
Public Key Compression and Modulus Switching for Fully
Homomorphic Encryption over the Integers

Jean-Sébastien Coron1, David Naccache2, and Mehdi Tibouchi3

1 Université du Luxembourg
jean-sebastien.coron@uni.lu

2 École normale supérieure
david.naccache@ens.fr

3 NTT Information Sharing Platform Laboratories
tibouchi.mehdi@lab.ntt.co.jp

Abstract. We describe a compression technique that reduces the public key size of van Dijk, Gentry,
Halevi and Vaikuntanathan’s (DGHV) fully homomorphic scheme over the integers from Õ(λ7) to Õ(λ5).
Our variant remains semantically secure, but in the random oracle model. We obtain an implementation
of the full scheme with a 10.1 MB public key instead of 802 MB using similar parameters as in [8].
Additionally we show how to extend the quadratic encryption technique of [8] to higher degrees, to obtain
a shorter public-key for the basic scheme.
This paper also describes a new modulus switching technique for the DGHV scheme that enables to use
the new FHE framework without bootstrapping from Brakerski, Gentry and Vaikuntanathan with the
DGHV scheme. Finally we describe an improved attack against the Approximate GCD Problem on which
the DGHV scheme is based, with complexity Õ(2ρ) instead of Õ(23ρ/2).

1 Introduction

Fully Homomorphic Encryption. An encryption scheme is said to be fully homomorphic when
it is possible to perform implicit plaintext additions and multiplications while manipulating only
ciphertexts.

The first construction of a fully homomorphic scheme was described by Gentry in [10]. Gentry
first obtained a “somewhat homomorphic” scheme, supporting only a limited number of ciphertext
multiplications due to the fact that ciphertext contain a certain amount of “noise” which increases
with every multiplication, and that decryption fails when noise size passes a certain bound. As a result,
in the somewhat homomorphic scheme, the functions that can be homomorphically evaluated on
ciphertexts are polynomials of small, bounded degree. The second step in Gentry’s framework consists
in “squashing” the decryption procedure so that it can be expressed as a low degree polynomial in the
bits of the ciphertext and the secret key. Then, Gentry’s key idea, called “bootstrapping”, is to evaluate
this decryption polynomial not on the ciphertext bits and the secret-key bits (which would yield the
plaintext), but homomorphically on the encryption of those bits, which gives another ciphertext of
the same plaintext. If the degree of the decryption polynomial is small enough, the noise in the new
ciphertext can become smaller than it was the original ciphertext, so that this new ciphertext can be
used again in a subsequent homomorphic operation (either addition or multiplication). Using this
“ciphertext refresh” procedure the number of permissible homomorphic operations becomes unlimited
and one obtains a fully homomorphic encryption scheme. To date, three different fully homomorphic
schemes are known:

1. Gentry’s original scheme [10], based on ideal lattices. Gentry and Halevi described in [11] the first
implementation of Gentry’s scheme, using many clever optimizations, including some suggested in

a previous work by Smart and Vercauteren [15]. For their most secure setting (claiming 72 bit
security) the authors report a public key size of 2.3 GB and a ciphertext refresh procedure taking
30 minutes on a high-end workstation.

2. van Dijk, Gentry, Halevi and Vaikuntanathan’s (DGHV) scheme over the integers [9]. This scheme
is conceptually simpler than Gentry’s scheme, because it operates on integers instead of ideal
lattices. Recently it was shown [8] how to reduce the public key size by storing only a small subset
of the original public key and generating the full public key on the fly by combining the elements
in the small subset multiplicatively. Using some of the optimizations from [11], the authors of [8]
report similar performances: a 802 MB public key and a ciphertext refresh in 14 minutes.

3. Brakerski and Vaikuntanathan’s scheme based on the Learning with Errors (LWE) and Ring
Learning with Errors (RLWE) problems [3, 4]. The authors introduce a new dimension reduction
technique and a new modulus switching technique to shorten the ciphertext and reduce the
decryption complexity. A partial implementation is described in [12], without the fully homomorphic
capability.

Recently Brakerski, Gentry and Vaikuntanathan introduced a remarkable new FHE framework, in
which the noise ceiling increases only linearly with the multiplicative level instead of exponentially [5];
this implies that bootstrapping is no longer necessary to achieve fully homomorphic encryption. This
new framework has the potential to significantly improve the practical FHE performance. The new
framework is based on Brakerski and Vaikuntanathan’s scheme [3, 4], and more specifically on their
new modulus switching technique, which efficiently transforms a ciphertext encrypted under a certain
modulus p into a ciphertext under a different modulus p′ but with reduced noise.

Public Key Compression. The first of our contributions is a technique to reduce the public key
size of DGHV-like schemes [9] by several orders of magnitude. In the DGHV scheme the public key is
a set of integers of the form:

xi = qi · p+ ri

where p is the secret-key of η bits, qi is a large random integer of γ − η bits, and ri is a small random
integer of ρ bits. The scheme’s semantic security is based on the Approximate GCD Problem: given a
polynomial number of xi’s, recover the secret p. To avoid lattice attacks, the bit-size γ of the xi’s
must be very large: [8] takes γ ' 2 · 107 for η = 2652 and ρ = 39, and the full public key claims a 802
MB storage.

Our technique proceeds as follows. First generate the secret-key p. Then, use a pseudo-random
number generator f with public random seed se to generate a set of γ-bit integers χi (i.e. the χi’s are
of the same bit-size as the xi’s). Finally, compute small corrections δi to the χi’s such that xi = χi− δi
is small modulo p, and store only the small corrections δi in the public key, instead of the full xi’s.
Knowing the PRNG seed se and the δi’s is sufficient to recover the xi’s.

Therefore instead of storing a set of large γ-bit integers we only have to store a set of much
smaller η-bit integers, where η is the bit size of p. The new technique is fully compatible with the
DGHV variant described in [8]; with the previous set of parameters from [8] one obtains a public
key size of 4.6 MB for the full implementation, instead of the 802 MB required in [8]! The technique
can be seen as generating the γ − η most significant bits of the xi’s with a pseudo-random number
generator, and then using the secret key p to fix the η remaining bits so that xi mod p is small. While
different, this is somewhat reminiscent of Lenstra’s technique [13] for generating an RSA modulus
with a predetermined portion.

As an aside, we briefly explain how a similar technique can also be applied to Brakerski and
Vaikuntanathan’s scheme. However, our technique does not seem to adapt readily to Gentry’s scheme.

Under our variant, the encryption scheme can still be proved semantically secure under the
Approximate GCD assumption, albeit in the random oracle model. This holds for both the original
DGHV scheme form [9] and the variant described in [8] in which the public key elements are first
combined multiplicatively to generate the full public key. Unlike [8, 9], we need the random oracle
model in order to apply the leftover hash lemma in our variant, because the seed of the PRNG is
known to the attacker (as part of the public key).

We report the result of an implementation of the new variant with the fully homomorphic capability.
As in [8] we use the variant with noise-free x0 = q0 · p. We also update the parameters from [8] to take
into the account the improved attack from Chen and Nguyen against the Approximate GCD problem
[7]. We obtain a level of efficiency very similar to [8] but with a 10.1 MB public key instead of a 802
MB one. The source code of this implementation is publicly available [18].

Extension to Higher Degrees. Various techniques have been proposed in [8] to reduce the public
key size and increase the efficiency of the DGHV scheme, the most important of which is to use a
quadratic form instead of a linear form for masking the message when computing a ciphertext. More
precisely, ciphertexts are computed as:

c∗ = m+ 2r + 2
∑

1≤i,j≤β
bij · xi,0 · xj,1 mod x0

which is quadratic in the public key elements xi,b instead of linear as in the original DGHV scheme.
The authors show that the scheme remains semantically secure; the key ingredient is to prove that
a certain family of quadratic hash functions is close enough to being pairwise independent, so that
the leftover hash lemma can still be applied. The main benefit is a significant reduction in public key
size, from τ = Õ(λ3) elements xi down to 2β = Õ(λ1.5) elements xi,b. In this paper we prove that the
natural extension of this quadratic encryption technique to to cubic forms, and more generally forms
of arbitrary fixed degree d, remains secure, making it possible to further reduce the public key size.

Modulus Switching and Leveled DGHV Scheme. As a third contribution, we show how to
adapt Brakerski, Gentry and Vaikuntanathan’s (BGV) new FHE framework [5] to the DGHV scheme
over the integers. Under the BGV framework the noise ceiling increases only linearly with multiplicative
depth, instead of exponentially. This enables to get a FHE scheme without the costly bootstrapping
procedure.

More precisely the new BGV framework is described in [5] with Brakerski and Vaikuntanathan’s
scheme [3], and the key technical tool is the modulus-switching technique of [3] that transforms
a ciphertext c modulo p into a ciphertext c′ modulo p′ simply by scaling by p′/p and rounding
appropriately. This allows to reduce the ciphertext noise by a factor close to p′/p without knowing
the secret-key and without bootstrapping. However the modulus switching technique cannot directly
apply to DGHV since in DGHV the moduli p and p′ are secret. In this paper we explain how this
modulus-switching technique can be adapted to DGHV, so as to apply the new BGV framework. We
show that the resulting FHE scheme remains semantically secure, albeit under a stronger assumption.
We also describe an implementation, showing that the new BGV framework can be applied in practice.

Improved Attack against the Approximate-GCD problem. Finally we consider the security
of the Approximate GCD Problem without noise-free x0 = q0 · p. In our leveled DGHV variant under
the BGV framework the size of the secret p can become much smaller than in the original Gentry
framework (η ' 180 bits for the lowest p in the ladder, instead of η = 2652 bits in [8]). This implies
that the noise-free variant x0 = q0 ·p cannot be used, since otherwise the prime factor p could easily be
extracted using the Elliptic Curve Method for integer factorization [14]. Therefore one must consider
the security of the Approximate GCD Problem without noise-free x0. The recent attack by Chen and
Nguyen [7] against the Approximate GCD Problem with noise-free x0 has complexity Õ(2ρ/2), instead
of the Õ(2ρ) naive attack; as noted by the authors, this immediately yields an Õ(23ρ/2) attack against
the Approximate GCD Problem without noise-free x0, instead of Õ(22ρ) for the naive attack. In this
paper we exhibit an improved attack with complexity Õ(2ρ). We also describe an implementation
showing that this new attack is indeed an improvement in practice.

