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Abstract

Currently, many individuals and organizations outsource their data to remote cloud service providers
(CSPs) seeking to reduce the maintenance cost and the burden of large local data storage. The CSP offers
paid storage space on its infrastructure to store customers’ data. Replicating data on multiple servers across
multiple data centers achieves a higher level of scalability, availability, and durability. The more copies the
CSP is asked to store, the more fees the customers are charged. Therefore, customers need to be strongly
convinced that the CSP is storing all data copies that are agreed upon in the service contract, and the
data-update requests issued by the customers have been correctly executed on all remotely stored copies.

In this paper we propose two dynamic multi-copy provable data possession schemes that achieve two
main goals: i) they prevent the CSP from cheating and using less storage by maintaining fewer copies, and ii)
they support dynamic behavior of data copies over cloud servers via operations such as block modification,
insertion, deletion, and append. We prove the security of the proposed schemes against colluding servers.
Through theoretical analysis and experimental results, we demonstrate the performance of these schemes.
Additionally, we discuss how to identify corrupted copies by slightly modifying the proposed schemes.
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1 INTRODUCTION

Cloud computing (CC) is a computational model over a shared-virtualized pool of computing resources,
e.g., storage, processing power, memory, applications, services, and network bandwidth. These days,
CC has been receiving a great deal of attention from both academia and industry due to a number of
important advantages it offers. One fundamental advantage of using CC is pay-as-you-go pricing model,
where customers pay only according to their usage of the services [23]. Providing low management
overhead and supporting immediate access to a wide range of applications are other principal benefits
of adopting the CC technology. In addition, maintenance cost is reduced as a third party is responsible
for everything from running the cloud to storing the data. Flexibility to scale up and down information
technology (IT) capacity over time to business needs is also a key advantage of using the CC paradigm.
Moreover, CC offers more mobility where customers can access information wherever they are, rather
than having to remain at their desks.

Nowadays, many individuals and organizations outsource their data to remote cloud service providers
(CSPs) relieving the load of constant server updates and other computing issues [35]. Such outsourcing
of data storage enables customers to store more data on the CSP than on private computer systems. Also,
it permits many authorized users to access the remotely stored data from different geographic locations
making it more convenient for them. A relatively recent survey indicates that IT outsourcing has grown
by a staggering 79% as organizations seek to focus more on their core competencies and reduce costs
[36].

The data owners lose the control over their sensitive data once the latter is outsourced to a remote
CSP which may not be trustworthy. This lack of control raises new formidable and challenging tasks
related to data confidentiality and integrity protection in cloud computing. Customers require that their
data remain secure over the CSP. Also, they need to have a strong evidence that the cloud servers still
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possess the data and it is not being tampered with or partially deleted over time, especially because the
internal operation details of the CSP may not be known to cloud customers.

Encrypting sensitive data before outsourcing to remote servers can handle the confidentiality issue.
However, the integrity of customers’ data in the cloud may be at risk due to the following reasons. First,
the CSP — whose goal is likely to make a profit and maintain a reputation — has an incentive to hide
data loss or reclaim storage by discarding data that has not been or is rarely accessed. Second, a greedy
CSP might delete some of the data or might not store all data in fast storage required by the service
contract with certain customers, i.e., place it on CDs or other offline media and thus making the access of
data slower. Third, the cloud infrastructures are subject to a wide range of internal and external security
threats. Examples of security breaches of cloud services appear from time to time [16], [21]. In short,
although outsourcing data into the cloud is attractive from the view point of cost and complexity of
long-term large-scale data storage, it does not offer any guarantee on data completeness and correctness.
This problem, if not properly addressed, may hinder the successful deployment of cloud architecture.

Efficient verification techniques are of significant importance for cloud customers to validate data
integrity over the CSP. Hash operations, signature schemes, and other traditional cryptographic primitives
for data integrity and availability are not applicable on the outsourced data without having a local copy of
the data. Downloading all outsourced data in order to validate its integrity is impractical for the excessive
I/O cost and the high communication overhead across the network. Therefore, efficient techniques
are needed to verify the integrity of outsourced data with minimum computation, communication,
and storage overheads. Consequently, many researchers have focused on the problem of provable data
possession (PDP) and proposed different schemes to audit the data stored on remote servers.

PDP is a technique for validating data integrity over remote servers. In a typical PDP model, the data
owner generates some metadata/information for a data file to be used later for verification purposes
through a challenge response protocol with the remote/cloud server. The owner sends the file to be
stored on a remote server which may be untrusted, and deletes the local copy of the file. As a proof
that the server is still possessing the data file in its original form, it correctly computes a response to a
challenge vector sent from a verifier — who can be the original data owner or other trusted entity that
shares some information with the owner. Researchers have proposed different variations of PDP schemes
under different cryptographic assumptions; for example, see [2], [11], [15], [17], [26], [28], [30], [31], [37].

One of the core design principles of outsourcing data is to provide dynamic scalability of data for
various applications. This means that the remotely stored data can be not only accessed by the authorized
users, but also updated and scaled by the data owner. PDP schemes presented in [2], [11], [15], [17], [26],
[28], [30], [31], [37] focus on static or warehoused data and do not consider the case of dynamic data that
are usually more prevailing in practical applications.

Dynamic provable data possession (DPDP) constructions [3], [13], [19], [33], [34] reported in the liter-
ature focus on the provable possession of a single copy of a dynamic data file. Although PDP schemes
have been presented for multiple copies of static data, e.g., [6], [10], [18], to the best of our knowledge,
no PDP scheme exists for multiple copies of dynamic data.
.
� Main contributions: Our contributions can be summarized as follows:

1) We propose two dynamic multi-copy provable data possession schemes. Through these schemes,
the data owner can have an adequate guarantee that the CSP stores all copies that are agreed upon
in the service contract. Moreover, the proposed schemes support outsourcing of dynamic data, i.e.,
they support operations such as block modification, insertion, deletion, and append. The authorized
users — users who have the right to access the owner’s file — can seamlessly access the copies
received from the cloud servers.

2) We prove the security (correctness and soundness) of our schemes against colluding servers. Cloud
servers can provide valid responses to verifier’s challenges only if they actually have all data copies
in an uncorrupted and updated state.

3) We present theoretical analysis and experimental results to justify the performance of the proposed
schemes.

The remainder of the paper is organized as follows. Section 2 contains related work. Our system model
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and proposed schemes are elaborated in Section 3. The performance analysis and experimental results
are presented in Section 4. How to identify the corrupted copies is discussed in Section 5. Concluding
remarks are given in Section 6.

2 RELATED WORK

The key purpose of the PDP schemes is to validate the integrity of data outsourced to remote servers,
where a verifier is allowed to efficiently, periodically, and securely validate that a remote server — which
supposedly stores the owner’s potentially very large amount of data — is actually storing the data in
its original form. A simple solution to tackle the problem of data integrity over remote servers is by
fragmenting the data file F into blocks {b1, b2, . . . , bm}, computing a message authentication code (MAC)
σj for each block bj : σj =MACsk(j||bj)1≤j≤m, sending both the data file F and the MACs {σj}1≤j≤m to
the remote/cloud server, deleting the local copy of the file, and storing only the secret key sk. During the
verification process, the verifier requests for a set of randomly selected blocks and their corresponding
MACs, re-computes the MAC of each retrieved block using sk, and compares the re-computed MACs
with the received values from the remote server [37]. This approach suffers from a severe drawback; the
communication complexity is linear with the queried data size which is impractical especially when the
available bandwidth is limited.

For efficient validation of outsourced data integrity, a number of PDP protocols have been proposed in
the recent past [2], [11], [15], [17], [26], [28], [30], [31], [37]. But these schemes support only static data that
are subject to infrequent change. Reference [6] conducted a literature survey and a comparative analysis
of various static PDP schemes.

