
Optimal Data Authentication from Directed Transitive Signatures

Philippe Camacho

Dept. of Computer Science, University of Chile,

Blanco Encalada 2120, Santiago, Chile.

pcamacho@dcc.uchile.cl

August 12, 2011

Abstract

An authenticated dictionary of size N is said to be optimal when an update operation or
proof computation requires at most O(logN) accesses to the data-structure, and the size of
a proof is O(1) with respect to N .

In this note we show that an optimal authenticated dictionary (OAD) can be built using
transitive signatures for directed graphs (DTS). As the existence of DTS and OAD are both
still open, our result can be interpreted as following: if optimal authenticated dictionaries
do not exist then transitive signatures for directed graphs do not exist either.

1 Introduction

In an authenticated dictionary the operations to access and update the data involve some guar-
antee that the answers are consistent with the actual state of the data-structure. We consider
the following scenario, also called three party model [GTH02]. In this model a Source wants to
delegate the access to the data-structure it owns through a Replica which may be corrupted.
The final User interacts with the Replica to gain access to the data-structure. In order to avoid
the User being fooled by the Replica, the Source publishes some short values that represent the
state of the data-structure after each update and extra cryptographic data for the Replica. Then
using this value and some proof computed by the Replica, the User gets the guarantee that the
answer of the Replica is authentic.

All existing constructions for this model, in particular [CHKO08, CKS09, CL02, BGG94,
Ngu05, PT10], involve a trade-off between the size of the proof and the number of accesses to
update the data-structure/compute the proof. Roughly, if the proof is small, the time to update
the data-structure/compute the proof will be large. Table 1 summarizes the complexities of the
current constructions. An interesting open problem is to know whether we can build optimal
authenticated dictionaries (OAD) where the time to update the data-structure/compute the
proof would involve only O(logN) accesses to the data-structure and the size of the proof
would remain constant in N . It seems that actual techniques based only collision resistant hash
functions, the RSA crypto-system, bilinear maps and recently lattices [PT10] are not enough to

1

reach such a goal1. In this note we present an optimal authenticated dictionary (OAD) based on
the existence of transitive signatures for directed graphs (DTS). The existence of such schemes
was proposed as a challenging open problem in [MR02]. So our result does not solve any of these
two open problems, but establishes the following relation between these two primitives.

Theorem 1. DTS → OAD

As a corollary, this result provides a possible path to prove the non-existence of DTS by
showing a lower bound ω(logN) on the number of accesses to update the data-structure (or
compute the proof) while keeping the size of the proof O(1).

Related Work. Transitive signatures first appeared in [MR02] where the authors proposed an
efficient implementation for non-directed graphs based on groups where the discrete logarithm is
hard. Other constructions - still for undirected graphs - based on RSA-related assumptions and
bilinear maps appeared in [BN05, SSM05]. Hohenberger in [Hoh03] showed that the existence
of DTS is a very challenging problem as it would imply the existence of a group for which the
internal law can be computed efficiently but where the inversion is hard. Directed transitive
signatures for trees have been studied in [Yi07, Nev08]. However these solutions, as noted by
Neven, do not fall strictly into the definition of DTS as the size of signature grows with the
number of nodes of the tree.

In a similar work to ours [PTT10] it is shown that using multi-linear forms [BS02], an
optimal dictionary could be built in the two-party model2. As no concrete implementation for
multi-linear forms is known to the date, an impossibility result for an OAD in the two-party
model would invalidate the complexity assumption for multi-linear forms which was proposed
in [PTT10].

2 Preliminaries

In the following || denotes the concatenation operator. A function f : N → R is said to be
negligible if for every polynomial p(.) there exists n0 such that ∀n > n0 : f(n) < 1/p(n). If κ
is the security parameter then an algorithm is said to be PPT if it is probabilistic and runs in
polynomial time in κ.