2 The DGHV Scheme over the Integers.

We first recall the somewhat homomorphic encryption scheme described by van Dijk, Gentry, Halevi
and Vaikuntanathan (DGHV) in [9]. For a real number x, we denote by dxe, bxc and dxc the rounding
of x up, down, or to the nearest integer. For integers z, p we denote the reduction of z modulo p
by [z]p with −p/2 < [z]p ≤ p/2, and by 〈z〉p with 0 ≤ 〈z〉p < p. Given the security parameter λ, the
following parameters are used:

• γ is the bit-length of the xi’s,

• η is the bit-length of the secret key p,

• ρ is the bit-length of the noise ri,

• τ is the number of xi’s in the public key,

• ρ′ is a secondary noise parameter used for encryption.

For a specific η-bit odd integer p, we use the following distribution over γ-bit integers:

Dγ,ρ(p) =
{
Choose q ← Z ∩ [0, 2γ/p), r ← Z ∩ (−2ρ, 2ρ) : Output x = q · p+ r

}
DGHV.KeyGen(1λ). Generate a random prime integer p of size η bits. For 0 ≤ i ≤ τ sample xi ←
Dγ,ρ(p). Relabel the xi’s so that x0 is the largest. Restart unless x0 is odd and [x0]p is even. Let
pk = (x0, x1, . . . xτ) and sk = p.

DGHV.Encrypt(pk,m ∈ {0, 1}). Choose a random subset S ⊆ {1, 2, . . . , τ} and a random integer r in
(−2ρ

′
, 2ρ

′
), and output the ciphertext:

c =

[
m+ 2r + 2

∑
i∈S

xi

]
x0

(1)

DGHV.Evaluate(pk, C, c1, . . . , ct): given the circuit C with t input bits, and t ciphertexts ci, apply
the addition and multiplication gates of C to the ciphertexts, performing all the additions and
multiplications over the integers, and return the resulting integer.

DGHV.Decrypt(sk, c). Output m← [c]p mod 2.

This completes the description of the scheme. As shown in [9] this scheme is somewhat homomorphic,
i.e. a limited number of homomorphic operations can be performed on ciphertexts. More precisely
given two ciphertexts c = q · p+ 2r +m and c′ = q′ · p+ 2r′ +m′ where r and r′ are ρ′-bit integers,
the ciphertext c+ c′ is an encryption of m+m′ mod 2 with (ρ′ + 1)-bit noise and the ciphertext c · c′
is an encryption of m ·m′ with noise ' 2ρ′. Since the ciphertext noise must remain smaller than p for
correct decryption, the scheme allows roughly η/ρ′ multiplications on ciphertexts. As shown in [9] the
scheme is semantically secure under the Approximate GCD assumption.

Definition 1 (Approximate GCD). The (ρ, η, γ)-Approximate GCD Problem is: For a random
η-bit odd integer p, given polynomially many samples from Dγ,ρ(p), output p.

3 The New DGHV Public Key Compression Technique

We describe our technique using the variant with noise free x0 = q0 · p, as suggested in [9] and
implemented in [8]. We only describe the basic scheme; we refer to Appendix A for a complete
description of the fully homomorphic scheme.

3.1 Description

KeyGen(1λ). Generate a random prime integer p of size η bits. Pick a random odd integer q0 ∈ [0, 2γ/p)
and let x0 = q0 · p. Initialize a pseudo-random number generator f with a random seed se. Use f(se)
to generate a set of integers χi ∈ [0, 2γ) for 1 ≤ i ≤ τ . For all 1 ≤ i ≤ τ compute:

δi = 〈χi〉p + ξi · p− ri

where ri ← Z ∩ (−2ρ, 2ρ) and ξi ← Z ∩ [0, 2λ+η/p). For all 1 ≤ i ≤ τ compute:

xi = χi − δi (2)

Let pk = (se, x0, δ1, . . . , δτ) and sk = p.

Encrypt(pk,m ∈ {0, 1}): use f(se) to recover the integers χi and let xi = χi − δi for all 1 ≤ i ≤ τ .
Choose a random integer vector b = (bi)1≤i≤τ ∈ [0, 2α)τ and a random integer r in (−2ρ

′
, 2ρ
′
). Output

the ciphertext:

c = m+ 2r + 2
τ∑
i=1

bi · xi mod x0

Evaluate(pk,C, c1, . . . , ct) and Decrypt(sk, c): same as in the original DGHV scheme, except that
ciphertexts are reduced modulo x0.

This completes the description of our variant. We have the following constraints on the scheme
parameters:

• ρ = ω(log λ) to avoid brute force attack on the noise,

• η ≥ ρ · Θ(λ log2 λ) in order to support homomorphic operations for evaluating the “squashed
decryption circuit” (see [9]),

• γ = ω(η2 · log λ) in order to thwart lattice-based attacks against the Approximate GCD problem
(see [8, 9]),

• α · τ ≥ γ + ω(log λ) in order to apply the left-over hash lemma (see [8, 9]).

• η ≥ ρ+ α+ 2 + log2 τ for correct decryption of a ciphertext,

• ρ′ = α+ ρ+ ω(log λ) for the secondary noise parameter.

To satisfy the above constraints one can take ρ = λ, η = Õ(λ2), γ = Õ(λ5), α = Õ(λ2), τ = Õ(λ3)
and ρ′ = Õ(λ2). The main difference with the original DGHV scheme is that instead of storing the
large xi’s in the public key we only store the much smaller δi’s. The new public key for the somewhat
homomorphic scheme has size γ + τ · (η + λ) = Õ(λ5) instead of (τ + 1) · γ = Õ(λ8).

Remark 1. We can also compress x0 by letting x0 = χ0 − δ0 and storing only δ0 = 〈χ0〉p + ξ0 · p in
the public-key.

Remark 2. In the description above we add a random multiple of p to 〈χi〉p in the δi’s. This is done
to obtain a proof of semantic security in the random oracle model (see below). However the scheme
seems heuristically secure without adding the random multiple.

Remark 3. For encryption the integers xi need not be stored in memory as they can be generated on
the fly when computing the subset sum.

3.2 Semantic Security

Theorem 1. The previous encryption scheme is semantically secure under the Approximate GCD
assumption with noise-free x0 = q0 · p, in the random oracle model.

Proof. The proof is almost the same as in [9]. For simplicity we consider the variant without noise-free
x0 = q0 · p, as in [9]; the extension to the noise-free variant is straightforward. More precisely, we
assume that x0 is first generated as the other xi’s; then as described in Section 2 one relabels the
xi’s so that x0 is the largest, and restarts unless x0 is odd and [x0]p is even. Given a random oracle
H : {0, 1}∗ → Z ∩ [0, 2γ), we assume that the pseudo-random number generation of the χi’s is defined
as follows:

χi = H(se ‖i) for all 0 ≤ i ≤ τ

and we show that the integers xi’s generated in (2) have a distribution statistically close to their
distribution in the original DGHV scheme.

As in [9] given an attacker A that breaks the semantic security of the scheme, one constructs a
solver B for the Approximate GCD Problem. Our proof differs from [9] only in the first step: the
creation of the public key.

Step 1: Creating the public key. The solver B begins by constructing a public key for the scheme.
B obtains τ + 1 samples x0, . . . , xτ ← Dγ,ρ(p). B generates a random seed se and programs the random
oracle in the following way for all 0 ≤ i ≤ τ :

H(se ‖i) = xi + δi

where δi ← Z ∩ [0, 2λ+η). For other inputs the random oracle is simulated in the usual way, i.e. by
generating a random output in Z ∩ [0, 2γ) for every fresh input. Finally B relabels the xi’s so that x0
is the largest. B restarts unless x0 is odd. B then outputs a public key pk = (se, δ0, . . . , δτ).

The following Lemma shows that if [x0]p happens to be even then the distribution of the public
key is statistically close to that of the scheme.

Lemma 1. The following two distributions have statistical distance O(2−λ):

D =
{

(χ, δ, x); χ← Z ∩ [0, 2γ), δ = 〈χ〉p + ξ · p− r, x = χ− δ,
ξ ← Z ∩ [0, 2λ+η/p), r ← Z ∩ (−2ρ, 2ρ)

}
D′ =

{
(χ, δ, x); x = q · p+ r, δ ← Z ∩ [0, 2λ+η), χ = x+ δ,

q ← Z ∩ [0, 2γ/p), r ← Z ∩ (−2ρ, 2ρ)
}

The distribution of the xi’s after Step 1 is the same as the one in the proof of semantic security
from [9], and therefore the rest of the proof is the same as in [9]. ut

3.3 Proof of Lemma 1

Given X and Y two random variables over a finite set S, we denote by

d(X,Y) :=
1

2

∑
s∈S

∣∣Pr[X = s]− Pr[Y = s]
∣∣

the statistical distance between X and Y . We say that X and Y are statistically indistinguishable if
d(X,Y) is a negligible function of the security parameter.

