ
(4δ + 2n) +

2ei+1

ℓ
(2δ + n+ 1) + 3δ + n

)
+

ed
ℓ
n

In addition Alice and Bob multiply some elements using the semi-honest inner multiplication
protocol. The number of such multiplications is:

d−1∑
i=1

(
2
ei,×
ℓ

n
)
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