
Fully Homomorphic Encryption over the Integers with Shorter Public
Keys?

Jean-Sébastien Coron1, Avradip Mandal1, David Naccache2, and Mehdi Tibouchi1,2

1 Université du Luxembourg
6, rue Richard Coudenhove-Kalergi
l-1359 Luxembourg, Luxembourg

{jean-sebastien.coron, avradip.mandal}@uni.lu
2 École normale supérieure

Département d’informatique, Groupe de cryptographie
45, rue d’Ulm, f-75230 Paris Cedex 05, France
{david.naccache, mehdi.tibouchi}@ens.fr

Abstract. At Eurocrypt 2010 van Dijk et al. described a fully homomorphic encryption scheme over the
integers. The main appeal of this scheme (compared to Gentry’s) is its conceptual simplicity. This simplicity
comes at the expense of a public key size in Õ(λ10) which is too large for any practical system. In this paper
we reduce the public key size to Õ(λ7) by encrypting with a quadratic form in the public key elements, instead
of a linear form. We prove that the scheme remains semantically secure, based on a stronger variant of the
approximate-GCD problem, already considered by van Dijk et al.
We also describe the first implementation of the resulting fully homomorphic scheme. Borrowing some
optimizations from the recent Gentry-Halevi implementation of Gentry’s scheme, we obtain roughly the same
level of efficiency. This shows that fully homomorphic encryption can be implemented using simple arithmetic
operations.

1 Introduction

Fully Homomorphic Encryption. An encryption scheme is homomorphic if it supports operations on
encrypted data. For example RSA is multiplicatively homomorphic since c1 = me

1 mod N and c2 = me
2

mod N yield the encryption of m1 ·m2 without using the private key. Similarly, Paillier cryptosystem
[13] is additively homomorphic because from c1 = gm1rN mod N2 and c2 = gm2sN mod N2 one can
compute the encryption of m1 +m2.

In a breakthrough work Gentry described in 2009 the first encryption scheme that supports both addi-
tion and multiplication on ciphertexts, i.e. a fully homomorphic encryption scheme [6]. The construction
proceeds by successive steps: first Gentry describes a “somewhat homomorphic” scheme that supports
a limited number of additions and multiplications on ciphertexts. This is because every ciphertext has
a noise component and any homomorphic operation applied to ciphertexts increases the noise in the
resulting ciphertext. Once this noise reaches a certain threshold the resulting ciphertext does not decrypt
correctly anymore; this limits the degree of the polynomial that can be applied to ciphertexts.

Secondly Gentry shows how to “squash” the decryption procedure so that it can be expressed as a
low degree polynomial in the bits of the ciphertext and the secret key (equivalently a circuit of small
depth). Then the breakthrough idea consists in evaluating this decryption polynomial not on the bits of
the ciphertext and the secret key (as in regular decryption), but homomorphically on the encryption
of those bits. Then instead of recovering the bit plaintext, one gets an encryption of this bit plaintext,
i.e. yet another ciphertext for the same plaintext; see Figure 1 for an illustration. Now if the degree of
the decryption polynomial is small enough, the resulting noise in this new ciphertext can be smaller
than in the original ciphertext; this is called the “ciphertext refresh” procedure. Given two refreshed
ciphertexts one can apply again the homomorphic operation (either addition or multiplication), which was
not necessarily possible on the original ciphertexts because of the noise threshold. Using this “ciphertext
refresh” procedure the number of permissible homomorphic operations becomes unlimited and we get a
fully homomorphic encryption scheme.

? An extended abstract of this paper will appear at crypto 2011. This is the full version.

2

Decryption
Circuit

× +

+

Ciphertext bits Secret-Key bits

0 1 11 0 1 01

1
Plaintext

bit

⇒
Decryption
Circuit

× +

+

Encryption of
Ciphertext bits

Encryption of
Secret-Key bits

0 1 11 ? ? ??

?

Encryption of
Plaintext bit

=
Refreshed
Ciphertext

Fig. 1. The decryption circuit applied on the ciphertext bits and secret key bits (left), and the ciphertext refresh procedure
with the decryption circuit applied homomorphically on the encryption of those bits (right).

The prerequisite for the “ciphertext refresh” procedure is that the degree of the polynomial that
can be evaluated on ciphertexts exceeds the degree of the decryption polynomial (times two, since
one must allow for a subsequent addition or multiplication of refreshed ciphertexts); this is called the
“bootstrappability” condition. Once the scheme becomes bootstrappable it can be converted into a fully
homomorphic encryption scheme by providing the encryption of the secret key bits inside the public key.

Based on Gentry’s approach, two different fully homomorphic schemes are known: Gentry’s scheme
[6] based on ideal lattices and a scheme by van Dijk, Gentry, Halevi and Vaikuntanathan (DGHV) over
the integers, that appeared at Eurocrypt 2010 [4].

Gentry’s scheme and its implementations. Gentry described in [6] a somewhat homomorphic
encryption scheme that is similar to GGH [8, 15] over ideal lattices. To reduce the degree of the decryption
polynomial, Gentry introduced the following transformation [6]: instead of using the original secret key,
the decryption procedure uses a very sparse subset of values that adds up to the secret key; the full set of
values is made part of the public key. To apply the new decryption procedure the original ciphertext must
first be “expanded” using the full set of public values. This expanded ciphertext can then be decrypted
with a low-degree polynomial in the bits of the new secret key (which are the characteristic vector of the
sparse subset sum); this is called the “squashed decryption” procedure.

At PKC 2010 Smart and Vercauteren [17] made the first attempt to implement Gentry’s scheme using
a variant based on principal ideal lattices and requiring that the determinant of the lattice be a prime
number. However the authors of [17] could not obtain a bootstrappable scheme because that would have
required a lattice dimension of at least n = 227, whereas due to the prime determinant requirement they
could not generate keys for dimensions n > 2048.

Gentry and Halevi described in [7] the first implementation of Gentry’s scheme. The authors follow
the same direction as Smart and Vercauteren, but for key generation they eliminate the requirement
that the determinant is a prime. Additionally they present many clever optimizations. Four concrete
parameter settings are provided, from a “toy” setting in dimension 512, to “small”, “medium” and “large”
settings of dimensions 2048, 8192 and 32768, respectively. For the “large” setting public key size is 2.3
Gigabytes. The authors of [7] report that for an optimized implementation on a high-end workstation,
key generation takes 2.2 hours, encryption takes 3 minutes, and ciphertext refresh takes 30 minutes.

The DGHV fully homomorphic scheme over the integers. At Eurocrypt 2010, van Dijk, Gentry,
Halevi and Vaikuntanathan described a fully homomorphic encryption scheme over the integers [4]. As in
Gentry’s scheme the authors first describe a somewhat homomorphic scheme supporting a limited number
of additions and multiplications over encrypted bits. Then they apply Gentry’s “squash decryption”

3

technique to get a bootstrappable scheme and then Gentry’s “ciphertext refresh” procedure (see Fig. 1)
to get a fully homomorphic scheme.

The main appeal of the scheme (compared to the original Gentry’s scheme) is its conceptual simplicity;
namely all operations are done over the integers instead of ideal lattices. However the public-key was in
Õ(λ10) which is too large for any practical system.

Our Contributions. In this paper we show how to reduce the public key size of the somewhat
homomorphic scheme from O(λ10) down to O(λ7). The idea consists in storing only a smaller subset of
the public key and then generating the full public key on the fly by combining the elements in the small
subset multiplicatively; we describe the new scheme in Section 3. In Section 4 we show that the new
scheme is still semantically secure, but under a stronger variant of the approximate GCD assumption.

Our second contribution is to describe an implementation of the fully homomorphic DGHV scheme
under our variant, using some of the optimizations from [7]. We use the refined analysis from [18] of the
sparse subset sum problem; however we do not use the probabilistic decryption circuit from [18] because
as in [7] the error probability is too high for our set of parameters. The main difficulty is to determine
a secure set of concrete parameters; our approach is to implement the known attacks, measure their
running time and extrapolate for large parameters; we can then fix the concrete parameters according to
the desired level of security.

We obtain similar performances as the Gentry-Halevi implementation of Gentry’s scheme [7]. More
precisely we use four security levels inspired by the levels from [7] (though they may not be directly com-
parable due to different notions of “security bits”): “toy”, “small”, “medium” and “large”, corresponding
to 42, 52, 62 and 72 bits of security respectively. For “large” parameters, encryption and recryption take 3
minutes and 14 minutes respectively, with a public key size of 800 MBytes. Decryption is always close to
instantaneous. This shows that fully homomorphic encryption can be implemented with a simple scheme.

2 The DGHV Scheme over the Integers.

In this section we first recall the somewhat homomorphic encryption scheme published by van Dijk,
Gentry, Halevi and Vaikuntanathan at Eurocrypt 2010 [4]. The scheme is based on a set of public integers:
xi = p · qi + ri, 0 ≤ i ≤ τ , where the integer p is secret.

Notation. We use the same notation as in [4]. For a real number x, we denote by dxe, bxc and dxc the
rounding of x up, down, or to the nearest integer. For a real z and an integer p we denote the reduction
of z modulo p by [z]p with −p/2 < [z]p ≤ p/2. We also denote [z]p by z mod p. We write f(λ) = Õ(g(λ))
if f(λ) = O(g(λ) logk g(λ)) for some k ∈ N.

The scheme parameters. Given the security parameter λ, the following parameters are used:

• γ is the bit-length of the xi’s.
• η is the bit-length of secret key p.
• ρ is the bit-length of the noise ri.
• τ is the number of xi’s in the public key.
• ρ′ is a secondary noise parameter used for encryption.