2.1 Hash-Based DPDP Schemes
Ateniese et al. [3] proposed a dynamic version of the PDP scheme based on cryptographic hash function
and symmetric key encryption. Their scheme is efficient but allows only a fixed number of challenges
due to the fact that through the scheme setup they come up with all future challenges and store pre-
computed responses as tokens. These tokens can be stored either at the verifier side in a plain form or
at the server side in an encrypted form. Block insertion in [3] cannot explicitly be supported (append
operation is supported). Fig. 1 summarizes the scheme presented in [3].

2.2 DPDP Schemes Based on Authenticated Data Structures
2.2.1 Rank-Based Authenticated Skip Lists
A skip list is a hierarchical structure of linked lists [27], and is used to store a sorted set of items. Each
node v in a normal skip list stores two pointers (right and down) denoted by rgt(v) and dwn(v) to be
used during the searching procedure for a specific target in the leaf nodes (nodes at the base/bottom
level). On the other hand, each node v in an authenticated skip list stores rgt(v), dwn(v), and a label f(v)
computed by recursively applying a hash function to f(rgt(v)) and f(dwn(v)). The authenticated skip list
can provide a proof to indicate whether a specific element belongs to the set represented by the list or
not. In addition to rgt(v), dwn(v) and f(v), each node v in a rank-based authenticated skip list stores the
number of nodes at the bottom level that can be reached from v. This number is called the rank of v:
r(v).

Fig. 2 [13] shows an example of rank-based skip list, where the number inside the node represents its
rank. The top leftmost node (w7) of the skip list is considered to be the start node. To access any node
at the bottom level, searching should begin from the start node.

2.2.2 DPDP Schemes of Erway et al.
Erway et al. [13] constructed a DPDP scheme based on the PDP model in [2] to support provable updates
of stored data files using rank-based authenticated skip lists. Their protocol supports block insertion by
eliminating the index information in the tag computation of [2]. The purpose of using the rank-based
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Setup
− Data file F is a set of blocks {b1, b2, . . . , bm}
− g is a pseudo-random permutation, f is a pseudo-random function, and h is a cryptographic hash

function. f is used to generate keys for g and to generate random numbers.
− EK and E−1

K are encryption and decryption algorithms under a key K
− Two master keys W and Z
− Data owner generates t random challenges and their corresponding responses/tokens {νi}1≤i≤t as

follows.
- for i = 1 to t do
—- 1. Generate ki = fW (i) and ci = fZ(i)
—- 2. νi = h(ci, 1, bgki

(1))⊕ · · · ⊕ h(ci, r, bgki
(r)) /* r is # of blocks per token */

—- 3. ν ′i = Ek(ctr, i, νi) /* ctr is an integer counter */

− Owner sends the file F = {bj}1≤j≤m and {ν ′i}1≤i≤t to the remote server.
Challenge Response
Data owner Remote Server
Begin challenge i
—1. Generates ki = fW (i) and ci = fZ(i)

-
ki,ci−−−−−−−−−−−−−−−−−→

- 2. z = h(ci, 1, bgki
(1))⊕ · · · ⊕ h(ci, r, bgki

(r))

-
z,ν′

i←−−−−−−−−−−−−−−−−
—3. Computes ν = E−1

K (ν ′i)

—4. Checks ν ?
= (ctr, i, z)

End challenge i

DYNAMIC OPERATIONS
Modify
/* Assume that block bj is to be updated to b′j */
Data owner Remote Server
-

1.{ν′
i}1≤i≤t←−−−−−−−−−−−−−−−−−−−−−

-2. ctr = ctr + 1
-3. for i = 1 to t do
— 3.1 z′i = E−1

K (ν ′i)
——-/* if decryption fails, exit*/
——-/* if z′i is not prefixed by (ctr-1) and i, exit */
— 3.2 extracts νi from z′i
— 3.3 computes ki = fW (i) and ci = fZ(i)
— 3.4 for l = 1 to r do
———–if (gki

(l) == j) then
—————νi = νi ⊕ h(ci, l, bj)⊕ h(ci, l, b′j)
—/*update all tokens even if they do not include the block to be updated */
— 3.5 ν ′i = Ek(ctr, i, νi)

-
j, b′j , {ν′

i}1≤i≤t−−−−−−−−−−−−−−−−−−→
− =⇒ continue
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Delete
/* Assume that block bj is to be deleted */
The logic of Delete is similar to Modify operation but replaces the block to be modified with a special
block ”DBlock”. So, the inner for loop (step 3.4) will be:
3.4 for l = 1 to r do
—if (gki

(l) == j) then
—–νi = νi ⊕ h(ci, l, bj)⊕ h(ci, l,DBlock)
Insert
Physical insert is not supported. Append operation is allowed by viewing the data file as a two
dimensional structure (matrix), and appending the new block in a round robin fashion.

Fig. 1: The DPDP protocol by Ateniese et al. [3].
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Fig. 2: Example of rank-based skip list [13].

authenticated skip list in [13] is to authenticate the tag information of the blocks to be updated or
challenged.

In the DPDP scheme of [13], the File F is fragmented into m blocks {b1, b2, . . . , bm}. A representation/tag
T (bj) of block bj is computed as T (bj) = gbj mod N (N is the RSA modulus and g is an element of high
order in Z∗

N ). The block representation T (bj) is stored at the jth bottom-level node of the authenticated
skip list and the block itself is stored elsewhere by the server. The tags protect the integrity of file blocks,
while the authenticated list ensures the security and integrity of tags.

During the challenge phase, the client requests the server to prove the integrity of randomly selected c
blocks {bji}1≤j1,...,jc≤m. The server sends the tags {T (bji)}1≤j1,...,jc≤m along with their search/verification
paths. Also, the server sends a combined block M =

∑c
i=1 ai.bji , where {ai}1≤i≤c are random values sent

by the client as part of the challenge. The owner verifies the search/verification paths of the block tags
using the metadataMc which is the label of the start node. Besides, the owner computes T =

∏c
i=1 T (bji)ai

mod N . The owner accepts only if the search paths are verified and T = gM mod N .
The authenticated skip list is used to modify, insert, and delete the block tags achieving the dynamic

behavior of the data file. Nodes of skip list along the search/verification path — path from the start node
to the node associated with the block to be updated — are only affected by the dynamic operations of
file blocks.

The scheme presented in [13] can be summarized by the following procedures:
• Key-generation. This procedure is run by the data owner (the client) and outputs a secret key sk and

public key pk. The secret key is kept by the client and the public key is sent to the remote server.
• Update-preparation. This procedure is run by the client to prepare a part of the file for storage on a

remote server which may not be trustworthy. The input parameters to this procedure are sk, pk, a
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part of the file F , updates to be performed (e.g., full re-write, modify block, delete block, or insert
block), and the previous metadata Mc. The output is an encoded version of that part of the file
e(F ), encoded information e(info) about the update, and the new metadata e(M). The output of this
procedure is sent to the remote server.

• Update-execution. Upon receiving an update request from the data owner, the server runs this proce-
dure in response to the owner’s request. The input parameters to this procedure are pk, the previous
version of the file denoted as Fi−1, the metadataMi−1, and the values produced by the client during
the Update-preparation algorithm. The outputs of this procedure are the new version of the file denoted
as Fi , metadata Mi , and metadata M′

c to be sent to the owner along with its proof PM′
c
.

• Update-verification. This procedure is run by the client to verify the server’s behavior during the
updates. The input parameters to this procedure are all inputs of Update-preparation algorithm, the
metadata M′

c, and the proof PM′
c

(M′
c and PM′

c
are sent from the server as outputs of the Update-

execution algorithm). The output of the Update-verification algorithm is either acceptance or rejection
signal.