We denote by US the uniform distribution over a finite set S. Given a finite set ∆ such that
∆ ∩ S = ∅, we have:

d(US , US∪∆) =
1

2

∑
s∈S

∣∣∣∣ 1

|S|
− 1

|S|+ |∆|

∣∣∣∣+
1

2

∑
s∈∆

∣∣∣∣0− 1

|S|+ |∆|

∣∣∣∣ =
|∆|

|S|+ |∆|

We let q0 = b2γ/pc. We modify D by generating χ← Z ∩ [0, p · q0) instead of χ← Z ∩ [0, 2γ) and
denote by D1 the corresponding distribution. The statistical distance between D and D1 is at most
p/2γ ≤ 2η−γ . Equivalently we let χ = q′ · p+ α where q′ ← Z ∩ [0, q0) and α← Z ∩ [0, p). This gives:

D1 =
{

(χ, δ, x); χ = q′ · p+ α, δ = α+ ξ · p− r, x = χ− δ,
q′ ← Z ∩ [0, q0), α← Z ∩ [0, p), ξ ← Z ∩ [0, 2λ+η/p), r ← Z ∩ (−2ρ, 2ρ)

}
= {(χ, δ, x); x = (q′ − ξ) · p+ r, δ = α+ ξ · p− r, χ = x+ δ,

q′ ← Z ∩ [0, q0), α← Z ∩ [0, p), ξ ← Z ∩ [0, 2λ+η/p), r ← Z ∩ (−2ρ, 2ρ)}

We first consider the distribution:

Dq =
{
q′ − ξ; q′ ← Z ∩ [0, q0), ξ ← Z ∩ [0, 2λ+η/p)

}
We have:

d(Dq, UZ∩[0,2γ/p)) ≤ d(Dq, UZ∩[0,q0)) + d(UZ∩[0,q0), UZ∩[0,2γ/p))

≤ 2λ+η+1/p

q0
+

1

q0
≤ 2λ+η−γ+2

Similarly we consider the distribution:

Dδ =
{
α+ ξ · p− r; α← Z ∩ [0, p), ξ ← Z ∩ [0, 2λ+η/p), r ← Z ∩ (−2ρ, 2ρ)

}
=
{
δ′ − r; δ′ ← Z ∩ [0, p · ξ0), r ← Z ∩ (−2ρ, 2ρ)

}

where ξ0 = d2λ+η/pe, and we have:

d(Dδ, UZ∩[0,2λ+η)) ≤ d(Dδ, UZ∩[0,p·ξ0)) + d(UZ∩[0,p·ξ0), UZ∩[0,2λ+η))

≤ 2ρ+2

p · ξ0
+

p

2λ+η
≤ 2ρ−η−λ+2 + 2−λ

Finally, we have:

d(D1,D′) ≤ d(Dq, UZ∩[0,2γ/p)) + d(Dδ, UZ∩[0,2λ+η)) ≤ 2λ+η−γ+2 + 2ρ−η−λ+2 + 2−λ

and:
d(D,D′) ≤ d(D,D1) + d(D1,D′) ≤ 2η−γ + 2λ+η−γ+2 + 2ρ−η−λ+2 + 2−λ

Given the constraints on the scheme’s parameters, this statistical distance is O(2−λ).

3.4 Extension to Other Fully Homomorphic Schemes

We briefly explain how the new compression technique can be extended to Brakerski and Vaikun-
tanathan’s scheme based on the Learning with Errors (LWE) problem [3, 4]. We also explain why our
technique is not readily applicable to Gentry’s scheme.

Brakerski and Vaikuntanathan’s Scheme. The public key is a set of ciphertexts of the form:

xi = (ai, 〈ai, s〉+ ri mod q)

where ai is a random element in Znq , s ∈ Znq is the secret key, and ri is a small random noise in Zq.
Therefore to compress the public key it suffices to generate the ai’s pseudo-randomly and store only
the one-dimensional terms 〈ai, s〉+ ri mod q.

However the technique does not seem to extend to the Ring Learning with Errors (RLWE) scheme
[4]. A ciphertext is a pair of ring elements (a, a · s+ r), where a is a random element in the ring R,
s ∈ R is the secret key, and r is a small random noise in R. One can generate the first element a
pseudo-randomly but this only halves the ciphertext size.

Gentry’s Scheme. The technique doesn’t seem to adapt readily to Gentry’s scheme. If we consider
for example the variant by Gentry and Halevi [11], the public key of the underlying somewhat
homomorphic scheme is relatively short: it is a pair (d, r) of (n · t)-bit integers (with t = 380 and
n = 32768 at the “large” security level). What makes the public key of the fully homomorphic scheme
rather large is that it contains encryptions of secret bits si used in the squashed decryption circuit.

An encryption of a bit m in the Gentry-Halevi scheme is computed as:

c = m+ 2u(r) mod d

where (d, r) is the public key of the underlying scheme, and u is a random polynomial of degree n
with coefficients in {−1, 0, 1} (with 0 being chosen with higher probability than ±1, but we will ignore
this fact for a moment).

A natural generalization of our technique would be to compute the encryptions of the secret bits
si as follows: generate pseudo-random numbers χi ∈ Zd, choose polynomials ui as above such that the

differences δi = [χi − si − 2ui(r)]d are small, and publish the δi’s in the public key. The problem is
that the δi’s cannot be too small if the polynomials ui are to exist at all.

Indeed, we have si + 2ui(r) + δi ≡ χi (mod d), so we must pick δi large enough that all elements
of Zd can be represented in that form. If we bound δi by |δi| < D/2, there are at most 3n · D
elements of Zd represented as the left-hand side: hence, we must have D > d/3n = (2380/3)n. This
implies that, at best, the technique can only reduce the bit length of the public key by a factor of
(log 3)/(380 log 2) ≈ 0.4% (and even less if we take into account the fact that ui should be chosen
relatively sparse with good probability).

4 Extension of DGHV Encryption to Higher Degrees

Various techniques have recently been proposed in [8] to reduce the public key size and increase the
efficiency of the DGHV scheme, the most important of which is to use a quadratic form instead of a
linear form for masking the message when computing a ciphertext. More precisely, one computes:

c∗ = m+ 2r + 2
∑

1≤i,j≤β
bij · xi,0 · xj,1 mod x0

which is quadratic in the public key elements xi,b instead of linear as in equation (1); here the variant
with noise-free x0 = q0 · p is used. The main benefit is a significant decrease in the public key size,
from τ = Õ(λ3) elements xi down to 2β = Õ(λ1.5) elements xi,b. Namely the constraint to apply the
left-over hash lemma becomes α · β2 ≥ γ +ω(log λ), so by taking α = Õ(λ2) one can take β = Õ(λ1.5).
Combined with our compression technique the public-key size of the somewhat homomorphic scheme
becomes (2β + 1) · (η + λ) = Õ(λ3.5).

To prove that the scheme remains secure under this modified encryption procedure, the key point
in [8] was to prove that the following family of functions h : {0, . . . , 2α−1}β2 → Zq0 :

h(b) =
∑

1≤i1,i2≤β
bi1i2q

(1)
i1
q
(2)
i2

mod q0
(
q
(j)
i ∈ Zq0

)
is close enough to being a pairwise independent (i.e. universal) hash function family (under suitable
parameter choices), which in turn makes it possible to apply a variant of the leftover hash lemma.

In this section we show that it is possible to obtain further efficiency gains by using cubic forms
instead, or more generally forms of higher degree d, if we can prove an analogue of the previous result
for the family Hd of hash functions h : {0, . . . , 2α−1}βd → Zq of the form:

h(b) =
∑

1≤i1,...,id≤β
bi1,...,idq

(1)
i1
· · · q(d)id

mod q
(
q
(j)
i ∈ Zq

)
Such a result also leads to the construction of extractors with relatively short seeds, which is an
interesting fact in its own right.

We show that this hash function family is indeed close to being pairwise independent for suitable
parameters. As in [8], we can prove this in the simpler case when q = q0 is prime; the result then
follows for all q0 without small prime factors. The main result is as follows (we refer to [8] for the
definition of ε-pairwise independence).

Theorem 2. For an odd prime q, the hash function family Hd is ε-pairwise independent, with:

ε =
(d− 1)(d− 2)

√
q

+
5d13/3

q
+

(d− 1) · (2β)d

2αβd−1(β−2−2/α))

Using the variant of the leftover hash lemma from [8], this proves the semantic security of the
scheme for any encryption degree d ≥ 2, with the condition α · βd ≥ γ + ω(log λ). The constraint
for correct decryption becomes η ≥ ρ · d + α + 2 + d · log2 β, and ρ′ = ρ · d + α + ω(log λ) for the
secondary noise parameter. The public-key size for the somewhat homomorphic scheme becomes
(d · β + 1) · (η + λ). In particular by taking β = 3 and d = O(log λ), we get a public-key size in Õ(λ2)
for the somewhat homomorphic scheme.

4.1 Proof of Theorem 2

We will use the following explicit version of the Lang-Weil bound for affine hypersurfaces.

Lemma 2 (Cafure & Matera [6]). Let q be a prime and V be a hypersurface in AN (Fq) defined as
the locus of zeros of a polynomial P ∈ Fq[x1, . . . , xN] of total degree d. Then the number of Fq-points
of V is bounded as:

#V (Fq) ≤ dqN−1

Moreover, if P is absolutely irreducible, then:

#V (Fq) ≤ qN−1 + (d− 1)(d− 2)qN−3/2 + 5d13/3qN−2

Turning to the proof of Theorem 2, we observe that for each choice of b 6= b′, the probability
Prh←Hd [h(b) = h(b′)] can be expressed in terms of the number of Fq-points of a hypersurface in AdβFq.
More precisely, if we let a = b− b′, we have:

Pr
h

[h(b) = h(b′)] =
1

qdβ
#

{
(u

(j)
i) ∈ Fd×βq :

∑
1≤i1,...,id≤β

ai1,...,idu
(1)
i1
· · ·u(d)id = 0

}
=

1

qdβ
#Va(Fq)

where Va is the hypersurface of zeros of the polynomial:

Pa(x
(1)
1 , . . . , x

(1)
β , . . . , x

(d)
1 , . . . , x

(d)
β) =

∑
1≤i1,...,id≤β

ai1,...,idx
(1)
i1
· · ·x(d)id (3)

In particular, when Pa is absolutely irreducible, Lemma 2 gives:

Pr
h

[h(b) = h(b′)] ≤ 1

q
+

(d− 1)(d− 2)

q3/2
+

5d13/3

q2

Otherwise, we get:

Pr
h

[h(b) = h(b′)] ≤ d

q

Now, by definition, the hash function family Hd is ε′-pairwise independent for

ε′ =
#Fq
#X2

∑
b6=b′

(
Pr
h

[h(b) = h(b′)]− 1

#Fq

)

with X = {0, . . . , 2α−1}βd . By the above estimates, we get:

ε′ ≤ q

#X2

(∑
b 6=b′

Pa abs. irred.

((d− 1)(d− 2)

q3/2
+

5d13/3

q2

)
+

∑
b6=b′

Pa not abs. irred.

d− 1

q

)

≤ (d− 1)(d− 2)
√
q

+
5d13/3

q
+ (d− 1) · #{(b, b′) ∈ X2 : b 6= b′ and Pa not abs. irred.}

#X2

Thus, if we denote by Uα the set of nonzero polynomials of the form (3) with coefficients in {−2α +
1, . . . , 2α − 1} that are not absolutely irreducible, we get:

ε′ ≤ (d− 1)(d− 2)
√
q

+
5d13/3

q
+ (d− 1) · #Uα

#X
(4)

Indeed, for any choice of b′, there are at most #Uα choices of b for which Pa is not absolutely
irreducible.