For a specific η-bit odd integer p, we use the following distribution over γ-bit integers:

Dγ,ρ(p) =
{
Choose q ← Z ∩ [0, 2γ/p), r ← Z ∩ (−2ρ, 2ρ) : Output x = q · p+ r

}
KeyGen(1λ). Generate a random odd integer p of size η bits. For 0 ≤ i ≤ τ sample xi ← Dγ,ρ(p). Relabel
so that x0 is the largest. Restart unless x0 is odd and [x0]p is even. Let pk = (x0, x1, . . . xτ) and sk = p.

4

Encrypt(pk,m ∈ {0, 1}). Choose a random subset S ⊆ {1, 2, . . . , τ} and a random integer r in (−2ρ
′
, 2ρ
′
),

and output the ciphertext:

c =

[
m+ 2r + 2

∑
i∈S

xi

]
x0

Evaluate(pk, C, c1, . . . , ct): given the circuit C with t input bits, and t ciphertexts ci, apply the addition
and multiplication gates of C to the ciphertexts, performing all the additions and multiplications over
the integers, and return the resulting integer.

Decrypt(sk, c). Output m ← (c mod p) mod 2. Note that since c mod p = c − p · bc/pe and p is odd,
one can compute instead: m← [c]2 ⊕ [bc/pe]2.

This completes the description of the scheme. It is shown in [4] that the scheme is a somewhat
homomorphic scheme and that it is semantically secure under the approximate-GCD assumption.

Definition 2.1 (Approximate GCD). The (ρ, η, γ)-approximate-GCD problem is: For a random η-bit
odd integer p, given polynomially many samples from Dγ,ρ(p), output p.

Note that after one Mult operation c← c1 · c2 the ciphertext size doubles since there is no modular
reduction involved. To reduce the ciphertext size after one Mult two techniques are described in [4]. The
second and simpler technique consists in generating x0 without noise, that is x0 = q0 ·p, and then reducing
the ciphertext modulo x0. The scheme is still semantically secure under the (stronger) approximate-GCD
assumption with error-free x0. While this problem seems easier to solve, as the adversary is given an
exact multiple of p, no better attack is known against it than on the unmodified problem.

We recall the constraints on the scheme parameters [4]:

• ρ = ω(log λ) to avoid brute force attack on the noise (see Section 6.1).

• η ≥ ρ·Θ(λ log2 λ) in order to support homomorphic operations for evaluating the “squashed decryption
circuit” (see Section 5).

• γ = ω(η2 · log λ) in order to thwart lattice-based attacks (see Section 6).

• τ ≥ γ + ω(log λ) for the reduction to approximate GCD [4].

• ρ′ = ρ+ ω(log λ) for the secondary noise parameter.

To satisfy these constraints the following parameter set is suggested in [4]: ρ = λ, ρ′ = 2λ, η = Õ(λ2),
γ = Õ(λ5) and τ = γ + λ. The public key size is then Õ(λ10). In practice the size of the xi’s should be at
least γ = 223 bits to prevent lattice attacks. The public key size is then at least 246 bits, which is too
large for any practical system.

3 Our Variant of the DGHV Scheme

3.1 Description

Our technique consists in working with integers x′ij of the form x′i,j = xi,0 · xj,1 mod x0 for 1 ≤ i, j ≤ β
where β is a new parameter. Then only 2β integers xi,b need to be stored in the public key in order to
generate the τ = β2 integers x′ij used for encryption. In other words we encrypt using a quadratic form
in the public key elements instead of a linear form, which enables to reduce the public key size from τ
down to roughly 2

√
τ integers of γ bits.

Our technique requires to use an error-free x0, that is x0 = q0 · p, since otherwise the error would
grow too large. Additionally for encryption we consider a linear combination of the x′i,j with coefficients
in [0, 2α) instead of bits; this enables to further reduce the public key size.

5

KeyGen(1λ). Generate a random prime p ∈ [2η−1, 2η). Let x0 = q0 · p where q0 is a random square free
2λ-rough3 integer in [0, 2γ/p). Generate integers xi,b for 1 ≤ i ≤ β and b ∈ {0, 1}:

xi,b = p · qi,b + ri,b, 1 ≤ i ≤ β, 0 ≤ b ≤ 1 (1)

where qi,b are random integers in [0, q0) and ri,b are integers in (−2ρ, 2ρ). Let sk = p and pk =
(x0, x1,0, x1,1, . . . xβ,0, xβ,1).

Encrypt(pk,m ∈ {0, 1}). Generate a random vector b = (bi,j) of size τ = β2 and with components in
[0, 2α). Generate a random integer r in (−2ρ

′
, 2ρ

′
). Output the ciphertext:

c = m+ 2r + 2
∑

1≤i,j≤β
bi,j · xi,0 · xj,1 mod x0 (2)

Evaluate and Decrypt: same as in the original scheme, except that ciphertexts are reduced modulo x0
after addition and multiplication.

3.2 Constraints on the Parameters

The first three constraints are the same as in the original DGHV scheme:

• ρ = ω(log λ) to avoid brute force attack on the noise (see Section 6.1).
• η ≥ (2ρ+ α) ·Θ(λ log2 λ) in order to support homomorphic operations for evaluating the “squashed

decryption circuit” (see Section 5).
• γ = ω(η2 · log λ) in order to thwart lattice-based attacks (see Section 6).
• α · β2 ≥ γ + ω(log λ) for the reduction to approximate GCD (see Section 4).
• ρ′ = 2ρ+ α+ ω(log λ) for the secondary noise parameter (see Section 4).

To satisfy these conditions we can still take ρ = λ, η = Õ(λ2) and γ = Õ(λ5) as in the original scheme,
and we can take α = λ, β = Õ(λ2) and ρ′ = 4λ. The main difference is that instead of having τ = Õ(λ5)
integers xi’s, we now have only 2β = Õ(λ2) integers xi. Hence the public key size becomes Õ(λ7) instead
of Õ(λ10). In Section 7.6 we describe concrete parameters in order to resist all known attacks.

Remark 3.1. It is possible to generate q0 as a uniformly random square free 2λ-rough integer of suitable
size in probabilistic polynomial time: it suffices to generate a uniformly random number with known
factorization [1] and try again if it has small or repeated factors. However, this makes key generation
rather unpractical. Alternatively, one can choose q0 as the product of (γ − η)/λ2 random primes, each of
size λ2 bits.4 This is faster, but the security of the scheme then depends on a slightly more convoluted,
though no less plausible, computational assumption, to account for the different key distribution.

3.3 Correctness

We refer to Appendix A for the definition of correct homomorphic scheme with respect to a given circuit
or circuit set. As in [4, 6] we define a permitted circuit as one where for any i ≥ 1 and any set of integer
inputs all less than τ i · 2i(ρ′+2) in absolute value, the generalized circuit’s output has absolute value at
most 2i(η−3−n) with n = dlog2(λ+ 1)e; we let CE be the set of permitted circuits. As in [4], we have (see
proof in Appendix B):

Lemma 3.1. The scheme from above is correct for CE .

3 An integer is said to be a-rough when it does not contain prime factors smaller than a. Note that for a > 2 such integer
must be odd.

4 The reason we choose λ2-bit factors rather than λ is because factorization algorithms like ECM have a complexity
subexponential in the size of factors, and can thus be used to extract λ-bit prime factors efficiently. In the implementation,
to thwart this attack, it is safe to generate q0 as a product of, say, 1000-bit primes.

6

Remark 3.2. Since “fresh” ciphertexts output by Encrypt have noise at most τ · 2ρ′+2, the ciphertext
output by Evaluate applied to a permitted circuit has noise at most 2η−3−n < p/(4(λ + 1)). A bound
of p/2 would suffice to ensure correct decryption, but this stronger bound will be useful to prove the
correctness of the bootstrappable version of this scheme later on.

Remark 3.3. The definition of a permitted circuit doesn’t seem to give an easy criterion to determine
whether a given computation is permitted. However, it is easy to give a sufficient condition on a multivariate
polynomial f for the associated arithmetic circuit C to be permitted. If f is of degree d and if the sum of
the absolute values of its coefficients is denoted by ‖f‖1, then C ∈ CE provided that:

d ≤ η − 3− n− log ‖f‖1
ρ′ + 2 + 2 log β

Following [4], we refer to such polynomials f as permitted polynomials, and denote the set of these
polynomials by PE .

4 Security of our Variant

4.1 Overview

In this section we show that our variant is still semantically secure, but under the (stronger) error-free
approximate GCD assumption. Our security proof follows the same strategy as in [4]: show that an
adversary breaking the scheme’s semantic security can be converted into a LSB predictor for z mod p,
where z is an integer such that z mod p is small; this in turns enables to recover p in the approximate-GCD
problem.

For this one must show that given c← Encrypt(pk,m), the distribution of c′ = [c+ z]x0 is essentially
the same as Encrypt(pk,m′) with m′ = m⊕ [z mod p]2. In [4] this is done by showing that the distribution
of bc/pe =

∑τ
i=1 bi · qi where b← {0, 1}τ is statistically close to uniform in Zq0 . For this [4] applies the

leftover hash lemma on the hash function family h(b) =
∑τ

i=1 bi · qi mod q0 parametrized by the qi’s,
which is clearly pairwise independent.

Similarly to prove the security of our variant we must apply the leftover hash lemma on the hash
function family h′ : [0, 2α)β

2 → Zq0 where:

h′(b) =
∑

1≤i,j≤β
bi,j · qi,0 · qj,1 mod q0

The main difficulty is to show that h′ is (almost) pairwise independent; as shown below this requires to
study the zeroes of the corresponding quadratic form. We note that our result might be of independent
interest since it enables to construct a universal hash function with a small memory footprint.

4.2 Leftover Hash Lemma

A family H of hash functions h : X → Y is pairwise independent if for all x 6= x′ it holds that
Prh[h(x) = h(x′)] = 1/|Y |. Since h′ is not exactly pairwise independent we introduce a slightly more
general definition:5

Definition 4.1. A family H of hash functions h : X → Y is ε-pairwise independent if∑
x 6=x′

(
Pr
h←H

[h(x) = h(x′)]− 1

|Y |

)
≤ |X|2 · ε

|Y |

5 Note that this is quite different from “ε-almost universal hash function families” in the sense of Wegman and Carter [20].
We need the collision probability Prh←H[h(x) = h(x′)] to be at most (1 + ε)/|Y | on average, with negligible ε; 2/|Y | is
not good enough.