G = (V,E) denotes a graph G with set of vertices V and set of edges E. If P ∈ V is a vertex
of G, then P ∗ is the transitive closure of P , that is the set of vertices: {Q ∈ V : there exist a
path from P to Q }. Similarly the transitive closure of a graph G, denoted G∗ is the union of
the transitive closures of every vertex of G. A path from node R to node H is written R→ H.
In the case that G is a balanced binary tree we consider the following conventions. The depth d
of a node N is the number of edges on a path from the root R to N . In particular the depth for
the root R is 0. Let R be the root of the tree. If bi ∈ {0, 1}, and 0 ≤ i ≤ l ≤ d− 1, then Rb0b1...bl

denotes the node reachable from R by taking the path b0b1...bl, where 0 means left child and
1 means right child. By R[b0b1...bl] we denote the path from R to Rb0b1...bl formed by the nodes

1Obviously lattices still are a promising path as they seem in some aspect more powerful than bilinear maps
or other more classical primitives after Gentry’s breakthrough [Gen09].

2In this model, the server that has limited storage capacity, interacts with an untrusted memory that handles
the data-structure. See [GTH02] for more details.

2

Work Assumption TUpd TProofGen TV erif

[CHKO08] CHRF O(logN) O(logN) O(logN)

[CL02] S-RSA O(ǫ ·N
1

ǫ) O(ǫ ·N
1

ǫ) O(ǫ)

[CL02] S-RSA O(N logN) O(1) O(1)

[CKS09] q-DHE O(ǫ ·N
1

ǫ) O(ǫ ·N
1

ǫ) O(ǫ)

[BGG94] D-Log O(1) O(1) O(N)

[Ngu05] q-SDH O(N2) O(N2) O(1)

[PT10] GAPSVP O(1) O(logN) O(logN)

Figure 1: Tradeoff for authenticated dictionaries.
Complexities are relatives to the number of accesses to the data-structure. TUpd is the time
to update the data-structure, TProofGen the time to compute a proof and TV erif is the time to
check the proof. The abbreviations CHRF, S-RSA, q-DHE, q-SDH, GAPSVP stand respectively
for Collision-Resistant Hash Hunction families, Strong RSA Assumption, q-Exponent Diffie-
Hellman Assumption, q-Strong Diffie-Hellman Assumption and the Gap Version of the Shortest
Vector Problem in lattices.

R,Rb0 , Rb0b1 , ..., Rb0b1...bl−1
, Rb0b1...bl. If we index the leaves from left to right starting from 0 until

N −1 = 2d−1 we note that Li, the i-th leaf of the tree with root R is such that Li = Rb0b1...bd−1

where i = Σd−1
j=0bd−1−j2

j . In other words, (b0, ..., bd−1) is the binary decomposition of i where b0
is the bit of strongest weight. We consider val, the function that “extracts” the value v contained
a in message M parsed as M = i||v||r. More precisely, val takes as argument a message of the
form i||v||r and returns v.

(Transitive) Signatures. We denote by SSig = (SKG,SSig,SVf) a standard signature
scheme. (sk, pk) ← SKG(1κ) is the pair of private/public keys created at the beginning of the
scheme. Then for a message M ∈ {0, 1}∗ its associated signature is σM = SSig(sk,M). The
validation of a signature σ on M is done by running valid,⊥ ← SVf(pk,M, σ) where valid means
σ is valid and ⊥ means the opposite. For common digital signatures, we use the standard
notion of existential unforgeability under chosen message attack presented in [GMR88]. In the
experiment the adversary A is given a public key from the signing oracle. Then A asks the
oracle to sign a polynomial number of messages he chose. At the end of the game A outputs a
pair (M ′, σ) such that M ′ has not been signed by the oracle. The scheme is said to be secure
if the probability that SVf(pk,M ′σ) = valid is negligible in κ for any PPT Adversary. In a
transitive signature scheme, the signer can sign the vertices of some graph but also the edges.
Then without the secret, these edge signatures allow to compute the signature for any path that
is in the transitive closure of the graph.