So all we have to do is find a suitable upper bound for #Uα. Let:

P =
∑

(i1,...,id)

ai1,...,idx
(1)
i1
· · ·x(d)id

a polynomial in Uα. Since P is multilinear in x(1), . . . , x(d) and not absolutely irreducible, it factors
over Fq as a product of two polynomials Q, R which are multilinear in two complementary subsets of
these variables. Assume for example, without loss of generality, that Q is multilinear in x(1), . . . , x(`)

and R is multilinear in x(`+1), . . . , x(d), for some 1 ≤ ` ≤ d− 1:

Q =
∑

(i1,...,i`)

ui1,...,i`x
(1)
i1
· · ·x(`)i`

R =
∑

(i`+1,...,id)

vi`+1,...,idx
(`+1)
i`+1

· · ·x(d)id

Clearly, for any multi-index (i1, . . . , id), we have ai1,...,id = ui1,...,i` · vi`+1,...,id . Now assume further, still
without loss of generality since P 6= 0, that a1,...,1 6= 0. Then, all the coefficients of P are entirely
determined by those of multi-index (i1, . . . , i`, 1, . . . , 1) and those of multi-index (1, . . . , 1, i`+1, . . . , id).
Indeed, for any multi-index (i1, . . . , id), we have:

ai1,...,id = ui1,...,i` · vi`+1,...,id =
(ui1,...,i`v1,...,1) · (u1,...,1vi`+1,...,id)

u1,...,1v1,...,1
=
ai1,...,i`,1,...,1 · a1,...,1,i`+1,...,id

a1,...,1

This implies that there are at most (2α+1 − 1)β
` · (2α+1 − 1)β

d−` ≤ 22β
d−1(α+1) elements in Uα for this

choice of two complementary subsets of variables and of a nonzero coefficient of P . Taking all possible
choices into account, we get:

#Uα ≤ βd · 2d · 22β
d−1(α+1)

Plugging this bound into (4), we obtain the desired result.

5 Adaptation of the BGV Framework to the DGHV Scheme

5.1 The BGV Framework for Leveled FHE

In this section we first recall the new framework from Brakerski, Gentry and Vaikuntanathan (BGV)
[5] for leveled fully homomorphic encryption. Under the BGV framework the noise ceiling increases
only linearly with the multiplicative depth, instead of increasing exponentially. This implies that
bootstrapping is no longer necessary to achieve fully homomorphic encryption. The new framework
is based on the Brakerski and Vaikuntanathan RLWE scheme [3, 4]. The key technical tool is the
modulus-switching technique from [3] that transforms a ciphertext c modulo p into a ciphertext c′

modulo p′ simply by scaling by p′/p and rounding appropriately; the noise is also reduced by a factor
p′/p.

More precisely in [5] the decryption of a ciphertext vector c that encrypts m has the form
m = [〈c, s〉]p mod 2 where s is the secret-key. The term [〈c, s〉]p is called the “noise” associated
to the ciphertext c. The following lemma shows that from a ciphertext c encrypted under p one
can efficiently obtain a new ciphertext c′ under p′, simply by multiplying every component by p′/p
and rounding appropriately. The resulting noise is then essentially multiplied by the ratio p′/p. The
modulus-switching technique is therefore a very lightweight procedure to reduce the ciphertext noise
by a factor roughly p/p′ without knowing the secret-key and without bootstrapping.

Lemma 3 (Modulus-Switching [3, 5]). Let p and p′ be two odd moduli. Let c by an integer vector
and let c′ be the integer vector closest to (p′/p) · c such that c′ = c (mod 2). Then, for any s with
|[〈c, s〉]p| < p/2− (p/p′) · `1(s), we have:

[〈c′, s〉]p′ = [〈c, s〉]p (mod 2) and |[〈c′, s〉]p′ | < (p′/p) · |[〈c, s〉]p|+ `1(s)

where `1(s) is the `1-norm of s.

In the original Gentry framework [10], the multiplication of two mod-p ciphertexts with noise
size ρ gives a ciphertext with noise size ' 2ρ; after a second multiplication level the noise becomes
' 4ρ, then ' 8ρ and so on; the noise size grows exponentially with the number of multiplication
levels. The modulus p is a ceiling for correct decryption; therefore if the bit-size of p is k · ρ, the noise
ceiling is reached after only log2 k levels of multiplication. Fully homomorphic encryption is achieved
via bootstrapping, i.e. homomorphically evaluating the decryption polynomial to obtain a refreshed
ciphertext.

The breakthrough idea in the BGV framework [5] is to apply the modulus-switching technique
after every multiplication level, using a ladder of gradually decreasing moduli pi. Start with two
mod-p1 ciphertexts with noise ρ; as previously after multiplication one gets a mod-p1 ciphertext with
noise 2ρ. Now switch to a new modulus p2 such that p2/p1 ' 2−ρ; after the switching one gets a
mod-p2 ciphertext with noise back to 2ρ− ρ = ρ again; one can continue by multiplying two mod-p2
ciphertexts, obtain a 2ρ-noise mod-p2 ciphertext and switch back to a ρ-noise mod-p3 ciphertext, and
so on. With a ladder of k moduli pi of decreasing size (k + 1) · ρ, . . . , 3ρ, 2ρ one can therefore perform
k levels of multiplication instead of just log2 k. In other words the (largest) modulus size (k + 1) · ρ
grows only linearly with the multiplicative depth; this is an exponential improvement.

As explained in [5], bootstrapping is no longer strictly necessary to achieve fully homomorphic
encryption: namely one can always assume a polynomial upper-bound on the number L of multiplicative
levels of the circuit to be evaluated homomorphically. However, bootstrapping is still an interesting

operation as a bootstrapped scheme can perform homomorphic evaluations indefinitely without needing
to specify at setup time a bound on the multiplicative depth. As shown in [5] bootstrapping becomes
also more efficient asymptotically in the BGV framework.

5.2 Modulus-Switching for DGHV

The modulus-switching technique recalled in the previous section is a very lightweight procedure to
reduce the ciphertext noise by a factor roughly p/p′ without knowing the secret-key and without
bootstrapping. However we cannot apply this technique directly to DGHV since in DGHV the moduli
p and p′ must remain secret.

We now describe a technique for switching moduli in DGHV. We proceed in two steps. Given as
input a DGHV ciphertext c = q · p+ r, we first show in Lemma 4 how to obtain a “virtual” ciphertext
of the form c′ = 2k · q′ + r′ with [q′] = [q]2, given the bits si in the following subset-sum sharing of
2k/p:

2k

p
=

Θ∑
i=1

si · yi + ε mod 2k+1

where the yi’s have κ bits of precision after the binary point, with |ε| ≤ 2−κ. This is done by first
“expanding” the initial ciphertext c using the yi’s, as in the “squashed decryption” procedure in [10],
and then “collapsing” the expanded ciphertext into c′, using the secret-key vector s = (si). However
we cannot reveal s in clear, so instead we provide a DGHV encryption under p′ of the secret-key bits
si, as in the bootstrapped procedure. Then as showed in Lemma 5 the expanded ciphertext can be
collapsed into a new ciphertext c′′ under p′ instead of p, for the same underlying plaintext; moreover
as in the RLWE scheme the noise is reduced by a factor ' p′/p.

Lemma 4. Let p be an odd integer. Let c = q · p+ r be a ciphertext. Let k be an integer. Let κ ∈ Z
be such that |c| < 2κ. Let y be a vector of Θ numbers with κ bits of precision after the binary
point, and let s be a vector of Θ bits such that 2k/p = 〈s,y〉 + ε mod 2k+1, where |ε| ≤ 2−κ. Let
c = (bc ·yie mod 2k+1)1≤i≤Θ. Let c′ = 〈s, c〉. Then c′ = q′ ·2k+r′ with [q′]2 = [q]2 and r′ = br ·2k/pc+δ
where δ ∈ Z with |δ| ≤ Θ/2 + 2.

Proof. We have:

c′ =

Θ∑
i=1

si bc · yie+∆ · 2k+1 =

Θ∑
i=1

si · c · yi + δ1 +∆ · 2k+1

for some ∆ ∈ Z and |δ1| ≤ Θ/2. Using 〈s,y〉 = 2k/p− ε− µ · 2k+1 for some µ ∈ Z this gives:

c′ − δ1 −∆2k+1 = c ·
(

2k

p
− ε− µ · 2k+1

)
= q · 2k + r · 2k

p
− c · ε− c · µ · 2k+1

Therefore we can write:
c′ = q′ · 2k + r′

where [q′]2 = [q]2 and r′ = br · 2k/pc+ δ for some δ ∈ Z with |δ| ≤ Θ/2 + 2. ut

As in [5], given a vector x ∈ [0, 2k+1[Θ we write x =
∑k

i=0 2j ·uj where all the elements in vectors
uj are bits, and we define BitDecomp(x, k) := (u0, . . . ,uk). Similarly given a vector z ∈ RΘ we define
Powersof2(z, k) := (z, 2 · z, . . . , 2k · z). We have for any vectors x and z:〈

BitDecomp(x, k),Powersof2(z, k)
〉

= 〈x, z〉

The following lemma shows that given a ciphertext c encrypted under p and with noise r we can
compute a new ciphertext c′′ under p′ with noise r′′ ' r · p′/p, by using an encryption σ under p′ of
the secret-key s corresponding to p.

Lemma 5. Let p and p′ be two odd integers. Let k be an integer such that p′ < 2k. Let c = q · p+ r be
a ciphertext. Let κ ∈ Z be such that |c| < 2κ. Let y be a vector of Θ numbers with κ bits of precision
after the binary point, and let s be a vector of Θ bits such that 2k/p = 〈s,y〉 + ε mod 2k+1, where
|ε| ≤ 2−κ. Let σ = p′ · q + r + bs′ · p′/2k+1e be an encryption of the secret-key s′ = Powersof2(s, k),
where q ← (Z ∩ [0, 2γ/p′))(k+1)·Θ and r ← (Z ∩ (−2ρ, 2ρ))(k+1)·Θ. Let c = (bc · yie mod 2k+1)1≤i≤Θ
and let c′ = BitDecomp(c, k) be the expanded ciphertext. Let c′′ = 2〈σ, c′〉+ [c]2. Then c′′ = q′′ · p′+ r′′

where r′′ = br · p′/pc+ δ′ for some δ′ ∈ Z with |δ′| ≤ 2ρ+2 ·Θ · (k + 1), and [r]2 = [r′′]2.