7

The following lemma is a straightforward generalization of the usual leftover hash lemma.

Lemma 4.1 (Leftover hash lemma). Let H be a family of ε-pairwise independent hash functions. Sup-
pose that h← H and x← X are chosen uniformly and independently. Then (h, h(x)) is (12

√
|Y |/|X|+ ε)-

uniform over H× Y .

Proof. Let p ∈ RH×Y denote the probability vector corresponding to a random choice of x ∈ X and
h ∈ H. We must show that:

|p− 1|1 ≤
√
|Y |/|X|+ ε

where 1 corresponds to the uniform distribution. Observing that p− 1 is orthogonal to 1, we apply the
Cauchy-Schwarz inequality and the Pythagorean theorem to obtain:

|p− 1|1 ≤
√
|H| · |Y | · ‖p− 1‖2 =

√
|H| · |Y |

√
‖p‖22 − ‖1‖22

We have ‖1‖22 = 1/(|H| · |Y |) and:

‖p‖22 =
∑

(h′,y)∈H×Y

Pr
(h,x)←H×X

[h = h′;h(x) = y]2 =
1

|H|2
∑

(h,y)∈H×Y

Pr
x←X

[h(x) = y]2

=
1

|H|2
∑

(h,y)∈H×Y

(
1

|X|2
∑

(x,x′)∈X2

1h(x)=y

)2

=
1

|H|2 · |X|2
∑

(x,x′)∈X2

∑
h∈H

1h(x)=h(x′)

=
1

|H| · |X|2
∑

(x,x′)∈X2

Pr
h←H

[h(x) = h(x′)] =
1

|H| · |X|
+

1

|H| · |X|2
∑
x 6=x′

Pr
h←H

[h(x) = h(x′)]

≤ 1

|H| · |X|
+

1 + ε

|H| · |Y |

Hence, the statistical distance is bounded as:

|p− 1|1 ≤
√
|H| · |Y |

√
1

|H| · |X|
+

1 + ε

|H| · |Y |
− 1

|H| · |Y |
=

√
|Y |
|X|

+ ε

as desired. ut

4.3 Proof of Pairwise Independence

Let q be an integer. Let H be a hash function family from {0, . . . , 2α − 1}β×β to Zq. The members h ∈ H
are associated to elements qi,0, qi,1 of Zq for 1 ≤ i ≤ β. For b ∈ {0, . . . , 2α − 1}β×β, we let:

h(b) =
∑

1≤i,j≤β
bijqi,0qj,1 mod q

Lemma 4.2. For an odd prime integer q, the hash function family H is ε-pairwise independent, with:

ε =
1

q
+

β2

2αβ2−2(α+1)β

Proof. For each choice of b 6= b′, the probability Prh←H[h(b) = h(b′)] can be expressed in terms of the

number of zeros of a certain hyperbolic quadratic form in Z2β
q . More precisely let A = (aij) be the β × β

matrix in Mβ(Zq) given by aij = bij − b′ij . We have:

Pr
h

[h(b) = h(b′)] =
1

q2β
#

{
(u1, . . . , uβ, v1, . . . , vβ) ∈ Z2β

q :
∑

1≤i,j≤β
aijuivj = 0

}

8

Now the quadratic form Q =
∑

1≤i,j≤β aijuivj has the matrix 1
2

(
0 A
AT 0

)
, which is clearly conjugate to

1
2

(
0 J
J 0

)
where J is the canonical row echelon form of A. It follows that Q is the orthogonal sum of r

hyperbolic planes, with r the rank of A. Hence, its number of zeros is well-known (see e.g. [10, Theorem
6.32] for the non-degenerate case, from which the general case follows immediately):

#

{
(u1, . . . , uβ, v1, . . . , vβ) ∈ Z2β

q :
∑

1≤i,j≤β
aijuivj = 0

}
= q2β−1 + q2β−r − q2β−r−1

In particular, we get:

Pr
h

[h(b) = h(b′)]− 1

q
≤ 1

qr

This estimate is quite sufficient for our purposes, except in the case when r = 1. Therefore, we need to
bound the number of pairs (b, b′) such that the corresponding matrix A is of rank 1. Noting that A has
all its entries in −2α + 1, . . . , 2α − 1, it is enough to bound the cardinality of the set Uα of matrices of
rank 1 in Mβ(Zq) with entries in that interval.

To do so, note that a matrix of rank 1 with a nonzero upper-left entry is entirely determined by its
first line and its first column. If the entries are in {−2α + 1, . . . , 2α − 1}, this leaves 2α+1 − 2 choices for
the upper-left entries and (2α+1 − 1)2β−2 choices for the remainder of the first line and the first column.
Hence, there are less than 22(α+1)(β−1) matrices in Uα with a nonzero upper-left entry (and usually much
fewer, since not all first lines and first columns need to give rise to matrices with all their entries in the
proper interval). The same argument can be applied to any other nonzero entry (i, j), leading to the
coarse bound:

|Uα| < β2 · 22(α+1)β

Now, the number of pairs (b, b′) such that the corresponding matrix A is of rank 1 is at most |X| · |Uα|,
since for any choice of b, there are at most |Uα| possible values of b′ such that A is in Uα. We can thus
bound the value δ defined by:

δ =
|Y |
|X|2

∑
b6=b′

(
Pr
h

[h(b) = h(b′)]− 1

|Y |

)

as required. Indeed:

δ =
q

|X|2
∑
b 6=b′

(
Pr
h

[h(b) = h(b′)]− 1

q

)
≤ q

|X|2

(∑
b6=b′

A 6∈Uα

1

q2
+
∑
b6=b′

A∈Uα

1

q

)

≤ q

|X|2

(
|X|2

q2
+
|X| · |Uα|

q

)
≤ 1

q
+
|Uα|
|X|

≤ 1

q
+

β2

2αβ2−2(α+1)β

which concludes the proof. ut

Corollary 4.1. When q is a product of distinct primes greater than 2α, the hash function family H is
ε-pairwise independent, with:

ε =
log q

log p

(
e

p
+
β2 · 2(log q)/(log p)

2αβ2−2(α+1)β

)
where p is the smallest prime factor of q.

Proof. The proof is largely similar to the previous one. See Appendix C for details.

9

4.4 Semantic Security

We are now ready to show that our variant is semantically secure under the (stronger) error-free
approximate GCD assumption. The proof follows the same strategy as [4]; we refer to Appendix D for
the details. For two specific integers p and q0, we define the modified distribution:

D′ρ(p, q0) =
{
Choose q ← Z ∩ [0, q0), r ← Z ∩ (−2ρ, 2ρ) : Output x = q · p+ r

}
Definition 4.2 (Error-free approximate GCD). The (ρ, η, γ)-error-free-approximate-GCD problem
is: For a random η-bit prime integer p, given x0 = q0 · p where q0 is a random square free 2λ-rough integer
in [0, 2γ/p), and polynomially many samples from D′ρ(p, q0), output p.

Theorem 4.1. Let A be an attacker with advantage ε against our variant encryption scheme with
parameters (ρ, ρ′, η, γ, τ = β2) polynomial in the security parameter λ. There exists an algorithm B for
solving the (ρ, η, γ)-error-free-approximate-GCD problem that succeeds with probability at least ε/2. The
running time of B is polynomial in the running time of A, λ and 1/ε.

5 Making the Scheme Fully Homomorphic

5.1 The Squashed Scheme

Gentry’s transformation to “squash the decryption” consists in adding to the public key some extra
information about the secret key and use this extra information to “post process” the ciphertext. Then
the post-processed ciphertext can be decrypted by a decryption polynomial of small degree. This requires
to introduce an additional complexity assumption, namely the sparse subset-sum assumption.

We follow the description of [4]. Three more parameters κ, θ and Θ are added. Concretely, one uses
θ = λ, κ = γ + 2 + dlog2(θ + 1)e, and Θ = Õ(λ3).6 One adds to the public key a set y = {y1, . . . , yΘ} of
rational numbers in [0, 2) with κ bits of precision, such that there is a sparse subset S ⊂ {1, . . . , Θ} of
size θ with

∑
i∈S yi ' 1/p mod 2. The expanded ciphertext is computed using the yi’s. The secret key

sk is replaced by the indicator vector of the subset S.
However adding Θ elements yi each of size κ bits would give a public key of size Θ ·κ = Õ(λ8), instead

of Õ(λ7) in our variant. Therefore instead of storing the yi’s in the public key as in [4], we generate the
yi’s using a pseudo-random generator7 f(se). Then only the seed se and y1 need to be stored in the public
key, and the other yi’s can be recovered during ciphertext expansion by applying f(se) again. We obtain
the following squashed scheme:

KeyGen. Generate sk∗ = p and pk∗ as before. Set xp ← b2κ/pe, choose at random a Θ-bit vector
s = (s1, . . . , sΘ) with Hamming weight θ with s1 = 1, and let S = {i : si = 1}.

Initialize a system-wide pseudo-random number generator f with a random seed se, and use f(se)
to generate integers ui ∈ [0, 2κ+1) for 2 ≤ i ≤ Θ. Then, set u1 such that

∑
i∈S ui = xp mod 2κ+1. Set

yi = ui/2
κ and y = {y1, . . . , yΘ}. Hence each yi is a positive number smaller than two, with κ bits of

precision after the binary point. Also, [
∑

i∈S yi]2 = (1/p)−∆p for some |∆p| < 2−κ.
Output the secret key sk = s and public key pk = (pk∗, se, y1).

