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Abstract. Generalised Mersenne Numbers (GMNs) were defined by Solinas in 1999 and fea-
ture in the NIST Digital Signature Standard (FIPS 186-2) for use in elliptic curve cryptography.
Their form is such that modular reduction is extremely efficient, thus making them an attractive
choice for modular multiplication implementation. However, the issue of residue multiplication
efficiency seems to have been overlooked. Asymptotically, using a cyclic rather than a linear
convolution, residue multiplication modulo a Mersenne number is twice as fast as integer mul-
tiplication; this property does not hold for prime GMNs, unless they are of Mersenne’s form. In
this work we exploit an alternative generalisation of Mersenne numbers for which an analogue of
the above property — and hence the same efficiency ratio — holds, even at bitlengths for which
schoolbook multiplication is optimal, while also maintaining very efficient reduction. Moreover,
our proposed primes are abundant at any bitlength, whereas GMNs are extremely rare. Our
multiplication and reduction algorithms can also be easily parallelised, making our arithmetic
particularly suitable for hardware implementation. Furthermore, the field representation we pro-
pose also naturally protects against side-channel attacks, including timing attacks, simple power
analysis and differential power analysis, which is essential in many cryptographic scenarios, in
constrast to GMNs.
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1 Introduction

The problem of how to efficiently perform arithmetic in Z/NZ is a very natural one, with
numerous applications in computational mathematics and number theory, such as primality
proving [1], factoring [39], and coding theory [61], for example. It is also of central importance
to nearly all public-key cryptographic systems, including the Digital Signature Algorithm [21],
RSA [47], and elliptic curve cryptography (ECC) [33,41]. As such, from both a theoretical and
a practical perspective it is interesting and essential to have efficient algorithms for working
in this ring, for either arbitrary or special moduli, with the application determining whether
generality (essential for RSA for instance), or efficiency (desirable for ECC) takes precedence.

Two intimately related factors need consideration when approaching this problem. First,
how should one represent residues? And second, how should one perform arithmetic on these
representatives? A basic answer to the first question is to use the canonical representation
Z/NZ = {0, . . . , N − 1}. With regard to modular multiplication for example, an obvious
answer to the second question is to perform integer multiplication of residues, followed by
reduction of the result modulo N , in order to obtain a canonical representative once again.
Using this approach, the two components needed for efficient modular arithmetic are clearly
fast integer arithmetic, and fast modular reduction.
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At bitlengths for which schoolbook multiplication is optimal, research on fast modular
multiplication has naturally tended to focus on reducing the cost of the reduction step. For
arbitrary moduli, Montgomery’s celebrated algorithm [42] enables reduction to be performed
for approximately the cost of a residue by residue multiplication. For the Mersenne numbers
Mk = 2k − 1, efficient modular multiplication consists of integer residue multiplication to
produce a 2k-bit product U ·2k +L, with U,L of at most k-bits, followed by a single modular
addition U + L mod Mk to effect the reduction, as is well known. In 1999 Solinas proposed
an extension of this method to a larger class of integers: the Generalised Mersenne Numbers
(GMNs) [53]. As they are a superset, GMNs are more numerous than the Mersenne numbers
and hence contain more primes, yet incur little additional overhead in terms of performance
[11]. In 2000, NIST recommended ten fields for use in the ECDSA: five binary fields and five
prime fields, and due to their performance characteristics the latter of these are all GMNs [21],
which range from 192 to 521 bits in size.

For the GMNs recommended by NIST, there is no interplay between the residue multipli-
cation and reduction algorithms, each step being treated separately with respect to optimisa-
tion. On the other hand, at asymptotic bitlengths the form of the modulus may be effectively
exploited to speed up the residue multiplication step. For the Mersenne numbers Mk in par-
ticular, modular multiplication can be performed for any k using a cyclic convolution effected
by a discrete weighted transform [16, §3.1]. As such, multiplication modulo Mersenne num-
bers is approximately twice as fast as multiplication of integers of the same bitlength, for
which a linear convolution is required, as each multiplicand must be padded with k zeros
before a cyclic convolution of length 2k can be performed. For Montgomery multiplication
at asymptotic bitlengths, the reduction step can be made 25% cheaper, again by using a
cyclic rather than a linear convolution for one of the required multiplications [46]. However,
since the multiplication step is oblivious to the form of the modulus, it seems unlikely to
possess the same efficiency benefits that the Mersenne numbers enjoy. These considerations
raise the natural question of whether there exists a similar residue multiplication speed up at
bitlengths for which schoolbook multiplication is optimal? Certainly for the modulus N = 2k,
such a speed up can be achieved, since the upper half words of the product can simply be
ignored. However, this modulus is unfortunately not at all useful for ECC.

In this work we answer the above question affirmatively, using an alternative generalisation
of Mersenne numbers, which has several desirable features:

− Simple. Our proposed family is arguably a far more natural generalisation of Mersenne
numbers than Solinas’, and gives rise to beautiful multiplication and reduction algorithms.

− Abundant. Our primes are significantly more numerous than the set of prime GMNs and
are abundant for all tested bitlengths; indeed their number can be estimated using Bateman
and Horn’s quantitative version [3] of Schinzel and Sierpiński’s “Hypothesis H” [49].

− Fast multiplication. Our residue multiplication is nearly twice as fast as multiplication
of integer residues.

− Fast reduction. Our reduction has linear complexity and is particularly efficient for
specialised parameters, although such specialisation comes at the cost of reducing the
number of primes available.

− Parallelisable. Both multiplication and reduction can be easily parallelised, making our
arithmetic particularly suitable for hardware implementation.

− Side-channel secure. Our representation naturally protects against well-known side-
channel attacks on ECC (see [10, ch. IV] for an overview), in contrast to the NIST GMNs,



see [48] and [51, §3.2]. This includes timing attacks [35,57], simple power analysis [48] and
differential power analysis [36].

This article provides an introductory (and comprehensive) theoretical framework for the use
of our proposed moduli. It thus serves as a foundation for a new approach to the secure
and efficient implementation of prime fields for ECC, both in software and in hardware.
At a high level, our proposal relies on the combination of a remarkable algebraic identity
used by Nogami, Saito, and Morikawa in the context of extension fields [44], together with
the residue representation and optimisation of the reduction method proposed by Chung
and Hasan [14], which models suitable prime fields as the quotient of an integer lattice by
a particular equivalence relation. To verify the validity of our approach, we also provide a
proof-of-concept implementation that is already competitive with the current fastest modular
multiplication algorithms at contemporary ECC security levels [5, 6, 22,23,27,40].

The sequel is organised as follows. In §2 we present some definitions and recall related
work. In §3 we describe the basis of our arithmetic, then in §4-6 we present details of our
residue multiplication, reduction and representation respectively. In §7 we show how to ensure
I/O stability for modular multiplication, then in §8 we put everything together into a full
modular multiplication algorithm. We then address other arithmetic operations and give a
brief treatment of side-channel secure ECC in §9, and in §10 show how to generate suitable
parameters. In §11 we present our implementation results and finally, in §12 we draw some
conclusions.

2 Definitions and Related Work

In this section we introduce the cyclotomic primes and provide a summary of related work.
We begin with the following definition.

Definition 1. For n ≥ 1 let ζn be a primitive n-th root of unity. The n-th cyclotomic poly-
nomial is defined by

Φn(x) =
∏

(k,n)=1

(x− ζk
n) =

∏
d|n

(1− xn/d)µ(d),

where µ is the Möbius function.

Two basic properties of the cyclotomic polynomials are that they have integer coefficients,
and are irreducible over Z. These two properties ensure that the evaluation of a cyclotomic
polynomial at an integer argument will also be an integer, and that this integer will not inherit
a factorisation from one in Z[x]. One can therefore ask whether or not these polynomials ever
assume prime values at integer arguments, which leads to our next definition.

Definition 2. For n ≥ 1 and t ∈ Z, if p = Φn(t) is prime, we call p an n-th cyclotomic
prime, or simply a cyclotomic prime.

Note that for all primes p, we have p = Φ1(p+ 1) = Φ2(p− 1), and so trivially all primes
are cyclotomic primes. These instances are also trivial in the context of the algorithms we
present for performing arithmetic modulo these primes, since in both cases the cyclotomic
polynomials are linear and our algorithms reduce to ordinary Montgomery arithmetic. Hence
for the remainder of the article we assume n ≥ 3.



In addition to being prime-evaluations of cyclotomic polynomials, note that for a cyclo-
tomic prime p = Φn(t), the field Fp can be modelled as the quotient of the ring of integers
of the n-th cyclotomic field Q(ζn), by the prime ideal π = 〈p, ζn − t〉. This is precisely how
one would represent Fp when applying the Special Number Field Sieve to solve discrete log-
arithms in Fp, for example [38]. Hence our nomenclature for these primes seems apt. This
interpretation of Fp for p a cyclotomic prime is implicit within the arithmetic we develop
here, albeit only insofar as it provides a theoretical context for it; this perspective offers no
obvious insight into how to perform arithmetic efficiently and the algorithms we develop make
no use of it at all. Similarly, the method of Chung and Hasan [14] upon which our residue
representation is based can be seen as arising in exactly the same way for the much larger
set of primes they consider, with the field modelled as a quotient of the ring of integers of a
suitable number field by a degree one prime ideal, just as for the cyclotomic primes.

2.1 Low redundancy cyclotomic primes

The goal of the present work is to provide efficient algorithms for performing Fp arithmetic,
for p = Φn(t) a cyclotomic prime. As will become clear from our exposition, in order to
exploit the available cyclic structure — for both multiplication and reduction — we do not
use the field Z/Φn(t)Z, but instead embed into the slightly larger ring Z/(tn − 1)Z if n is
odd, and Z/(tn/2 + 1)Z if n is even. In each case, using the larger ring potentially introduces
an expansion factor e(n) into the residue representation. One can alternatively view this in
terms of a redundancy measure r(n), where r = e−1. Since using a larger ring for arithmetic
will potentially be slower, we now identify three families of cyclotomic polynomials for which
the above embeddings have low redundancy.

For n even, there is a family of cases for which the above embedding does not introduce
any redundancy, namely for n = 2k, since Φ2k(t) = t2

k−1
+1 = t2

k/2 +1, and hence e = 1 and
r = 0. When t = 2 these are of course the Fermat numbers, and for general t these integers
are known as Generalised Fermat Numbers (GFNs). It is expected that for each k there are
infinitely many t for which t2

k
+ 1 is prime [18, §3].