Definition 1. (Transitive Signature Scheme, [MR02, Nev08]) A transitive signature scheme
(for directed graph) is a tuple DTS = (TSKG,TSign,TSComp,TSVf) where

• TSKG(1κ) : returns a pair of private/public keys (tsk, tpk).

• TSign(tsk, i, j) : returns τ(i,j), the signature of an edge (i, j). Note that signing an edge

3

means implicitly that every vertex is also signed. This can be done with a standard signature
scheme.

• TSComp((i, j), τ(i,j), (j, k), τ(j,k), tpk): returns the signature τ(i,k) of the edge (i, k). Note
that the secret key is not required, neither some description of the current graph.

• TSVf((i, j), τ, tpk) : returns valid if the τ is a valid signature for the edge (i, j) and ⊥
otherwise.

Note that in this definition the time of execution of TSComp should not depend on previous
computations, namely the size of the current graph. So we say that a transitive signature scheme
is admissible if there exists a fixed polynomial p(·) such that all the algorithms of DTS run in
time bounded by p(κ).

A transitive signature scheme is said to be secure if there is no adversary A that can compute
of signature of a path (i, j) that does not lie in the transitive closure of the graph.

Definition 2. (Security for transitive signatures schemes [Nev08]) Let DTS be a transitive
signature scheme. Consider the following experiment: the adversary A is given the public pa-
rameters of the scheme by running TSKG. Then A asks for edge signatures to the signing oracle
TSign(tsk, ·.·). After a polynomial number of queries A finally outputs (i, j, τ). The set of signed
edges form the (directed) graph G = (V,E). The advantage of A is defined by

Advtuf−cma
DTS,A (κ) = Pr [TSVf((i, j), τ, tpk) = valid ∧ (i, j) /∈ G∗]

where the probability is taken over the coins of the adversary and the algorithms of the scheme.
DTS is said to be transitively unforgeable under chosen message attack if for any PPT A,
Advtuf−cma

DTS,A (κ) is negligible.

Data authentication. An authenticated dictionary D in the three-party model works as
the following. The owner of the dictionary or Source publishes the data-structure with some
additional cryptographic information. Moreover the Source also publishes a short value corre-
sponding to the current state of the dictionary. With this short value a User can ask to a Replica
for a proof that D[i] = v for some index i and value v. The security requirement states that the
Replica should only be able to compute that proof if indeed D[i] = v, otherwise the verification
algorithm run by the User should detect the forgery. When the dictionary is updated, the
Source must publish a new state and also the necessary data to allow proof computations by
the Replica. Next we define formally the syntax, correctness and security for an authenticated
dictionary.

Definition 3. (Authenticated dictionary in the 3-party model)
Let κ ∈ N be the security parameter. An authenticated dictionary scheme AuthDict consists

of the following algorithms.

• Setup(1κ, N): this probabilistic algorithm takes κ in unary as input and N , a bound of
the number of elements of the dictionary D. It returns a pair of public and private keys
(PK,SK), the initial auxiliary information of the data-structure m0 and a short value m̂0

4

that represents the state of m0. Note that the auxiliary information is public3. The m0

data-structure represents a dictionary D which set of keys is {0, 1, ..., N − 1}.

• Verify(i, v,Π, PK, m̂): given an index i, a value v, a proof Π, the state m̂ and the public
key PK, return valid meaning that D[i] = v, or ⊥ otherwise. This algorithm is run by a
User .

• ProofGen(i,m, PK): this algorithm returns a proof Π associated to the value v and index
i such that D[i] = v where D is represented by m. This algorithm is run by the Replica.

• Update(i, v,mbefore, PK, SK): this algorithm computes the new state of the auxiliary data-
structure mafter where D[i] = v and the rest of the dictionary remains unchanged. More-
over the auxiliary information mbefore is also updated to mafter to allow further proof
computations. This algorithm is run by the Source.

An authenticated dictionary is said to be correct if the Replica is always able to compute
valid proofs for pairs (i, v) such that D[i] = v.