Encrypt and Evaluate. Generate a ciphertext c∗ as before. Then for i ∈ {1, . . . , Θ} set zi ← [c∗ · yi]2,
keeping only n = dlog2(θ + 1)e bits of precision after the binary point for each zi. Output both c∗ and
z = (z1, . . . , zΘ).

Decrypt: Output m← [c∗ − b
∑

i sizie]2.
6 We use Θ = Õ(λ3) instead of Θ = ω(κ · log λ) in [4] from a better analysis of the hardness of the SSSP problem (see

Section 6.3).
7 Note that f doesn’t really need to be a cryptographically strong PRNG: all that is needed is that the sparse subset-sum

problem remains hard when the subset is generated by f . Heuristically, this is a mild requirement. In our implementation,
we use random numbers produced by the PRNG from the glibc.

10

This completes the description of the scheme. Note that as in [7] we use n = dlog2(θ + 1)e bits of
precision, instead of n = dlog2 θe + 3 in the original scheme. This enables to reduce the degree of the
decryption polynomial. In practice we will use n = 4. Note that for encryption we don’t need to store all
the yi’s in memory again; we can generate them one by one from the PRNG to compute zi ← [c∗ · yi]2
with n bits of precision.

The proof of the following lemma is similar to the one in [4] (see Appendix E), but we can handle
a smaller precision n, as in [7], because in our scheme, ciphertext size does not grow in homomorphic
operations.

Lemma 5.1. The modified scheme is correct for the set C(PE) of circuits that compute permitted
polynomials.

5.2 Bootstrapping

As in [4], one obtains that the scheme is bootstrappable. From Gentry’s theorem we obtain homomorphic
encryption schemes for circuits of any depth.

Theorem 5.1. Let E be the scheme above, and let DE be the set of augmented (squashed) decryption
circuits. Then, DE ⊂ C(PE).

Proof. The proof is as in [4]. We provide a slightly different analysis. We consider the decryption equation:

m← c∗ −

⌊
Θ∑
i=i

si · zi

⌉
mod 2

where si are the secret key bits and zi are rational numbers in [0, 2) with n bits of precision after the
binary point (therefore n+ 1 bits in total). We must express the decryption equation as a low degree
polynomial in the bits si and the bits in zi, i.e. a permitted polynomial.

11111

11111

11111

248

359

79

15

15 815

Fig. 2. Grade-school addition for Θ or θ = 15 numbers of n = 4 bits of precision after the binary point. The numbers
indicate the degree of each bit as a binary polynomial in the input bits.

11

For this one uses a simple grade-school addition of the numbers ai = si · zi. As illustrated in Fig.
2 the bits of the ai’s are arranged in Θ rows and n + 1 columns (one column before the binary point
and n columns after). To see how this grade-school addition can be performed efficiently, first recall the
following result from [4, §6.2].

Lemma 5.2. Let b = (b1, b2, . . . , bΘ) be any binary vector, and denote its Hamming weight by W . Write

the binary digits of W as W = Wk · · ·W1W0
2
. Then the j-th bit Wj of W can be expressed as a binary

polynomial of degree exactly 2j in the bi’s, namely the 2j-th elementary symmetric polynomial:

Wj =
∑

I⊂{1,...,Θ}
|I|=2j

∏
i∈I

bi

Moreover, the bits W0,W1, . . .Wj can be simultaneously computed by an arithmetic circuit of size 2j ·Θ.

That the Wj ’s are given by elementary symmetric polynomials is classical (see e.g. [2, Lemma 4]). Thus,
to compute them, it suffices to find the top 2j coefficients of the polynomial (X− b1)(X− b2) · · · (X− bΘ),
which can be done iteratively with at most 2j · Θ operations. We recall the dynamic programming
algorithm from [4]:

Algorithm 1 Computation of the least significant bits W0, . . . ,Wj of the Hamming weight of b =
(b1, . . . , bθ).

1: P0,0 ← 1; Pk,0 ← 0 for k = 1, 2, . . . , 2j . . Pk,` is the k-th symmetric polynomial in b1, . . . , b`.
2: for ` = 1 to θ do
3: for k = 2j down to 1 do
4: Pk,` ← b` · Pk−1,`−1 + Pk,`−1;
5: end for
6: end for
7: Wk ← P2k,θ for k = 0, 1, . . . , j;
8: return W0, . . . ,Wj .

Then, the procedure to compute

Q =

⌊
Θ∑
k=1

ak

⌉
is as follows. We number the columns containing the ak’s from left to right as 0 (before the binary point),
−1, −2, . . . , −n.

As usual, grade-school addition starts from the rightmost column (column −n). Adding all Θ bits from
that column produces a bit of result and a certain number of bits of carry. Since we are only interested in
the n+ 1 least significant bits of the sum, we only need to keep track of the result and the first n carry

bits: this amounts to computing the rightmost bits W
(−n)
0 ,W

(−n)
1 , . . . ,W

(−n)
n of the Hamming weight

W (−n) of column −n, which can be done with at most 2n ·Θ multiplications according to the previous
lemma.

Now, push carry bit W
(−n)
1 to column −n+ 1, carry bit W

(−n)
2 to column −n+ 2 and so on. We can

then continue the grade-school addition process from column −n+ 1, where we only need to compute the

result and n− 1 carry bits, namely the bits W
(−n+1)
j of the Hamming weight W (−n+1) of the column,

including the possible carry bit from column −n. This amounts to at most 2n−1 · (Θ + 1) multiplications.

When this is done, push the carry bits W
(−n+1)
1 , . . .W

(−n+1)
n−1 to columns −n+2, −n+3, . . . , 0 respectively,

move to the next column and continue as before. This is illustrated in Figure 2 for n = 4.
The grade-school addition algorithm requires at most 2n ·Θ + 2n−1 · (Θ + 1) + 2n−2 · (Θ + 2) + · · ·+

2 · (Θ + n− 1) ≤ 2n · (Θ + n− 1) ≤ 4θ ·Θ multiplications and less than Θ + θ2 additions between the
resulting products.

12

Furthermore, we can compute the degree of any of the bits involved as a binary polynomial in the bits

of the ai’s. Clearly, W
(−n)
j is of degree 2j . Then we can see inductively from the shape of the elementary

symmetric polynomials that for k ≥ 1, W
(−n+k)
j is of degree 2j + 2k+1− 3. It follows that the degree of Q

as a polynomial in the bits of the ai’s is 2n (given by the degree of W
(−n)
n , which is the highest of all).

This is illustrated in Figure 2 for n = 4.

Finally, the parity of the integer closest to
∑
ai is obtained by xor-ing the Hamming weights of column

0 and −1, and the decryption m is then computed as the xor of the result with the least significant
bit of c∗. As a result, m is expressed as a polynomial of degree 2n in the bits of c∗ and the ai’s, with a
coefficient vector of 1-norm less than 2Θ. Since ai is just si · zi, this means that m is a polynomial f of
the ciphertext bits and the secret key satisfying d = deg f = 2n+1 and ‖f‖1 ≤ 2Θ. In view of Remark 3.3,
f is a permitted polynomial as long as d ≤ (η − 4− n− log2Θ)/(ρ′ + 2) which is satisfied by choosing η
according to the constraint in Section 3.2. ut

6 Attacks

In this section we recall the known attacks. For each attack we provide an asymptotic analysis (as in [4])
and we also run the attacks in practice in order to derive concrete parameters for our implementation. We
use four security levels inspired by the levels from [7]: “toy”, “small”, “medium” and “large”, corresponding
to 42, 52, 62 and 72 bits of security respectively. Therefore our “high” level of security corresponds to the
“high” level of security in [7]. For security parameter λ we wish to ensure that the best attack requires at
least 2λ clock cycles on a standard PC.

Note that we use the SAGE [14] interface to the fplll lattice reduction package [16] which is to our
knowledge the fastest publicly available. However any progress in LLL implementations will require an
increase of our security parameters.

6.1 Brute Force Attack on the Noise

The easiest attack is the brute force attack on the noise in the public key. Given x0 = q0 · p and
x1 = q1 · p+ r1 with |r1| < 2ρ, one can guess r1 and compute gcd(x0, x1 − r1) to recover p. The state of
the art algorithm for computing GCD’s is the Stehlé-Zimmermann algorithm [19] with time complexity
Õ(γ) for integers of γ bits. The attack complexity is then 2ρ · Õ(γ). Therefore the attack is thwarted if
ρ = ω(log λ).

A better attack [12] consists in computing p = gcd(x0,
∏2ρ

i=−2ρ(x1 − i) [x0]). Using fast multiplication

the asymptotic complexity is also 2ρ · Õ(γ).

Concrete parameters. In order to fix ρ we have run some experiments with GCD computations of
huge integers. We first describe the results for the basic GCD attack, using the Stehlé-Zimmermann
algorithm [19]. The result of practical experiments with the Sage library [14] are summarized in Table 1;
they are consistent with the running times given in [19].

γ 221 222 223 224 225

Time (s) 2.7 6.7 16.4 39.2 89.9

log2 cycles 32.4 33.7 35.0 36.3 37.5

Table 1. Running time of a single GCD computation on two random integers of size γ bits, using the Sage library.

13

The better attack from [12] consists in computing

p = gcd(x0,

2ρ−1∏
i=−2ρ

(x1 − i) [x0])

In this attack the 2ρ+1 GCD computations are replaced by 2ρ+1 − 1 modular multiplications of γ-bit
integers and one single final GCD computation. The result of practical experiments with the Sage library
[14] are summarized in Table 2.

γ 221 222 223 224 225

Time (s) 0.5 1.2 2.8 6.7 15.4

log2 cycles 30.0 31.3 32.5 33.7 34.9

Table 2. Running time of a single modular multiplication on two random integers of size γ bits, using the Sage library.