If n = 2p for p prime, then Φ2p(t) = tp−1 − tp−2 + · · · + t − 1 = (tp + 1)/(t + 1) and
in this case e = p/(p − 1) and r = 1/(p − 1). The primality of these numbers was studied
in [19], and while they apparently do not have a designation in the literature, one can see
that by substituting t with −t in the third family below produces this one. For general even
n we have e = n/2φ(n) and r = (n− 2φ(n))/2φ(n), with φ(·) Euler’s totient function, which
is the degree of Φn(x). Hence amongst those even n which are not a power of 2, this family
produces the successive local minima of r.

For odd n, we have e = n/φ(n) and r = (n− φ(n))/φ(n). The successive local minima of
r occur at n = p for p prime, in which case Φp(t) = tp−1 + tp−2 + · · ·+ t+1 = (tp− 1)/(t− 1),
also with r = 1/(p−1). When t = 2 these are of course the Mersenne numbers, and in analogy
with the case of Fermat numbers, it would be natural to refer to these integers for general t as
Generalised Mersenne Numbers, particularly as one can show they share the aforementioned
asymptotic efficiency properties of the Mersenne numbers, while Solinas’ GMNs do not, unless
they are of Mersenne’s form. However, this family of numbers is known in the literature as
generalised repunits [17,52,58], since their base-t expansion consists entirely of 1’s. Therefore
for the sake of uniform nomenclature, we use the following definition.

Definition 3. For m+ 1 an odd prime let

p = Φm+1(t) = tm + tm−1 + · · ·+ t+ 1.



We call such an integer a Generalised Repunit; when p is prime we call it a Generalised
Repunit Prime (GRP).

We have developed modular multiplication algorithms for both GRPs and GFNs. In terms
of efficiency, for GRPs and GFNs of the same bitlength the respective multiplication algo-
rithms require exactly the same number of word-by-word multiplications. Also, our reduction
algorithms for both GRPs and GFNs are virtually identical. However, the multiplication algo-
rithm for GFNs is far less elegant, is not perfectly parallelisable and contains more additions.
Furthermore, for a given bitlength there are fewer efficient GFN primes than there are GRPs
— as the bitlength of GFNs doubles as k is incremented — and the I/O stability analysis
for multiplication modulo a GRP is far simpler. Therefore in this exposition we focus on
algorithms for performing arithmetic modulo GRPs and their analysis only. Note that the
studies of GRPs [17,58] consider only very small t and large m, whereas we will be interested
in t approximately the word base of the target architecture, and m the number of words in
the prime whose field arithmetic we are to implement. Hence one expects (and finds) there
to be very many GRPs for any given relevant bitlength, see §10.

2.2 Related work

In the context of extension fields, let m + 1 be prime and let p be a primitive root modulo
m + 1. Then Fpm = Fp[x]/(Φm+1(x)Fp[x]). In the binary case, i.e., p = 2, several authors
have proposed the use of this polynomial — also known as the all-one polynomial (AOP) —
to obtain efficient multiplication algorithms [9,29,50,59]. All of these rely on the observation
that the field F2[x]/(Φm+1(x)F2[x]) embeds into the ring F2[x]/((xm+1 + 1)F2[x]) — referred
to by Silverman [50] as the “ghost bit” basis — which possesses a particularly nice cyclic
structure, but introduces some redundancy. Similarly, this idea applies to any cyclotomic
polynomial, and several authors have investigated this strategy, embedding suitably defined
extension fields into the ring F2[x]/((xn + 1)F2[x]) [20, 24,60].

For odd characteristic extension fields, Silverman noted that the “ghost bit” basis for
p = 2 extends easily to larger p [50], while Kwon et al. have explored this idea further [37].
Central to our application is the work of Nogami, Saito and Morikawa [44], who used the
AOP to obtain a very fast multiplication algorithm, see §4. The use of cyclotomic polynomials
in extension field arithmetic is therefore well studied. In the context of prime fields however,
the present work appears to be the first to transfer ideas for cyclotomic polynomials from
the domain of extension field arithmetic to prime field arithmetic, at least for the relatively
small bitlengths for which schoolbook multiplication is optimal.

With regard to the embedding of a prime field into a larger integer ring, the idea of operand
scaling was introduced by Walter in order to obtain a desired representation in the higher-
order bits [54], which aids in the estimation of the quotient when using Barrett reduction [2].
Similarly, Ozturk et al. proposed using fields with characteristics dividing integers of the
form 2k± 1, with particular application to ECC [45]. As stated in the introduction, there are
numerous very efficient prime field ECC implementations [5, 6, 23, 27, 40]. While the moduli
used in these instances permit fast reduction algorithms, and the implementations are highly
optimised, it would appear that none of them permit the same residue multiplication speed
up that we present here, which is one of the central distinguishing features of the present
work.



3 GRP Field Representation

In this section we present a sequence of representations of Fp, with p a GRP, the final one
being the target representation which we use for our arithmetic. We recall the mathematical
framework of Chung-Hasan arithmetic, in both the general setting and as specialised to GRPs,
focusing here on the underlying theory, deferring explicit algorithms for residue multiplication,
reduction and representation until §4-6.

3.1 Chung-Hasan arithmetic

We now describe the ideas behind Chung-Hasan arithmetic [12–14]. The arithmetic was de-
veloped for a class of integers they term low-weight polynomial form integers (LWPFIs),
whose definition we now recall.

Definition 4. An integer p is a low-weight polynomial form integer (LWPFI), if it can be
represented by a monic polynomial f(t) = tn + fn−1t

n−1 + · · ·+ f1t+ f0, where t is a positive
integer and |fi| ≤ ξ for some small positive integer ξ < t.

Note that if for a given LWPFI each fi ∈ {±1, 0} and t = 2k, then it is a GMN, as
defined by Solinas [53]. The key idea of Chung and Hasan is to perform arithmetic modulo
p using representatives from the polynomial ring Z[T ]/(f(T )Z[T ]). To do so, one uses the
natural embedding ψ : Fp ↪→ Z[T ]/(f(T )Z[T ]) obtained by taking the base t expansion of
an element of Fp in the canonical representation Fp = {0, . . . , p− 1}, and substituting T for
t. To compute ψ−1 one simply makes the inverse substitution and evaluates the expression
modulo p.

The reason for using this ring is straightforward: since ψ−1 is a homomorphism, when
one computes z(T ) = x(T ) · y(T ) in Z[T ], reducing the result modulo f(T ) to give w(T ) does
not change the element of Fp represented by z(T ), i.e., if z(T ) ≡ w(T ) (mod f(T )), then
z(t) ≡ w(t) (mod p), since p = f(t). Furthermore, since f(T ) has very small coefficients, w(T )
can be computed from z(T ) using only additions and subtractions. Hence given the degree
2(n− 1) product of two degree n− 1 polynomials in Z[T ], its degree n− 1 representation in
Z[T ]/(f(T )Z[T ]) can be computed very efficiently. Note that for non-low-weight polynomials
this would no longer be the case.

The only problem with this approach is that when computing z(T ) as above, the coeffi-
cients of z(T ), and hence w(T ), will be approximately twice the size of the inputs’ coefficients,
and if further operations are performed the representatives will continue to expand. Since for
I/O stability one requires that the coefficients be approximately the size of t after each mod-
ular multiplication or squaring, one must somehow reduce the coefficients of w(T ) to obtain
a standard, or reduced representative, while ensuring that ψ−1(w(T )) remains unchanged.

Chung and Hasan refer to this issue as the coefficient reduction problem (CRP), and
developed three solutions in their series of papers on LWPFI arithmetic [12–14]. Each of
these solutions is based on an underlying lattice, although this was only made explicit in [14].
Since the lattice interpretation is the most elegant and simplifies the exposition, in the sequel
we opt to develop the necessary theory for GRP arithmetic in this setting.

3.2 Chung-Hasan representation for GRPs

Let p = Φm+1(t) be a GRP. Our goal is to develop arithmetic for Fp, and we begin with
the canonical representation Fp = Z/Φm+1(t)Z. As stated in §2.1, the first map in our chain



of representations takes the canonical ring and embeds it into Z/(tm+1 − 1)Z, for which the
identity map suffices. To map back, one reduces a representative modulo p. We then apply the
Chung-Hasan transformation of §3.1, which embeds the second ring into Z[T ]/(Tm+1−1)Z[T ],
by taking the base t expansion of a canonical residue representative in Z/(tm+1 − 1)Z, and
substituting T for t. We call this map ψ. To compute ψ−1 one simply makes the inverse
substitution and evaluates the expression modulo tm+1 − 1.

Note that the codomain of ψ may be regarded as an (m+1)-dimensional vector space over
Z, equipped with the natural basis {Tm, . . . , T, 1}. In particular, for x(T ) ∈ Z[T ]/(Tm+1 −
1)Z[T ], where

x(T ) = xmT
m + . . .+ x1T + x0,

one can consider x(T ) to be a vector x = [xm, . . . , x0] ∈ Zm+1. Since Zm+1 has elements whose
components are naturally unbounded, for each x ∈ Z/(tm+1 − 1)Z there are infinitely many
elements of Zm+1 that map via ψ−1 to x. Therefore in order to obtain a useful isomorphism
directly between Z/(tm+1 − 1)Z and Zm+1, we identify two elements of Zm+1 whenever they
map via ψ−1 to the same element of Z/(tm+1 − 1)Z, i.e.,

x ∼ y ⇐⇒ ψ−1(x) ≡ ψ−1(y) (mod tm+1 − 1), (3.1)

and take the image of ψ to be the quotient of Zm+1 by this equivalence relation. Pictorially,
we thus have:

Fp ⊂ Z/(tm+1 − 1)Z ∼= Zm+1/ ∼

As mentioned in §3.1, for each coset in Zm+1/ ∼, we should like to use a minimal, or
in some sense ‘small’ representative, in order to facilitate efficient arithmetic after a mul-
tiplication or a squaring, for example. Since we know that the base-t expansion of every
x ∈ Z/(tm+1 − 1)Z gives one such representative for each coset in Zm+1/ ∼, for a reduc-
tion algorithm we just need to be able to find it, or at least one whose components are of
approximately the same size. Chung and Hasan related finding such ‘nice’ or reduced coset
representatives to solving a computational problem in an underlying lattice, which we now
recall.