Definition 4. (Correctness) Let m1,m2, ...,mh be a sequence of updates, then we say the scheme
is correct if for any 0 ≤ i ≤ N − 1 and any 1 ≤ j ≤ h we have that

Pr [Π = ProofGen(i,mj , PK) ∧ Verify(i, v,Π, PK, m̂j) = valid] = 1 where the probability is
taken over the random coins of the algorithms of the scheme.

The authenticated dictionary is said to be secure if the probability for any PPTA to compute
a proof Π for a pair (i, v′) that passes the verification step, and such that D[i] 6= v′, is negligible.

Definition 5. (Security for authenticated data-structures [CL02])
Let AuthDict be an authenticated dictionary. We consider the notion of security denoted

uf − ad described by the following experiment: on input the security parameter κ, the adversary
A has access to an oracle O(·)AD that replies to queries by playing the role of the Source. Using
the oracle, the adversary asks for updates to the dictionary a polynomial number of times. The
oracle O(·)AD replies with the new state of the data-structure and also the necessary data to
update the auxiliary information of the data-structure. Recall that, as the auxiliary information
is public, the adversary can compute a proof for any index of the table. Finally, the adversary
is required to output a tuple (i, v,Π).

The advantage of the adversary A is defined by:

Advuf−ad
AuthDict,A(κ) = Pr [Verify(i, v,Π, m̂, PK) = valid ∧D[i] 6= v]

where PK is the public key generated by Setup, and m is the state of the dictionary D at the
end of the experiment. The scheme AuthDict is said to be secure if for every PPT adversary A,
Advuf−ad

AuthDict,A(κ) is negligible.

We need now to define what does the expression optimal authenticated dictionary mean. The
intuition is simply that the time to perform an operation in an optimal authenticated dictio-
nary should not be much larger than the time required to run a non-authenticated dictionary.

3In some works, in particular [CL02], auxiliary information has another meaning and is secret.

5

However precision is required as the size of an authenticated dictionary is related to the security
parameter, that is N = q(κ), where N is the size of the authenticated dictionary and q(·) is a
polynomial.

Our definition for authenticated dictionary differs a bit from the one of [PTT10] because it
explicitly mentions the security parameter κ and allows the Setup algorithm to run in polynomial
time in N . However both definitions are in essence equivalent.

Definition 6. Let N be the size of the dictionary. An authenticated dictionary AuthDict scheme
is optimal if and only if:

• It is correct and secure under definitions 4 and 5 respectively.

• There exist two polynomials m(·), l(·) such that:

– Setup runs in O(m(κ) · l(N)) time.

– Verify runs in O(m(κ)) time and the proof Π has size O(κ) = O(1) w.r.t N .

– ProofGen runs in O(m(κ) · log(N)) time, and involves at most O(logN) accesses to
the dictionary.

– Update runs in O(m(κ) · log(N)), and involves at most O(logN) accesses to the
dictionary.

Let us comment and justify the definition. As N = q(κ) for some polynomial q(·), then an
authenticated data-structure will be slower than the un-authenticated data-structure only by a
factor of m(κ) which is fixed and does not depend on N . Moreover the number of accesses to the
dictionary will remain the same. In practice m(κ) is the time to perform some cryptographic
operation (hash, signature,...), so it is reasonable to consider that m(κ)≪ N = q(κ). Note that
the trivial construction like the Merkle trie [?], does not fit this definition. The reason is that
although the algorithms Verify,ProofGen,Update require O(m(κ)) time where m(κ) = κ2, the
size of the proof is O(κ2) = ω(κ) and the number of accesses to the data-structure to compute
a proof is O(κ) = ω(log(N)).