The size γ of the xi’s depends on η which depends on ρ, so we cannot determine ρ directly. We refer
to Table 4 in Section 7.6 for the concrete parameters. From the log2 cycles count in Table 2, one can
check that the attack requires at least 2λ clock cycles for each of the four levels of security.

6.2 Approximate-GCD Attack on the Public Key

We do not consider Coppersmith’s attack since as shown in [4] it does not apply for the range of parameters.
We consider the attack based on Nguyen and Stern’s orthogonal lattice [11] (see Section B.1 in [4]). One
considers the set of τ integers xi = p · qi + ri and x0 = p · q0. We consider the first t integers xi and we
consider a vector u orthogonal to these first t integers xi modulo x0, that is:

t∑
i=1

ui · xi = 0 mod x0

This gives
t∑
i=1

ui · ri = 0 mod p

Now if the ui’s are sufficiently small, since the ri’s are small this equality will hold over Z. This gives a
vector u orthogonal to the ri’s; by collecting sufficiently many such vectors u orthogonal to r = (ri) one
can recover r and eventually the secret key p. In our analysis we consider that the attack succeeds if at
least one vector u orthogonal to r in Z has been obtained.

To find u we build the lattice L of row vectors orthogonal to x = (x1, . . . , xt) modulo x0. From
Minkowski’s bound there exists a nonzero lattice vector of norm about

√
t · det(L)1/t ' 2γ/t. Since to

get u.r = 0 over Z we must have ‖u‖∞ ≤ 2η−ρ < 2η this gives the condition t > γ/η. However when the
lattice dimension t is large, lattice reduction algorithms will not recover such a short vector but only an
approximation.

As in [4] we use the following “rule of thumb” conjecture about lattice algorithms performance: there
exists a constant µ such that for any k and any dimension t, one cannot find a µt/k approximation of
the shortest vector in time smaller than 2k. Since we must find a vector u such that ‖u‖∞ ≤ 2η−ρ, we
need better than a 2η−ρ approximation of the shortest vector. To get a 2η approximation (which is not
quite enough to recover u), from t > γ/η the time required is then at least 2k where k = (log2 µ)γ/η2.
We recover the asymptotic condition from [4]:

γ = η2 · ω(log λ)

14

To derive concrete parameters we have run some experiments with the LLL and BKZ-20 lattice
reduction algorithms applied to the following lattice L:

L =

1 −x1

xt
[x0]

1 −x2
xt

[x0]
. . .

...

1 −xt−1

xt
[x0]

x0

 (3)

We did not run BKZ with block size ≥ 25 since as observed in [5] the running seems to be exponential in
the lattice dimension.

Given a “random” lattice L of dimension n without a particularly short vector, one can expect that
the shortest vector v has a norm according to Minkowsky bound ‖v‖ '

√
n · (detL)1/n. With lattice

reduction algorithms, one gets a vector b of norm ‖b‖ ' cn · (detL)1/n where cn is called the Hermite
factor.

We summarize in Table 3 the result of our practical experiments for estimating the Hermite factor c and
the running time. Our values for the Hermite factor are approximately the same as in [5]. Experimentally
the running time (expressed in number of clock cycles) can be approximated by:

T (n, γ) = b · na · γ
n

(4)

where the experimental coefficients a, b are given in Table 3.

LLL BKZ-20

c = Hermite factor1/n 1.021 1.013

a, b (5.0, 0.06) (5.2, 0.36)

Table 3. Hermite factor and running time coefficients for LLL and BKZ-20 lattice reduction algorithms, using the SAGE
implementation [14].

When applying lattice reduction on the lattice L given by (3), we obtain a short vector ‖u‖ of bit-size
γ/t+ c2 · t instead of γ/t, where c2 = log2 c where the constant c is estimated in Table 3. Since we must
have ‖u‖ ≤ 2η−ρ < 2η, this gives the condition γ/t+ c2 · t ≤ η.

We consider the equation η = c2 · t+ γ/t or equivalently:

c2 · t2 − η · t+ γ = 0 (5)

Let ∆ = η2 − 4γc2 be the discriminant of this equation. If ∆ < 0, then the previous equation has no
solution. Therefore given η one could fix γ such that ∆ < 0; this would give the condition γ ≥ η2/(4c2).

However we wish to use a smaller value for γ. For ∆ > 0 the smallest solution of equation (5) is:

tmin =
η −

√
η2 − 4c2γ

2c2
(6)

This is the minimum lattice dimension for which a lattice reduction algorithm with Hermite constant
c2 = log2 c can output a vector u sufficiently short to be orthogonal to r. From the dimension tmin and γ
one can then extrapolate the running time of the lattice reduction algorithm using the estimate in (4).
We require that for security parameter λ we have:

T (tmin, γ) = b · (tmin)a−1 · γ ≥ 2λ

15

for both lattice reduction algorithms LLL and BKZ-20. Therefore given η we must fix a large enough γ
such that:

b ·

(
η −

√
η2 − 4c2γ

2c2

)a−1
· γ ≥ 2λ

for both LLL and BKZ-20, with values (a, b, c2 = log2 c) from Table 3.
Since BKZ-20 outputs shorter vectors the value of tmin is smaller for BKZ-20 than for LLL; however

BKZ-20 takes more time than LLL. In our experiments we found that it was more advantageous to run
LLL on larger dimensions. We refer to Table 4 in Section 7.6 for the concrete parameters

6.3 Lattice Attack on the Sparse Subset-sum Problem

We use the refined analysis from [18] of the sparse subset sum problem. The attacker must solve the
equation:

Θ∑
i=1

si · ui = xp mod 2κ

where the ui’s are known and the secret-key s = (s1, . . . , sΘ) is of small Hamming weight θ. We assume
that the attack knows p and therefore xp.

We consider the knapsack lattice of row vectors from [3]:

L =

2 u1
2 u2

. . .
...

2 uΘ
2κ

1 1 · · · 1 xp

We have that (±1, . . . ,±1, 0) is a short vector of the lattice of norm

√
Θ. The determinant of the lattice

is detL ' 2Θ+κ = 2Θ+γ+2. From Minkowsky’s bound we can expect that the norm of the second shortest
vector is ' (detL)1/Θ ' 2γ/Θ.

Asymptotic analysis. To find the shortest vector we need better than a 2γ/Θ approximation. From
the lattice “Rule of Thumb” conjecture with the previous notations the time required is then at least 2k

with k = (log2 µ)Θ2/γ. Asymptotically the condition is therefore:

Θ2 = γ · ω(log λ)

Therefore with γ = Õ(λ5) we can take Θ = Õ(λ3).

Concrete parameters. As observed in [5] the minimum gaps for which LLL or BKZ can retrieve the
shortest vector is proportional (up to a small constant) to the corresponding Hermite factor. Since the
shortest vector has norm

√
Θ and the second shortest vector has norm ' 2γ/Θ, we obtain the following

condition for finding the shortest vector: log2
√
Θ + c2 ·Θ ≤ γ/Θ, where c2 = log2 c where the constant c

is estimated in Table 3. Therefore to avoid the previous attack one could take the constraint Θ2 ≥ γ/c2.
However we observed experimentally that running LLL and BKZ-20 against the knapsack lattice

L takes approximately the same amount of time as running LLL and BKZ-20 against the lattice L in
section 6.2, for the same lattice dimension t = Θ and the same value of γ. In Section 6.2 the value γ
has been determined such that the LLL and BKZ-20 running times both satisfy T (tmin, γ) ≥ 2λ. Note
that the value of tmin for LLL is larger than for BKZ-20. Therefore we can take the value of tmin from
equation (6) that corresponds to LLL and use the weaker constraint Θ = tmin. Then LLL (and therefore
BKZ-20) will take at least 2λ clock cycles on the lattice L of this section.

16

6.4 Birthday-like Attack on the Sparse Subset-sum Problem

There is a birthday-like exhaustive search attack against the sparse subset sum in the squashed scheme
[7]. When using the optimization from [7] which consists in representing the secret key s in θ boxes of
B = Θ/θ bits each, such that each box has a single 1-bit in it (see Section 7.2), the attack has complexity
(Θ/θ)(θ−1)/2. Therefore asymptotically we must have θ logΘ = ω(log λ) and for concrete parameters the
attack complexity must be ≥ 2λ.

7 Implementation of the Fully Homomorphic Scheme

7.1 Recryption

Now that decryption can be expressed as an arithmetic circuit of low depth, it is possible to achieve
bootstrapping, i.e. to publicly evaluate the decryption circuit homomorphically on a ciphertext, which
produces another ciphertext for the same message, but with possibly less noise (a “recryption”). This
process, which is Gentry’s key idea [6] for achieving fully homomorphic encryption, is illustrated in
Figure 1. The procedure that evaluates the decryption circuit homomorphically, called Recrypt, takes as
input encryptions of the ciphertext bits, and encryptions of the secret key bits.

In the case of the DGHV scheme or of our variant, 0 and 1 are valid encryptions of themselves, so the
ciphertext bits can be passed as is to the decryption circuit. However, encryptions of the secret key bits
should also be made available publicly, so the key generation from §5.1 should be modified to include
encryptions σi of the si’s into the public key pk = (pk∗,y,σ). Then the Recrypt procedure is simply
obtained by applying the decryption circuit to the ciphertext bits and the encrypted secret key bits.

Note that such ciphertexts σi are normally generated using the xi,b’s from the public key, leading
to σi’s with noise of size ρ′. However since we are at key generation phase we can do better and let
σi = si + 2r′i + p · q′i mod x0 for 1 ≤ i ≤ Θ, for random integers q′i modulo q0 and random integers r′i in
(−2ρ, 2ρ). The resulting ciphertexts σi have the same distribution as regular ciphertexts but with noise ρ
instead of ρ′. Since ρ < ρ′ this enables to reduce the size η of p required to achieve bootstrappability.