3.3 Lattice interpretation

Given an input vector z, which is the output of a multiplication or a squaring, a coefficient
reduction algorithm should output a vector w such that w ∼ z, in the sense of (3.1), whose
components are approximately the same size as t. As observed in [14], the equivalence rela-
tion (3.1) is captured by an underlying lattice, and finding w is tantamount to solving an
instance of the closest vector problem (CVP) in this lattice. To see why this is, we first fix
some notation as in [14].

Let u and v be vectors in Zm+1 such that the following condition is satisfied:

[tm, . . . , t, 1] · uT ≡ [tm, . . . , t, 1] · vT (mod tm+1 − 1)

Then we say that u is congruent to v modulo tm+1 − 1 and write this as u ∼=tm+1−1 v.
Note that this is exactly the same as saying ψ−1(u) ≡ ψ−1(v) (mod tm+1 − 1), and so
u ∼ v⇐⇒ u ∼=tm+1−1 v.

Similarly, but abusing notation slightly, for any integer b 6= tm+1− 1 (where b is typically
a power of the word base of the target architecture), we write u ∼=b v for some integer



v satisfying [tm, . . . , t, 1] · uT ≡ v (mod b), and say u is congruent to v modulo b, in this
case. We reserve the use of ‘≡’ to express a component-wise congruence relation, i.e., u ≡ v
(mod b). Finally, we denote by u mod b the component-wise modular reduction of u by b.

The lattice underlying the equivalence relation (3.1) can now enter the frame. Let V =
{v0, . . . ,vm} be a set of m+ 1 linearly independent vectors in Zm+1 such that vi

∼=tm+1−1 0,
the all zero vector, for i = 0, . . . ,m. Then the set of all integer combinations of elements of
V forms an integral lattice, L(V), with the property that for all z ∈ Zm+1, and all u ∈ L,
we have

z + u ∼=tm+1−1 z (3.2)

In particular, the equivalence relation (3.1) is captured by the lattice L, in the sense that

x ∼=tm+1−1 y ⇐⇒ x− y ∈ L

Therefore if one selects basis vectors for L that have infinity-norm approximately t, then for
a given z ∈ Zm+1, finding the closest vector u ∈ L to z (with respect to the infinity-norm),
means the vector w = z − u is in the fundamental domain of L, and so has components of
the desired size. Furthermore, since w = z− u, by (3.2) we have

w ∼=tm+1−1 z,

and hence solving the CVP in this lattice solves the CRP. In general solving the CVP is
NP-hard, but since we can exhibit a good (near-othogonal) lattice basis for LWPFIs, and an
excellent lattice basis for GRPs, solving it is straightforward in our case.

3.4 Lattice basis and simple reduction

For GRPs, we use the following basis for L:

1 0 · · · 0 0 −t
−t 1 · · · 0 0 0
0 −t · · · 0 0 0
...

...
. . .

...
...

...
0 0 · · · −t 1 0
0 0 · · · 0 −t 1


(3.3)

Observe that the infinity-norm of each basis vector is t, so elements in the fundamental
domain will have components of the desired size, and that each basis vector is orthogonal
to all others except the two adjacent vectors (considered cyclically). In order to perform a
simple reduction that reduces the size of components by approximately log2 t bits, write each
component of z in base t: zi = zi,1t+ zi,0. If we define wT to be:

zm
zm−1

...

...
z1
z0


+



1 0 · · · 0 0 −t
−t 1 · · · 0 0 0
0 −t · · · 0 0 0
...

...
. . .

...
...

...
0 0 · · · −t 1 0
0 0 · · · 0 −t 1





zm−1,1

zm−2,1
...
...
z0,1

zm,1


,



then w ∼=tm+1−1 z and each |wi| ≈ |zi|/t, assuming |zi| > t2. This was the method of
reduction described in [12], which requires integer division. The idea described in [13] was
based on an analogue of Barrett reduction [2]. The method we shall use, from [14], is based
on Montgomery reduction [42] and for t not a power of 2 is the most efficient of the three
Chung-Hasan methods.

3.5 Montgomery lattice-basis reduction

In ordinary Montgomery reduction [42], one has an integer 0 ≤ Z < pR which is to be
reduced modulo p, an odd prime, where here R is the smallest power of the word base b
larger than p. The central idea is to add a multiple of p to Z such that the result is divisible
by R. Upon dividing by R, which is a simple right shift of words, the result is congruent to
ZR−1 (mod p), and importantly is less than 2p.

In the context of GRPs, let R = bq be the smallest power of b greater than t. The input
to the reduction algorithm is a vector z ∈ Zm+1 for which each component is approximately
R2. The natural analogue of Montgomery reduction is to add to z a vector u ∈ L whose
components are also bounded by R2, such that z + u ≡ [0, . . . , 0] (mod R). Then upon the
division of each component by R, the result will be a vector w which satisfies

w ∼=tm+1−1 (z + u) ·R−1 ∼=tm+1−1 z ·R−1,

and which has components of the desired size. While this introduces an R−1 term into the
congruence, as with Montgomery arithmetic, one circumvents this simply by altering the
original coset representation of Z/(tm+1 − 1)Z, via the map x 7→ xR (mod tm+1 − 1), which
is bijective since gcd(tm+1 − 1, R) = 1, assuming t is even, see §5. How then does one find
a suitable lattice point u? For this one use the lattice basis (3.3), which from here on in we
call L. Proposition 3 of [14] proves that detL = 1− tm+1, and so gcd(detL,R) = 1. One can
therefore compute

uT def= −L−1 · zT (mod R), (3.4)

wT def= (zT + L · uT )/R, (3.5)

giving w with the required properties. Observe that the form of these two operations is
identical to Montgomery reduction, the only difference being that integer multiplication is
replaced by matrix by vector multiplication. It is easy to see that this is what one requires,
since for any u ∈ Zm+1, we have L · uT ∈ L, and so

zT + L · uT ∼=tm+1−1 zT .

Furthermore, modulo R we have

zT + L · uT = zT + L · (−L−1 · zT mod R) ≡ [0, . . . , 0]T ,

ensuring the division of each component by R is exact. Hence w ∼=tm+1−1 z ·R−1, as claimed.
In [14], an algorithm was given for computing u and w in (3.4) and (3.5) respectively, for

an arbitrary LWPFI f(t). The number of word-by-word multiply instructions in the algorithm
— which is the dominant cost — is ≈ nq2, where n is the degree of f(t), and R = bq. In
comparison, for ordinary Montgomery reduction modulo an integer of equivalent size this
number is n2q2, making the former approach potentially very attractive. For our choice of
primes — the GRPs — our specialisation of this algorithm is extremely efficient, as we show
in §5.



3.6 High level view of Chung-Hasan arithmetic

For extension fields, there exists a natural separation between the polynomial arithmetic of
the extension, and the prime subfield arithmetic, which makes respective optimisation consid-
erations for each almost orthogonal. On the other hand, if for an LWPFI one naively attempts
to use efficient techniques that are valid for extension fields, then one encounters an inherent
obstruction, namely that there is no such separation between the polynomial arithmetic and
the coefficient arithmetic, which leads to coefficient expansion upon performing arithmetic
operations. Chung-Hasan arithmetic can be viewed as a tool to overcome this obstruction,
since it provides an efficient solution to the coefficent reduction problem. In practice therefore
any efficient techniques for extension field arithmetic can be ported to prime fields, whenever
the prime is an LWPFI, which is precisely what we do in §4.

4 GRP Multiplication

In this section we detail algorithms for performing multiplication of GRP residue repre-
sentatives. While for the reduction and residue representation we consider elements to be
in Zm+1, the multiplication algorithm arises from the arithmetic of the polynomial ring
Z[T ]/(Tm+1 − 1)Z[T ], and so here we use this ring to derive the multiplication formulae.

4.1 Ordinary multiplication formulae

Let R = Z[T ]/(Tm+1 − 1)Z[T ], and let x = [xm, . . . , x0] and y = [ym, . . . , y0] be elements in
R. Then in R the product x · y is equal to [zm, . . . , z0], where

zi =
m∑

j=0

x〈j〉y〈i−j〉, (4.1)

where the subscript 〈i〉 denotes i (mod m+1). This follows from the trivial property Tm+1 ≡ 1
(mod Tm+1 − 1), and that for x =

∑m
i=0 xiT

i and y =
∑m

j=0 yjT
j , we have:

x · y =
m∑

i=0

xi · (T i · y) =
m∑

i=0

xi ·
( m∑

j=0

yjT
i+j

)
=

m∑
i=0

xi ·
( m∑

j=0

y〈j−i〉T
j
)

=
m∑

j=0

( m∑
i=0

xi · y〈j−i〉

)
T j .

This is of course just the cyclic convolution of x and y.

4.2 Multiplication formulae of Nogami et al.

Nogami, Saito and Morikawa proposed the use of all-one polynomials (AOPs) to define exten-
sions of prime fields [44]. In this section we will first describe their algorithm in this context,
and then show how it fits into the framework developed in §3.

Let Fp be a prime field and let f(ω) = ωm +ωm−1 + · · ·+ω+1 be irreducible over Fp, i.e.,
m+1 is prime and p is a primitive root modulo m+1. Then Fpm = Fp[ω]/(f(ω)Fp[ω]). Using



the polynomial basis {ωm, ωm−1, . . . , ω}— rather than the more conventional {ωm−1, . . . , ω, 1}
— elements of Fpm are represented as vectors of length m over Fp:

x = [xm, . . . , x1] = xmω
m + xm−1ω

m−1 + · · ·+ x1ω.

Let x = [xm, . . . , x1] and y = [ym, . . . , y1] be two elements to be multiplied. For 0 ≤ i ≤ m,
let

qi =
m/2∑
j=1

(x〈 i
2
+j〉 − x〈 i

2
−j〉)(y〈 i

2
+j〉 − y〈 i

2
−j〉), (4.2)

where the subscript 〈i〉 here, as in §4.1, denotes i (mod m+ 1). One then has:

z = x · y =
m∑

i=1

ziω
i, with zi = q0 − qi. (4.3)

Nogami et al. refer to these coefficient formulae as the cyclic vector multiplication algorithm
(CVMA) formulae. The CVMA formulae are remarkable, since the number of Fp multiplica-
tions is reduced relative to the schoolbook method from m2 to m(m+ 1)/2, but at the cost
of increasing the number of Fp additions from m2 − 1 to 3m(m− 1)/2− 1. As alluded to in
§3.6, a basic insight of the present work is the observation that one may apply the expressions
in (4.2) to GRP multiplication, provided that one uses the Chung-Hasan representation and
reduction methodology of §3, to give a full modular multiplication algorithm.