3 Our construction

The idea of our construction is to build a balanced binary tree of N = 2d leaves, where each
leaf Li : 0 ≤ i ≤ N − 1 will store the value D[i] of the dictionary. The edges will be signed by
the DTS scheme and the root Rh will “represent” D at some point of time h. To perform an
update for the index j, which corresponds to the leaf Lh

j (that is the leaf at position j reachable

from root Rh) a new root Rh+1 is created. Along with this new root, a parallel path from
P h = Rh

[b0b1...bd−1]
the old root Rh to the leaf Lh

i is created. That is P h+1 = Rh+1
[c0c1...cd−1]

where

∀i : 0 ≤ i ≤ d − 1 : ci = bi. Each internal node in P h+1 is assigned a random label and the
leaf Rh+1

c0c1...cd
= Lh+1

j will contain the new value v such that D[j] = v. Then this new path will
be linked to the other nodes of the previous tree to maintain consistency of the dictionary, in
the sense that except for the index k = j, all the leaves Lh

k must remain reachable from the
new root Rh+1. This is done simply by connecting each internal node of the new path to the

6

corresponding sibling of the node belonging to the old path. Again, every new edge is signed
using a transitive signature scheme. So now, proving that D[i] = v is equivalent to exhibit a
signature for the path from the current root Rh to a leaf Lh

i such that val(L) = v. We can then
note that the time to update the balanced binary tree requires O(logN) signature computations
and the proof consists only in a single signature of a path. The security of the construction
is based on the fact that the only directed path from a root Rh to a given leaf Lh

i will always
correspond to the current value of the dictionary at time h and index i.

Definition 7. (Authenticated Dictionary from DTS)
Let AuthDictDTS be the authenticated dictionary defined by the following algorithms.

• Setup(1κ, N): generates the parameters (tsk, tpk) for the a directed transitive signature
scheme DTS. Then we set SK = tsk and PK = tpk. Let N be the size of the dictionary
D, and assume w.l.o.g. that N is a power of 2. Build a balanced binary tree m0 where
each leaf at position 0 ≤ i ≤ N − 1 has got the value M = i||v||r with r a random value 4.
Every internal node is filled with a random value. Then sign the tree with DTS scheme.
Publish the root node m̂0 as the state of the dictionary.

• Verify(i, v,Π, PK, m̂): parse Π as (σl, σp), then extract from m̂ the root node R and verify
that σl is the signature of message M = i||v||r for some (random) value r. Then check
that σp is a valid signature for the path R→M .

• ProofGen(i,m, PK): using m compute the digital signature σp for the path R → M where
R is the root of the tree and M is the value at the ith leaf, i.e. M = i||v||r where r is
random. Return (σp, σl) with σl = TSign(M).

• Update(i, v,m, PK, SK):

– Create a new leaf Lh+1
i with value M = i||v||r for a random r. Compute the signature

σ
Lh+1

i

= SSig(tsk,M).

– Let R[b1b2...bd] be the path from the root Rh ∈ G, the graph corresponding to m, to leaf

Lh
i . Create a new root node Rh+1 and new intermediate nodes Rh+1

b0
, Rh+1

b0b1
, ..., Rh+1

b0 ...bd−1 =

Lh+1
i . All these new nodes contain random values and are signed. The edges (Rh+1, Rh+1

b0
),

(Rh+1
b0

, Rh+1
b0b1

), (Rh+1
b0b1

, Rh+1
b0b1b2

), ..., (Rh+1
b0b1...bd−2

, Rh+1
b0b1b2...bd−1

) are signed too using the
algorithm TSign.

– Then the nodes of this path are connected (by signing edges) to the siblings of the old
path that has been replaced. That is for every 0 ≤ i ≤ d−1 sign edges (Rh+1

b0...bi
, Rh

b0...bib1−bi+1

)

and also (Rh+1, Rh
1−b0

).

– Publish the new value ˆmafter = Rh+1 as the new state of the dictionary.

4Indeed it would be sufficient to handle vertices labels of the form i||v||c where c is a counter as to guarantee
that all labels are distinct. Note that this method would make the scheme stateful and also leaks some information
about the history of updates of the dictionary.

7

To prove correctness and the security of our construction we need the following lemma.

Lemma 1. Let {Rh : h ∈ N} denotes the sequence of root nodes generated by the consecutive

executions of the Update algorithm. Then with probability at least P (q) = 1 − q2

2κ+1 , the two
following properties hold:

1. ∀h ∈ N, (Rh)∗ is a directed balanced binary tree with N leaves (Lh
0 , L

h
1 , ..., L

h
N−1).

