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Abstract. We analyze the multivariate generalization of Howgrave-Graham’s

algorithm for the approximate common divisor problem. In the m-variable case
with modulus N and approximate common divisor of size Nβ , this improves

the size of the error tolerated from Nβ2
to Nβ(m+1)/m

, under a commonly
used heuristic assumption. This gives a more detailed analysis of the hardness

assumption underlying the recent fully homomorphic cryptosystem of van Dijk,

Gentry, Halevi, and Vaikuntanathan. While these results do not challenge the

suggested parameters, a 2n
ε

approximation algorithm with ε < 2/3 for lattice
basis reduction in n dimensions could be used to break these parameters. We

have implemented our algorithm, and it performs better in practice than the
theoretical analysis suggests.

Our results fit into a broader context of analogies between cryptanalysis

and coding theory. The multivariate approximate common divisor problem is
the number-theoretic analogue of multivariate polynomial reconstruction, and
we develop a corresponding lattice-based algorithm for the latter problem. In

particular, it specializes to a lattice-based list decoding algorithm for Parvaresh-
Vardy and Guruswami-Rudra codes, which are multivariate extensions of

Reed-Solomon codes. This yields a new proof of the list decoding radii for

these codes.

1. Introduction

Given two integers, we can compute their greatest common divisor efficiently
using Euclid’s algorithm. Howgrave-Graham [19] formulated and gave an algorithm
to solve an approximate version of this question, asking the question “What if
instead of exact multiples of some common divisor, we only know approximations?”
In the simplest case, we are given one exact multiple N = pq0 and one near multiple
a1 = pq1 + r1, and the goal is to learn p, or at least p gcd(q0, q1).

In this paper, we generalize Howgrave-Graham’s approach to the case when
one is given many near multiples of p. The hardness of solving this problem for
small p (relative to the size of the near multiples) was recently proposed as the
foundation for a fully homomorphic cryptosystem [15]. Specifically, we can show
that improving the approximation of lattice basis reduction for the particular lattices
L we are looking at from 2dimL to 2(dimL)ε with ε < 2/3 would break the suggested
parameters in the system. See Section 3 for the details. The approximate common
divisor problem is also closely related to the problem of finding small solutions to
multivariate polynomials, a problem first posed by Coppersmith [9], and whose
various extensions have many applications in cryptanalysis [4].
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The multivariate version of the problem allows us to improve the bounds for
when the approximate common divisor problem is solvable: given N = pq0 and m
randomly chosen approximate multiples ai = pqi + ri of p = Nβ , as well as upper
bounds Xi for each |ri|, we can find the perturbations ri when

m
√
X1 . . . Xm < N (1+o(1))β(m+1)/m

.

In other words, we can compute approximate common divisors when ri is as large

as Nβ(m+1)/m

. For m = 1, we recover Howgrave-Graham’s theorem [19], which

handles errors as large as Nβ2

. As the number m of samples grows large, our bound
approaches Nβ , i.e., the size of the approximate common divisor p. Our algorithm
runs in polynomial time for fixed m. We cannot rigorously prove that it always
works, but it is supported by a heuristic argument and works in practice.

There is an analogy between the ring of integers and the ring of polynomials over a
field. Under this analogy, finding a large approximate common divisor of two integers
is analogous to reconstructing a polynomial from noisy interpolation information, as
we explain in Section 1.2.2. One of the most important applications of polynomial
reconstruction is decoding of Reed-Solomon codes. Guruswami and Sudan [17]
increased the feasible decoding radius of these codes by giving a list-decoding
algorithm that outputs a list of polynomially many solutions to a polynomial
reconstruction problem. The analogy between the integers and polynomials was
used in [8] to give a proof of the Guruswami-Sudan algorithm inspired by Howgrave-
Graham’s approach, as well as a faster algorithm.

Parvaresh and Vardy [28] developed a related family of codes with a larger list-
decoding radius than Reed-Solomon codes. The decoding algorithm corresponds to
simultaneous reconstruction of several polynomials.

In this paper, we observe that the problem of simultaneous reconstruction of
multiple polynomials is the exact analogue of the approximate common divisor
problem with many inputs, and the improved list-decoding radius of Parvaresh-
Vardy codes corresponds to the improved error tolerance in the integer case. We
adapt our algorithm for the integers to give a corresponding algorithm to solve the
multiple polynomial reconstruction problem.

This algorithm has recently been applied to construct an optimally Byzantine-
robust private information retrieval protocol [14]. The polynomial lattice methods we
describe are extremely fast in practice, and they speed up the client-side calculations
by a factor of several thousand compared with a related scheme that uses the
Guruswami-Sudan algorithm. See [14] for more information and timings.