For the refreshed ciphertext to decrypt correctly, its noise must be small enough, and in fact
small enough that a multiplication operation between refreshed ciphertexts still decrypts correctly. The
ciphertext bits are noise-free encryptions of themselves and the encrypted secret key bits contain ρ bits
of noise, so one must have d · ρ < η/2, where d is the degree of the decryption circuit discussed in the
previous section (or in fact, only half that degree, because only the degree with respect to the secret
key bits matters; the contribution in the ciphertext bits zi can be ignored as they are used directly and
without noise).

7.2 Optimization of the Decryption Circuit

We use the optimization from [4] which consists in representing the secret key s in θ boxes of B = Θ/θ
bits each, such that each box has a single 1-bit in it. This enables to obtain a grade-school addition
algorithm that requires O(θ2) multiplications of bits instead of O(Θ · θ).

More precisely we denote by sk,i the i-th secret key bit in box k, where 1 ≤ k ≤ θ and 1 ≤ i ≤ B. We
use the same subscript notation for the expanded ciphertext with zk,i. The decryption equation becomes:

m← c∗ −

⌊
θ∑

k=1

(
B∑
i=1

sk,izk,i

)⌉
mod 2

The observation from [7] is that the sum qk
def
=
∑B

i=1 sk,izk,i is obtained by adding B numbers, only one
being non-zero. Therefore to compute the j-th bit of qk it suffices to xor all the j-th bits of the numbers
sk,i · zk,i. When applying homomorphic decryption, this corresponds to simply adding modulo x0 all the
ciphertexts corresponding to these bits. See Figure 3 for an illustration of the decryption circuit.

17

The decryption equation is now m← c∗ −
⌊

θ∑
k=1

qk

⌉
mod 2 where the qk’s are rational in [0, 2) with

n bits of precision after the binary point. As in [7] it suffices to perform a grade-school addition of the
qk’s. The bits of the qk’s are arranged in θ rows and n+ 1 columns (one column before the binary point
and n columns after); see Figure 2 for an illustration with n = 4. In this case, note that the decryption

polynomial is of degree 2n − 1 in the qk’s (the degree of W
(−1)
1 , in the notations of Section 5.2) instead of

2n as before, because the n-th carry bit of the leftmost column W
(−n)
n vanishes. Since we choose θ as a

power of 2 minus 1, this means that the decryption polynomial is of degree θ in the secret key bits overall.

7.3 Compression of Encrypted Secret Key Bits

The modification of the public key described previously, to accommodate for the Recrypt procedure, has
the problem of increasing public key size significantly. Namely the vector σ in the enlarged public key
consists of Θ = Õ(λ3) ciphertexts, each of size γ = Õ(λ5), so we obtain a public key size of Õ(λ8), instead
of Õ(λ7) in the basic scheme.

To alleviate this problem, an additional compression trick is described in [7]. Instead of generating
the secret key as a single bit vector s = (s1, . . . , sΘ), one uses two bit vectors s(0) and s(1) of length

√
Θ,

and s is then recovered on the fly during decryption as the following matrix with Θ entries:

si,j = s
(0)
i · s

(1)
j

The bit vectors s(0) and s(1) are chosen such that s is of Hamming weight θ. This can be combined with
the division in “boxes” described in §7.2: s(0) and s(1) can be divided in

√
θ boxes of length

√
B =

√
Θ/θ,

each of Hamming weight 1, yielding a natural division of s in θ boxes of length B.

Then, the public key only needs to contain encryptions of the bits of s(0) and s(1), namely vectors
σ(0) and σ(1) given by

σ
(b)
i = s

(b)
i + 2r′i,b + p · q′i,b mod x0 (1 ≤ i ≤

√
Θ, b = 0, 1)

with r′i,b and q′i,b chosen at random in (−2ρ, 2ρ) and [0, q0) respectively. This makes it possible to recover
encryptions σ of the bits of s on the fly at the time of recryption. This brings down public key size to
about

√
Θ · γ = Õ(λ6.5). Note on the other hand that this increases the noise in σ by a factor of 2 since

the σi,j are obtained as products of two ciphertexts; this implies that to keep bootstrappability the size η
of p must be doubled.

Clearly, it is possible to compress the encrypted secret key bits further by using products of three

σ
(b)
i ’s or more, but this increases the noise even further. For our purposes, we have found the choice of

two vectors σ(b) of encrypted secret key bits to be optimal.

7.4 Smaller Dimension for Knapsack Encryption

From the previous section the size of the public key in the full scheme is now about (β+
√
Θ) · γ bits. The

conditions from Section 3.2 imply that we must have β = Õ(λ2) to apply the leftover hash lemma. Since√
Θ = Õ(λ1.5) we have that β is the bottleneck. Therefore in practice we would like to use a smaller β,

for which the leftover hash lemma would not apply but no attack would work.

This implies that we must consider a lattice attack against the knapsack sum in the encryption
algorithm. The analysis is the same as in Section 6.3, with τ = β2 instead of Θ. This gives the asymptotic
condition τ2 = γ · ω(log λ) which for α < τ is weaker than the condition α · τ ≥ γ + ω(log λ) necessary
for the reduction to the approximate GCD problem. Under this condition we can take τ = Õ(λ3)
instead of τ = Õ(λ4) and therefore β = Õ(λ1.5) instead of β = Õ(λ2). The public key size is then
(β +

√
Θ) · γ = Õ(λ6.5) instead of Õ(λ7).

18

7.5 Fully Homomorphic Scheme complete Description

For completeness we provide a complete description of the fully homomorphic scheme.

KeyGen(1λ). Generate a random odd integer p of size η bits. Pick a number q0 ∈ [0, 2γ/p) chosen as
a product of random λ2-bit primes, and let x0 = q0 · p. Generate β pairs xi,0, xi,1 of integers with for
1 ≤ i ≤ β:

xi,b = p · qi,b + ri,b, 1 ≤ i ≤ β, 0 ≤ b ≤ 1 (7)

where qi,b are random integers in [0, q0) and ri,b are integers in (−2ρ, 2ρ). Let pk∗ = (x0, x1,0, x1,1,
. . . , xβ,0, xβ,1).

Additionally generate random bit vectors s(0) and s(1) of length d
√
Θe, subject to the conditions

that s
(0)
1 = s

(1)
1 = 1, that for each k ∈ [0,

√
θ) and b = 0, 1, there is at most one nonzero bit among the

s
(b)
i ’s, kb

√
Bc < i ≤ (k + 1)b

√
Bc, with B = Θ/θ, and that S = {(i, j) : s

(0)
i · s

(1)
j = 1} contains exactly θ

elements.

Initialize a system-wide pseudo-random number generator f with a random seed se, and use f(se) to
generate integers ui,j ∈ [0, 2κ+1) for 1 ≤ i, j ≤ d

√
Θe, (i, j) 6= (1, 1). Then, set u1,1 such that∑

(i,j)∈S

ui,j = xp mod 2κ+1

where xp ← b2κ/pe.
Compute encryptions σ(b) of the vectors s(b), by picking, for each i ∈ [1, d

√
Θe] and b = 0, 1, random

integers r′i,b ∈ (−2ρ, 2ρ) and q′i,b ∈ [0, q0), and setting:

σ
(b)
i = s

(b)
i + 2r′i,b + p · q′i,b mod x0

Finally, output the secret key as sk = (s(0), s(1)), and the public key as pk = (pk∗, se, u1,1,σ
(0),σ(1)).

Encrypt(pk,m ∈ {0, 1}). Choose a random integer matrix b = (bij)1≤i,j≤β ∈ [0, 2α)β×β and a random
integer r in (−2ρ

′
, 2ρ

′
). Output the ciphertext:

c∗ = m+ 2r + 2
∑

1≤i,j≤β
bij · xi,0 · xj,1 mod x0

Add(pk, c∗1, c
∗
2). Output c∗1 + c∗2 mod x0.

Mult(pk, c∗1, c
∗
2). Output c∗1 · c∗2 mod x0.

Expand(pk, c∗). This procedure, ciphertext expansion, takes a ciphertext c∗ and computes the associated
z-matrix. We can think of it as separate from either encryption or decryption, as it can be executed
publicly given the ciphertext and public data. To do so, for every 1 ≤ i, j ≤

√
Θ first compute the random

integer ui,j using the seeded pseudo-random number generator f(se), then let yi,j = ui,j/2
κ and compute

zi,j given by:

zi,j = [c∗ · yi,j]2

keeping only n = dlog2(θ + 1)e bits of precision after the binary point. Define the matrix z = (zi,j).
Output the expanded ciphertext c = (c∗, z).

Decrypt(sk, c∗, z). Output m←
[
c∗ − b

∑
i,j s

(0)
i · s

(1)
j · zi,je

]
2
.

Recrypt(pk, c∗, z). Apply the decryption circuit to the expanded ciphertext z and the encrypted secret

key bits σ
(b)
i . Output the result as a refreshed ciphertext c∗new.

19

7.6 Concrete Parameters

From the analysis of the known attacks in the previous section we are now ready to derive the concrete
parameters for the four levels of security. For all four levels we take θ = 15. In this case the degree of the
decryption polynomial is 2θ = 30 when using the degree-2 compression of the encryption of the secret key
bits. Since we must allow for an additional multiplication after Recrypt, the total degree is d = 4 · θ = 60.
To allow for some margin we take η = (d+ 8)ρ = 68 · ρ. We obtain the parameters given in Table 4.