Note that Karatsuba-Ofman multiplication [30] offers a similar trade-off for extension
field arithmetic. Crucially however, as we show in §4.6, when we apply these formulae to
GRPs the number of additions required is in fact reduced. One thus expects the CVMA to
be significantly more efficient at contemporary ECC bitlengths. The original proof of (4.3)
given in [44] excludes some intermediate steps and so for the sake of clarity we give a full
proof in §4.4, beginning with the following motivation.

4.3 Alternative bases

Observe that in the set of equations (4.2), each of the 2(m+ 1) coefficients xj , yj is featured
m + 1 times, and so there is a nice symmetry and balance to the formulae. However due to
the choice of basis, both x0 and y0 are implicitly assumed to be zero. The output z naturally
has this property also, and indeed if one extends the multiplication algorithm to compute z0
we see that it equals q0 − q0 = 0.

At first sight, the expression zi = q0− qi may seem a little unnatural. It is easy to change
the basis from {ωm, . . . , ω} to {ωm−1, . . . , ω, 1}: for x = [xm−1, . . . , x0] and y = [ym−1, . . . , y0],
we have:

z = x · y =
m−1∑
i=0

ziω
i,

resulting in the expressions zi = qm − qi, with qi as given before. This change of basis relies
on the relation

ωm ≡ −1− ω − · · · − ωm−1 mod f(ω). (4.4)

Note that in using this basis we have implicitly ensured that xm = ym = 0 in (4.2), rather
than x0 = y0 = 0, and again the above formula is consistent since zm = qm − qm = 0. More
generally if one excludes ωk from the basis, then xk = yk = 0 and zi = qk − qi.



One may infer from these observations that the most natural choice of basis would seem
to be {ωm, . . . , ω, 1}, and that the expressions for qi arise from the arithmetic in the quo-
tient ring R′ = Fp[ω]/((ωm+1 − 1)Fp[ω]), rather than Fpm = Fp[ω]/(f(ω)Fp[ω]). In this case
multiplication becomes

z = x · y =
m−1∑
i=0

ziω
i =

m−1∑
i=0

(qm − qi)ωi =
m∑

i=0

−qiωi,

where for the last equality we have again used equation (4.4).

4.4 Derivation of coefficient formulae

We now derive the CVMA formulae of (4.2). Let x = [xm, . . . , x0] =
∑m

i=0 xiω
i, and y =

[ym, . . . , y0] =
∑m

i=0 yiω
i. Then in the ring R′, as in (4.1) the product x · y is equal to∑m

i=0 ziω
i, where

zi =
m∑

j=0

x〈j〉y〈i−j〉.

Of crucial importance is the following identity. For 0 ≤ i ≤ m we have:

2
m∑

j=0

x〈j〉y〈i−j〉 − 2
m∑

j=0

x〈j〉y〈j〉 = −
m∑

j=0

(x〈j〉 − x〈i−j〉)(y〈j〉 − y〈i−j〉). (4.5)

To verify this identity observe that when one expands the terms in the right-hand side, the
two negative sums cancel with the second term on the left-hand side, since both are over
a complete set of residues modulo m + 1. Similarly the two positive sums are equal and
therefore cancel with the convolutions in the first term on the left-hand side. We now observe
that there is some redundancy in the right-hand side of (4.5), in the following sense. First,
observe that

m∑
j=0

x〈 i
2
+j〉y〈 i

2
−j〉 =

m∑
j=0

x〈 i
2
+(j− i

2
)〉y〈 i

2
−(j− i

2
)〉 =

m∑
j=0

x〈j〉y〈i−j〉.

One can therefore rewrite the right-hand side of (4.5) as:

−
m∑

j=0

(x〈 i
2
+j〉 − x〈 i

2
−j〉)(y〈 i

2
+j〉 − y〈 i

2
−j〉). (4.6)

Noting that the j = 0 term of expression (4.6) is zero, we rewrite it as:

−
m/2∑
j=1

(x〈 i
2
+j〉 − x〈 i

2
−j〉)(y〈 i

2
+j〉 − y〈 i

2
−j〉)−

m∑
j=m/2+1

(x〈 i
2
+j〉 − x〈 i

2
−j〉)(y〈 i

2
+j〉 − y〈 i

2
−j〉),

which in turn becomes

−
m/2∑
j=1

(x〈 i
2
+j〉 − x〈 i

2
−j〉)(y〈 i

2
+j〉 − y〈 i

2
−j〉)−

m/2∑
j=1

(x〈 i
2
−j〉 − x〈 i

2
+j〉)(y〈 i

2
−j〉 − y〈 i

2
+j〉),



and then upon negating the two terms in the second summation, we finally have

−
m∑

j=0

(x〈 i
2
+j〉 − x〈 i

2
−j〉)(y〈 i

2
+j〉 − y〈 i

2
−j〉) = 2

m/2∑
j=1

(x〈 i
2
+j〉 − x〈 i

2
−j〉)(y〈 i

2
+j〉 − y〈 i

2
−j〉).

Hence (4.5) becomes

m∑
j=0

x〈j〉y〈i−j〉 =
m∑

j=0

x〈j〉y〈j〉 −
m/2∑
j=1

(x〈 i
2
+j〉 − x〈 i

2
−j〉)(y〈 i

2
+j〉 − y〈 i

2
−j〉). (4.7)

Equation (4.7) gives an expression for the coefficients of the product z of elements x and
y, in the ring R′. Assuming these are computed using the more efficient right-hand side, in
order to restrict back to Fp[ω]/(f(ω)Fp[ω]), one can reduce the resulting polynomial z by
f(ω). Note however that one does not need to use a smaller basis à la Nogami et al. in §4.2
or §4.3 , but can reduce by f(ω) implicitly, without performing any computation. Indeed,
letting 〈x,y〉 =

∑m
j=0 x〈j〉y〈j〉, we have:

z =
m∑

i=0

ziω
i =

m∑
i=0

(−qi + 〈x,y〉)ωi =
m∑

i=0

−qiωi + 〈x,y〉
m∑

i=0

ωi

≡
m∑

i=0

−qiωi (mod f(ω)). (4.8)

Therefore the first term on the right-hand side of (4.7) vanishes, so that one need not even
compute it. Thus using the arithmetic in R′ but implicitly working modulo f(ω) is more
efficient than performing arithmetic in R′ alone. This is somewhat fortuitous as it means
that while the multiply operation in (4.8) is not correct in R′, nevertheless, when one maps
back to Fp[ω]/(f(ω)Fp[ω]), it is correct.

4.5 Application to GRPs

Since equation (4.5) is an algebraic identity, it is easy to see that exactly the same argument
applies in the context of GRPs, and we can replace the formulae (4.1) with the CVMA
formulae (4.2). Since reduction in the ring R = Z[T ]/(Tm+1 − 1)Z[T ] has a particularly nice
form for GRPs, we choose to use the full basis for R and hence do not reduce explicitly
modulo Φm+1(T ) to obtain a smaller basis. This also has the effect of eliminating the need
to perform the addition of q0 (or qm, or whichever term one wants to eliminate when one
reduces modulo Φm+1(T )), simplifying the multiplication algorithm further. Absorbing the
minus sign into the qi, Algorithm 1 details how to multiply residue representatives.

Remark 1. Observe that each component of z may be computed entirely independently of
the others. Hence using m + 1 processors rather than 1, it would be possible to speed up
the execution time of Algorithm 1 by a factor of m + 1, making it particularly suitable for
hardware implementation. In §5 we consider the parallelisation of our reduction algorithms
as well.



Algorithm 1: GRP MULTIPLICATION

INPUT: x = [xm, . . . , x0],y = [ym, . . . , y0] ∈ Zm+1

OUTPUT: z = [zm, . . . , z0] ∈ Zm+1

where z ∼=Φm+1(t) x · y

1. For i = m to 0 do:

2. zi ←
∑m/2

j=1 (x〈 i
2
−j〉 − x〈 i

2
+j〉) · (y〈 i

2
+j〉 − y〈 i

2
−j〉)

3. Return z

4.6 Cost comparison

We here use a simple cost model to provide a measure of the potential performance im-
provement achieved by using Algorithm 1, rather than schoolbook multiplication of residues.
We assume the inputs to the multiplication algorithm have coefficients bounded by bq, i.e.,
they each consist of q words. Let M(q, q) be the cost of a q-word by q-word schoolbook
multiplication, and let A(q, q) be the cost of an ition of two q-word values. We assume that
A(2q, 2q) = 2A(q, q) and that there is no overflow beyond 2q words in the resulting vector
components, which one can ensure by selecting appropriate GRPs, see §7. The cost of the
multiplication using each method is as follows.

GRP schoolbook multiplication Working modulo Tm + · · · + T + 1 and using a basis
consisting of m terms only, the number of coefficient multiplications is m2, while the number
of double-length additions is also m2. Hence the total cost is simply

m2 ·M(q, q) + 2m2 ·A(q, q).

Note that computing the convolution (4.1) costs

(m+ 1)2 ·M(q, q) + 2m(m+ 1) ·A(q, q),

which is costlier since it requires embedding into R, which introduces some redundancy.

CVMA formulae For each zi computing each term in the sum costs M(q, q) + 2A(q, q),
and so computing all these terms costs m

2 · (M(q, q) + 2A(q, q)). The cost of adding these is
(m

2 − 1)A(2q, 2q) = (m− 2) ·A(q, q). For all the m+ 1 terms zi the total cost is therefore

m(m+ 1)
2

·M(q, q) + 2(m2 − 1) ·A(q, q).

Therefore by using the CVMA formulae, we reduce not only the number of multiplications,
but also the number of additions (by 2), contrary to the case of field extensions, for which
the CVMA formulae increases the number of additions by nearly 50%. We have thus found
an analogue of the asymptotic cyclic versus linear convolution speed up at small bitlengths
for which schoolbook multiplication is optimal, for GRPs.



5 GRP Reduction

In this section we detail reduction algorithms for two types of GRPs. The first, Algorithm 2,
assumes only that t is even, which provides the minimum possible restriction on the form of
the resulting GRPs for any given bitlength. All such GRPs can therefore be implemented with
code parametrised by the single variable t, which may be beneficial for some applications.
Supposing that R = bq > t, then as with Montgomery reduction, it is more efficient to reduce
components not by R as in (3.4) and (3.5), but by b sequentially q times. In Algorithm 2 each
reduction therefore reduces the input’s components by approximately log2 b bits.