1.1. Related work. Howgrave-Graham first posed the problem of approximate
integer common divisors in [19], and used it to address the problem of factoring
when information is known about one of the factors. His algorithm gave a different
viewpoint on Coppersmith’s proof [9] that one can factor an RSA modulus N = pq

where p ≈ q ≈
√
N given the most significant half of the bits of one of the

factors. This technique was applied by Boneh, Durfee, and Howgrave-Graham
[5] to factor numbers of the form prq with r large. Jochemsz and May [20] and
Jutla [21] considered the problem of finding small solutions to multivariate polynomial
equations, and showed how to do so by obtaining several equations satisfied by the
desired roots using lattice basis reduction. Herrmann and May [18] gave a similar
algorithm in the case of finding solutions to multivariate linear equations modulo
divisors of a given integer. They applied their results to the case of factoring with
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bits known when those bits might be spread across log logN chunks of p. Notably,
their results display similar behavior to ours as the number of variables grows
large. Van Dijk, Gentry, Halevi, and Vaikuntanathan [15] discuss extensions of
Howgrave-Graham’s method to larger m and provide a rough heuristic analysis in
Appendix B.2 of the longer version of their paper available on the Cryptology ePrint
Archive.

Chen and Nguyen [7] gave an algorithm to find approximate common divisors
which is not related to the Coppersmith/Howgrave-Graham lattice techniques and
which provides an exponential speedup over exhaustive search over the possible
perturbations.

In addition to the extensive work on polynomial reconstruction and noisy poly-
nomial interpolation in the coding theory literature, the problem in both the single
and multiple polynomial cases has been used as a cryptographic primitive, for
example in [24], [23], and [1] (broken in [11]). Coppersmith and Sudan [10] gave an
algorithm for simultaneous reconstruction of multiple polynomials, assuming random
(rather than adversarially chosen) errors. Bleichenbacher, Kiayias, and Yung [2]
gave a different algorithm for simultaneous reconstruction of multiple polynomials
under a similar probabilistic model. Parvaresh and Vardy [28] were the first to
beat the list-decoding performance of Reed-Solomon codes for adversarial errors, by
combining multiple polynomial reconstruction with carefully chosen constraints on
the polynomial solutions; this allowed them to prove that their algorithm ran in
polynomial time, without requiring any heuristic assumptions. Finally, Guruswami
and Rudra [16] combined the idea of multi-polynomial reconstruction with an op-
timal choice of polynomials to construct codes that can be list-decoded up to the
information-theoretic bound (for large alphabets).

1.2. Problems and results.

1.2.1. Approximate common divisors. Following Howgrave-Graham, we define the
“partial” approximate common divisor problem to be the case when one has N = pq0

and m approximate multiples ai = pqi + ri of p. We want to recover an approximate
common divisor. To do so, we will compute r1, . . . , rm, after which we can simply
compute the exact greatest common divisor of N, a1 − r1, . . . , am − rm.

If the perturbations ri are allowed to be as large as p, then it is clearly impossible
to reconstruct p from this data. If they are sufficiently small, then one can easily
find them by a brute force search. The following theorem interpolates between these
extremes: as m grows, the bound on the size of ri approaches the trivial upper
bound of p.

Theorem 1 (Partial approximate common divisors). Given positive integers N, a1, . . . , am
and bounds β � 1/

√
logN and X1, . . . , Xm, we can find all r1, . . . , rm such that

gcd(N, a1 − r1, . . . , am − rm) ≥ Nβ

and |ri| ≤ Xi, provided that

m
√
X1 . . . Xm < N (1+o(1))β(m+1)/m

and that the algebraic independence hypothesis discussed in Section 2 holds. The
algorithm runs in polynomial time for fixed m, and the � and o(1) are as N →∞.

For m = 1, this theorem requires no algebraic independence hypothesis and is
due to Howgrave-Graham [19]. For m > 1, not all inputs N, a1, . . . , am will satisfy
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the hypothesis. Specifically, we must rule out attempting to improve on the m = 1
case by deriving a2, . . . , am from a1, for example by taking ai to be a small multiple
of a1 plus an additional perturbation (or, worse yet, a1 = · · · = am). However, we
believe that generic integers will work, for example integers chosen at random from
a large range, or at least integers giving independent information in some sense.

We describe our algorithm to solve this problem in Section 2. We follow the
general technique of Howgrave-Graham: we use LLL lattice basis reduction to
construct m polynomials for which r1, . . . , rm are roots, and then we solve the
system of equations. The lattice basis reduction is for a lattice of dimension at most
β logN , regardless of what m is, but the root finding becomes difficult when m is
large.

This algorithm is heuristic, because we assume we can obtain m short lattice
vectors representing algebraically independent polynomials from the lattice that
we will construct. This assumption is commonly made when applying multivariate
versions of Coppersmith’s method, and has generally been observed to hold in
practice. See Section 2 for more details. This is where the restriction to generic
inputs becomes necessary: if a1, . . . , am are related in trivial ways, then the algorithm
will simply recover the corresponding relations between r1, . . . , rm, without providing
enough information to solve for them.

Note that we are always able to find one nontrivial algebraic relation between
r1, . . . , rm, because LLL will always produce at least one short vector. If we were
provided in advance with m− 1 additional relations, carefully chosen to ensure that
they would be algebraically independent of the new one, then we would have no
need for heuristic assumptions. We will see later in this section that this situation
arises naturally in coding theory, namely in Parvaresh-Vardy codes [28].