• Challenge. This procedure is run by the client to challenge the server and verify the integrity of the
remotely stored data file. It takes as input sk, pk, and the latest client metadata Mc. The output is
a challenge c that is sent from the client to the server.

• Proof-computation. Upon receiving the challenge c from the client, the server runs the Proof-computation
algorithm in response to the owner’s challenge. The input parameters to this procedure are pk, the
latest version of the file, the metadata, and the challenge c. It outputs a proof P that is sent to the
client.

• Proof-verification. This procedure is run by the client to validate the proof P received from the server.
The input parameters to this procedure are sk, pk, the client metadata Mc, the challenge c, and the
proof P sent by the server. The output of this procedure is ”accept” to indicate that the server still
possesses the file intact or ”reject” otherwise.

In their paper, Erway et al. [13] presented a variant of the DPDP scheme using RSA trees instead of
rank-based authenticated lists. Wang et al. [34] used Merkle hash trees [25] (instead of skip lists) and
homomorphic authenticators built from BLS signatures [7] to construct a DPDP scheme.

2.3 RSA-Based DPDP Schemes
Hao et al. [19] adapted the protocol proposed in [28] to support both the dynamic nature of data and
public verifiability. Public verifiability allows anyone, who knows the owner’s public key but is not
necessarily the data owner, challenge the remote server and verify that the server is still possessing
the owner’s files. If a disagreement regarding data integrity happens between the owner and the CSP,
a third party auditor (TPA) can determine whether the data integrity is maintained or not. This third
party auditing process should bring in no new vulnerabilities towards the privacy of owner’s data. The
protocol proposed in [19] ensures that the data is kept private during the third party verification, where
no private information contained in the data is leaked. Fig. 3 summarizes the protocol presented in [19].

2.4 Cooperative PDP Schemes
Zhu et al. [38] addressed the construction of cooperative PDP scheme on hybrid clouds to support
scalability of service and data migration. A hybrid cloud is a CC deployment model in which an
organization provides and handles some internal and external resources. For example, an organization
can use a public cloud service like Amazon EC2 [1] to perform the general computation, while the data
files are stored within the organization’s local data center in a private cloud. In their work, Zhu et al.
[38] consider the existence of multiple CSPs that cooperatively store customers’ data
-
Remark 1. The previous schemes reported in [3], [13], [19], [34] focus on the data dynamic of a single
copy. References [10], [6], and [18] consider the case of multiple data copies over remote servers, but they
focus on static archived data. In this work, we study the integrity verification of dynamic multiple data
copies stored on untrusted cloud servers.
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Setup
− N = pq is the RSA modulus (p and q are prime numbers)
− g is a generator of QRN (QRN is the set of quadratic residues modulo N )
− Public key pk = (N, g) and secret key sk = (p, q).
− f is a pesudo-random function
− File F = {b1, b2, . . . , bm}.
− Data owner generates a tag Dj for each block bj , where Dj = gbj mod N
− The tags are stored on the owner side and the file is sent to the remote server.

Challenge Response
Verifier Remote Server
1. Generates a random key r and s ∈R ZN

2. Computes gs = gs mod N

-
r,gs−−−−−−−−−−−−−−−−→

- 3. Generates random coefficients {aj = fr(j)}1≤j≤m

- 4. Computes R = (gs)
∑m

j=1 aj .bj mod N

- R←−−−−−−−−−−−−−−−
5. Generates a set of random coefficients {aj = fr(j)}1≤j≤m

6. Computes P =
∏m

j=1(D
aj

j mod N) mod N
7. Computes R′ = P s mod N

8. Checks R′ ?
= R

DYNAMIC OPERATIONS
Modify
/* Assume that block bj is to be updated to b′j */
− Server updates bj to b′j
− Owner computes a new block tag D′

j = gb
′
j mod N .

So, the new block tags are {D1, D2, . . . , D
′
j , . . . , Dm}

Insert
/* Assume a new block b̂ is to be inserted after position j or appended at the end */
− The server updates its file to be
{b1, b2, . . . , bj , b̂, . . . , bm+1} (insert & bj+1 = b̂) or {b1, b2, . . . , bm, b̂} (append).

− The owner computes a new block tag D̂ = gb̂ mod N , and changes the block tags to
{D1, D2, . . . , Dj , D̂, . . . , Dm+1} (insert & Dj+1 = D̂) or {D1, D2, . . . , Dm, D̂} (append)

Delete
/* Assume a block at position j is to be deleted*/
− Server deletes the block bj
− Owner deletes the corresponding tag Dj

Fig. 3: The DPDP protocol by Hao et al. [19].

2.5 Proof of Retrievability
Proof of retrievability (POR) is a complementary approach to PDP that allows a verifier to check the
possession of data via a challenge response protocol. POR is stronger than PDP in the sense that the
verifier can reconstruct the entire data file from the responses that are reliably transmitted from the
server. This is due to encoding of the data file, for example using erasure codes, before outsourcing to
remote servers. Various POR schemes can be found in the literature, for example [8], [9], [12], [20], [29],
which focus on static data.

In the context of this work, we are dealing with dynamic data in which the owner can update and
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scale the files stored by the CSP. Thus, if the data file is encoded before outsourcing, modifying a portion
of the file requires re-encoding the data file which is not acceptable in practical applications. In addition,
we are considering economically-motivated CSPs that may attempt to use less storage than required by
the contract through deletion of a few copies of the file. The CSPs have almost no financial benefit by
deleting only a small portion of a copy of the file. As a result, in our work we do not encode the data file
before outsourcing. Besides, a server’s copy can be reconstructed even from a complete damage using
duplicated copies on other servers.

More importantly, unlike erasure codes, duplicating data file across multiple servers achieves scalability
which is a fundamental customer requirement in CC systems. A file that is duplicated and stored
strategically on multiple servers — located at various geographic locations — can help reduce access
time and communication cost for users.

3 PROPOSED DYNAMIC MULTI-COPY PROVABLE DATA POSSESSION SCHEMES

3.1 Cloud Data Storage Model
The cloud computing system model considered in this work consists of three main components as
illustrated in Fig. 4: (i) a data owner that can be an individual or an organization originally possessing
sensitive data to be stored in the cloud; (ii) a CSP who manages cloud servers (CSs) and provides paid
storage space on its infrastructure to store the owner’s files; and (iii) authorized users — a set of owner’s
clients who have the right to access the remote data and share some keying material with the data owner.
An authorized user sends a data request to the CSP and receives a data copy in an encrypted form that
can be decrypted using a secret key shared with the owner.

�

���������	�F 
��	����������� ���	����������������������� �����	��������	��
Fig. 4: Cloud computing data storage system model.

We assume that the interaction between the owner and the authorized users to authenticate their identities and
share the secret key has already been completed, and it is not considered in this work. Throughout this paper,
the terms cloud server and cloud service provider are used interchangeably.

3.2 Context and Rationale
Homomorphic linear authenticators (HLAs) are basic building blocks in the proposed schemes. The HLA
is a fingerprint/tag for each file block bj that enables a verifier to validate the data possession on a cloud
server by sending a challenge vector C = {c1, c2, . . . , cr}. As a response, the server can homomorphically
construct a tag authenticating the value

∑r
j=1 cj · bj . The proposed schemes in this work utilize the BLS

HLAs [29].
Generating unique differentiable copies of the data file is the main core to design a multi-copy provable

data possession scheme. Identical data copies enable the CSP to simply deceive the owner by storing
only one copy and pretending that it stores multiple copies. Using a simple yet efficient way, the pro-
posed schemes generate distinct copies utilizing the diffusion property of any secure encryption scheme.
According to the diffusion property, the output bits of the ciphertext should depend on the input bits of
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the plaintext in a very complex way, i.e., there will be an unpredictable complete change in the ciphertext,
if there is a single bit change in the plaintext [32]. The interaction between the authorized users and the
CSP is considered through this methodology of generating distinct copies, where the former can decrypt
and access a file copy received from the CSP. In the proposed schemes, the authorized users need only
to keep a single secret key — shared with the data owner — to decrypt the file copy; it is not necessarily
to recognize the index of the received copy.