Proof. We have, from σ = p′ · q + r + bs′ · p′/2k+1e:

c′′ = 2〈σ, c′〉+ [c]2 = 2p′ · 〈q, c′〉+ 2〈r, c′〉+ 2

〈⌊
s′ · p′

2k+1

⌉
, c′
〉

+ [c]2 (5)

Since the components of c′ are bits, we have using 2bx/2e = x+ ν with |ν| ≤ 1:

2

〈⌊
p′

2k+1
· s′
⌉
, c′
〉

=

〈
p′

2k
· s′, c′

〉
+ ν2 =

p′

2k
· 〈s′, c′〉+ ν2

where |ν2| ≤ Θ · (k + 1). Using 〈s′, c′〉 = 〈s, c〉 and since from Lemma 4 we have 〈s, c〉 = q′ · 2k + r′

with [q′]2 = [q]2 and r′ = br · 2k/pc+ δ where δ ∈ Z with |δ| ≤ Θ/2 + 2, we get:

2

〈⌊
p′

2k+1
· s′
⌉
, c′
〉

=
p′

2k
· (q′ · 2k + r′) + ν2 = q′ · p′ + p′

2k
· r′ + ν2 = q′ · p′ + r · p

′

p
+ ν3

where |ν3| ≤ |ν2|+Θ/2 + 3 ≤ 2Θ · (k + 1). Therefore we obtain from equation (5):

c′′ = 2p′ · 〈q, c′〉+ 2〈r, c′〉+ q′ · p′ + r · p
′

p
+ ν3 + [c]2 = q′′ · p′ + r′′

where q′′ := q′ + 2〈q, c′〉 and r′′ = br · p′/pc+ δ′ for some δ′ ∈ Z with:

|δ′| ≤
∣∣2〈r, c′〉∣∣+ 1 + |ν3|+ 1 ≤ 2ρ+1 ·Θ · (k + 1) + 2Θ · (k + 1) + 2 ≤ 2ρ+2 ·Θ · (k + 1)

Eventually from [c′′]2 = [c]2, [c]2 = [q]2 ⊕ [r]2, [c′′]2 = [q′′]2 ⊕ [r′′]2 and [q′′]2 = [q′]2 = [q]2, we obtain
[r]2 = [r′′]2 as required. ut

5.3 The Modulus-Switching Algorithm for DGHV

From Lemma 5 we can now specify the modulus-switching algorithm for DGHV.

SwitchKeyGen(pk, sk, pk′, sk′):

1. Take as input two DGHV secret-keys p and p′ of size η and η′. Let κ = 2γ + η where γ is the size
of the public key integers xi under p.

2. Generate a vector y of Θ random numbers modulo 2η
′+1 with κ bits of precision after the binary

point, and a random vector s of Θ bits such that 2η
′
/p = 〈s,y〉+ ε mod 2η

′+1 where |ε| ≤ 2−κ.
Generate the expanded secret-key s′ = Powersof2(s, η′)

3. Compute a vector encryption σ of s′ under sk′, defined as follows:

σ = p′ · q + r +

⌊
s′ · p′

2η′+1

⌉
(6)

where q ← (Z ∩ [0, q′0))
(η′+1)·Θ and r ← (Z ∩ (−2ρ

′
, 2ρ
′
))(η

′+1)·Θ, where q′0 is from x′0 = q′0 · p′ + r′

in pk′.
4. Output τpk→pk′ = (y,σ).

SwitchKey(τpk→pk′ , c):

1. Let y,σ ← τpk→pk′
2. Compute the expanded ciphertext c = (bc · yie mod 2η

′+1)1≤i≤Θ and let c′ = BitDecomp(c, η′).
3. Output c′′ = 2〈σ, c′〉+ [c]2.

5.4 The DGHV Scheme Without Bootstrapping

We are now ready to describe our DGHV variant in the BGV framework, that is without bootstrapping.
As in [5] we construct a leveled fully homomorphic scheme, i.e. an encryption scheme whose parameters
depend polynomially on the depth of the circuits that the scheme can evaluate.

Definition 2 (Leveled Fully Homomorphic Encryption [5]). A family of homomorphic encryp-
tion schemes {E(L) : L ∈ Z+} is said to be leveled fully homomorphic, if for all L ∈ Z+, E(L) compactly
evaluates all circuits of depth at most L, and the computational complexity of E(L)’s algorithms is
polynomial (the same polynomial for all L) in the security parameter, L, and (for the evaluation
algorithm) the size of the circuit.

FHE.KeyGen(1λ, 1L). Take as input the security parameter λ and the number of levels L. Let µ be
a parameter specified later. Generate a ladder of L decreasing moduli of size ηi = (i + 1)µ from
ηL = (L + 1)µ down to η1 = 2µ. For each ηi run DGHV.KeyGen(1λ) from Section 2 to generate a
random odd integer pi of size ηi; we take the same parameter γ for all i. Let pki be the corresponding
public key and ski = pi be the corresponding secret-key. For j = L down to 2 run τpkj→pkj−1

←
SwitchKeyGen(pkj , skj , pkj−1, skj−1). The full public key is pk = (pkL, τpkL→pkL−1

, . . . , τpk2→pk1) and
the secret-key is sk = (p1, . . . , pL).

FHE.Encrypt(pk,m ∈ {0, 1}). Run DGHV.Encrypt(pkL,m).

FHE.Decrypt(sk, c). Suppose that the ciphertext is under modulus pj . Output m← [c]pj mod 2.

FHE.Add(pk, c1, c2). Suppose that the two ciphertexts c1 and c2 are encrypted under the same pkj ;
if they are not, use FHE.Refresh below to make it so. First compute c3 ← c1 + c2. Then output
c4 ← FHE.Refresh(τpkj→pkj−1

, c3), unless both ciphertexts are encrypted under pk1; in this case, simply
output c3.

FHE.Mult(pk, c1, c2). Suppose that the two ciphertexts c1 and c2 are encrypted under the same pkj ;
if they are not, use FHE.Refresh below to make it so. First compute c3 ← c1 · c2. Then output
c4 ← FHE.Refresh(τpkj→pkj−1

, c3), unless both ciphertexts are encrypted under pk1; in this case, simply
output c3.

FHE.Refresh(τpkj+1→pkj , c). Output c′ ← SwitchKey(τpkj+1→pkj , c).

Remark 4. As in [5] with the RLWE scheme, it is not really necessary to switch moduli after additions
since additions increase the noise much more slowly than multiplications.

5.5 Correctness and Security

We show how to fix the parameter µ so that the ciphertext noise for every modulus in the ladder
remains roughly the same, and we prove that FHE is a correct leveled FHE scheme.

Theorem 3. For some µ = O(λ + logL), FHE is a correct L-leveled FHE scheme; specifically it
correctly evaluates circuits of depth L with Add and Mult gates over GF (2).

Proof. First we show that for all levels j the size of the ciphertext c as input to SwitchKey satisfies
the bound |c| ≤ 2κj required from Lemma 5, where κj = 2γ + ηj . We distinguish two cases:

• Level j = L: a ciphertext generated using FHE.Encrypt has size at most γ. After the first
multiplication by another ciphertext its size is then at most 2γ; therefore the previous bound is
satisfied.

• Level j < L: the ciphertext c′′ = 2〈σ, c′〉+ [c]2 obtained from the SwitchKey algorithm from level
j + 1 has size at most γ + log2 (Θ · (ηj+1 + 1)). After multiplication by another ciphertext its size
is then at most 2γ + 2 log2 (Θ · (ηj+1 + 1)); therefore the previous bound is also satisfied.

Now we show how to fix the parameter µ so that the ciphertext noise for every modulus in the
ladder remains roughly the same. We say that a DGHV ciphertext c has noise r when c = q · p+ r
where r = [c]p. As in [5] our strategy for setting the parameters is to pick a “universal” bound B on
the ciphertext noise, and then prove that for all j a ciphertext under key pkj has noise at most B;
then it suffices to have pj > 2B2 for all j to ensure the correctness of the scheme.

Such a bound B certainly exists for fresh ciphertexts output by FHE.Encrypt under pkL. Namely by
correctly setting the parameters in DGHV.Encrypt, their noise can be upper bounded by 2ρ

′+2 for some
ρ′ > ρ. As in [5] the remainder of the proof is by induction: we will show that given two ciphertexts c1
and c2 under pkj satisfying the bound B, the ciphertext c′ ← FHE.Mult(pk, c1, c2) satisfies the bound
for level j − 1; the bound will also be satisfied for FHE.Add since ciphertext addition increases the
noise much more slowly than multiplication.

The first step in FHE.Mult is an integer multiplication, which gives a ciphertext noise at most B2.
Then from Lemma 5 after modulus switching one gets a ciphertext c′ with noise at most:

B2 · pj−1
pj

+ 2ρ+2 ·Θ · (ηj−1 + 1)

If we choose B and our ladder of moduli pi such that the two following properties hold:

• Property 1: B ≥ 2 · 2ρ′+2 ·Θ · (ηj−1 + 1) for all j.

• Property 2: pj/pj−1 ≥ 2 ·B for all j.

then we obtain as required:

B2 · pj−1
pj

+ 2ρ
′+2 ·Θ · (ηj−1 + 1) ≤ B2 · 1

2B
+
B

2
≤ B

From ηj−1 = j · µ, Property 1 is satisfied if we take B ≥ 2ρ
′+4 · Θ · L · µ. Moreover since pj is a

(j + 1)µ-bit integer for all j, we get pj/pj−1 ≥ 2µ−2. Therefore Property 2 is satisfied if 2µ ≥ 8 · B.
Therefore to satisfy both properties it suffices to select µ such that:

2µ ≥ 2ρ
′+7 ·Θ · L · µ

It suffices to take:

µ = ρ′ + 7 + 2 log2 ρ
′ + 2 log2Θ + 2 log2 L

Since we have selected µ such that 2µ ≥ 8 ·B, we obtain for all levels 1 ≤ j ≤ L:

pj ≥ 2ηj−1 ≥ 2(j+1)·µ−1 ≥ 22µ−1 ≥ 2 ·B2

which ensures the scheme’s correctness. Finally since ρ′ = O(λ) and Θ is polynomial in λ, we have
that µ = O(λ+ logL) and the largest modulus in the system has size O(L · (λ+ logL)). This proves
Theorem 3. ut

We show that the resulting FHE is semantically secure under the following new assumption.