The condition β � 1/
√

logN arises from the exponential approximation factor

in LLL. It amounts to Nβ2 � 1. An equivalent formulation is log p�
√

logN ; i.e.,
the number of digits in the approximate common factor p must be more than the
square root of the number of digits in N . When m = 1, this is not a restriction

at all: when p is small enough that Nβ2

is bounded, there are only a bounded
number of possibilities for r1 and we can simply try all of them. When m > 1, the
multivariate algorithm can handle much larger values of ri for a given p, but the
log p�

√
logN condition dictates that p cannot be any smaller than when m = 1.

Given a lattice basis reduction algorithm with approximation factor 2(dimL)ε , one
could replace this condition with β1+ε logN � 1. If ε = 1/m, then the constraint
could be removed entirely in the m-variable algorithm. See Section 2 for the details.

The log p �
√

logN condition is the only thing keeping us from breaking the
fully homomorphic encryption scheme from [15]. Specifically, improving the approx-
imation of lattice basis reduction for the particular lattices L we are looking at to
2(dimL)ε with ε < 2/3 would break the suggested parameters in the system. See
Section 3 for the details.

We get nearly the same bounds for the “general” approximate common divisor
problem, in which we are not given the exact multiple N .

Theorem 2 (General approximate common divisors). Given positive integers
a1, . . . , am (with ai ≈ N for all i) and bounds β � 1/

√
logN and X, we can

find all r1, . . . , rm such that

gcd(a1 − r1, . . . , am − rm) ≥ Nβ
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and |ri| ≤ X, provided that

X < N (Cm+o(1))βm/(m−1)

,

where

Cm =
1− 1/m2

m1/(m−1)
≈ 1− logm

m
,

and that the algebraic independence hypothesis holds. The algorithm runs in polyno-
mial time for fixed m, and the � and o(1) are as N →∞.

Again, for m = 2, this result is due to Howgrave-Graham [19], and no algebraic
independence hypothesis is needed.

The proof is very similar to the case when N is known, but the calculations are
more tedious because the determinant of the lattice is more difficult to bound. See
Section 2.2 for the details.

In [19], Howgrave-Graham gives a more detailed analysis of the behavior for

m = 2. Instead of our exponent C2β
2 = 3

8β
2, he gets 1 − β/2 −

√
1− β − β2/2,

which is asymptotic to 3
8β

2 for small β but is slightly better when β is large. We
are interested primarily in the case when β is small, so we have opted for simplicity,
but one could carry out a similar analysis for all m.

1.2.2. Noisy multi-polynomial reconstruction. Let F be a field. Given m single-
variable polynomials g1(z), . . . , gm(z) over F and n distinct points z1, . . . , zn in F ,
evaluating the polynomials at these points yields mn elements yij = gi(zj) of F .

The noisy multi-polynomial reconstruction problem asks for the recovery of
g1, . . . , gm given the evaluation points z1, . . . , zn, degree bounds `i on gi, and
possibly incorrect values yij . Stated more precisely: we wish to find all m-tuples
of polynomials (g1, . . . , gm) satisfying deg gi ≤ `i, for which there are at least βn
values of j such that gi(zj) = yij for all i. In other words, some of the data may
have been corrupted, but we are guaranteed that there are at least βn points at
which all the values are correct.

Bleichenbacher and Nguyen [3] distinguish the problem of “polynomial reconstruc-
tion” from the “noisy polynomial interpolation” problem. Their definition of “noisy
polynomial interpolation” involves reconstructing a single polynomial when there
are several possibilities for each value. The multivariate version of this problem can
be solved using Theorem 5.

This problem is an important stepping stone between single-variable interpolation
problems and full multivariate interpolation, in which we reconstruct polynomials
of many variables. The multi-polynomial reconstruction problem allows us to take
advantage of multivariate techniques to prove much stronger bounds, without having
to worry about issues such as whether our evaluation points are in general position.

We can restate the multi-polynomial reconstruction problem slightly to make
the analogy with the integer case clear. Given evaluation points zj and values yij ,
define N(z) =

∏
j(z − zj), and use ordinary interpolation to find polynomials fi(z)

such that fi(zj) = yij . Then we will see shortly that g1, . . . , gm solve the noisy
multi-polynomial reconstruction problem iff

deg gcd(f1(z)− g1(z), . . . , fm(z)− gm(z), N(z)) ≥ βn.

This is completely analogous to the approximate common divisor problem, with
N(z) as the exact multiple and f1(z), . . . , fm(z) as the approximate multiples.
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To see why this works, observe that the equation gi(zj) = yij is equivalent
to gi(z) ≡ yij (mod z − zj). Thus, gi(zj) = fi(zj) = yij iff fi(z) − gi(z) ≡ 0
(mod z−zj), and deg gcd(fi(z)−gi(z), N(z)) counts how many j satisfy gi(zj) = yij .
Finally, to count the j such that gi(zj) = yij for all i, we use

deg gcd(f1(z)− g1(z), . . . , fm(z)− gm(z), N(z)).

This leads us to our result in the polynomial case.

Theorem 3. Given polynomials N(z), f1(z), . . . , fm(z) and degree bounds `1, . . . , `m,
we can find all g1(z), . . . , gm(z) such that

deg gcd(f1(z)− g1(z), . . . , fm(z)− gm(z), N(z)) ≥ β degN(z)

and deg gi ≤ `i, provided that

`1 + · · ·+ `m
m

< β(m+1)/m degN(z)

and that the algebraic independence hypothesis holds. The algorithm runs in polyno-
mial time for fixed m.