The second reduction method as detailed in Algorithm 3 is a specialisation of Algorithm 2.
It assumes that t ≡ 0 mod 2l for some l > 1, and each application of the reduction function
reduces the input’s components by approximately l bits. Algorithm 3 is potentially far more
efficient than Algorithm 2, depending on the form of t. Ideally one should choose a t for
which l > (log2 t)/2 so that two applications of the reduction function are sufficient in order
to produce components of the desired size, which is minimal. In general for other values
of l a larger number of reductions may be needed, which we consider in §7. In constrast
to Algorithm 2, which is designed for generality, Algorithm 3 is geared towards high-speed
reduction. The trade-off arising here is that there will naturally be far fewer GRPs of this
restricted form. We also present a modification of Algorithm 3, which is slightly more efficient
in practice, in Algorithm 4.

5.1 GRP reduction: t even

Following §3.5, in equation (3.4) we need the matrix −L−1:

−L−1 =
1

tm+1 − 1



1 tm · · · t3 t2 t
t 1 · · · t4 t3 t2
t2 t · · · t5 t4 t3
...

...
. . .

...
...

...
tm−1 tm−2 · · · t 1 tm

tm tm−1 · · · t2 t 1


. (5.1)

The form of L and −L−1 allows one to compute u = −L−1 · z mod b and L · u, computed
in equation (3.5), very efficiently. Since t is even, the following vector may be computed. Let
t[0] be the least significant digit of t, written in base b, and let

V def=
1

t[0]m+1 − 1
[t[0]m, t[0]m−1, . . . , t[0], 1] mod b.

Algorithm 2 details how to reduce a given an input vector z by b, modulo tm+1−1, given the
precomputed vector V. Observe that Algorithm 2 greatly simplifies the reduction algorithm
originally given in [14]. This is possible since for tm+1−1 one can interleave the computation
of the vectors u and w defined in (3.4) and (3.5) respectively. This has two benefits. First, as
one computes each component of w sequentially, one need only store a single component of u,
rather than m+ 1. Second, since when one computes L ·u one needs to compute t · u〈i+1〉 for
i = m, . . . , 0 (in line 3), one obtains t[0] · ui (the first term on right-hand side of line 4) for
free by computing the full product t · u〈i+1〉 first. One therefore avoids recomputing the least
significant digit of t · u〈i+1〉 in each loop iteration. In fact one can do this for any polynomial



tm+1 − c, with exactly the same algorithm, the only difference being in the definition of V,
where tm+1 − c becomes the denominator. For polynomials with other non-zero coefficients,
this does not seem possible, and so Algorithm 2 seems likely to be the most efficient Chung-
Hasan reduction possible with this minimal restriction on the form of t.

Algorithm 2: red1b(z)

INPUT: z = [zm, . . . , z0] ∈ Zm+1

OUTPUT: redb(z) where redb(z) ∼=tm+1−1 z · b−1

1. Set u0 ← (
∑m

i=0 Vi · zi[0]) mod b
2. For i = m to 0 do:
3. vi ← t · u〈i+1〉
4. ui ← (vi[0]− zi[0]) mod b
5. wi ← (zi + ui − vi)/b
6. Return w

It is straightforward to verify that Algorithm 2 correctly produces an output vector in
the correct congruency class, via a sequence of simple transformations of [14, Algorithm 3].
However we do not do so here, since we are mainly interested in the more efficient Algorithms 3
and 4.

Remark 2. Note that in the final loop iteration, u0 from line 1 is recomputed, which is
therefore unnecessary. However, we chose to write the algorithm in this form to emphasise its
cyclic structure. Indeed, there is no need to compute u0 first; if one cyclically rotates V by j
places to the left, then the vector w to be added to z in (3.5) is rotated j places to the left
also. One can therefore compute each coefficient of red1b(z) independently of the others using
a rotated definition for V (or equivalently by rotating the input z ). This demonstrates that
a parallelised version of the reduction algorithm with m+ 1 processors is feasible. However,
as each processor requires the least significant word of each component of z, this necessitates
a synchronised broadcast before each invocation of the reduction function. In this scenario
the reduction time would be proportional to the number of such broadcasts and reductions
required, independently of m+ 1.

5.2 GRP reduction: t ≡ 0 mod 2l

In the ideal case that t = 2l, we see that such a GRP would be a GMN. In this case, one can
use the reduction method detailed in §3.4 without resorting to using its Montgomery version
at all. Multiplication would also be faster thanks to Nogami’s formulae. Unfortunately, such
GRPs seem to be very rare. It is easy to show that if t = 2l with l > 1 and Φm+1(t) is prime,
then l = m + 1. Testing the first few cases, we find prime GRPs for l = 2, 3, 7, 59 but no
others for prime l < 400. Note that these primes contradict Dubner’s assertion that no such
GRPs exist [17, §2]. Since for l = 59 the corresponding GRP has 3422 bits, this is already
out of our target range for ECC, so we need not worry about such GRPs.

Hoping not to cause confusion, in this subsection we now let b = 2l where l is not
necessarily and usually not the word size of the target architecture. We denote the cofactor
of b in t by c (which by the above discussion we assume is > 1), so that t = b · c. Algorithm 3
details how to reduce a given an input vector z by b, modulo tm+1 − 1.



Algorithm 3: red2b(z)

INPUT: z = [zm, . . . , z0] ∈ Zm+1

OUTPUT: redb(z) where redb(z) ∼=tm+1−1 z · b−1

1. For i = m to 0 do:
2. wi ← (zi + (−zi mod b))/b− c · (−z〈i+1〉 mod b)
3. Return w

A simple proof of correctness of Algorithm 3 comes from the specialisation of Algorithm 2.
Since t ≡ 0 mod b, writing t in base b, the vector V becomes

V def= [0, . . . , 0,−1] mod b.

Hence for line 1 of Algorithm 2 we have

u0 ← −z0[0] mod b.

Since in line 4 of Algorithm 2, we have vi ≡ 0 mod b, we deduce that ui = −zi mod b, and
hence we can eliminate ui altogether. Each loop iteration then simplifies to

vi ← t · (−z〈i+1〉 mod b)
wi ← (zi + (−zi mod b)− vi)/b (5.2)

Upon expanding (5.2), we obtain

wi ← (zi + (−zi mod b))/b− t · (−z〈i+1〉 mod b)/b
= (zi + (−zi mod b))/b− c · (−z〈i+1〉 mod b),

as required. However since we did not provide a proof of correctness of Algorithm 2, we also
give a direct proof as follows. Observe that modulo tm+1 − 1, we have

ψ−1(w) ≡
m∑

i=0

wit
i

≡
m∑

i=0

[(zi + (−zi mod b))/b− c · (−z〈i+1〉 mod b)]ti

≡
m∑

i=0

(zi/b)ti +
m∑

i=0

(−zi mod b))/b)ti −
m∑

i=0

((−z〈i+1〉 mod b)/b)ti+1

≡
m∑

i=0

zit
i/b (mod tm+1 − 1)

as required. In terms of operations that may be performed very efficiently, we alter Algo-
rithm 3 slightly to give Algorithm 4, which has virtually the same proof of correctness as the
one just given.



Algorithm 4: red3b(z)

INPUT: z = [zm, . . . , z0] ∈ Zm+1

OUTPUT: redb(z) where redb(z) ∼=tm+1−1 z · b−1

1. For i = m to 0 do:
2. wi ← zi/b+ c · (z〈i+1〉 mod b)
3. Return w

Note that the first term in line 2 of Algorithm 3 has been replaced by a division by
b, which can be effected as a simple shift, while now the second term needs the positive
residue modulo b, which can be extracted more efficiently. Hence Algorithm 4 is the one we
use. By our previous discussion, c necessarily has Hamming weight at least two for GRPs
in our desired range. By using c that have very low Hamming weight, one can effect the
multiplication by c by shifts and adds, rather than a multiply (or imulq) instruction. Hence
for such GRPs, assuming only two invocations of Algorithm 4 are needed, reduction will be
extremely efficient.

Remark 3. Regarding parallelisation, observe that for m + 1 processors, only the least sig-
nificant word of z〈i+1〉 is passed to processor i, thus reducing the broadcast requirement in
comparison with Algorithm 2.

6 GRP Residue Representation

So far in our treatment of both multiplication and reduction, for the sake of generality we
have assumed arbitrary precision when representing GRP residues in Zm+1. In this section we
specialise to fixed precision and develop a residue representation that ensures that our chosen
algorithms are efficient. Our decisions are informed purely by our chosen multiplication and
reduction algorithms — Algorithms 1 and 4 — which we believe offer the best performance
for GRPs for the relatively small bitlengths which are relevant to ECC. In other scenarios or
if considering asymptotic performance, one would need to redesign the residue representation
and multiplication algorithm accordingly.

For x ∈ {0, . . . , tm+1 − 1} we write x = [xm, . . . , x0] for its base-t expansion, i.e., x =∑m
i=0 xit

i. The base-t representation has positive coefficients, however Algorithm 1 makes
use of negative coefficients, so we prefer to incorporate these. We therefore replace the mod
function in the conversion with mods, the least absolute residue function, to obtain a residue
in the interval [−t/2, t/2− 1]:

mods(x) =
{
x mod t if (x mod t) < t/2,
x mod t− t otherwise.

Using this function, Algorithm 5 converts residues modulo tm+1−1 into the required form [14,
Algorithm 1].



Algorithm 5: BASE-t CONVERSION ψ

INPUT: An integer 0 ≤ x < tm+1 − 1
OUTPUT: x = [xm. . . . , x0] such that |xi| ≤ t/2

and
∑m

i=0 xit
i ≡ x (mod tm+1 − 1)

1. For i from 0 to m do:
2. xi ← x mods t
3. x← (x− xi)/t
4. x0 ← x0 + x
5. Return x = [xm, . . . , x0]

The reason for line 4 in Algorithm 5 is to reduce modulo tm+1−1 the coefficient of tm+1

possibly arising in the expansion. Note that in this addition, x ∈ {0, 1}, and hence |xi| ≤ t/2
for each 0 ≤ i ≤ m. By construction, we in fact have −t/2 ≤ xi < t/2 for 1 < i < m while
only x0 can attain the upper bound of t/2. There are therefore tm(t + 1) representatives in
this format, thus introducing a very small additional redundancy. Letting k = dlog2 te, if we
assume t ≤ 2k − 2, so that [−t/2, t/2] ⊂ [−2k/2, 2k/2− 1], then the coefficients as computed
above can be represented in two’s complement in k bits. In terms of efficiency, Algorithm 5
contains divisions by t, which requires not only time, but also space, which on some platforms
may be at a premium. Writing t = 2l · c as in §5.2, then if the cofactor c = 2k−l − c′ with c′

very small, then division by t consists of a shift right by l bits and a division by c, which can
be performed efficiently using Algorithm 1 of [12].