Parameters λ ρ η γ β Θ

Toy 42 16 1088 1.6 · 105 12 144

Small 52 24 1632 0.86 · 106 23 533

Medium 62 32 2176 4.2 · 106 44 1972

Large 72 39 2652 19 · 106 88 7897

Parameters KeyGen Encrypt Expand Decrypt Recrypt pk size

Toy 4.38 s 0.05 s 0.03 s 0.01 s 1.92 s 0.95 MB

Small 36 s 0.79 s 0.46 s 0.01 s 10.5 s 9.6 MB

Medium 5 min 9 s 10 s 8.1 s 0.02 s 1 min 20 s 89 MB

Large 43 min 2 min 57 s 3 min 55 s 0.05 s 14 min 33 s 802 MB

Table 4. Concrete parameters and corresponding timings, as measured using our implementation in Sage 4.5.3 [14] and
GMP 4.3.2 [9], on a single core of a desktop computer with an Intel Core2 Duo E8500 CPU at 3.12 GHz. The public key
is roughly 2(β +

√
Θ + 1)γ bit long. Note that almost all the CPU time of key generation is spent in primality tests, to

generate a rough q0.

Acknowledgments

We would like to thank Phong Q. Nguyen, Nigel P. Smart and the CRYPTO referees for helpful comments.
The work described in this paper has been supported in part by the European Commission through the
ICT program under contract ICT-2007-216676 ECRYPT II.

References

1. E. Bach, How to generate factored random numbers. SIAM J. Comput., vol. 17, 1988, pp. 179–193.
2. J. Boyar, R. Peralta and D. Pochuev, On the multiplicative complexity of boolean functions over the basis (∧,⊕, 1).

Theor. Comput. Sci., vol. 235(1), 2000, pp. 43–57.
3. M. J. Coster, A. Joux, B. A. LaMacchia, A. M. Odlyzko, C.-P. Schnorr and J. Stern, Improved low-density subset sum

algorithms. Computational Complexity, vol. 2, 1992, pp. 111–128.
4. M. van Dijk, C. Gentry, S. Halevi and V. Vaikuntanathan, Fully homomorphic encryption over the integers. In H. Gilbert

(Ed.), EUROCRYPT 2010, LNCS, vol. 6110, Springer, 2010, pp. 24–43.
5. N. Gama and P. Q. Nguyen, Predicting lattice reduction. In N. P. Smart (Ed.), EUROCRYPT 2008, LNCS, vol. 4965,

Springer, 2008, pp. 31–51.
6. C. Gentry, A fully homomorphic encryption scheme. Ph.D. thesis, Stanford University, 2009. Available at http:

//crypto.stanford.edu/craig.
7. C. Gentry and S. Halevi, Implementing Gentry’s fully homomorphic encryption scheme. In K. Paterson (Ed.), EURO-

CRYPT 2011, LNCS, Springer, 2011.
8. O. Goldreich, S. Goldwasser and S. Halevi, Public-key cryptosystems from lattice reduction problems. In B. S. Kaliski

(Ed.), CRYPTO ’97, LNCS, vol. 1294, Springer, 1997, pp. 112–131.
9. T. Grandlung et al., The GNU Multiple Precision arithmetic library (Version 4.3.2), 2010, http://gmplib.org.

10. R. Lidl and H. Niederreiter, Finite fields. Encyclopedia of mathematics and its applications, vol. 20, Addison-Wesley,
1983.

11. P. Q. Nguyen and J. Stern, The two faces of lattices in cryptology. In J. H. Silverman (Ed.), CaLC 2001, LNCS, vol.
2146, Springer, pp. 146–180

12. P. Q. Nguyen, personal communication.

20

13. P. Paillier, Public-key cryptosystems based on composite degree residuosity classes. In J. Stern (Ed.), EUROCRYPT
’99, LNCS, vol. 1592, Spring, 1999, pp. 223–238.

14. W.A. Stein et al., Sage Mathematics Software (Version 4.5.3), The Sage Development Team, 2010, http://www.sagemath.
org.

15. D. Micciancio, Improving lattice based cryptosystems using the Hermite normal form. In J. H. Silverman (Ed.), CaLC
2001, LNCS, vol. 2146, Springer, pp. 126–145

16. X. Pujol, D. Stehlé et al., fplll lattice reduction library, http://perso.ens-lyon.fr/xavier.pujol/fplll/.
17. N. P. Smart and F. Vercauteren, Fully homomorphic encryption with relatively small key and ciphertext sizes. In

P. Q. Nguyen and D. Pointcheval (Eds.), PKC 2010, LNCS, vol. 6056, Springer, 2010, pp. 420–443.
18. D. Stehlé and R. Steinfeld, Faster fully homomorphic encryption. In M. Abe (Ed.), ASIACRYPT 2010, LNCS, vol. 6477,

Springer, 2010, pp. 377–394.
19. D. Stehlé and P. Zimmermann, A binary recursive GCD algorithm. In D. A. Buell, ANTS-VI, LNCS, vol. 3076, Springer,

2004, pp. 411–425.
20. M.N. Wegman and J.L. Carter, New hash functions and their use in authentication and set equality, Journal of Computer

and System Sciences, vol. 22(3), 1981, pp. 265-279.

A Definition

We recall the definition from [4, 6]. A homomorphic public-key encryption scheme E has an additional
algorithm Evaluate which takes as input the public key pk, a circuit C with t input bits and t ciphertexts
ci, and outputs another ciphertext c.

Definition A.1 (Correct Homomorphic Decryption). The scheme E = (KeyGen,Encrypt, Decrypt,
Evaluate) is correct for a given t-input circuit C if, for any key-pair (sk, pk) output by KeyGen(λ), any
t plaintext bits m1, . . . ,mt and any ciphertexts c = (c1, . . . , ct) with ci ← Encrypt(pk,mi), it holds that
Decrypt(sk,Evaluate(pk,C, c) = C(m1, . . . ,mt).

B Proof of Lemma 3.1

Given a ciphertext c output by Encrypt(pk,m):

c = m+ 2r + 2
∑

1≤i,j≤β
bi,j · xi,0 · xj,1 mod x0

where |r| < 2ρ
′

and bi,j ∈ [0, 2α), we have:

c = m+ 2r + 2
∑

1≤i,j≤β
bi,j · ri,0 · rj,1 mod p

This gives using ρ′ ≥ 2 · ρ+ α:

|c mod p| ≤ 2ρ
′+1 + 2τ · 22ρ+α ≤ τ · 2ρ′+2 (8)

Let C ∈ CE be a permitted circuit with t inputs and let C ′ be the corresponding circuit operating over
the integers rather than modulo 2. Let ci ← Encrypt(pk,mi). We have:

c mod p = C ′(c1, . . . , ct) mod p = C ′(c1 mod p, . . . , ct mod p) mod p (9)

From (8) and the definition of permitted circuits, we obtain:

|C ′(c1 mod p, . . . , ct mod p)| ≤ 2η−4 ≤ p/8

Therefore C ′(c1 mod p, . . . , ct mod p) mod p = C ′(c1 mod p, . . . , ct mod p), which implies from (9):

c mod p = C ′(c1 mod p, . . . , ct mod p)

and eventually:

[c mod p]2 =
[
C ′(c1 mod p, . . . , ct mod p)

]
2

=
[
C ′([c1 mod p]2, . . . , [ct mod p])

]
2

which gives [c mod p]2 = C(m1, . . . ,mt) which concludes the proof.

21

C Proof of Corollary 4.1

Again, given b 6= b′, we have to estimate the number of zeros N of the quadratic form
∑

1≤i,j≤β aijuivj mod
q where aij = bi − b′i.

Now, write q as the product of primes p1 · · · pk with p1 < · · · < pk. Then the Chinese remainder
theorem ensures than N = N1 · · ·Nk where N` is the number of zeros of the quadratic form mod p`. As
we have previously seen, this satisfies:

N` ≤ p2β−1` + p2β−r``

where r` is the rank of the matrix A = (aij) mod p`. In particular, if the reduction of A mod p` is of rank
≥ 2 for all `, we obtain:

Pr
h

[h(b) = h(b′)] =
N1 · · ·Nk

q2β
≤
∏
`

(
1

p`
+

1

p2`

)
≤ 1

q

(
1 +

1

p

)k
≤ 1

q

(
1 +

e · k
p

)
where p = p1 is the smallest prime factor of q (and e = exp(1)).

On the other hand, the bound is less convenient if r` ≤ 1 for some `. Note that r` = 0 cannot happen,
since in view of the condition p` > 2α, aij = 0 mod p` implies bij = b′ij . So we only have to consider the
case of rank 1. If r` = 1 for some `, we have:

Pr
h

[h(b) = h(b′)] ≤
∏
`

2

p`
=

2k

q

Furthermore, the set U
(`)
α of matrices of rank 1 in Mβ(Zp`) with entries in {−2α + 1, . . . , 2α − 1} is

bounded as before: |U (`)
α | < β2 · 22(α+1)β for all `. Therefore, the set Uα matrices in Mβ(Zq) with entries

in the proper interval and a rank 1 reduction mod p` for some ` contains at most k times that many
matrices:

|Uα| < k · β2 · 22(α+1)β

Again, we can then bound the value δ given by:

δ =
|Y |
|X|2

∑
b6=b′

(
Pr
h

[h(b) = h(b′)]− 1

|Y |

)
as follows:

δ ≤ q

|X|2

(∑
b6=b′

A 6∈Uα

e · k
pq

+
∑
b 6=b′

A∈Uα

2k − 1

q

)
≤ q

|X|2

(
|X|2

q
· e · k
p

+
|X| · |Uα| · 2k

q

)

≤ e · k
p

+
|Uα| · 2k

|X|
≤ k

(
e

p
+

β2

2αβ2−2(α+1)β−k

)
It remains to observe that k ≤ (log q)/(log p) to conclude. ut

D Proof of Theorem 4.1

We follow the same proof strategy as in [4]. Consider an attacker A against our encryption scheme with
non-negligible advantage ε for parameters (ρ, ρ′, η, γ, τ). In other words, A takes as input a public key
and a ciphertext (produced by KeyGen and Encrypt of our variant), and outputs the correct plaintext bit
with probability at least 1/2 + ε. Using A we mimick the method from [4] to construct an algorithm B to
solve the (ρ, η, γ)-error-free-approximate-GCD problem.