As in the integer case, our analysis depends on an algebraic independence hy-
pothesis, but it may be easier to resolve this issue in the polynomial case, because
lattice basis reduction is far more effective and easier to analyze over polynomial
rings than it is over the integers.

Parvaresh-Vardy codes [28] are based on noisy multi-polynomial reconstruction:
a codeword is constructed by evaluating polynomials f1, . . . , fm at points z1, . . . , zn
to obtain mn elements fi(zj). In their construction, f1, . . . , fm are chosen to satisfy
m− 1 polynomial relations, so that they only need to find one more algebraically
independent relation to solve the decoding problem. Furthermore, the m−1 relations
are constructed so that they must be algebraically independent from the relation
constructed by the decoding algorithm. This avoids the need for the heuristic
assumption discussed above in the integer case. Furthermore, the Guruswami-Rudra
codes [16] achieve improved rates by constructing a system of polynomials so that
only n symbols need to be transmitted, rather than mn.

Parvaresh and Vardy gave a list-decoding algorithm using the method of Gu-
ruswami and Sudan, which constructs a polynomial by solving a system of equations
to determine the coefficients. In our terms, they proved the following theorem:

Theorem 4. Given a polynomial N(z) and m polynomials f1(z), . . . , fm(z), and
degree bounds `1, . . . , `m, we can find a nontrivial polynomial Q(x1, . . . , xm) with
the following property: for all g1(z), . . . , gm(z) such that

deg gcd(f1(z)− g1(z), . . . , fm(z)− gm(z), N(z)) ≥ β degN(z)

and deg gi ≤ `i, we have
Q(g1(z), . . . , gm(z)) = 0,

provided that
`1 + · · ·+ `m

m
< β(m+1)/m degN(z).

The algorithm runs in polynomial time.

In Section 4, we give an alternative proof of this theorem using the analogue
of lattice basis reduction over polynomial rings. This algorithm requires neither
heuristic assumptions nor conditions on β.
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2. Computing approximate common divisors

In this section, we describe our algorithm to solve the approximate common
divisor problem over the integers.

To derive Theorem 1, we will use the following approach:

(1) Construct polynomials Q1, . . . , Qm of m variables such that

Qi(r1, . . . , rm) = 0

for all r1, . . . , rm satisfying the conditions of the theorem.
(2) Solve this system of equations to learn candidates for the roots r1, . . . , rm.
(3) Test each of the polynomially many candidates to see if it is a solution to

the original problem.

In the first step, we will construct polynomials Q satisfying

Q(r1, . . . , rm) ≡ 0 (mod pk)

(for a k to be chosen later) whenever ai ≡ ri (mod p) for all i. We will furthermore
arrange that

|Q(r1, . . . , rm)| < Nβk.

These two facts together imply that Q(r1, . . . , rm) = 0 whenever p ≥ Nβ .
To ensure that Q(r1, . . . , rm) ≡ 0 (mod pk), we will construct Q as an integer

linear combination of products

(x1 − a1)i1 . . . (xm − am)imN `

with i1 + · · ·+ im + ` ≥ k. Alternatively, we can think of Q as being in the integer
lattice generated by the coefficient vectors of these polynomials. To ensure that
|Q(r1, . . . , rm)| < Nβk, we will construct Q to have small coefficients; i.e., it will be
a short vector in the lattice.

More precisely, we will use the lattice L generated by the coefficient vectors of
the polynomials

(X1x1 − a1)i1 . . . (Xmxm − am)imN `

with i1 + · · ·+ im ≤ t and ` = max
(
k−

∑
j ij , 0

)
. Here t and k are parameters to be

chosen later. Note that we have incorporated the bounds X1, . . . , Xm on the desired
roots r1, . . . , rm into the lattice. We define Q to be the corresponding integer linear
combination of (x1 − a1)i1 . . . (xm − am)imN `, without X1, . . . , Xm.

Given a polynomial Q(x1, . . . , xm) corresponding to a vector v ∈ L, we can bound
|Q(r1, . . . , rm)| by the `1 norm |v|1. Specifically, if

Q(x1, . . . , xm) =
∑

j1,...,jm

qj1...jmx
j1
1 . . . xjmm ,

then v has entries qj1...jmX
j1
1 . . . Xjm

m , and

|Q(r1, . . . , rm)| ≤
∑

j1,...,jm

|qj1...jm ||r1|j1 . . . |rm|jm

≤
∑

j1,...,jm

|qj1...jm |X
j1
1 . . . Xjm

m

= |v|1.

Thus, every vector v ∈ L satisfying |v|1 < Nβk gives a polynomial relation between
r1, . . . , rm.
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It is straightforward to compute the dimension and determinant of the lattice:

dimL =

(
t+m

m

)
,

and

detL = (X1 . . . Xm)(
t+m
m ) t

m+1N(k+m
m ) k

m+1 .

To compute the determinant, we can choose a monomial ordering so that the basis
matrix for this lattice is upper triangular; then the determinant is simply the product
of the terms on the diagonal.