2. if Dh denotes the state the dictionary after the same sequence of updates, then ∀i : 0 ≤
i ≤ N − 1 : Dh[i] = val(Lh

i).

where q′ is the number of graph nodes created during the successive updates.

Proof. We assume first that every node is filled with different values.
By induction on h. For h = 0 the claim is verified. Assume that for any h ∈ N, R∗

h is a
directed balanced binary tree with N leaves and that ∀0 ≤ i ≤ N − 1 : Dh[i] = val(Lh

i). After
the update (Rh+1)∗ is also a directed binary tree because it is formed by the new nodes of the
path Rh′+1

[b1...bd]
that are connected to the nodes of (Rh)∗ which are by induction root of balanced

directed binary trees of depth d− 1, d− 2, ..., 0 respectively. Let i be the index of the dictionary
that is updated. Then we can also see that ∀0 ≤ j ≤ N − 1 ∧ j 6= i : Dh[j] = val(Lh+1

j)

as the only new nodes that are reachable from Rh+1 are those on the new path Rh+1
b1...bd

where

i = Σd−1
j=0bd−j2

j . The other nodes, including the leaves (except Lh+1
i) are still reachable from

Rh. So we have that the set of leaves that are reachable from Rh+1 is formed by the leaves
reachable from Rh except for Lh

i that is replaced by the new leaf Lh+1
i . Thus, if (Rh)∗ was the

tree such that ∀i, 0 ≤ i ≤ N − 1 : Dh[i] = val(Lh
i), we can deduce that the leaves of (Rh+1)∗

represent Dh+1.
These two properties hold as long as all values in each node of the graph G = G1 ∪ G2 ∪

· · · ∪ Gh+1 are different. As by construction these values are chosen randomly in a universe
of size 2κ, we have that P (q) the probability that every two values are different after q nodes

creation is such that 1−P (q) ≤
∑q

i=1
1
2κ ≤

q2

2κ+1 . Thus both properties are true with probability

P (q) ≥ 1− q2

2κ+1 .
Note finally that the fact that the graph G = G1 ∪ G2 ∪ · · ·Gh+1 is directed is essential as

otherwise every node would be reachable from any root Rj, thus invalidating the lemma.

From the lemma we can directly deduce that,

Proposition 1. The authenticated dictionary AuthDictDTS is correct.

Proposition 2. Let ǫ be the advantage of an adversary A for the AuthDict, and qAD the number
of queries made to the oracle OAD by A. Then we can build an adversary B such that

Advtuf−cma
DTS,A (κ) ≥ ǫ(1−

q2AD

2κ
)

8

Proof. Assume that there exist a PPT adversary A that breaks our scheme, then we build the
the following adversary B that breaks the security of the transitive signature scheme DTS.
B obtains the public parameters of the DTS scheme. With these parameters its computes

the parameters of the AuthDict scheme and sends them to A. Then for each query of A, B replies
using the signing oracle of TSign(sk, ·, ·), the Update and ProofGen algorithm. At the end of the
challenge for AuthDict, the adversary A sends a tuple (i, v,Π) such that Verify(i, v,Π,mh, PK) =
valid ∧Dh[i] 6= v. As Dh[i] 6= v, from the lemma we can deduce that, with probability at least

1−
q2
AD

2κ , there is no leaf L reachable from Rh such that val(L) = v and L is in position i. This
means that the adversary B has been able forge a signature σ for DTS.

With respect to the complexity we can observe that the update algorithm requires O(logN)
signature computations of the DTS scheme, the proof computation consists in combiningO(logN)
DTS signatures and verifying the value of a dictionary at some index requires a DTS signature
verification. Thus, if DTS is an admissible transitive signature scheme for directed graphs, the
authenticated dictionary is optimal and theorem 1 is proved.