In this work, the data owner has a file F and the CSP offers to store n copies {F̃1, F̃2, . . . , F̃n} of
the owner’s file in exchange of pre-specified fees. We provide two schemes: tree-based and map-based
dynamic multi-copy provable data possession (TB-DMCPDP and MB-DMCPDP, respectively). The TB-
DMCPDP scheme can be viewed as a fine-tuned extension to the provable possession of dynamic single-
copy models that are based on authenticated data structures, e.g., [13] and [34].

3.3 Notations
− F is a data file to be outsourced, and is composed of a sequence of m blocks, i.e., F = {b1, b2, . . . , bm}.
− πkey(·) is a pseudo-random permutation (PRP): key × {0, 1}log(m) → {0, 1}log(m). 1

− ψkey(·) is a pseudo-random function (PRF): key × {0, 1}∗ → Zp.
− Bilinear Map/Pairing. The bilinear map is one of the essential building blocks of the proposed

schemes. Let G1, G2, and GT be cyclic groups of prime order p. Let g1 and g2 be generators of G1

and G2, respectively. A bilinear pairing is a map ê : G1 × G2 → GT with the following properties
[24]:

1) Bilinear: ê(u1u2, v1) = ê(u1, v1) · ê(u2, v1), ê(u1, v1v2) = ê(u1, v1) · ê(u1, v2) ∀ u1, u2 ∈ G1 and
v1, v2 ∈ G2

2) Non-degenerate: ê(g1, g2) ̸= 1
3) Computable: there exists an efficient algorithm for computing ê
4) ê(ua, vb) = ê(u, v)ab ∀ u ∈ G1, v ∈ G2, and a, b ∈ Zp

− h is a cryptographic hash function, e.g., SHA-2.
− H(·) is a map-to-point hash function : {0, 1}∗ → G1.
− EK is an encryption algorithm with strong diffusion property, e.g., AES.

3.4 Underlying Algorithms
The proposed schemes consist of seven polynomial time algorithms: KeyGen, CopyGen, TagGen, Pre-
pareUpdate, ExecUpdate, Prove, and Verify.
− (pk, sk)← KeyGen(). This algorithm is run by the data owner to generate public key pk and private

key sk.
− F̃ = {F̃i}1≤i≤n ← CopyGen(CNi, F )1≤i≤n. This algorithm is run by the data owner. It takes as input a

copy number CNi and a file F , and generates unique differentiable copies F̃ = {F̃i}1≤i≤n. A file copy
F̃i is an ordered collection of blocks {b̃ij}1≤j≤m, where each block b̃ij is fragmented into s sub-blocks
(sectors): b̃ij = {b̃ij1, b̃ij2, . . . , b̃ijs}. Thus, F̃i = {b̃ijk}1≤j≤m

1≤k≤s
, where each sector b̃ijk ∈ Zp for some large

prime p.
− Φ← TagGen(sk, F̃). This algorithm is run by the data owner. It takes as input the private key sk and

the unique file copies F̃, and outputs the tags/authenticators set Φ, which is an ordered collection
of tags for the data blocks. Tags are generated per block not per sector to minimize the storage
overhead.

− Updateinfo← PrepareUpdate(). This algorithm is run by the data owner to update the outsourced file
copies stored by the remote CSP. The output of this algorithm is Updateinfo: information about the
update request. This information may contain a modified version of a previously stored block, a new

1. The number of file blocks (m) will be changed due to dynamic operations on the file. We use HMAC-SHA-1 with 160-bit
output, to allow up to 2160 blocks in the file.
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block to be inserted, or a delete command to delete a specific block from the file copies. Updateinfo
is sent from the data owner to the CSP in order to perform the requested update.

− (F̃′, Φ′, auth) ← ExecUpdate(F̃, Φ, Updateinfo). This algorithm is run by the CSP, where the input
parameters are the file copies F̃, the tag set Φ, and Updateinfo (sent from the owner). It outputs an
updated version of the file copies F̃′ along with an updated signature set Φ′ and some authentication
information auth 2.

− P← Prove(F̃,Φ). This algorithm is run by the CSP. It takes as input the file copies F̃ and the tag set
Φ, and returns a proof P which guarantees that the CSP is actually storing n copies and all these
copies are intact, updated, and consistent.

− {1, 0} ← Verify(pk,P). Our schemes support public verifiability, so this algorithm can be run by any
verifier (data owner or any other trusted auditor). It takes as input the public key pk and the proof
P returned from the CSP, and outputs 1 if the integrity of all file copies is correctly verified or 0
otherwise.

3.5 The Proposed TB-DMCPDP Scheme
The TB-DMCPDP scheme proposed in this work is based on using Merkle hash trees (MHTs) [25], but
it can also be constructed using authenticated skip lists [13] or other authenticated data structures.

3.5.1 Merkle Hash Tree
A MHT [25] is a binary tree structure used to efficiently verify the integrity of the data. The MHT is a
tree of hashes where the leaves of the tree are the hashes of the data blocks. Fig. 5 shows an example of a
MHT used to verify the integrity of a file F consisting of 8 blocks. hj = h(bj) (1 ≤ j ≤ 8). hA = h(h1||h2),����������������

hE hF 

hR 

hA hB hC hD 

h1 h2 h3 h4 h5 h6 h7 h8 

b1 b2 b3 b4 b5 b6 b7 b8 

Fig. 5: Merkle Hash Tree.

hB = h(h3||h4), and so on. Finally, hR = h(hE ||hF ) is the hash of the root node that is used to authenticate
the integrity of all data blocks. The data blocks {b1, b2, . . . , b8} are stored on a remote server, and only
the authentic value hR is stored locally on the verifier side. For example, if the verifier requests to check
the integrity of the blocks b2 and b6, the server will send these two blocks along with the authentication
paths A2 = {h1, hB} and A6 = {h5, hD} that are used to reconstruct the root of the MHT. Aj — the
authentication path of bj — is a set of node siblings (grey-shaded circles) on the path from hj to the root

2. The auth parameter in the MB-DMCPDP scheme is null and not used
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of the MHT. The verifier uses the received blocks and the authentication paths to recompute the root
in the following manner. The verifier constructs h2 = h(b2), h6 = h(b6), hA = h(h1||h2), hC = h(h5||h6),
hE = h(hA||hB), hF = h(hC ||hD), and hR = h(hE ||hF ). After computing hR, it is compared with the
authentic value stored locally on the verifier side.

The MHT is commonly used to authenticate the values of the data blocks. In the dynamic behavior of
outsourced data, we need to authenticate both the values and the positions of the data blocks, i.e., we need
an assurance that a specific value is stored at a specific leaf node. For example, if a data owner requires
to insert a new block after position j, the verifier needs to make sure that the server has inserted the new
block in the requested position. To validate the positions of the blocks, the leaf nodes of the MHT are
treated in a specific sequence, e.g., left-to-right sequence [22]. So, the hash of any internal node = h(left
child || right child), e.g., hA = h(h1||h2) ̸= h(h2||h1). Besides, the authentication path Aj is viewed as an
ordered set, and thus any leaf node is uniquely specified by following the used sequence of constructing
the root of the MHT.