Now we apply LLL lattice basis reduction to L. Because all the vectors in L are
integral, the m shortest vectors v1, . . . , vm in the LLL-reduced basis satisfy

|v1| ≤ · · · ≤ |vm| ≤ 2(dimL)/4(detL)1/(dimL+1−m)

(see Theorem 2 in [18]), and |v|1 ≤
√

dimL |v| by Cauchy-Schwarz, so we know that
the corresponding polynomials Q satisfy

|Q(r1, . . . , rm)| ≤
√

dimL 2(dimL)/4(detL)1/(dimL+1−m).

If

(2.1)
√

dimL 2(dimL)/4 detL1/(dimL+1−m) < Nβk,

then we can conclude that Q(r1, . . . , rm) = 0.

If t and k are large, then we can approximate
(
t+m
m

)
with tm/m! and

(
k+m
m

)
with km/m!. The

√
dimL factor plays no significant role asymptotically, so we

simply omit it (the omission is not difficult to justify). After taking a logarithm
and simplifying slightly, our desired equation (2.1) becomes

tm

4km!
+

1

1− (m−1)m!
tm

(
m log2X

m+ 1

t

k
+

log2N

m+ 1

km

tm

)
< β log2N,

where X denotes the geometric mean of X1, . . . , Xm.
The tm/(4km!) and (m−1)m!/tm terms are nuisance factors, and once we optimize

the parameters they will tend to zero asymptotically. We will take t ≈ β−1/mk and
logX ≈ β(m+1)/m logN . Then

m logX

m+ 1

t

k
+

logN

m+ 1

km

tm
≈ m

m+ 1
β logN +

1

m+ 1
β logN = β logN.

By setting logX slightly less than this bound (by a 1 + o(1) factor), we can achieve
the desired inequality, assuming that the 1− (m− 1)!/tm and tm/(4km!) terms do
not interfere. To ensure that they do not, we take t � m and tm � β logN as
N →∞. Note that then dimL ≤ β logN , which is bounded independently of m.

Specifically, when N is large we can take

t =

⌊
(β logN)1/m

(β2 logN)1/(2m)

⌋
and

k = bβ1/mtc ≈ (β2 logN)1/(2m).

With these parameter settings, t and k both tend to infinity as N →∞, because
β2 logN →∞, and they satisfy the necessary constraints. We do not recommend
using these parameter settings in practice; instead, one should choose t and k
more carefully. However, these choices work asymptotically. Notice that with this
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approach, β2 logN must be large enough to allow t/k to approximate β−1/m. This
is a fundamental issue, and we discuss it in more detail in the next subsection.

The final step of the proof is to solve the system of equations defined by the m
shortest vectors in the reduced basis to learn r1, . . . , rm. One way to do this is to
repeatedly use resultants to eliminate variables; alternatively, we can use Gröbner
bases. See, for example, Chapter 3 of [13].

One obstacle is that the equations may be not algebraically independent, in
which case we will not have enough information to complete the solution. In the
experiments summarized in Section 6, we sometimes encountered cases when the m
shortest vectors were algebraically dependent. However, in every case the vectors
represented either (1) irreducible, algebraically independent polynomials, or (2)
algebraically dependent polynomials that factored easily into polynomials which
all had the desired properties. Thus when the assumption of algebraic dependence
failed, it failed because there were fewer than m independent factors among the m
shortest relations. In these cases, there were always more than m vectors of `1 norm
less than Nβk, and we were able to complete the solution by using all these vectors.
This behavior appears to depend sensitively on the optimization of the parameters
t and k.

2.1. The β2 logN � 1 requirement. The condition that β2 logN � 1 is not
merely a convenient assumption for the analysis. Instead, it is a necessary hypothesis
for our approach to work at all when using a lattice basis reduction algorithm with
an exponential approximation factor. In previous papers on these lattice-based
techniques, such as [9] or [19], this issue seemingly does not arise, but that is because
it is hidden in a degenerate case. When m = 1, we are merely ruling out the cases

when the bound Nβ2

on the perturbations is itself bounded, and in those cases the
problem can be solved by brute force.

To see why a lower bound on β2 logN is necessary, we can start with (2.1). For
that equation to hold, we must at least have 2(dimL)/4 < Nβk and (detL)1/(dimL) <
Nβk, and these inequalities imply that

1

4

(
t+m

m

)
< βk log2N

and (
k+m
m

)
log2N(

t+m
m

)
(m+ 1)

< β log2N.

Combining them with
(
k+m
m

)
> k yields

1

4(m+ 1)
< β2 log2N,

so we have an absolute lower bound for β2 logN . Furthermore, one can check that
in order for the 2(dimL)/4 factor to become negligible compared with Nβk, we must
have β2 logN � 1.

Given a lattice basis reduction algorithm with approximation factor 2(dimL)ε , we
could replace tm with tεm in the nuisance term coming from the approximation
factor. Then the condition tm � β logN would become tεm � β logN , and if we
combine this with k ≈ β1/mt, we find that

kεm ≈ βεtεm � β1+ε logN.
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Because k ≥ 1, the condition β1+ε logN � 1 is needed, and then we can take

t =

⌊
(β logN)1/(εm)

(β1+ε logN)1/(2εm)

⌋
and

k = bβ1/mtc ≈ (β1+ε logN)1/(2εm).