References

[BGG94] Mihir Bellare, Oded Goldreich, and Shafi Goldwasser. Incremental Cryptography:
The Case of Hashing and Signing. In Yvo G. Desmedt, editor, CRYPTO 1994,
volume 839 of LNCS, pages 216–233–233. Springer-Verlag, July 1994.

[BN05] Mihir Bellare and Gregory Neven. Transitive Signatures: New Schemes and Proofs.
IEEE Transactions on Information Theory, 51(6):2133–2151, June 2005.

[BS02] Dan Boneh and Alice Silverberg. Applications of Multilinear Forms to Cryptography.
http://eprint.iacr.org/2002/080, 2002.

[CHKO08] Philippe Camacho, Alejandro Hevia, Marcos Kiwi, and Roberto Opazo. Strong
Accumulators from Collision-Resistant Hashing. 2008.

[CKS09] Jan Camenisch, Markulf Kohlweiss, and Claudio Soriente. An Accumulator Based
on Bilinear Maps and Efficient Revocation for Anonymous Credentials. In Stanisaw
Jarecki and Gene Tsudik, editors, PKC 2009, volume 5443 of Irvine, pages 481–500.
Springer Berlin / Heidelberg, 2009.

[CL02] Jan Camenisch and Anna Lysyanskaya. Dynamic Accumulators and Application to
Efficient Revocation of Anonymous Credentials. In Moti Yung, editor, CRYPTO
2002, volume 2442 of LNCS, pages 61–76. Springer-Verlag, 2002.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. ACM Press, New
York, New York, USA, May 2009.

[GMR88] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A Digital Signature Scheme
Secure Against Adaptive Chosen-Message Attacks. SIAM Journal on Computing,
17(2):281, April 1988.

9

[GTH02] Michael T. Goodrich, Roberto Tamassia, and Jasminka Hasic. An Efficient Dynamic
and Distributed Cryptographic Accumulator. In ISC ’02 Proceedings of the 5th
International Conference on Information Security, pages 372–388, September 2002.

[Hoh03] Susan Hohenberger. The Cryptographic Impact of Groups with Infeasible Inversion.
http://groups.csail.mit.edu/cis/theses/hohenberger-masters.ps, 2003.

[MR02] Silvio Micali and Ronald Rivest. Transitive Signature Schemes. In Bart Preneel,
editor, CT-RSA 2002, volume 2271 of LNCS, pages 236–243. Springer / Berlin Hei-
delberg, February 2002.

[Nev08] Gregory Neven. A simple transitive signature scheme for directed trees. Theoretical
Computer Science, 396(1-3):277–282, May 2008.

[Ngu05] Lan Nguyen. Accumulators from Bilinear Pairings and Applications. In Alfred
Menezes, editor, Topics in Cryptology CT-RSA 2005, volume 3376 of Lecture Notes
in Computer Science, pages 275–292–292, Berlin, Heidelberg, 2005. Springer Berlin
Heidelberg.

[PT10] Charalampos Papamanthou and Roberto Tamassia. Update-Optimal Authenticated
Structures Based on Lattices. http://eprint.iacr.org/2010/128, 2010.

[PTT10] Charalampos Papamanthou, Roberto Tamassia, and Nikos Triandopoulos. Opti-
mal Authenticated Data Structures with Multilinear Forms, volume 6487 of Lecture
Notes in Computer Science, pages 246–264–264. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2010.

[SSM05] Siamak Fayyaz Shahandashti, Mahmoud Salmasizadeh, and Javad Mohajeri. A Prov-
ably Secure Short Transitive Signature Scheme from Bilinear Group Pairs. In Carlo
Blundo and Stelvio Cimato, editors, Security in Communication Networks, volume
3352 of LNCS, pages 60–76. Springer / Berlin Heidelberg, 2005.

[Yi07] Xun Yi. Directed Transitive Signature Scheme. In Masayuki Abe, editor, CT-RSA,
volume 4377 of LNCS, pages 129–144. Springer Berlin / Heidelberg, 2007.

10