Definition 3 (Decisional Approximate GCD). The (ρ, η, γ)-Decisional Approximate GCD Prob-
lem is: For a random η-bit odd integer p, given polynomially many samples from Dγ,ρ(p), and given
an integer z = x + b · b2j · p/2η+1e for a given random integer j ∈ [0, η], where x ← Dγ,ρ(p) and
b← {0, 1}, find b.

The Decisional Approximate GCD assumption is defined in the usual way. It is clearly stronger
than the standard Approximate GCD assumption. We were not able to base the security of the leveled
DGHV scheme on the standard Approximate GCD assumption; this is due to equation (6) which
requires a non-standard encryption of the secret-key bits.

Theorem 4. FHE is semantically secure under the Decisional Approximate GCD assumption and
under the hardness of subset sum assumption.

Proof. The FHE scheme is constructed from a sequence of DGHV schemes with the additional modulus-
switching elements τpkj→pkj−1

. A modulus-switching element τpk→pk′ = (y,σ) contains a subset-sum
sharing y of the secret 2η/p corresponding to pk, and a “special” encryption σ under pk′ of the
secret-key sk corresponding to pk.

Therefore to prove the semantic security of the full FHE scheme it suffices to consider an enhanced
scheme DGHV’ with the subset-sum sharing y in the public key and with a special encrypt procedure
Encrypt′ corresponding to σ. The semantic security of FHE then follows from the semantic security of
DGHV’ by using a standard hybrid argument.

DGHV′.KeyGen(1λ). Run DGHV.KeyGen(1λ) to generate a key-pair (pk, sk), and generate a subset-sum
sharing y of 2η/p as in the SwitchKeyGen procedure. The public-key is pk′ = (pk,y).

DGHV′.Encrypt and DGHV′.Decrypt: same as DGHV.

DGHV′.Encrypt′(sk, j,m): choose a random integer q in [0, q0) and a random integer r in (−2ρ
′
, 2ρ

′
),

and output the ciphertext:

c = m ·
⌊
2j · p

2η+1

⌉
+ r + q · p

This completes the description of DGHV’. Note that we do not need to specify the decryption
procedure corresponding to Encrypt′. As in [9] the semantic security of DGHV with the additional
element y follows from the security of the basic DGHV scheme recalled in Section 2 and from the
hardness of subset-sum assumption, by using a hybrid argument4.

4 Note that the subset-sum need not be sparse.

We now consider the semantic security of DGHV’ with Encrypt′. Using a hybrid argument we can
restrict ourselves to a fixed index j ∈ [0, η]. The output of Encrypt′(sk, j,m) is simulated by returning:

c = m · z + r + 2
∑
i∈S

xi mod x0

where r ← Z ∩ (−2ρ
′
, 2ρ

′
) and z is from the Decisional Approximate GCD instance. As in [9]

one can show using the left-over hash lemma that this provides a statistically close simulation of
Encrypt′(sk, j,m) when b = 1. With the same argument we have that the adversary gets no information
about m when b = 0. There any non-negligible advantage in breaking the scheme’s semantic security
can be turned into an algorithm for breaking the Decisional Approximate GCD Assumption. This
proves Theorem 4. ut

6 Improved Attack against the Approximate GCD Algorithm

Recently, Chen and Nguyen [7] described an improved exponential algorithm for solving the approxi-
mate common divisor problem: they obtain a complexity of Õ(2ρ/2) for the partial version (with an
exact multiple x0 = q0 · p) and Õ(23ρ/2) for the general version (with near-multiples only).5

In this section, we show that the latter complexity can be heuristically improved to Õ(2ρ) provided
that sufficiently many near-multiples are available, which is the case in the DGHV scheme. Our
algorithm has memory complexity Õ(2ρ), instead of only Õ(2ρ/2) for the Chen and Nguyen attack.

Indeed, assume that we have s large near-multiples x1, . . . , xs of a given prime p0, of the hidden
form xj = p0qj + rj , where qj ∈ [0, 2γ/p0) (for γ polynomial in ρ) and rj ∈ [0, 2ρ) are chosen uniformly
and independently at random. We claim that p0 can then be recovered with overwhelming probability

in time Õ(2
s+1
s−1

ρ) (and with significant probability in time Õ(2
s
s−1

ρ)).

The algorithm is as follows. For j = 1, . . . , s, let:

yj =
2ρ−1∏
i=0

(xj − i)

Clearly, p0 divides the GCD g = gcd(y1, . . . , ys). Each yi can be computed in time quasilinear in 2ρ

using a product tree, and the GCD can be evaluated as gcd(· · · gcd(gcd(y1, y2), y3), . . . , ys) using s− 1
quasilinear GCD computations on numbers of size O(2ρ · γ) = Õ(2ρ). Hence, the whole computation
of g takes time Õ(s · 2ρ).

Now, we argue that with high probability on the choice of the (qj , rj), all the prime factors of g
except p0 are smaller than a bound B that is not much larger than 2ρ. Then, p0 can be recovered
as g/g′, where g′ is the B-smooth part of g, which can in turn be computed in time quasilinear in
max(B, |g|), e.g. using Bernstein’s algorithm [2]. Overall, the full time complexity of the attack is
thus Õ(max(B, s · 2ρ)), or simply Õ(B) assuming that s = O(ρ), and without loss of generality that
B > 2ρ. All we need to find is how to choose B to obtain a sufficient success probability.

The probability that all the prime factors of g except p0 are smaller than B is the probability that,
for every prime p ≥ B other than p0, not all the xj ’s are congruent to one of 0, 1, . . . , 2ρ − 1 mod p.

5 Namely to solve the general version using the partial version algorithm it suffices to do exhaustive search on the ρ
bits of noise in x0 = q0 · p+ r0.

This happens with probability very close to 1 − (2ρ/p)s. Hence, the probability that all the prime
factors of g except p0 are smaller than B is essentially given by the following Euler product:

Ps,ρ(B) =
∏
p≥B
p 6=p0

(
1− 2sρ

ps

)

(which clearly converges to some positive value smaller than 1 since s ≥ 2 and B > 2ρ). We prove the
following estimate on this Euler product.

Lemma 6. For any B > 2ρ+1/s, we have:

1− Ps,ρ(B) <
2s

s− 1
· 2sρ

Bs−1 logB

Proof. Since Ps,ρ(B) ∈ (0, 1), we have:

1− Ps,ρ(B) ≤ − logPs,ρ(B) =
∑
p≥B
p 6=p0

log

(
1− 2sρ

ps

)

Now for each p ≥ B, we have 2sρ/ps ≤ 2sρ/Bs ≤ 1/2. Therefore, as − log x ≤ 2 log 2 · (1 − x) for
x ∈ [1/2, 1], we get:

1− Ps,ρ(B) ≤ 2 log 2 · 2sρ
∑
p≥B

1

ps

Now observe that 1/ps = s
∫ +∞
p dt/ts+1. Hence:

∑
p≥B

1

ps
= s

∫ +∞

B

(
π(t)− π(B)

)
dt

ts+1
≤ 1.3s

∫ +∞

B

dt

ts logB
=

1.3s

(s− 1)Bs−1 logB

where π is the usual prime-counting function, which satisfies π(x) < 1.3x/ log x (see e.g. [1, Th. 8.8.1]).
Since 1.3 log 2 < 1, this concludes the proof. ut

In particular, if we pick B = 2
s
s−1

ρ, we obtain Ps,ρ(B) > 1 − 2/(ρ log 2): thus, the problem can

be solved in time Õ(2
s
s−1

ρ) with significant success probability. And if we pick B = 2
s+1
s−1

ρ, we get

Ps,ρ(B) > 1− 2−ρ: hence, the problem can be solved in time Õ(2
s+1
s−1

ρ) with an overwhelming success
probability.

We see in both cases that for any given ε > 0, the complexity becomes O(2(1+ε)ρ) if s is large
enough. Better yet, if s = ω(1) (for example Θ(ρ)) near-multiples are available, the problem can be
solved in time Õ(2ρ) with overwhelming probability.

As in [7] we can perform a time-memory trade-off. First split the product y1 into d sub-products
zk’s, and guess which of these sub-products z = zk contains p0. Let g = gcd(z, y2, . . . , ys). The first
GCD computation gcd(z, y2) can be performed in time Õ(2ρ) and memory Õ(2ρ/d) by first computing
y2 mod z using a product tree; the remaining gcd’s can be computed with the same complexity; the
same holds for recovering the B-smooth part of g. Hence p0 can be recovered in time Õ(d · 2ρ) and
memory Õ(2ρ/d).

Instance ρ γ log2 mem. running time running time [7]

Micro 12 104 26.3 40 s

Toy (Section 8) 13 61 · 103 29.9 13 min 22 s

Toy’ ([7] without x0) 17 1.6 · 105 35.3 17 h 50 min 3495 hours

Table 1. Running time of the attack, on a single core of an Amazon EC2 Cluster Compute Eight Extra Large Instance
instance (featuring an Intel Xeon E5 processor at 2.5 GHz and 60.5 GB of memory), with parameter s = ρ. For the
third instance, the running time of the Chen-Nguyen attack [7] was estimated by multiplying the running time from [7]
(1.6 min) by 2ρ.

6.1 Experimental Results

We have implemented the previous attack; see Appendix D for the source code. Table 1 shows that
our attack performs well in practice; it is roughly 200 times faster than the corresponding attack of
Chen and Nguyen for the smallest set of parameters considered in [7].

7 Implementation of DGHV with Compressed Public Key

In this section we describe an implementation of the DGHV scheme with the compression technique of
Section 3; we use the variant with x0 = q0 ·p. However we don’t use the quadratic encryption technique
of [8] (as recalled and extended in Section 4); neither do we use the quadratic secret-key technique
of [11] as both techniques are unnecessary for the full scheme when using compressed ciphertexts;
this is because the “squashed decryption” procedure adds an incompressible additional term u0 of
size γ = Õ(λ5) to the public-key, so it is unnecessary to reduce the number of public-key elements xi
or the number of encrypted secret-key bits. As in [8] we use the optimization of [11] that splits the
sparse secret-key s of dimension Θ into θ blocks of size B = Θ/θ with a single non-zero bit each; see
[11] for more details. We refer to Appendix A for a full description of the resulting scheme, and we
provide the source code of our implementation in [18].