2.2. Theorem 2. The algorithm for Theorem 2 is identical to the above, except
that we do not have an exact N , so we omit all vectors involving N from the
construction of the lattice L.

The matrix of coefficients is no longer square, so we have to do more work
to bound the determinant of the lattice. Howgrave-Graham [19] observed in the
two-variable case that the determinant is preserved even under non-integral row
operations, and he used a non-integral transformation to hand-reduce the matrix
before bounding the determinant as the product of the `2 norms of the basis vectors;
furthermore, the `2 norms are bounded by

√
dimL times the `∞ norms.

The non-integral transformation that he uses is based on the relation

(xi − ai)−
ai
a1

(x1 − a1) = xi −
ai
a1
x1.

By adding a multiple of f(x)(x1−a1), one can reduce f(x)(xi−ai) to f(x)(xi− ai
a1
x1).

The advantage of this is that if x1 ≈ xi and a1 ≈ ai, then xi − ai
a1
x1 may be much

smaller than xi − ai was. The calculations are somewhat cumbersome, and we will
omit the details (see [19] for more information).

When a1, . . . , am are all roughly N (as in Theorem 2), we get the following values
for the determinant and dimension in the m-variable case:

detL ≤ (N/X)(
k+m−1

m )(t−k+1)Xm((t+m
m ) t

m+1−(k−1+m
m ) k−1

m+1 )

and

dimL =

(
t+m

m

)
−
(
k − 1 +m

m

)
.

To optimize the resulting bound, we take t ≈ (m/β)1/(m−1)k.

3. Applications to fully homomorphic encryption

In [15], the authors build a fully homomorphic encryption system whose se-
curity relies on several assumptions, among them the hardness of computing an
approximate common divisor of many integers. This assumption is used to build a
simple “somewhat homomorphic” scheme, which is then transformed into a fully
homomorphic system under additional hardness assumptions. In this section, we use
our algorithm for computing approximate common divisors to provide a more precise
understanding of the security assumption underlying this somewhat homomorphic
scheme, as well as the related cryptosystem of [12].

For ease of comparison, we will use the notation from the above two papers (see
Section 3 of [15]). Let γ be the bit length of N , η be the bit length of p, and ρ be
the bit length of each ri. Using our algorithm, we can find r1, . . . , rm and the secret
key p when

ρ ≤ γβ(m+1)/m.

Substituting in β = η/γ, we obtain

ρmγ ≤ ηm+1.
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The authors of [15] suggest as a “convenient parameter set to keep in mind” to set
ρ = λ, η = λ2, and γ = λ5. Using m > 3 we would be able to solve this parameter
set, if we did not have the barrier that η2 must be much greater than γ.

As pointed out in Section 1.2.1, this barrier would no longer apply if we could
improve the approximation factor for lattice basis reduction. If we could improve
the approximation factor to 2(dimL)ε , then the barrier would amount to β1+ελ5 � 1,
where β = η/γ = λ−3. If ε < 2/3, then this would no longer be an obstacle.

Given a 2(dimL)2/3/ log dimL approximation factor, we could take m = 4, k = 1, and
t = b3λ3/4c in the notation of Section 2. Then (2.1) holds, and thus the algorithm
works, for all λ ≥ 300.

One might try to achieve these subexponential approximation factors by using
blockwise lattice reduction techniques [27]. For an n-dimensional lattice, one can
obtain an approximation factor of roughly κn/κ in time exponential in κ. For the
above parameter settings, the lattice will have dimension on the order of λ3, and even

a 2n
2/3

approximation will require κ > n1/3 = λ, for a running time that remains
exponential in λ. (Note that for these parameters, using a subexponential-time
factoring algorithm to factor the modulus in the “partial” approximate common
divisor problem is super-exponential in the security parameter.)

In general, if we could achieve an approximation factor of 2(dimL)ε for arbitrarily
small ε, then we could solve the approximate common divisor problem for parameters
given by any polynomials in λ. Furthermore, as we will see in Section 6, the LLL
algorithm performs better in practice on these problems than the theoretical analysis
suggests.

4. Multi-polynomial reconstruction

4.1. Polynomial lattices. For Theorem 3 and Theorem 4, we can use almost
exactly the same technique, but with lattices over the polynomial ring F [z] instead
of the integers.

By a d-dimensional lattice L over F [z], we mean the F [z]-span of d linearly
independent vectors in F [z]d. The degree deg v of a vector v in L is the maximum
degree of any of its components, and the determinant detL is the determinant of a
basis matrix (which is well-defined, up to scalar multiplication).

The polynomial analogue of lattice basis reduction produces a basis b1, . . . , bd for
L such that

deg(b1) + · · ·+ deg(bd) = deg detL.

Such a basis is called a reduced basis (sometimes column or row-reduced, depending
on how the vectors are written), and it can be found in polynomial time; see, for
example, Section 6.3 in [22]. If we order the basis so that deg(b1) ≤ · · · ≤ deg(bd),
then clearly

deg(b1) ≤ deg detL

d
,

and more generally

deg(bi) ≤
deg detL

d− (i− 1)
,

because

deg detL− (d− (i− 1)) deg(bi) =

d∑
j=1

deg(bj)−
d∑
j=i

deg(bi) ≥ 0.
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These inequalities are the polynomial analogues of the vector length bounds in
LLL-reduced lattices, but notice that the exponential approximation factor does
not occur. See [8] for more information about this analogy, and [14] for applications
that demonstrate the superior performance of these methods in practice.