Following this conversion, it might seem desirable to define vectors whose components are
in [−2k/2, 2k/2−1] to be reduced, or canonical residue representatives. However, for efficiency
purposes it is preferable to have a reduction function which, when performed sufficiently many
times, outputs an element for which one does not have to perform any modular additions or
subtractions to make reduced, as this eliminates data-dependent branching. A control-flow
invariant reduction function is also essential to defend against side-channel attacks, see §9.
To obtain such a function, observe that the second term in line 2 of Algorithm 4, namely
c ·(z〈i+1〉 mod b), is positive, and in the worst case is k bits long. The first term, zi/b, is clearly
l = log2 b bits shorter than zi. Since one adds these the resulting value may be k + 1 bits,
or larger, depending on the initial length of the inputs’ components. Furthermore, since we
wish to allow negative components, in two’s complement the output requires a further bit,
giving a minimal requirement of k+2 bits. We therefore choose not to use minimally reduced
elements as coset representatives in Zm+1/ ∼, as output by Algorithm 5, but slightly larger
elements, which we now define.

Definition 5. We define the following set of elements of Zm+1 to be reduced:

Im+1 = {[xm, . . . , x0] ∈ Zm+1 | −2k+1 ≤ xi < 2k+1}. (6.1)

Note that the redundancy inherent in this representation depends on how close t is to 2k+2.
For a modular multiplication, we assume that the inputs are reduced. We must therefore
ensure that the output is reduced also. This naturally leads one to consider I/O stability, as
we do in §7.



Once we have a reduced representative x = ψ(x) we also need to convert to the Mont-
gomery domain. While one can do this in Z/(tm+1− 1)Z before applying ψ, it is more conve-
nient to do so in Zm+1/ ∼. Assuming q reductions by b are sufficient to ensure I/O modular
multiplication stability, we precompute ψ(b2q mod Φm+1(t)) and then using Algorithms 1
and 4 compute

x · ψ(b2q mod Φm+1(t))/bq ∼=Φm+1(t) ψ(x · bq).

Similarly, to get back from the Montgomery domain, again using Algorithms 1 and 4, we
compute

ψ(x · bq) · ψ(1)/bq ∼=Φm+1(t) ψ(x).

With regard to mapping back from x = [xm, . . . , x0] ∈ Im+1 to canonical residues in Z/Φm+1(t)Z,
one has

m∑
i=0

xit
i ≡

m−1∑
i=0

(xi − xm)ti (mod Φm+1(t)),

which can be computed efficiently by first using Horner’s rule and then mapped to {0, . . . , Φm+1(t)−
1} by repeated additions or subtractions. In terms of operations required for ECC, we assume
that the conversions are one-time computations only, with all other operations taking place
in the (Montgomery) Chung-Hasan representation.

7 Modular Multiplication Stability

In this section we analyse Algorithms 1 and 4 with a view to ensuring I/O stability for
modular multiplication. We assume the following: b = 2l, t = c · b where c < 2k−l (and
hence t < 2k − 2), and that reduced elements have the form (6.1). Input elements therefore
have components in I = [−2k+1, 2k+1 − 1], and these are representable in k + 2 bits in two’s
complement. For simplicity and in order for our analysis to be as general as possible, we use
the term single precision to mean a word base large enough to contain t — even if this in
fact requires multiprecision on a given architecture — and double precision to mean twice
this size. We assume that for this single precision word size w, the components of z output
by Algorithm 1 are double precision. In practice one prefers to specialise to actual single
precision t on a given architecture, since this obviates the need for multiprecision arithmetic;
utilising the native double precision multipliers that most CPUs possess is more efficient, and
reduction is also faster for smaller t since fewer iterations need be performed. We note that
in constrained environments however, multiprecision may however be unavoidable.

During the multiplication, terms of the form xi−xj are computed, which are bounded by

−2k+2 + 1 ≤ xi − xj ≤ 2k+2 − 1,

and which therefore fit into k+3 bits in two’s complement. The product of two such elements
is performed, giving a result

−22k+4 + 2k+3 − 1 ≤ (xi − xj) · (yj − yi) ≤ 22k+4 − 2k+3 + 1,

which fits into 2k + 5 bits in two’s complement. One then adds m/2 of these terms, giving
a possible expansion of up to dlog2m/2e bits, which must be double precision. We therefore
have a constraint on the size of t (in addition to the constraint t < 2k − 2) in terms of m:

dlog2 (m/2)e+ 2k + 5 ≤ 2w (7.1)



This inequality determines a constraint on the size of t, given m and w. Assuming (7.1) is
satisfied, one then needs to find the minimum value of b = 2l such that the result of the
multiplication step, when reduced by b a specified number of times, say q, outputs a reduced
element. This needs to be done for each (m, k) found in the procedure above. Any power of 2
larger than this minimum will obviously be satisfactory also, however minimising b maximises
the set of prime-producing cofactors c, which as stated in §5 may be useful in some scenarios.

In §6, we showed that one application of Algorithm 4 shortened an input’s components
by l−1 bits, unless the components were already shorter than (k+2)+(l−1) bits. Therefore
stipulating that q reductions suffice to produce a reduced output, we obtain a bound on l in
the following manner. Let

h = dlog2 (m/2)e+ 2k + 5

Then after one reduction, the maximum length of a component is h− l+ 1. Similarly after q
reductions, the maximum length is max{h− q(l− 1), k + 2}, and we need this to be at most
k + 2. Hence our desired condition is

h− q(l − 1) ≤ k + 2

Solving for l, we have

l ≥ 1 +
dlog2 (m/2)e+ k + 3

q
(7.2)

Using these inequalities it is an easy matter to generate triples (m+ 1, k, l) which ensure
multiplication stability for any w and q. For example, for w = 64, Tables 1 and 2 give sets of
stable parameters for q = 2 and q = 3 respectively.

Table 1. Stable parameters for w = 64, q = 2

m + 1 k l c < dlog2 pe
3 61 33 228 122
5 61 34 227 244
7 60 34 226 360
11 60 34 226 600
13 60 34 226 720
17 60 34 226 960

Table 2. Stable parameters for w = 64, q = 3

m + 1 k l c < dlog2 pe
3 61 23 238 122
5 61 23 238 244
7 60 23 237 360
11 60 23 237 600
13 60 23 237 720
17 60 23 237 960



The final column gives the maximum bitlength of a GRP that can be represented with
those parameters, though of course by using smaller c one can opt for smaller primes, and the
corresponding minimum value of l reduces according to (7.2). To generate suitable GRPs, a
simple linear search over the values of c of the desired size is sufficient, checking whether or
not Φm+1(2l · c) is prime, see §10.

8 Full GRP Modular Multiplication

For completeness we now piece together the parts treated thus far into a full modular multi-
plication algorithm, where in Algorithm 6 we assume q reductions by b are required for I/O
stability and in line 4 either Algorithm 2 or Algorithm 4 is used according to the form of b.

Algorithm 6: GRP MODMUL

INPUT: x = [xm, . . . , x0],y = [ym, . . . , y0] ∈ Im+1

OUTPUT: z = [zm, . . . , z0] ∈ Im+1 where z ∼=Φm+1(t) x · y · b−q

1. For i = m to 0 do:

2. zi ←
∑m/2

j=1 (x〈 i
2
−j〉 − x〈 i

2
+j〉) · (y〈 i

2
+j〉 − y〈 i

2
−j〉)

3. For k from 0 to q − 1 do:
4. z← redb(z)
5. Return z

Should t be multiprecision on a particular architecture, then as with Montgomery arith-
metic it may be more efficient to use an interleaved multiplication and reduction algorithm, as
we detail in Algorithm 7. Here one needs b to be the word base of the underlying architecture
and so in line 6, if t ≡ 0 (mod b) we use Algorithm 4, otherwise we use Algorithm 2. For
x = [xm, . . . , x0] we write xi = xi[0] + xi[1]b+ · · ·+ xi[q − 1]bq−1.

Algorithm 7: GRP MODMUL (interleaved)

INPUT: x = [xm, . . . , x0],y = [ym, . . . , y0] ∈ Im+1

OUTPUT: z = [zm, . . . , z0] ∈ Im+1 where z ∼=Φm+1(t) x · y · b−q

1. z← [0, . . . , 0]
2. For k = 0 to q − 1 do:
3. For i = m to 0 do:

4. wi ←
∑m/2

j=1 (x〈 i
2
−j〉[k]− x〈 i

2
+j〉[k]) · (y〈 i

2
+j〉 − y〈 i

2
−j〉)

5. z← z + w
6. z← redb(z)
7. Return z



To verify the correctness of Algorithm 7, observe that for each of the m+ 1 components
of z, after the last iteration of the outer loop we have:

zi =
m/2∑
j=1

( q−1∑
k=0

(x〈 i
2
−j〉[k]− x〈 i

2
+j〉[k])/b

q−k
)
· (y〈 i

2
+j〉 − y〈 i

2
−j〉)

=
m/2∑
j=1

((x〈 i
2
−j〉 − x〈 i

2
+j〉)/b

q) · (y〈 i
2
+j〉 − y〈 i

2
−j〉).

Hence when taken modulo Φm+1(t), we see that z is congruent to:

m∑
i=0

zi · ti ∼=Φm+1(t)

m∑
i=0

( m/2∑
j=1

(x〈 i
2
−j〉 − x〈 i

2
+j〉)/b

q) · (y〈 i
2
+j〉 − y〈 i

2
−j〉)

)
· ti

∼=Φm+1(t)

m∑
i=0

( m/2∑
j=1

(x〈 i
2
−j〉 − x〈 i

2
+j〉) · (y〈 i

2
+j〉 − y〈 i

2
−j〉) · t

i
)
/bq

∼=Φm+1(t) x · y · b−q,

as required. As with ordinary Montgomery arithmetic, there are many possible ways to per-
form the interleaving, see [34] for example.

9 Other arithmetic and side-channel secure ECC

In addition to modular multiplication, one also needs to perform other arithmetic operations
when implementing ECC point multiplication. In this section we detail how to perform these
using our representation and briefly explain how it enables point multiplication to be made
immune to various side-channel attacks.