3.5.2 Directory MHT for File Copies
The proposed schemes in this paper are aiming at supporting multiple copies of dynamic data. To this
end, in the TB-DMCPDP scheme a MHT is constructed for each file copy, and then the roots of the
individual trees are used to build a hash tree which we call a directory MHT. The key idea is to make
the root node of each copy’s MHT as a leaf node in a directory MHT used to authenticate the integrity
of all file copies in a hierarchical manner. The directory tree is depicted in Fig. 6. The verifier can keep
only one metadata M = h(IDF ||hDR), where IDF is a unique file identifier for each owner’s file, and
hDR is the authenticated directory root value that can be used to periodically check the integrity of all
file copies. Embedding the IDF into the metadata M prevents the CSP from cheating using blocks from
different files.�

����h1R hnR h2R 

hDR 

MHT for copy #2 MHT for copy #n ….. 

Directory root 

MHT for copy #1 
Fig. 6: Directory tree for the file copies.

3.5.3 TB-DMCPDP Procedural Steps
The procedures of our TB-DMCPDP scheme execution are as follows:
� Key Generation. Let ê : G1×G2 → GT be a bilinear map, (u1, u2, . . . , us) ∈R G1, and g is a generator

of G2. The data owner runs the KeyGen algorithm to generate a private key x ∈ Zp and a public
key y = gx ∈ G2.

� Generation of Distinct Copies. The data owner runs the CopyGen algorithm to generate n differen-
tiable copies. For a file F = {b1, b2, . . . , bm}, The CopyGen algorithm creates a unique copy F̃i = {b̃ij}
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(1 ≤ i ≤ n, 1 ≤ j ≤ m) by concatenating a copy number i with the block bj , then encrypting using
an encryption scheme EK , i.e., b̃ij = EK(i||bj). The encrypted block b̃ij is fragmented into s sectors,
i.e., F̃i = {b̃ijk}1≤j≤m

1≤k≤s
, where each sector b̃ijk ∈ Zp for some large prime p. The authorized users need

only to keep a single secret key K. Later, when an authorized user receives a file copy from the CSP,
he decrypts the copy blocks, removes the copy index from the blocks header, and then recombines
the decrypted blocks to reconstruct the plain form of the received file copy.

� Generation of Tags and Trees. Given the distinct file copies F̃ = {F̃i}, where F̃i = {b̃ijk}, the data
owner runs the TagGen algorithm to create a tag σij for each block b̃ij as σij = (H(b̃ij) ·

∏s
k=1 u

b̃ijk
k )x ∈

G1 (i : 1 → n, j : 1 → m, k : 1 → s). The data owner then generates an aggregated tag σj for the
blocks at the same indices in each copy F̃i as σj =

∏n
i=1 σij ∈ G1. We denote the set of aggregated

tags as Φ = {σj}1≤j≤m.
The data owner generates a MHT for each file copy F̃i. The leaf nodes of each tree are the ordered
set {h(H(b̃ij))}, i.e., the leaf nodes of the MHT are the cryptographic hashes of H(b̃ij), and the
root of the tree is denoted as hRi. Using the roots {hRi}1≤i≤n, the data owner generates a directory
MHT in which the leaf nodes are {hRi}1≤i≤n, and the directory root is denoted as hDR. Note that
the MHTs are constructed using a specific sequence, e.g., left-to-right sequence to authenticate both
the value and the position of H(b̃ij). The owner computes a metadata M = h(IDF ||hDR), where
IDF = Filename||n||u1|| . . . ||us, i.e., the IDF is a unique fingerprint for each file comprising the file
name, the number of copies for this file, and the random values {uk}1≤k≤s. The data owner sends
⟨F̃,Φ, IDF , {MHTi}1≤i≤n⟩ to the CSP and deletes the copies, the tags, and the trees from its local
storage. The metadata M is stored on the local storage of the owner (or any trusted verifier).

� Dynamic Operations on the Data Copies. The dynamic operations in the proposed TB-DMCPDP
scheme are performed on the block level via a request in the general form ⟨IDF ,BlockOp, j, {b∗i }1≤i≤n, σ

∗
j ⟩,

where IDF is the file identifier, and BlockOp corresponds to block modification (denoted by BM),
block insertion (denoted by BI), or block delete (denoted by BD). The parameter j indicates the
index of the block to be updated, {b∗i }1≤i≤n are the new block values for all copies, and σ∗j is the
new aggregated tag for the new blocks.
� Modification. Data modification is one of the most frequently used dynamic operations in the

outsourced data. For a file F = {b1, b2, . . . , bm}, suppose the owner wants to modify the block
bj with the block b′j for all file copies. The owner runs the PrepareUpdate algorithm to do the
following:
1) Creates n distinct blocks {b̃′ij}1≤i≤n, where b̃′ij = EK(i||b′j) is fragmented into s sectors
{b̃′ij1, b̃′ij2, . . . , b̃′ijs}

2) Creates a new tag σ′ij for each block b̃′ij as σ′ij = (H(b̃′ij) ·
∏s

k=1 u
b̃′ijk
k )x ∈ G1, then generates an

aggregated tag σ′j =
∏n

i=1 σ
′
ij ∈ G1

3) Sends a modify request ⟨IDF ,BM, j, {b̃′ij}1≤i≤n, σ
′
j⟩ to the CSP

Upon receiving the modify request from the data owner, the CSP runs the ExecUpdate algorithm
to do the following:
1) Replaces the block b̃ij with b̃′ij∀i, and constructs an updated version of the file copies F̃′ =

{F̃ ′
i}1≤i≤n

2) Replaces h(H(b̃ij)) with h(H(b̃′ij)) in the leaf nodes of each copy’s MHT, and accordingly
updates the MHTs

3) Calculates the authentication paths ⟨Aij⟩1≤i≤n of the updated blocks at position j in all copies.
Aij is an ordered set of node siblings on the path from the leaf node h(H(b̃′ij)) to the root of
the MHT of copy i

4) Replaces σj with σ′j in the aggregated tags set Φ, and outputs
Φ′ = {σ1, σ2, . . . , σ′j , . . . , σm}

5) Sends ⟨Aij⟩1≤i≤n to the owner
Upon receiving ⟨Aij⟩1≤i≤n from the CSP, the owner uses these authentication paths and {b̃′ij}1≤i≤n
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to generate a new directory root h′DR and update the metadata M′ = h(IDF ||h′DR). The inter-
action between the data owner and the CSP during block modification is summarized in Fig. 7.

/* Modification of block bj with b′j for all file copies */
Owner CSP
1. Creates {b̃′ij}1≤i≤n, where b̃′ij = EK(i||b′j) and b̃′ij = {b̃′ijk}1≤k≤s.

2. Creates σ′ij = (H(b̃′ij) ·
∏s

k=1 u
b̃′ijk
k )x ∈ G1, and σ′j =

∏n
i=1 σ

′
ij ∈ G1.

-
⟨IDF ,BM,j,{b̃′ij}1≤i≤n,σ′

j⟩−−−−−−−−−−−−−−−−−−−−−−−−−→
- 3. Replaces b̃ij with b̃′ij ∀i, and outputs F̃′

- 4. Replaces h(H(b̃ij)) with h(H(b̃′ij)) in the MHTs
- 5. Calculates ⟨Aij⟩1≤i≤n

- 6. Replaces σj with σ′j , and outputs Φ′

-
⟨Aij⟩1≤i≤n←−−−−−−−−−−−−−−−−−−−−−−−−−

7. Generates new h′DR using ⟨Aij⟩1≤i≤n and {b̃′ij}1≤i≤n

8. Updates the metadata M′ = h(IDF ||h′DR)

Fig. 7: The block modification protocol in the TB-DMCPDP scheme.