4.2. Theorems 3 and 4. In the polynomial setting, we will choose Q(x1, . . . , xm)
to be a linear combination (with coefficients from F [z]) of the polynomials

(x1 − f1(z))i1 . . . (xm − fm(z))imN(z)`

with i1 + · · · + im ≤ t and ` = max(k −
∑
j ij , 0). We define the lattice L to be

spanned by the coefficient vectors of these polynomials, but with xi replaced with
z`ixi to incorporate the bound on deg gi, much as we replaced xi with Xixi in
Section 2.

As before, we can easily compute the dimension and determinant of L:

dimL =

(
t+m

m

)
and

deg detL = (`1 + · · ·+ `m)

(
t+m

m

)
t

m+ 1
+ n

(
k +m

m

)
k

m+ 1
,

where n = degN(z).
Given a polynomial Q(x1, . . . , xm) corresponding to a vector v ∈ L, we can bound

degQ(g1(z), . . . , gm(z)) by deg v. Specifically, suppose

Q(x1, . . . , xm) =
∑

j1,...,jm

qj1...jm(z)xj11 . . . xjmm ;

then v is the vector whose entries are qj1...jm(z)zj1`1+···+jm`m , and

degQ(g1(z), . . . , gm(z)) ≤ max
j1,...,jm

(deg qj1...jm(z) + j1 deg g1(z) + · · ·+ jm deg gm(z))

≤ max
j1,...,jm

(deg qj1...jm(z) + j1`1 + · · ·+ jm`m)

= deg v.

Let v1, . . . , vdimL be a reduced basis of L, arranged in increasing order by degree.
If

(4.1)
deg detL

dimL− (m− 1)
< βkn,

then each of v1, . . . , vm yields a polynomial relation Qi such that

Qi(g1(z), . . . , gm(z)) = 0,

because by the construction of the lattice, Qi(g1(z), . . . , gm(z)) is divisible by the
k-th power of an approximate common divisor of degree βn, while

degQi(g1(z), . . . , gm(z)) ≤ deg vi < βkn.

Thus, we must determine how large `1 + · · ·+ `m can be, subject to the inequality
(4.1).

If we set t ≈ kβ−1/m and

`1 + · · ·+ `m
m

< nβ(m+1)/m,
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then inequality (4.1) is satisfied when t and k are sufficiently large. Because there is
no analogue of the LLL approximation factor in this setting, we do not have to worry
about t and k becoming too large (except for the obvious restriction that dimL must
remain polynomially bounded), and there is no lower bound on β. Furthermore, we
require no 1 + o(1) factors, because all degrees are integers and all the quantities we
care about are rational numbers with bounded numerators and denominators; thus,
any sufficiently close approximation might as well be exact, and we can achieve this
when t and k are polynomially large.

5. Higher degree polynomials

It is possible to generalize the results in the previous sections to find solutions of
a system of higher degree polynomials modulo divisors of N .

Theorem 5. Given a positive integer N and m monic polynomials h1(x), . . . , hm(x)
over the integers, of degrees d1, . . . , dm, and given any β � 1/

√
logN and bounds

X1, . . . , Xm, we can find all r1, . . . , rm such that

gcd(N,h1(r1), . . . , hm(rm)) ≥ Nβ

and |ri| ≤ Xi, provided that

m

√
Xd1

1 . . . Xdm
m < N (1+o(1))β(m+1)/m

and that the algebraic independence hypothesis holds. The algorithm runs in polyno-
mial time for fixed m.

The m = 1 case does not require the algebraic independence hypothesis, and it
encompasses both Howgrave-Graham and Coppersmith’s theorems [19, 9]; it first
appeared in [25].

When X1 = · · · = Xm, the bound becomes Nβ(m+1)/m/d̄, where d̄ = (d1 + · · ·+
dm)/m is the average degree.

Theorem 6. Given a polynomial N(z) and m monic polynomials h1(x), . . . , hm(x)
over F [z], of degrees d1, . . . , dm in x, and given degree bounds `1, . . . , `m, we can
find all g1(z), . . . , gm(z) in F [z] such that

deg gcd(N(z), h1(g1(z)), . . . , hm(gm(z))) ≥ β degN(z)

and deg gi(z) ≤ `i, provided that

`1d1 + · · ·+ `mdm
m

< β(m+1)/m degN(z)

and that the algebraic independence hypothesis holds. The algorithm runs in polyno-
mial time for fixed m.

The algorithms are exactly analogous to those for the degree 1 cases, except that
xi − ai (or xi − fi(z)) is replaced with hi(xi).

6. Implementation

We implemented the number-theoretic version of the partial approximate common
divisor algorithm using Sage [29]. We used Magma [6] to do the LLL and Gröbner
basis calculations.