9.1 Other arithmetic operations

Addition/subtraction To perform an addition or subtraction of two reduced elements x,y,
we compute the following:

x± y = [xm ± ym, . . . , x0 ± y0].

Note that the bounds on each of these components is [−2k+2, 2k+2 − 2], which are therefore
not necessarily reduced. One could reduce the resulting element using the specialisation to
GRPs of [14, Algorithm 5], which shows how to do this for a general LWPFI. Chung and
Hasan refer to this process as short coefficient reduction (SCR), as opposed to full modular
reduction. However, for ECC operations it is faster (and more secure) to simply ignore this
expansion and rely on a later modular multiplication to perform the reduction, as is required
when computing a point addition or doubling, see [5, 6] and §9.2.

Squaring When t is single precision, the CVMA formulae do not have any common subex-
pressions, as arises for ordinary integer residue squaring. In this case GRP squaring is per-
formed using Algorithm 6. If t is multiprecision, then the components of a product x · y
are computed as a sum of integer squares. In this case, one can eliminate common subex-
pressions to improve efficiency by nearly a factor of two (in the multiplication step). On the
other hand, when using Algorithm 7 and its variants it may be difficult to eliminate common
subexpressions efficiently [34].



Inversion and equality check Inversion seems difficult to perform efficiently in the GRP
representation. If t were prime then it would be possible to use an analogue of the inver-
sion/division algorithm of [45], exploiting the cyclicity tm+1 ≡ 1 (mod tm+1 − 1). However,
for our GRPs t is even and greater than 2. One can therefore opt to map back to Z/Φm+1(t)Z,
remaining in the Montgomery domain, and perform inversion using the binary extended Eu-
clidean algorithm (see [32], for example) and modular multplying by the precomputed value
ψ(b3 mod Φm+1(t)). Alternatively, for data-independent inversion, one can simply power by
Φm+1(t) − 2, as do the authors of [6]. Using projective coordinates can obviate the need
for inversions altogether, however for many protocols inversion is unavoidable and when it
is avoidable, in some scenarios such representations of points should be randomised after a
point multiplication [43].

Since our representation possesses redundancy, equality checking is naturally problematic.
We therefore opt to map back to Z/Φm+1(t)Z to check equality there — as for inversion —
while remaining in the Montgomery domain. For ECC equality checking is usually a one-
time computation per coordinate, and so again this operation does not greatly impinge upon
efficiency.

9.2 Side-channel secure ECC

As we demonstrated in §7, by choosing t, l and m + 1 carefully, one can avoid the need to
compute any final additions or subtractions when performing a modular reduction. This is
an analogue to various results for ordinary Montgomery arithmetic [26, 55, 56]. The lack of
a conditional addition/subtraction averts threats such as [48, 57], the latter of which applies
directly to the NIST GMNs. Our modular multiplication algorithm is thus control-flow in-
variant with no data-dependent operations, making it immune to timing attacks [35] and
simple power analysis (SPA).

In addition to making modular multiplications and squarings immune to timing attacks
and SPA, one can also ensure that the computation of an entire elliptic curve point addition
or doubling is also immune. To do so, one chooses a GRP with t divisible by a sufficiently
high power of 2, so that during the course of an elliptic curve point operation, even if one
ignores the coefficient expansion caused by additions/subtractions, these do not overflow and
the modular reductions ensure the outputs are fully reduced elements. Note that this requires
b = 2l | t to be a few bits longer than the minimum l-values listed in Tables 1 and 2: for
reasons of space we do not include the analysis here. By doing so, a point addition or doubling
becomes an atomic operation, where the sequence of arithmetic operations is entirely data-
independent. In this case one only needs point-multiplication-level defences against timing
attacks and SPA, such as the double-and-add-always algorithm due to Coron [15], or the
use of Edwards curves, for which the addition formula can also be used for doubling [7].
Hence, ECC over GRPs may be straight-line coded, which is beneficial for both efficiency
and security.

Lastly, our representation can also be made immune to differential power analysis (DPA)
[36]. Observe that the embedding of Z/Φm+1(t)Z into Z/(tm+1 − 1)Z can be randomised by
adding to it a random multiple r ·Φm+1(t) for r ∈ {0, . . . , (t− 1)− 1}. While our embedding
is an example of ‘operand scaling’ [45, 54] which is used for faster reduction, the addition of
a multiple of the modulus within a redundant scaled representation also acts as a counter-
measure to DPA — such as Goubin’s attack [25] on the randomised projective coordinates
defence of Coron [15] — as shown by Smart, Oswald and Page [51]. In particular, the au-



thors show that this countermeasure thwarts DPA whenever the scaling factor is longer than
the longest string of ones or zeros in the binary expansion of the initial modulus. For the
NIST GMNs, this countermeasure requires a large scaling factor, making the defence ineffi-
cient and nullifying the benefits of using these moduli. For GRPs, the scaling factor is t− 1,
while the longest string of ones or zeros in the binary expansion of Φm+1(t) is dlog te − 1.
Since GRPs already use the larger ring, we acquire this defence for almost negligible cost.
In particular the addition of a random multiple r of Φm+1(t) to an element x has the form
[xm + r, xm−1 + r, . . . , x0 + r], which only requires m + 1 additions. Since DPA depends on
the ability of an attacker to predict a specific bit in the representation of a given field ele-
ment, if the representation of field elements is randomised in this way prior to every point
multiplication, or even every modular multiplication, then DPA will not be feasible.

10 GRP Parameters

In this section we provide empirical data regarding the abundancy of fast-reduction GRPs at
various bitlengths relevant to ECC. We also specify parameters that are optimal within this
subfamily, which are therefore particularly suitable for efficient implementation.

10.1 Estimating the number of GRP parameters

As we saw from Tables 1 and 2, for a given prime m+ 1 and word size w, there is an upper
bound on the length of a GRP that may be represented. Table 3 contains estimates (or exact
counts) for the number of GRPs which are in accordance with the GRP field and residue
representation set out in this work, for word size w = 64 and where q = 2 reductions using
Algorithm 4 suffice to ensure I/O modular multiplication stability. Note that this reduction
specification entails the greatest possible restriction on the available GRPs; using either larger
q or Algorithm 2 means vastly more GRPs are availble. It is a simple matter to generate such
GRPs, as follows; GRPs of any more general form can be found similarly.

For a desired GRP p of bitlength dlog pe, Table 1 gives the minimum value of prime m+1
which is adequate to represent GRPs of this size. The inequality (7.1) gives kmax which is the
maximum bitlength of t that is representable, while (7.2) gives the minimum value l required
in order for t = 2l · c to be I/O stable. We estimate tmax simply as 2dlog pe/m, which implies a
maximum value for c of 2dlog pe/m−lmin . Similarly for p of this precise bitlength, we estimate
the minimum value of c as 2(dlog pe−1)/m−lmin . We denote this interval by I(c). To estimate
P (prime), which is the probability that a given generalised repunit in our form is a GRP, we
performed a linear search over c ∈ I(c), counting the first 1, 000 primes and simply dividing
by the length of the search. The estimated total number of GRPs satisfying our requirement
that q = 2 is then given by |I(c)| · P (prime).

For each of m+ 1 = 5, 7 and 11, Table 3 contains estimated counts for the largest GRPs
representable. It also contains estimates (or exact counts) for the number of GRPs at the
NIST GMN sizes 224, 256 and 384. We also consider bitlength 512 rather than 521, since this
conjecturally gives 256-bit security, with the larger prime 2521 − 1 being nominated purely
for fast reduction. Observe that the number of available GRPs for a given m + 1 decreases
as the size of p, and hence c decreases. The number available for bitlengths 383 and 384 is
particularly low. However, should this be a concern for a particular application, one can see
from Table 2 that by moving to GRPs for which 3 reductions suffices, |I(c)| becomes much
larger (3.71×105) and our estimate of the number of GRPs becomes over 5, 000. On the other



Table 3. Estimated GRP counts for w = 64, q = 2 and t ≡ 0 (mod 2lmin)

dlog pe m + 1 kmax log tmax lmin |I(c)| P (prime) ≈ #GRPs

600 11 60 60.0 34 4.49× 106 8.54× 10−3 38.4× 103

599 11 60 59.9 34 4.19× 106 9.05× 10−3 37.9× 103

512 11 60 51.2 30 1.61× 105 1.05× 10−2 1697
511 11 60 51.1 30 1.51× 105 1.06× 10−2 1591

384 11 60 38.4 24 1448 9.67× 10−3 14
383 11 60 38.3 24 1352 1.33× 10−2 18

360 7 60 60.0 34 4.49× 106 1.82× 10−2 81.7× 103

359 7 60 59.9 34 4.19× 106 1.77× 10−2 74.1× 103

256 7 60 42.66 25 2.27× 104 2.47× 10−2 561
255 7 60 42.5 25 2.02× 104 2.63× 10−2 531

244 5 61 61.0 34 2.14× 107 1.68× 10−2 3.58× 105

243 5 61 60.75 34 1.80× 107 1.72× 10−2 3.08× 105

224 5 56 56.0 31 5.34× 106 1.98× 10−2 1.06× 105

223 5 56 55.75 31 4.49× 106 1.88× 10−2 8.42× 104

hand, since 384 is not too far beyond the upper bound for the size of GRP representable by
m+ 1 = 7, it may be preferable to trade 12-bits of security for much improved performance,
see §11.

Table 4. Efficient-reduction GRPs for w = 64, q = 2 and t ≡ 0 (mod 2lmin)

dlog pe GRP S.C. Secure

511 Φ11(2
42 · (29 + 1)) Yes

381 Φ11(2
34 · (24 − 1)) Yes

380 Φ11(2
34 · (24 + 1)) Yes

270 Φ7(2
34 · (211 − 1)) Yes

253 Φ7(2
27 · (215 + 1)) Yes

253 Φ7(2
37 · (25 + 1)) Yes

243 Φ5(2
59 · (22 − 1)) No

228 Φ5(2
54 · (23 − 1)) Yes

224 Φ5(2
33 · (223 − 1)) No

220 Φ5(2
52 · (23 − 1)) Yes

10.2 Hamming weight 2 parameters

As we showed in §5.2, there are no suitable GRPs in the ECC range for which t = 2l. Hence
the next best type of GRP parameter t will have Hamming weight equal to 2, where we allow
c to have the form 2c′ +1 as well as 2c′−1 when there is sufficient slack in the representation,
since subtractions cost the same as additions. We list these GRPs in Table 4. The final column
indicates whether or not the given GRP allows for atomic side-channel secure point additions
and doublings, as per §9.2. Note that for m+ 1 = 5 and w = 64 we can not represent GRPs
any larger than 244-bits, and are thus short of the conjectured 128-bit ECC security level
of 256-bits. One can therefore either move up to m + 1 = 7, which can represent GRPs



of up to 360-bits, or one can opt to reduce security by a few bits, for better performance.
Indeed, in recent work Käsper argues that the NIST GMN prime P-224 = 2224 − 296 + 1
offers a satisfactory trade-off between security and efficiency [31], when used as the basis
of the elliptic curve Diffie-Hellman (ECDH) key exchange in the Transport Layer Security
(TLS) protocol [28]. Bernstein has also implemented arithmetic mod P-224 [4]. Yet another
possibilty at this security level are the GFN primes Φ8(241 · (215 − 1)) and Φ8(250 · (26 − 1)),
both of which have bitlength 224, but experiments with such GFNs have not yet been carried
out. Of course in hardware, one can tailor the word base in order to achieve 256-bit atomic
elliptic curve point operations without any residual slack.