� Insertion. In the block insertion operation, the owner wants to insert a new block b̂ after position
j in a file F = {b1, b2, . . . , bm}, i.e., the newly constructed file F ′ = {b1, b2, . . . , bj , b̂, . . . , bm+1},
i.e., bj+1 = b̂. The block insertion operation changes the logical structure of the file, while block
modification does not. In the proposed TB-DMCPDP scheme, the block index is not included
in the block tag. Thus, the insertion operation can be performed without recomputing the tags
of all blocks that have been shifted after inserting the new block. Embedding the block index
in the tag results in unacceptable computation overhead, especially for large data files. MHTs
are used to validate the positions of file blocks. To perform the insertion of a new block b̂ after
position j in all file copies, the owner runs the PrepareUpdate algorithm to do the following:
1) Creates n distinct blocks {b̂i}1≤i≤n, where b̂i = EK(i||b̂) is fragmented into s sectors {b̂i1, b̂i2, . . . , b̂is}
2) Creates a new tag σ̂i for each block b̂i as σ̂i = (H(b̂i) ·

∏s
k=1 u

b̂ik
k )x ∈ G1, then generates an

aggregated tag σ̂ =
∏n

i=1 σ̂i ∈ G1

3) Sends an insert request ⟨IDF ,BI, j, {b̂i}1≤i≤n, σ̂⟩ to the CSP
Upon receiving the insert request from the owner, the CSP runs the ExecUpdate algorithms to
do the following:
1) Inserts the block b̂i after position j in the file copy F̃i ∀i, and then adds a leaf node h(H(b̂i))

after the leaf node h(H(b̃ij)) for each copy’s MHT. This leads to constructing a new version
of the file copies F̃′ = {F̃ ′

i}1≤i≤n, and a new version of the MHTs
2) Calculates the authentication paths ⟨Âi⟩1≤i≤n of the newly inserted blocks {b̂i}1≤i≤n in all

copies. Âi is an ordered set of node siblings on the path from the leaf node h(H(b̂i)) to the
root of the MHT of copy i

3) Inserts σ̂ after position j in the set of the aggregated tags Φ, and outputs
Φ′ = {σ1, σ2, . . . , σj , σ̂, . . . , σm+1}, i.e., σj+1 = σ̂

4) Sends ⟨Âi⟩1≤i≤n to the owner
Upon receiving ⟨Âi⟩1≤i≤n from the CSP, the owner uses these authentication paths and {b̂i}1≤i≤n

to generate a new directory root h′DR and update the metadata M′ = h(IDF ||h′DR). The inter-
action between the data owner and the CSP during block insertion is summarized in Fig. 8.

� Append. Block append operation means adding a new block at the end of the outsourced data.
It can simply be implemented via insert operation after the last block of the data file.
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/* Insertion of block b̂ after position j in all file copies */
Owner CSP
1. Creates {b̂i}1≤i≤n, where b̂i = EK(i||b̂) and b̂i = {b̂ik}1≤k≤s.
2. Creates σ̂i = (H(b̂i) ·

∏s
k=1 u

b̂ik
k )x ∈ G1, and σ̂ =

∏n
i=1 σ̂i ∈ G1.

-
⟨IDF ,BI,j,{b̂i}1≤i≤n,σ̂⟩−−−−−−−−−−−−−−−−−−−−−−−→

- 3. Inserts b̂i after position j in F̃i ∀i, and outputs F̃′

- 4. Adds a leaf h(H(b̂i)) after leaf position j in each MHT
- 5. Calculates ⟨Âi⟩1≤i≤n

- 6. Inserts σ̂ after position j in Φ and outputs Φ′

-
⟨Âi⟩1≤i≤n←−−−−−−−−−−−−−−−−−−−−−−−−−

7. Generates new h′DR using ⟨Âi⟩1≤i≤n and {b̂i}1≤i≤n

8. Updates the metadata M′ = h(IDF ||h′DR)

Fig. 8: The block insertion protocol in the TB-DMCPDP scheme

� Deletion. Block deletion operation is the opposite of the insertion operation. When one block
is deleted all subsequent blocks are moved one step forward. To delete a specific data block at
position j from all copies, the owner sends a delete request ⟨IDF ,BD, j, null, null⟩ to the CSP.
Upon receiving this request, the CSP runs the ExecUpdate algorithms to do the following:
1) Calculates the authentication paths ⟨Aij⟩1≤i≤n of the blocks at position j (blocks to be deleted)

in all copies. Aij is an ordered set of node siblings on the path from the leaf node h(H(b̃ij))
to the root of the MHT of copy i

2) Deletes the existing blocks {b̃ij}1≤i≤n and the leaf nodes {h(H(b̃ij))}1≤i≤n, and outputs new
file copies F̃′ along with a new version of the MHTs

3) Deletes σj from Φ, and outputs Φ′ = {σ1, σ2 . . . , σj−1, σj+1 . . . , σm−1}
4) Sends ⟨Aij⟩1≤i≤n to the owner
The owner uses the authentication information received from the CSP to generate a new directory
root h′DR and update the metadata M′ = h(IDF ||h′DR).

Remark 2. Appendix A contains examples that demonstrate how the dynamic operations per-
formed on the outsourced file copies affect the MHTs on the CSP side. Moreover, these examples
show how the owner uses the information received from the CSP to generate the new directory
root and update the metadata.

� Challenge. For challenging the CSP and validating the integrity and consistency of all copies, the
verifier sends c (# of blocks to be challenged) and two fresh keys at each challenge: a PRP(π) key k1
and a PRF(ψ) key k2. Both the verifier and the CSP use the PRP(π) keyed with k1 and the PRF(ψ)
keyed with k2 to generate a set Q = {(j, rj)} of pairs of random indices and random values, where
{j} = πk1

(l)1≤l≤c and {rj} = ψk2
(l)1≤l≤c.

� Response. After generating the set Q = {(j, rj)} of random indices and values, the CSP runs the Prove
algorithm to generate an evidence that it is still correctly possessing the n copies in an updated and
consistent state. The CSP responds with a proof P = ⟨σ, µ, {H(b̃ij)} 1≤i≤n

(j,∗)∈Q
, ⟨Aij⟩ 1≤i≤n

(j,∗)∈Q
⟩, where

σ =
∏

(j,rj)∈Q

σ
rj
j ∈ G1 , µik =

∑
(j,rj)∈Q

rj · b̃ijk ∈ Zp, and µ = {µik}1≤i≤n
1≤k≤s

.

⟨Aij⟩ 1≤i≤n
(j,∗)∈Q

are the authentication paths of {H(b̃ij)} 1≤i≤n
(j,∗)∈Q

.

� Verify Response. Upon receiving the proof P = ⟨σ, µ, {H(b̃ij)} 1≤i≤n
(j,∗)∈Q

, ⟨Aij⟩ 1≤i≤n
(j,∗)∈Q

⟩ from the CSP, the

verifier runs the Verify algorithm to do the following:



15

1) Constructs the directory root hDR using {H(b̃ij)} 1≤i≤n
(j,∗)∈Q

and ⟨Aij⟩ 1≤i≤n
(j,∗)∈Q

2) Generates the value V = h(IDF ||hDR), and checks V ?
=M, where M is the authenticated-most-

recent metadata stored on the verifier side. If the checking fails, returns 0, otherwise the Verify
algorithm checks following verification equation:

ê(σ, g)
?
= ê(

n∏
i=1

∏
(j,rj)∈Q

H(b̃ij)rj ·
s∏

k=1

u
∑n

i=1 µik

k , y) (1)

If the verification equation passes, the Verify algorithm returns 1, otherwise 0. The correctness of the
above verification equation (1) can be shown as follows:

ê(σ, g) = ê(
∏

(j,rj)∈Q

σ
rj
j , g)

= ê(
∏

(j,rj)∈Q

[

n∏
i=1

σij ]
rj , g)