We solved the systems of equations by computing a Gröbner basis with respect to
the lexicographic monomial ordering, to eliminate variables. Computing a Gröbner
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m log2N log2 p log2 r t k dimL LLL Gröbner LLL factor

1 1000 200 36 41 8 42 12.10s – 1.037
1 1000 200 39 190 38 191
1 1000 400 154 40 16 41 34.60s – 1.023
1 1000 400 156 82 33 83 4554.49s – 1.029
1 1000 400 159 280 112 281

2 1000 200 72 9 4 55 25.22s 0.94s 1.030
2 1000 200 85 36 16 703
2 1000 400 232 10 6 66 126.27s 5.95s 1.038
2 1000 400 238 15 9 136 15720.95s 25.86s 1.019
2 1000 400 246 46 29 1128

3 1000 200 87 5 3 56 18.57s 1.20s 1.038
3 1000 200 102 14 8 680
3 1000 400 255 4 3 35 2.86s 2.13ss 1.032
3 1000 400 268 7 5 120 1770.04s 25.43s 1.040
3 1000 400 281 19 14 1540

4 1000 200 94 3 2 35 1.35s 0.54s 1.028
4 1000 200 111 8 5 495
4 1000 400 279 4 3 70 38.32s 9.33s 1.035
4 1000 400 293 10 8 1001

5 1000 200 108 3 2 56 7.35s 1.42s 1.035
5 1000 200 110 4 3 126 738.57s 7.28s 1.037
5 1000 400 278 3 2 56 1.86s 0.90s* 0.743

6 1000 200 115 3 2 84 31.51s 3.16s 1.038
6 1000 400 297 3 2 84 3.97s 1.34s* 0.586

7 1000 200 120 3 2 120 203.03s 7.73s 1.046
7 1000 400 311 3 2 120 12.99s 2.23s* 0.568

12 1000 400 347 1 1 13 0.01s 0.52s 1.013
18 1000 400 364 1 1 19 0.03s 1.08s 1.032
24 1000 400 372 1 1 25 0.04s 1.93s 1.024
48 1000 400 383 1 1 49 0.28s 8.37s 1.030
96 1000 400 387 1 1 97 1.71s 27.94s 1.040

Table 1. Experimental results from our implementation of the
integer partial approximate common divisor algorithm, with sample
parameters for more extreme calculations in italics.

basis can be extremely slow, both in theory and in practice. We found that it was
more efficient to solve the equations modulo a large prime, to limit the bit length of
the coefficients in the intermediate and final results. Because r1, . . . , rm are bounded
in size, we can simply choose a prime larger than 2 maxi |ri|.

We ran our experiments on a computer with a 3.30 GHz quad-core Intel Core i5
processor and 8 GB of RAM. Table 1 shows a selection of sample running times
for various parameter settings. For comparison, the table includes the m = 1 case,
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which is Howgrave-Graham’s algorithm. The italicized rows give example lattice
dimensions for larger inputs to illustrate the limiting behavior of the algorithm.

The performance of the algorithm depends on the ratio of t to k, which should be
approximately β−1/m. Incorrectly optimized parameters often perform much worse
than correctly optimized parameters. For example, when m = 3, log2N = 1000,
and log2 p = 200, taking (t, k) = (4, 2) can handle 84-bit perturbations ri, as one
can see in Table 1, but taking (t, k) = (4, 3) cannot even handle 60 bits.

For large m, we experimented with using the non-optimized parameters (t, k) =
(1, 1), as reported in Table 1. For the shortest vector only, the bounds would replace
the exponent β(m+1)/m with (m+ 1)β/m− 1/m, which is its tangent line at β = 1.
This bound is always worse, and it is trivial when β ≤ 1/(m + 1), but it still
approaches the optimal exponent β for large m. Our analysis does not yield a strong
enough bound for the m-th largest vector, but in our experiments the vectors found
by LLL are much shorter than predicted by the worst-case bounds, as described
below. Furthermore, the algorithm runs extremely quickly with these parameters,
because the lattices have lower dimensions and the simultaneous equations are all
linear.

The last column of the table, labeled “LLL factor,” describes the approximation
ratio obtained by LLL in the experiment. Specifically, LLL factor λ means

|vm| ≈ λdimL(detL)1/(dimL),

where vm is the m-th smallest vector in the LLL-reduced basis for L. Empirically,
we find that all of the vectors in the reduced basis are generally quite close in size,
so this estimate is more appropriate than using 1/(dimL− (m− 1)) in the exponent
(which we did in the theoretical analysis, in order to get a rigorous bound). The
typical value is about 1.02, which matches the behavior one would expect from
LLL on a randomly generated lattice, whose successive minima will all be close to
detL1/(dimL) [26]. A handful of our experimental parameters resulted in lattices
whose shortest vectors were much shorter than these bounds; this tended to correlate
with a small sublattice of algebraically dependent vectors.

Because of this, the reduced lattice bases in practice contain many more than
m suitable polynomials, and we were able to speed up some of the Gröbner basis
calculations by including all of them in the basis. For example, the m = 7,
log2 p = 200 Gröbner basis calculation from Table 1 finished in 12 seconds using
119 polynomials from the reduced lattice basis.

We marked cases where we encountered algebraically dependent relations with an
asterisk in Table 1. In each case, we were still able to solve the system of equations
by including more relations from the lattice (up to `1 norm less than Nβk) and
solving this larger system.
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