Asymptotic Key Size. To prevent lattice attacks against the sparse subset-sum problem, one must
have Θ2 = γ · ω(log λ); see [8, 17] for more details. One can then take ρ = λ, η = Õ(λ2), γ = Õ(λ5),
α = Õ(λ2), τ = Õ(λ3) and Θ = Õ(λ3). Using our compression technique the public key size is roughly
2γ + (τ +Θ) · (η + λ) = Õ(λ5) bits.

Concrete Key Size and Execution Speed We have updated the parameters from [8] to take
into account the improved approximate-GCD attack from [7]; see Table 2. The attack from [7] is
memory bounded; however we took a conservative approach and considered a memory unbounded
adversary. As in [8] we take n = 4 and θ = 15 for all security levels. We can see in Table 2 that
compression reduces the public key size considerably. In Appendix B we describe an optimization (not
yet implemented) that further reduces the public key size by a factor 2. Table 3 shows no significant
performance degradation with respect to [8].

8 Implementation of Leveled DGHV

In this section we describe an implementation of the leveled DGHV scheme described in Section
5 in the BGV framework. We implement the modulus-switching procedure as described in Section

Instance λ ρ η γ × 10−6 α τ Θ pk size

Toy 42 27 1026 0.15 936 158 144 77 KB

Small 52 41 1558 0.83 1476 572 533 437 KB

Medium 62 56 2128 4.20 2016 2110 1972 2207 KB

Large 72 71 2698 19.35 2556 7659 7897 10.3 MB

Table 2. The concrete parameters of various test instances and their respective public key sizes, for DGHV with
compressed public-key.

Instance KeyGen Encrypt Decrypt Expand Recrypt

Toy 0.06 s 0.05 s 0.00 s 0.01 s 0.41 s

Small 1.3 s 1.0 s 0.00 s 0.15 s 4.5 s

Medium 28 s 21 s 0.01 s 2.7 s 51 s

Large 10 min 7 min 15 s 0.05 s 51 s 11 min 34 s

Table 3. Timings of our Sage 4.7.2 [16] code (single core of a desktop computer with an Intel Core2 Duo E8400 at 3
GHz), for DGHV with compressed public-key.

5.3, with an optimization of the ciphertext expansion procedure (see below). We also implement
the bootstrapping operation; although not strictly necessary, this enables to get a FHE that can
perform homomorphic evaluations indefinitely without needing to specify at setup time a bound on the
multiplicative level. It is also interesting to compare the running time of the bootstrapping operation
between the non-leveled DGHV scheme of Section 7 and the leveled DGHV scheme.

8.1 Faster Ciphertext Expansion

We consider the modulus-switching procedure of Section 5.3. The initial modulus p has size η and the
new modulus p′ has size η′ < η. The first modulus p is shared among the yi elements as

2η
′

p
=

Θ∑
i=1

si · yi + ε mod 2η
′+1 (7)

where the si’s are bits, the yi’s have κ bits of precision after the binary point, and |ε| ≤ 2−κ. In
practice one can generate the yi’s pseudo-randomly (except y1), as in Appendix A. However the
ciphertext expansion from Step 2 of SwitchKey algorithm (Section 5.3) is a time-consuming procedure.

Therefore instead of using pseudo-random yi’s we use the following (admittedly aggressive)
optimization. Let δ be a parameter specified later. We generate a random y with κ+ δ ·Θ · η bits of
precision after the binary point, and we define the yi’s for 2 ≤ i ≤ Θ as:

yi =
[
y · 2i·δ·η

]
2η′+1

keeping only κ bits of precision after the binary point for each yi as previously. We fix y1 so that
equality (7) holds, assuming s1 = 1. Then the ciphertext expansion from Step 2 of the SwitchKey
algorithm (Section 5.3) can be computed as follows, for all 2 ≤ i ≤ Θ:

zi = bc · yie mod 2η
′+1 = bc · y · 2i·δ·ηe mod 2η

′+1

Therefore computing all the zi’s (except z1) is now essentially a single multiplication c · y. In Appendix
C we describe a lattice attack against this optimization; we show that the attack is thwarted by
selecting δ such that δ ·Θ · η ≥ 3γ.

Finally we use the following straightforward optimization: instead of using BitDecomp and Powersof2
with bits, we use words of size ω bits instead. This decreases the running time of SwitchKey by a
factor of about ω, at the cost of increasing the resulting noise by roughly ω bits. We took ω = 32 in
our implementation.

8.2 Bootstrapping: The Decryption Circuit.

Recall that the decryption function in the DGHV scheme is:

m←

[
c−

⌊
Θ∑
i=1

si · zi

⌉]
2

(8)

where zi = [c · yi]2 for 1 ≤ i ≤ Θ is the expanded ciphertext, keeping only n = dlog2(θ + 1)e bits of
precision after the binary point for each zi. The si’s form a sparse Θ-dimensional vector of Hamming
weight θ, such that:

1

p
=

Θ∑
i=1

si · yi + ε

where the yi’s have κ bits of precision after the binary point, and |ε| ≤ 2−κ. Note that for bootstrapping
the decryption circuit is only used for the smallest modulus p in the ladder. The following lemma
shows that the message m can be computed using a circuit of multiplicative depth exactly n.

Lemma 7. Let a = [a0, . . . , an] and b = [b0, . . . , bn] be two integers of size n+1 bits, where every bit ai
and bi has multiplicative depth at most i. Then every bit ci of the sum c = (a+b) mod 2n+1 = [c0, . . . , cn]
has multiplicative depth at most i.

Proof. Let δi be the i-th carry bit, with δ0 = 0. We have ci = ai ⊕ bi ⊕ δi for 0 ≤ i ≤ n, where
δi = ai−1 · bi−1 + ai−1 · δi−1 + bi−1 · δi−1 for 1 ≤ i ≤ n. Therefore by recursion δi has multiplicative
depth at most i; this implies that ci has multiplicative depth at most i. ut

Therefore using a simple loop the sum of the Θ numbers si · zi in equation (8) can be computed
with a circuit of multiplicative depth n. Since a subsequent homomorphic operation (either addition
or multiplication) must be possible between refreshed ciphertexts, the full bootstrapping procedure
requires a leveled FHE scheme with multiplicative depth L = n + 1. Note that for bootstrapping
an encryption of the secret-key bits si (corresponding to the last modulus p1 in the ladder) must
be provided under pL, the first modulus in the ladder, so that the homomorphic evaluation of m in
equation (8) can start under the public key pkL.

As in Section 7 we use the optimization from [11] that splits the sparse secret-key s into θ blocks
of size B = Θ/θ with a single non-zero bit each, so that the sum of Θ elements can be split into θ
sub-sums of B elements.

8.3 Implementation Results

In this section we describe an implementation of the leveled DGHV scheme, including the bootstrapping
operation. As mentioned previously we cannot use the variant with noise-free x0 = q0 ·p since otherwise
p could be recovered using the ECM; namely the smallest modulus in the ladder has size only 2µ = 164
bits for the “Large” instance.

Asymptotic key size. Using θ = λ the degree of the decryption polynomial is O(λ) and the
multiplicative depth is L = O(log λ). This gives µ = O(λ+ logL) = O(λ) and the largest modulus
has size η = O(L · (λ+ logL)) = Õ(λ). For the constraint γ = ω(η2 · log λ) we can take γ = Õ(λ3) and
for the constraint Θ2 = γ · ω(log λ) we can take Θ = Õ(λ2). From the constraint α · τ ≥ γ + ω(log λ)
we can take α = Õ(λ) and τ = Õ(λ2). The public-key size with compressed ciphertexts is then
approximately L · (γ + τ · (η + λ) +Θ · (η + λ)) = Õ(λ3).

Concrete Key Size and Execution Speed We summarize in Tables 4 and 5 the performance of
our implementation of the leveled DGHV scheme. We denote by η the size of the largest modulus
in the ladder. The moduli have size ηi = (i+ 1) · µ bits for 1 ≤ i ≤ L. For simplicity we have used
the same value of Θ and γ for all levels in the ladder. The running time of the Recrypt operation is
disappointing compared to the non-leveled implementation from Section 7; however we think that
there is room for improvement.

Instance λ ρ η µ γ × 10−6 Θ pk size

Toy 42 14 336 56 0.061 195 354 KB

Small 52 20 390 65 0.27 735 1690 KB

Medium 62 26 438 73 1.02 2925 7.9 MB

Large 72 34 492 82 2.20 5700 18 MB

Table 4. The concrete parameters of various test instances and their respective public-key sizes for leveled DGHV.

Instance KeyGen Encrypt Decrypt Mult & Scale Recrypt

Toy 0.36 s 0.01 s 0.00 s 0.04 s 8.8 s

Small 5.4 s 0.07 s 0.00 s 0.59 s 101 s

Medium 1 min 12 s 0.85 s 0.00 s 9.1 s 32 min 38 s

Large 6 min 18 s 3.4 s 0.00 s 41 s 2 h 27 min

Table 5. Timings of our Sage 4.7.2 [16] code (single core of a desktop computer with an Intel Core2 Duo E8400 at 3
GHz).

Acknowledgments

We would like to thank Tancrède Lepoint, Phong Nguyen and the EUROCRYPT referees for their
helpful comments.

References

1. E. Bach and J. Shallit, Algorithmic Number Theory, vol. 1, MIT Press, 1996.

2. D.J. Bernstein, How to Find Smooth Parts of Integers, 2004. Available at http://cr.yp.to/papers.html#

smoothparts.

3. Z. Brakerski and V. Vaikuntanathan, Efficient Fully Homomorphic Encryption from (Standard) LWE. Proceedings
of FOCS 2011. Full version available at IACR eprint.

4. Z. Brakerski and V. Vaikuntanathan, Fully Homomorphic Encryption for Ring-LWE and Security for Key Dependent
Messages. In P. Rogaway (Ed.), CRYPTO 2011, LNCS, vol. 6841, Springer, 2011, pp. 505–524.

5. Z. Brakerski, C. Gentry and V. Vaikuntanathan, Fully Homomorphic Encryption without Bootstrapping. Cryptology
ePrint Archive, Report 2011/277.

6. A. Cafure and G. Matera, Improved explicit estimates on the number of solutions of equations over a finite field.
Finite Fields and Their Applications, vol. 12(2), 2006, pp. 155-185.

7. Y. Chen and P.Q. Nguyen, Faster Algorithms for Approximate Common Divisors: Breaking Fully-Homomorphic-
Encryption Challenges over the Integers. Cryptology ePrint Archive, Report 2011/436.