= ê(
∏

(j,rj)∈Q

[

n∏
i=1

(H(b̃ij) ·
s∏

k=1

u
b̃ijk
k )x]rj , g)

= ê(
∏

(j,rj)∈Q

[

n∏
i=1

(H(b̃ij) ·
s∏

k=1

u
b̃ijk
k )]rj , y)

= ê(
∏

(j,rj)∈Q

n∏
i=1

H(b̃ij)rj ·
∏

(j,rj)∈Q

n∏
i=1

s∏
k=1

u
rj ·b̃ijk
k , y)

= ê(

n∏
i=1

∏
(j,rj)∈Q

H(b̃ij)rj ·
s∏

k=1

u

∑n
i=1

∑
(j,rj)∈Q rj ·b̃ijk

k , y)

= ê(

n∏
i=1

∏
(j,rj)∈Q

H(b̃ij)rj ·
s∏

k=1

u
∑n

i=1 µik

k , y)

The TB-DMCPDP scheme can be slightly modified to minimizing the communication overhead by a
factor of n via allowing the CSP to compute and send µ = {µ̂k}1≤k≤s, where µ̂k =

∑n
i=1 µik. However,

this modification enables the CSP to simply cheat the verifier as follows:

µ̂k =

n∑
i=1

µik =

n∑
i=1

∑
(j,rj)∈Q

rj · b̃ijk =
∑

(j,rj)∈Q

rj ·
n∑

i=1

b̃ijk

Thus, the CSP can just keep the sectors summation
∑n

i=1 b̃ijk not the sectors themselves. Moreover,
the CSP can corrupt the block sectors and the summation is still valid. Therefore, we force the CSP
to send µ = {µik}1≤i≤n

1≤k≤s
, and the summation

∑n
i=1µik is done on the verifier side. The challenge

response protocol in the TB-DMCPDP scheme is summarized in Fig. 9.

3.6 The Proposed MB-DMCPDP Scheme
3.6.1 Map-Version Table
Our proposed MB-DMCPDP scheme is based on using a map-version table to support outsourcing of
dynamic data. This table is a small data structure stored on the verifier side to validate the integrity
and consistency of all file copies stored by the CSP. The map-version table consists of three columns:
serial number (SN ), block number (BN ), and version number (VN ). The SN is an indexing to the file
blocks. It indicates the physical position of a block in a data file. The BN is a counter used to make a
logical numbering/indexing to the file blocks. Thus, the relation between BN and SN can be viewed as
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Verifier CSP
1. Picks c (# of blocks to be challenged)
– and two fresh keys k1 and k2
2. Generates a set Q = {(j, rj)} :
– {j} = πk1

(l)1≤l≤c and {rj} = ψk2
(l)1≤l≤c

-
c, k1, k2−−−−−−−−−−−−−−−−−→

- 3. Generates a set Q as the verifier did
- 4. Computes σ =

∏
(j,rj)∈Q

σ
rj
j ∈ G1

- 5. Computes µ = {µik}, µik =
∑

(j,rj)∈Q

rj · b̃ijk ∈ Zp

- (i : 1→ n, k : 1→ s)
- 6. Calculates {H(b̃ij)} 1≤i≤n

(j,∗)∈Q
and ⟨Aij⟩ 1≤i≤n

(j,∗)∈Q

-

⟨σ,µ,{H(b̃ij)} 1≤i≤n
(j,∗)∈Q

,⟨Aij⟩ 1≤i≤n
(j,∗)∈Q

⟩

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
7. Constructs hDR using {H(b̃ij)} 1≤i≤n

(j,∗)∈Q
and ⟨Aij⟩ 1≤i≤n

(j,∗)∈Q

8. Computes V = h(IDF ||hDR), and checks V ?
=M (if fails returns 0 ).

9. Checks ê(σ, g) ?
= ê(

n∏
i=1

∏
(j,rj)∈Q

H(b̃ij)rj ·
s∏

k=1

u
∑n

i=1 µik

k , y)

Fig. 9: The challenge response protocol in the TB-DMCPDP scheme

a mapping between the logical number BN and the physical position SN . The VN indicates the current
version of file blocks. When a data file is initially created the VN of all blocks is 1. If a specific block is
being updated, its VN is incremented by 1. It is of significant importance to note that the verifier keeps
only one table for any arbitrary number of file copies.

3.6.2 MB-DMCPDP Procedural Steps
The procedures of our MB-DMCPDP scheme execution are as follows:
� Key Generation. The same as in the TB-DMCPDP scheme.
� Generation of Distinct Copies. The same as in the TB-DMCPDP scheme.
� Generation of Tags. Given the distinct file copies F̃ = {F̃i}, where F̃i = {b̃ijk}, the data owner runs the

TagGen algorithm to create a tag σij for each block b̃ij as σij = (H(IDF ||BN j ||VN j)·
∏s

k=1 u
b̃ijk
k )x ∈ G1

(i : 1→ n, j : 1→ m, k : 1→ s). In the tag computation, BN j is the logical number of the block at
physical position j, VN j is the current version of that block, and IDF is a unique file identifier for
each owner’s file constructed as Filename||n||u1|| . . . ||us. The IDF is embedded into the block tag
to prevent the CSP from cheating using blocks from different files. The data owner then generates
an aggregated tag σj for the blocks at the same indices in each copy F̃i as σj =

∏n
i=1 σij ∈ G1. Let

us denote the set of aggregated tags as Φ = {σj}1≤j≤m. The data owner sends {F,Φ, IDF } to the
CSP, and deletes the copies and the tags from its local storage. The map-version table is stored on
the local storage of the owner (or any trusted verifier).

� Dynamic Operations on the Data Copies. The dynamic operations in the proposed MB-DMCPDP
scheme are performed at the block level — as in our TB-DMCPDP scheme — via a request in the
general form ⟨IDF ,BlockOp, j, {b∗i }1≤i≤n, σ

∗
j ⟩. IDF is the file identifier, BlockOp is BM for modification,

BI for insertion, or BD for delete, j indicates the index of the block to be updated, {b∗i }1≤i≤n are the
new block values for all copies, and σ∗j is the new aggregated tag for the new blocks.
� Modification. For a file F = {b1, b2, . . . , bm}, suppose the owner wants to modify the block bj

with the block b′j for all file copies F̃. The owner runs the PrepareUpdate algorithm to do the
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following:
1) Updates VN j = VN j + 1 in the map-version table
2) Creates n distinct blocks {b̃′ij}1≤i≤n, where b̃′ij = EK(i||b′j) is fragmented into s sectors
{b̃′ij1, b̃′ij2, . . . , b̃′ijs}

3) Creates a new tag σ′ij for each block b̃′ij as

σ′ij = (H(IDF ||BN j ||VN j)·
∏s

k=1 u
b̃′ijk
k )x ∈ G1, then generates an aggregated tag σ′j =

∏n
i=1 σ

′
ij ∈

G1

4) Sends a modify request ⟨IDF ,BM, j, {b̃′ij}1≤i≤n, σ
′
j⟩ to the CSP

Upon receiving the modify request from the data owner, the CSP runs the ExecUpdate algorithms
to do the following:
1) Replaces the block b̃ij with b̃′ij∀i, and constructs an updated version of the file copies F̃′ =

{F̃ ′
i}1≤i≤n

2) Replaces σj with σ′j in the set Φ, and outputs Φ′ = {σ1, σ2, . . . , σ′j , . . . , σm}
� Insertion. For a file F = {b1, b2, . . . , bm}, suppose the owner wants to insert a new block b̂ after

position j for all file copies F̃. The data owner runs the PrepareUpdate algorithm to do the
following:
1) Constructs a new table entry ⟨SN ,BN ,VN⟩ = ⟨j+1, (Max{BN j}1≤j≤m)+1, 1 ⟩, and inserts

this entry in the map-version table after position j
2) Creates n distinct blocks {b̂i}1≤i≤n, where b̂i = EK(i||b̂) is fragmented into s sectors {b̂i1, b̂i2, . . . , b̂is}
3) Creates a new tag σ̂i for each block b̂i as