22

B is given a γ-bit number of the form p · q0, where p is a random η-bit odd integer and q0 is a random
integer from the interval [0, 2γ/p). In addition, B is allowed to sample D′ρ(p, q0) polynomially many times.
Its goal is to recover p with non-negligible probability.

At the cost of a loss in success probability at most polynomial in λ, we will assume that q0 is a
2λ-rough square free integer, as this property is satisfied by a polynomial fraction of integers in [0, 2γ/p).

The algorithm B is then as follows.

Step 1: Creating a public Key Let x0 = p · q0 as given to B. We assume that q0 is a randomly chosen
integer in the interval [0, 2γ/p), as well as square-free and 2λ-rough. We also sample xi,0, xi,1 ← D′ρ(p, q0)
for 1 ≤ i ≤ β. Clearly, pk = (x0, x1,0, x1,1 · · · , xβ,0, xβ,1) follows the same distribution as the public key
generated by KeyGen.

Step 2: High Accuracy LSB predictor For any integer z, let qp(z) and rp(z) denote the quotient
and remainder of z with respect to p. Given any z ∈ [0, 2γ) that is at most 2ρ away from a multiple of p,
the following subroutine tells us the least significant bit of qp(z) with high probability.

Learn-LSB(z, pk):
Input: z ∈ [0, 2γ) with rp(z) < 2ρ, a public key pk = (x0, x1,0, x1,1 · · · , xβ,0, xβ,1)
Output: The least significant bit of qp(z)

1. For k = 1 to poly(λ)/ε do:

2. Choose noise rk ← (−2ρ
′
, 2ρ

′
), a bit mk ← {0, 1} and b

(k)
i,j ← [0, 2α) for 1 ≤ i, j ≤ β.

3. Set ck = [z +mk + 2rk + 2
∑

i,j b
(k)
i,j · xi,0 · xj,1]x0

4. Call A to get a prediction of ak ← A(pk, ck)

5. Set bk = ak ⊕ parity(z)⊕mk

6. Output the majority vote among the bk’s.

Step 3: Binary GCD Using Learn-LSB(z, pk) we build a binary GCD algorithm GCD(z1, z2) as in [4],
to find out the odd part of gcd(qp(z1), qp(z2)) for any z1 = qp(z1)p + rp(z1) and z2 = qp(z2)p + rp(z2)
where rp(zi)� p.

Step 4: Recovery of p To recover p, the solver B draws z∗1 , z
∗
2 ← Dγ,ρ(p). With probability at least

ζ(2)−1 = 6
π2 ≈ 0.61, we will have coprime qp(z

∗
1) and qp(z

∗
2). Hence GCD(z∗1 , z

∗
2) will return z̃ = 1 · p+ r

with |r| < 2ρ with high probability. Once we have z̃, we call GCD(z∗1 , z̃) to find out qp(z1). Now B answers
p = bz∗1/qp(z1)e.

This completes the description of algorithm B. It remains to show that Learn-LSB(z, pk) is a reliable
oracle for [qp(z)]2. As in [4], this follows from the the fact that the distribution of the “ciphertext” ck at
line 3 is statistically close to the distribution of a valid encryption of the bit [rp(z)]2 ⊕mk, for all but a
negligible fraction of the public keys; see Lemma D.1 below. Then as shown in [4] if A has advantage ε
in guessing the encrypted bit under pk, then for a fraction at least ε/2 of the primes p ∈ [2η−1, 2η) the
adversary has advantage at least ε/2, and for a fixed such p the adversary has advantage at least ε/4 for
a fraction at least ε/4 of the corresponding public keys. From Lemma D.1 below this gives an advantage
at least ε/4− negl for A at step 4 of Learn-LSB; then from the majority vote Learn-LSB(z, pk) will return
the correct answer with overwhelming probability, and B will recover p. For such p’s this holds for a
fraction at least ε/4− negl of the public keys. Thus for such p’s it suffices to repeat algorithm B with a
new random public key for 4/ε · ω(log λ) times to recover p with overwhelming probability. The overall
success probability of B is therefore the corresponding fraction of such p’s, which is at least ε/2. This
completes the proof of Theorem 4.1. ut

23

Lemma D.1. Fix the parameters (ρ, ρ′, η, γ, τ) and the secret key sk = p. Let pk = (x0, x1,0, x1,1, . . .
. . . , xβ,0, xβ,1) be generated at random as in the KeyGen. For every integer x∗ ∈ [0, 2γ) that is at most 2ρ

away from a multiple of p, consider the following distribution

Cpk(x∗) =
{
For 1 ≤ i, j ≤ β, bi,j ← [0, 2α), r ← (−2ρ

′
, 2ρ

′
) : output c′ =

[
x∗+2r+2·

∑
i,j

bi,j ·xi,0·xj,1
]
x0

}
.

Then with overwhelming probability (over the choice of sk, pk), every distribution Cpk(x∗) is statistically
close to the distribution Encrypt(pk,m = [x∗]2).

Proof. The proof is the same as in Lemma 4.3 of [4], except that we use our generalized version of Leftover
hash lemma (Lemma 4.1) and Corollary 4.1. Writing c′ = q′p+ 2r′ +m, the idea is to show separately
that q′ and r′ are distributed as in the scheme.

Regarding the noise r′, since ρ′ = 2ρ+ α+ ω(log λ), the additional noise r added in the distribution
is drawn from a set of cardinality superpolynomially larger than the noise in the public key elements and
in the integer x∗. This ensures that the distribution of r′ is statistically close to the uniform distribution
in (−2ρ

′
, 2ρ

′
), as in regular encryption.

On the other hand, with our choice of parameters (in particular αβ2 = γ+ω(log λ)) and with q0 being
a 2λ-rough integer, Corollary 4.1, together with our generalization of the leftover hash lemma (Lemma
4.1), implies that the statistical distance between the distribution of qp(c) =

∑
i,j bi,j · qi,0 · qj,1 mod q0 for

a regular ciphertext c and the uniform distribution in Zq0 is negligible. But q′ is the sum mod q0 of such
a value qp(c) with a random number, so its distribution is also statistically close to uniform.

Thus, the distributions of both q′ and r′ are statistically close to the distributions of qp(c) and rp(c)
for c = Encrypt(pk,m), which concludes the proof. ut

E Proof of Lemma 5.1

Fix a permitted polynomial P (x1, . . . , xt) ∈ PE , an arithmetic circuit C that computes P , and t fresh
ciphertexts c1, . . . , ct that encrypt the input to C. Then, let c∗ = Evaluate(pk,C, c1, . . . , ct).

As recalled in §3, the correct decrypted message m is given by [c∗ − bc∗/pe]2, so what we need to
show is that bc∗/pe = b

∑
i sizie mod 2.

To see this, recall first from Remark 3.2 that c∗/p is at most 1/(4(θ + 1)) away from the nearest
integer bc∗/pe. On the other hand, recall that each zi is computed as [c∗ · yi]2 keeping only n bits of
precision after the binary point, so that we can write zi = [c∗ · yi]2 + δi with |δi| < 2−(n+1) ≤ 1/(2(θ+ 1)).
Thus, we get, as in [4]:[

(c∗/p)−
∑

sizi

]
2

=
[
(c∗/p)−

∑
si[c
∗ · yi]2 −

∑
siδi

]
2

=
[
(c∗/p)− c∗ ·

[∑
siyi

]
−
∑

siδi

]
2

=
[
(c∗/p)− c∗ · (1/p−∆p)−

∑
siδi

]
2

=
[
c∗ ·∆p −

∑
siδi

]
2

This allows us to bound the difference mod 2:∣∣∣[(c∗/p)−∑ sizi

]
2

∣∣∣ ≤ |c∗ ·∆p|+
∣∣∣∑ siδi

∣∣∣ < 2γ−κ + θ · 1

2(θ + 1)

Therefore, the distance mod 2 of
∑
sizi to bc∗/pe is strictly less than 1/(4(θ + 1)) + 2γ−κ + θ/(2(θ + 1)).

Now 2γ−κ = 2−n−2 ≤ 1/(4(θ + 1)), so the total distance is strictly less than 1/2. This concludes the
proof. ut

24

sb0
1 sb1

1

× =

Sb1

0
1

0

0
0

1

0

0

1

0

× 1 0 0 1 0
z1,1

× 0 0 1 1 0
z1,2

× 1 1 0 1 0

× 0 0 1 1 0
z1,B

= 0 0 0 0 0

= 0 0 0 0 0

= 1 1 0 1 0

= 0 0 0 0 0

⊕
⊕

⊕

⊕

=

011 1 0

sb0√
θ

sb1√
θ

× =

Sbθ

0
1

0

1
0

0

0

0

1

0

× 0 0 1 1 1
zθ,1

× 1 0 0 1 0
zθ,2

× 0 1 0 1 0

× 1 0 1 1 0
zθ,B

= 0 0 0 0 0

= 0 0 0 0 0

= 0 1 0 1 0

= 0 0 0 0 0

⊕
⊕

⊕

⊕

=

010 1 0

sb0
i sb1

j

× =

Sbk=(i−1)
√
θ+j

1
0

0

0
0

1

0

0

1

0

× 1 1 1 1 0
zk,1

× 0 0 0 1 1
zk,2

× 1 0 0 1 0

× 0 0 1 0 0
zk,B

= 0 0 0 0 0

= 0 0 0 0 0

= 1 0 0 1 0

= 0 0 0 0 0

⊕
⊕

⊕

⊕

=

001 1 0

011 1 0

q1

001 1 0

qk

010 1 0

qθ

+

+

+

+

=

⊕

Plaintext bit

Fig. 3. Illustration of the decryption Circuit. s(0), s(1) are divided into
√
θ boxes of Hamming weight 1, namely sb0

1, · · · , sb0√
θ

and sb1
1, · · · , sb1√

θ
. As a result s gets divided into θ boxes of Hamming weight 1, namely Sb1, · · · ,Sbθ.