11 Implementation and Results

In this section we provide details of our proof-of-concept implementation and results. For
simplicity we consider field multiplication only, as this tends to be the bottleneck in ECC
point multiplication, and hence one can gain an accurate indication of performance in this
simple way.

In terms of performance, implementations can be compared using the eBATS benchmark-
ing project [8]. For example, nearly all of the fastest 256-bit ECDH implementations in the
literature [5,6,22,23,27,40] feature in eBATS. However, as it is difficult to get a fair compari-
son between our implementation of multiplication and the above ECDH implementations, we
opt to compare our multiplication performance with that featured in the mpFq benchmarking
system due to Gaudry and Thomé [23], which allows for such a comparison. This has been
ported to OS-X 10.5.8 with minor changes and executed on a platform using an Intel Core
2 Duo at 2.2Ghz. As stated in [6], to date mpFq gives only the fourth fastest implementation
of ECDH, based on Bernstein’s curve25519, which utilises a non-standard representation
of residues mod 2255 − 19 and exploits the floating-point unit of specific instruction-set ar-
chitectures to great effect. Nevertheless, by comparing the basic multiplication cost on the
target architecture, one can obtain a crude estimate of the relative performance of our arith-
metic with that of curve25519, and hence in turn with the other implementations featured
in eBATS.

Our implementation consists of essentially two inline assembly operations targeted at the
Core 2 processor. One accumulates the innermost sum of line 2 of Algorithm 6, while the
other performs a single instance of the reduction operation in line 2 of Algorithm 4. There
are two versions of the latter which correspond to whether or not the cofactor c is general —
which hence requires an imulq instruction — or is specialised, i.e., with Hamming weight 2.
These operations use the 64-bit operations available on the Core 2 and the extended register
set available in x86-64, each using a mere 4 of the 15 registers available. This allows one to
rely on normal C code to arrange these macros, and to handle data-storage. As a result the
gcc compiler can generate all of the intermediate memory access instructions and schedule the
usage of the other 11 registers available. This means that the same code can be reused for any
field supported by Algorithm 6 — the only changes required are the parameter definitions. To
generate a particular instance of the family of algorithms we use a simple wrapper written in
Python that arranges the sequence of these operations required for the particular parameter
choice of m+ 1 and t.

To emphasise the relative simplicity of our implementation, we use only 64-bit scalar op-
erations on the processor, and allow the compiler to schedule most of the output instructions.
As a result we reach a throughput of slightly less than one operation per cycle. In comparison



the mpFq implementation of curve25519 uses SSE2 to reach a throughput of almost two oper-
ations per cycle (the theoretical maximum on the architecture). Although our implementation
is less efficient (because we have spent less programmer time on the machine-dependent op-
timisation) the performance achieved is still higher. Scheduling a lower-level implementation
on the processor would be an interesting challenge.

As explained in §5 and §10, within the reduction algorithm we have a trade-off between
the number of GRPs available and performance. If one opts for a generic value of c then
many GRPs are available, but the reduction involves a full imulq instruction with relatively
high latency. If we specialise our choice of c to those with Hamming weight 2 then we can
replace this instruction with a shift and an add or sub instruction to improve performance.
We have measured the performance of both implementations. To ensure a fair comparison
we have merged our code into mpFq so that all algorithms are being tested with the same
timing code. This timer executes 106 operations in the field, measuring the elapsed time.
The reported figures are the mean execution time for the operation. Table 5 contains cycle
counts for Montgomery arithmetic at various bitlengths, as well as the curve25519 modular
multiplication cycle count. Table 6 contains our results for GRP modular multiplication.

Table 5. mpFq cycle counts for curve25519 and Montgomery arithmetic

Algorithm Size (bits) ModMul (cycles)

Mont. 64 30
Mont. 128 105
Mont. 192 195

curve25519 255 140
Mont. 256 280
Mont. 320 407
Mont. 384 563
Mont. 448 757
Mont. 512 981

Table 6. Cycle counts for GRP arithmetic

Parameters Max size (bits) ModMul (cycles)

m + 1=5, HW (c)=2 244 96
m + 1=5, general c 244 112

m + 1=7, HW (c) = 2 360 165
m + 1=7, general c 360 182
m + 1=11, general c 600 340

As shown in Table 1 and considered in §10.2, the closest size of field to curve25519
that we can implement using m+ 1 = 5 is only 244-bits. This small reduction in field size is
compensated by an increase in performance, requiring only 80% of the curve25519 cycles per
multiplication. Using the specialised reduction function for the 243-bit GRP Φ5(259 ·(22−1)),
this figure improves to 69%. Since the results for the first line of Table 6 apply also to



Hamming weight 2 GRPs smaller than 243-bits, we obtain the same modular multiplication
performance for the 228-bit GRP Φ5(254 · (23 − 1)), while utilising the acquired slack in
the representation to ensure atomic point doublings/additions as per §9.2. At 512-bits with
general c, compared to Montgomery multiplication, GRP multiplication costs only 35% as
many cycles. For GRPs of 600-bits, this proportion would naturally be even smaller, however
at this size Karatsuba-Ofman multiplication may be faster than schoolbook multiplication.
We thus expect that point multiplications using 224-bit and 512-bit GRPs to be competitive
with the state-of-the-art in the literature, once optimised. In particular, by comparing our
arithmetic with the modular multiplication used in [6], which is the benchmark for point
multiplication at the 128-bit security level, one gains an idea of the potential performance
of arithmetic mod Φ5(254 · (23 − 1)), for example. In [6], residues are also represented by
five 64-bit words. Residue multiplication requires 25 mul instructions, as well as 4 imul, 20
add and 20 adc instructions. In comparison, to multiply x and y in our representation, the
CVMA formulae are as follows:

z0 = (x4 − x1)(y1 − y4) + (x3 − x2)(y2 − y3),
z1 = (x2 − x4)(y4 − y2) + (x1 − x0)(y0 − y1),
z2 = (x0 − x2)(y2 − y0) + (x4 − x3)(y3 − y4),
z3 = (x3 − x0)(y0 − y3) + (x2 − x1)(y1 − y2),
z4 = (x1 − x3)(y3 − y1) + (x0 − x4)(y4 − y0),

requiring only 10 mul, 20 sub and 5 add and 5 adc instructions. Since the respective reduction
algorithms are quite similar with both requiring two rounds of shifts, masks and additions, one
expects the GRP modular multiplication to be considerably faster, when optimised. However,
since this paper is predominantly expositional, we leave such optimisations as open research.

12 Conclusion

We have proposed efficient algorithms for performing arithmetic modulo a large family of
primes, namely the generalised repunit primes. The algorithms are simple to implement, are
fast, are easily parallelisable, can be made side-channel secure, and all across a wide range
of field sizes. The central contribution of this work is the development of the necessary the-
ory, covering field and residue representation, as well as algorithms for performing efficient
multiplication and reduction in these fields. We have also presented proof-of-concept imple-
mentation results which provide an empirical comparison with results in the literature, which
we ensured is fair by using the mpFq benchmarking procedure. Against Montgomery arith-
metic we show an approximate 3-fold improvement in performance, and expect optimised
implementations of point multiplications using our proposed family to be competitive with
state-of-the-art implementations. We have thus presented a compelling argument in favour
of a new approach to the secure and efficient implementation of ECC.

Acknowledgements

The authors would like to thank Dan Page for making several very useful comments and
suggestions.



References

1. A.O.L. Atkin and F. Morain. Elliptic curves and primality proving. Math. Comp., 61(203):29-68, 1993.
2. P. Barrett. Implementing the Rivest Shamir and Adleman public key encryption algorithm on a standard

digital signal processor, In Advances in CryptologyCRYPTO 86 Springer-Verlag, LNCS 263, 311323, 1987.
3. P.T. Bateman and R.A. Horn. A Heuristic Asymptotic Formula Concerning the Distribution of Prime

Numbers. In Math. Comp. 16, pp. 363–367, 1962.
4. D.J. Bernstein. A software implementation of NIST P-224. Presentation at the 5th Workshop on Elliptic

Curve Cryptography (ECC 2001), University of Waterloo, October 29-31, 2001. Slides available from
http://cr.yp.to/talks.html.

5. D.J. Bernstein. Curve25519: New Diffie-Hellman Speed Records. In Public Key Cryptography - PKC 2006,
LNCS 3958, 207–228. Springer-Verlag, 2006.

6. D.J. Bernstein, N. Duif, T. Lange, P. Schwabe and B. Yang. High-speed high-security signatures. Cryp-
tology ePrint Archive, Report 2011/368, 2011.

7. D.J. Bernstein and T. Lange. Faster addition and doubling on elliptic curves. In Advances in Cryptology
ASIACRYPT 2007, LNCS 4833, pp. 29–50, Springer-Verlag, 2007.

8. D.J. Bernstein and T. Lange (editors). eBACS: ECRYPT Benchmarking of Cryptographic Systems.
http://bench.cr.yp.to/ebats.html.

9. I.F. Blake, R.M. Roth and G. Seroussi. Efficient Arithmetic in GF (2m) through Palindromic Represen-
tation. Technical Report HPL-98-134, 1998. Available from http://www.hpl.hp.com/techreports/98/

HPL-98-134.html.
10. I.F. Blake, G. Seroussi, and N.P. Smart. Advances in Elliptic Curve Cryptography. London Mathemtical

Society Lecture Note Series, 317, Cambridge University Press, 2005.
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