8. J.S. Coron, A. Mandal, D. Naccache and M. Tibouchi, Fully Homomorphic Encryption over the Integers with
Shorter Public Keys. In P. Rogaway (Ed.), CRYPTO 2011, LNCS, vol. 6841, Springer, 2011, pp. 487–504. Full
version available at IACR eprint.

9. M. van Dijk, C. Gentry, S. Halevi and V. Vaikuntanathan, Fully homomorphic encryption over the integers. In
H. Gilbert (Ed.), EUROCRYPT 2010, LNCS, vol. 6110, Springer, 2010, pp. 24–43.

10. C. Gentry, A fully homomorphic encryption scheme. Ph.D. thesis, Stanford University, 2009. Available at http:

//crypto.stanford.edu/craig.
11. C. Gentry and S. Halevi, Implementing Gentry’s fully homomorphic encryption scheme. In K. Paterson (Ed.),

EUROCRYPT 2011, LNCS, vol. 6632, Springer, 2011, pp. 129–148.
12. K. Lauter, M. Naehrig and V. Vaikuntanathan, Can Homomorphic Encryption be Practical?, Cryptology ePrint

Archive, Report 2011/405.
13. A. K. Lenstra, Generating RSA Moduli with a Predetermined Portion. In K. Ohta and D. Pei (Eds.), ASIACRYPT

1998, LNCS, vol. 1514, Springer, 1998, pp. 1–10.
14. H.W. Lenstra, Factoring integers with elliptic curves. Annals of Mathematics, vol. 126(3): 1987, pp. 649–673.
15. N.P. Smart and F. Vercauteren, Fully homomorphic encryption with relatively small key and ciphertext sizes. In

P.Q. Nguyen and D. Pointcheval (Eds.), PKC 2010, LNCS, vol. 6056, Springer, 2010, pp. 420–443.
16. W.A. Stein et al., Sage Mathematics Software (Version 4.7.2), The Sage Development Team, 2011, http://www.

sagemath.org.
17. D. Stehlé and R. Steinfeld, Faster fully homomorphic encryption. In M. Abe (Ed.), ASIACRYPT 2010, LNCS, vol.

6477, Springer, 2010, pp. 377–394.
18. https://github.com/coron/fhe

A Complete Description of the DGHV Variant with Compressed Public Key

We provide a complete description of the FHE with the ciphertext compression technique. Note that
the ciphertext compression technique is applied to both the public key elements xi of the somewhat
homomorphic scheme and to the encryption σi of the secret-key bits.

KeyGen(1λ). Generate a random prime integer p of size η bits. Pick a random odd integer q0 ∈ [0, 2γ/p)
and let x0 = q0 · p. Initialize a pseudo-random number generator f1 with a random seed se1. Use
f1(se1) to generate a set of integers χi ∈ [0, 2γ) for 1 ≤ i ≤ τ . For all 1 ≤ i ≤ τ compute:

δi = 〈χi〉p + ξi · p− ri
where ri ← Z ∩ (−2ρ, 2ρ) and ξi ← Z ∩ [0, 2λ+η/p). Let pk∗ = (se1, x0, δ1, . . . , δτ). The corresponding
integers xi for 1 ≤ i ≤ τ are defined as xi = χi − δi.

Additionally generate a random bit vector s of length Θ, subject to the conditions that s1 = 1,
that for each k ∈ [0, θ), there is at most one nonzero bit among the si’s for k ·B+1 ≤ i < (k+1) ·B+1,
where B = bΘ/θc, and that the Hamming weight of s is exactly θ.

Initialize a pseudo-random number generator f2 with a random seed se2, and use f(se2) to generate
integers ui ∈ [0, 2κ+1) for 2 ≤ i ≤ Θ, where κ := γ + n+ 2. Then, set u1 such that:

Θ∑
i=1

si · ui = xp mod 2κ+1

where xp ← b2κ/pe.
Initialize a pseudo-random number generator f3 with a random seed se3, and compute encryptions

σ of the vector s as follows: use f3(se3) to generate integers χ′i ∈ [0, 2γ [for every 1 ≤ i ≤ Θ; generate
random integers r′i ∈ (−2ρ, 2ρ) and ξ′i ∈ [0, 2γ+η/p), and let:

δ′i = 〈χ′i〉p + ξ′i · p− 2 · r′i − si

The corresponding encryption σi of si is then defined as:

σi = χ′i − δ′i

Finally, output the secret key sk = s and the public key pk = (pk∗, se2, u1, se3, δ
′).

Encrypt(pk,m ∈ {0, 1}). Recover the integers xi from pk∗. Choose a random integer vector b =
(bi)1≤i≤τ ∈ [0, 2α)τ and a random integer r in (−2ρ

′
, 2ρ

′
). Output the ciphertext:

c∗ = m+ 2r + 2

τ∑
i=1

bi · xi mod x0

Add(pk, c∗1, c
∗
2). Output c∗1 + c∗2 mod x0.

Mult(pk, c∗1, c
∗
2). Output c∗1 · c∗2 mod x0.

Expand(pk, c∗). The ciphertext expand procedure takes a ciphertext c∗ and computes the associated
expanded ciphertext. To do so, for every 1 ≤ i ≤ Θ first compute the random integer ui’s using the
seeded pseudo-random number generator f2(se2), then let yi = ui/2

κ and compute zi given by:

zi = [c∗ · yi]2

keeping only n = dlog2(θ + 1)e bits of precision after the binary point. Define the vector z = (zi).
Output the expanded ciphertext c = (c∗, z).

Decrypt(sk, c∗, z). Output m←
[
c∗ − b

Θ∑
i=1

si · zie
]
2
.

Recrypt(pk, c∗, z). Recover the encrypted secret-key bits σi from pk. Apply the decryption circuit to
the expanded ciphertext z and the encrypted secret key bits σi. Output the result as a refreshed
ciphertext c∗new.

This completes the description of the scheme.

B Optimization with Ciphertext Pairs

We briefly describe an optimization (not yet implemented) that further reduces the public key size by
a factor 2. We first generate a random integer Γ modulo p that must remain secret. Then to encrypt
a secret-key bit s for bootstrapping instead of a single ciphertext we generate a pair of ciphertexts:

σ0 = q0 · p+ Γ · r0 and σ1 = q1 · p+ (Γ−1 mod p) · r1

for randoms r0, r1 of size ρ/2 bits (instead of ρ bits), with s = [r0]2 = [r1]2. Then during recryption
whenever a product s · s′ must be evaluated homomorphically, we compute the ciphertext product

σ0 · σ′1 or σ1 · σ′0, where (σ′0, σ
′
1) is a ciphertext pair corresponding to s′, that is σ′0 = q′0 · p+ Γ · r′0 and

σ′1 = q′1 · p+ (Γ−1 mod p) · r′1. We obtain that the factor Γ cancels in the product:

σ0 · σ′1 = q′′ · p+ r0 · r′1

so a ciphertext of noise size ρ (instead of 2ρ) is obtained. Therefore with the same decryption
polynomial to be evaluated homomorphically, the size η of p can be divided by 2, and from the
asymptotic condition γ = η2 · ω(log λ) the ciphertext size γ is divided by 4. However twice more
ciphertexts are required for encrypting the secret-key bits, so asymptotically the public-key size is
divided by 2.

Heuristically it is safe to have ciphertexts (σ0, σ1) with only ρ/2-bit noise, since the randoms r0,
r1 are further “masked” with the secret integer Γ modulo p.

C Lattice Attack against the Ciphertext Expansion Optimization

In this section we describe a lattice attack against the optimization of ciphertext expansion described
in Section 8.1; we show that the attack is thwarted by selecting δ ≥ 3. We consider the equation (7)
from Section 8.1:

2η
′

p
=

Θ∑
i=1

si · yi + ε mod 2η
′+1

where the si’s are bits and |ε| ≤ 2−κ, and for 2 ≤ i ≤ Θ we have:

yi =
[
y · 2i·δ·η

]
2η′+1

with κ bits of precision after the binary point, where y is a random number with ` := κ+ δ ·Θ · η bits
of precision after the binary point. We obtain, assuming that s1 = 1:

2η
′

p
= y1 +

Θ∑
i=2

si · y · 2δ·i·η + ε mod 2η
′+1

Letting:

S :=
Θ∑
i=2

si · 2δ·i·η

we obtain:
2η
′

p
= y1 + S · y + ε mod 2η

′+1

This gives:
2η
′

= p · y1 + S · p · y + ε · p+∆ · 2η′+1

for some ∆ ∈ Z. Let Y1 := 2` · y1 and Y := 2` · y which gives Y1, Y ∈ Z; we obtain:

2η
′+` = p · Y1 + S · p · Y + u mod 2`+η

′+1

where all variables are now over Z, with |u| ≤ |2` · ε · p| ≤ 2`−κ+η. The previous equation can be
linearized by letting x1 := p, x2 := p · S and x3 := u, which gives:

2η
′+` = x1 · Y1 + x2 · Y + x3 mod 2`+η

′+1 (9)

where the three unknowns x1, x2 and x3 are small. Using LLL equation (9) can be solved if the
product of the three unknowns is less than the modulus, which gives the condition:

η + (η + δ ·Θ · η) + (`− κ+ η) ≤ `+ η′ + 1

which gives:
3η + δ ·Θ · η ≤ κ+ η′ + 1

which using η′ + 1 ≤ η gives the necessary condition:

2η + δ ·Θ · η ≤ κ

Using κ = 2γ + η from Section 5.3, we get:

η + δ ·Θ · η ≤ 2γ

which gives the necessary condition:
δ ·Θ · η ≤ 2γ

To prevent the attack we select δ such that δ ·Θ · η ≥ 3γ.

D Source Code of the GACD Attack

def genXi(rho,eta,gam,p):

return p*ZZ.random_element(2^(gam-eta))+ZZ.random_element(2^rho)

def attackGACD(rho=12,gam=1000,eta=100):

p=random_prime(2^eta)

print "p=",p

t=cputime(subprocesses=True)

s=rho

B=floor(2^(1.*rho*(s+1)/(s-1)))

fa=factorial(B)

for j in range(1,s):

x=genXi(rho,eta,gam,p)

z=prod([x-i for i in range(2^rho)])

if j==1:

g=z

continue

g=prime_to_m_part(gcd(g,z),fa)

print "j=",j,"gcd size=",g.nbits()

if g.nbits()==p.nbits(): break

print g==p,cputime(t)