σ̂i = (H(IDF ||BN j+1||VN j+1) ·
∏s

k=1 u
b̂ik
k )x ∈ G1, then generates an aggregated tag σ̂ =∏n

i=1 σ̂i ∈ G1. Note that BN j+1 is the logical number of the new block with current version
VN j+1 = 1

4) Sends an insert request ⟨IDF ,BI, j, {b̂i}1≤i≤n, σ̂⟩ to the CSP
Upon receiving the insert request from the owner, the CSP runs the ExecUpdate algorithms to
do the following:
1) Inserts the block b̂i after position j in the file copy F̃i ∀i, and constructs a new version of the

file copies F̃′ = {F̃ ′
i}1≤i≤n

2) Inserts σ̂ after position j in the set Φ, and outputs Φ′ = {σ1, σ2, . . . , σj , σ̂, . . . , σm+1}, i.e.,
σj+1 = σ̂

� Append. Block append operation means adding a new block at the end of the outsourced data.
It can simply be implemented via insert operation after the last block of the data file.

� Deletion. To delete a specific data block at position j from all copies, the owner deletes the entry
at position j from the map-version table and sends a delete request ⟨IDF ,BD, j, null, null⟩ to the
CSP. Upon receiving this request, the CSP runs the ExecUpdate algorithms to do the following:
1) Deletes the existing blocks {b̃ij}1≤i≤n, and outputs a new version of the file copies F̃′ =

{F̃i}1≤i≤n

2) Deletes σj from Φ and outputs Φ′ = {σ1, σ2, . . . , σj-1, σj+1, . . . , σm−1}.
Fig. 10 shows the changes in the map-version table due to dynamic operations on a file F = {bj}1≤j≤8.
When the file is initially created SN j = BN j , and VN j = 1: 1 ≤ j ≤ 8. Fig. 10.b shows that VN 5

is incremented by 1 for updating the block at position 5. To insert a new block after position 3,
Fig. 10.c shows that a new entry ⟨4, 9, 1⟩ is inserted in the map-version table after SN 3, where 4
is the physical position of the newly inserted block, 9 is the new logical block number computed
by incrementing the maximum of all previous logical block numbers, and 1 is the version of the
new block. Deleting a block at position 2 requires deleting the table entry at SN 2 and shifting all
subsequent entries one position up (Fig. 10.d). Note that during all dynamic operations, the SN
indicates the actual physical positions of the data blocks in the file copies F̃.

� Challenge. The same as in the TB-DMCPDP scheme.
� Response. After generating the set Q = {(j, rj)} of random indices and values, the CSP runs the Prove
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Fig. 10: Changes in the map-version table due to different dynamic operations.

algorithm to generate an evidence that it is still correctly possessing the n copies in an updated and
consistent state. The CSP responds with a proof P = {σ, µ}, where

σ =
∏

(j,rj)∈Q

σ
rj
j ∈ G1 , µik =

∑
(j,rj)∈Q

rj · b̃ijk ∈ Zp, and µ = {µik}1≤i≤n
1≤k≤s

� Verify Response. Upon receiving the proof P = {σ, µ} from the CSP, the verifier runs the Verify
algorithm to check the following verification equation:

ê(σ, g)
?
= ê([

∏
(j,rj)∈Q

H(IDF ||BN j ||VN j)
rj ]n ·

s∏
k=1

u
∑n

i=1 µik

k , y) (2)

If the verification equation passes, the Verify algorithm returns 1, otherwise 0. The correctness of the
above verification equation (2) can be determined as follows:

ê(σ, g) = ê(
∏

(j,rj)∈Q

σ
rj
j , g)

= ê(
∏

(j,rj)∈Q

[

n∏
i=1

σij ]
rj , g)

= ê(
∏

(j,rj)∈Q

[

n∏
i=1

(H(IDF ||BN j ||VN j) ·
s∏

k=1

u
b̃ijk
k )x]rj , g)

= ê(
∏

(j,rj)∈Q

[

n∏
i=1

(H(IDF ||BN j ||VN j) ·
s∏

k=1

u
b̃ijk
k )]rj , y)

= ê(
∏

(j,rj)∈Q

n∏
i=1

H(IDF ||BN j ||VN j)
rj ·

∏
(j,rj)∈Q

n∏
i=1

s∏
k=1

u
rj ·b̃ijk
k , y)

= ê([
∏

(j,rj)∈Q

H(IDF ||BN j ||VN j)
rj ]n ·

s∏
k=1

u

∑n
i=1

∑
(j,rj)∈Q rj ·b̃ijk

k , y)

= ê([
∏

(j,rj)∈Q

H(IDF ||BN j ||VN j)
rj ]n ·

s∏
k=1

u
∑n

i=1 µik

k , y)

We have not let the CSP to compute and send µ = {µ̂k}1≤k≤s, where µ̂k =
∑n

i=1 µik as a countermea-
sure against a cheating that may be done on the CSP side by keeping only the sectors summation∑n

i=1 b̃ijk, not the sectors themselves, as we have previously illustrated in the TB-DMCPDP scheme.
The challenge response protocol in the MB-DMCPDP scheme is summarized in Fig. 11.
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Verifier CSP
1. Picks c (# of blocks to be challenged)
– and two fresh keys k1 and k2
2. Generates a set Q = {(j, rj)} :
– {j} = πk1

(l)1≤l≤c and {rj} = ψk2
(l)1≤l≤c

-
c, k1, k2−−−−−−−−−−−−−−−−−→

- 3. Generates a set Q as the verifier did
- 4. Computes σ =

∏
(j,rj)∈Q

σ
rj
j ∈ G1

- 5. Computes µ = {µik}, µik =
∑

(j,rj)∈Q

rj · b̃ijk ∈ Zp

- (i : 1→ n, k : 1→ s)

-

σ, µ={µik}1≤i≤n
1≤k≤s←−−−−−−−−−−−−−−−−−−−−

6. Checks ê(σ, g) ?
= ê([

∏
(j,rj)∈Q

H(IDF ||BN j ||VN j)
rj ]n ·

s∏
k=1

u
∑n

i=1 µik

k , y)

Fig. 11: The challenge response protocol in the MB-DMCPDP scheme

Remark 2. The proposed two schemes in this work support public verifiability where anyone (not
necessarily the owner) who knows the owner’s public key can send a challenge vector to the CSP and
verify the response. Public verifiability can solve disputes that may occur between the data owner and
the CSP regarding data integrity. If such a dispute occurs, we can resort to a trusted TPA to determine
whether the data integrity is maintained or not. Since the owner’s public key is only needed to perform
the verification protocol, the owner is not required to reveal his secret key to the TPA. The formal security
analysis of the proposed schemes is presented in Appendix B.

4 PERFORMANCE ANALYSIS AND EXPERIMENTAL RESULTS

4.1 Performance Analysis
In this section we evaluate the performance of the proposed schemes: TB-DMCPDP and MB-DMCPDP.
The computation cost of these schemes is estimated in terms of the cryptographic operations notated in
Table 1. G1 indicates a group of points over a suitable elliptic curve in the bilinear pairing.

TABLE 1: Notation of cryptographic operations

Notation Description
hSHA Cryptographic hashing
HG1 Hashing to G1

EG1 Exponentiation in G1

MG1 Multiplication in G1

MZp Multiplication in Zp

AZp Addition in Zp

P Bilinear pairing

Let n, m, and s denote the number of copies, the number of blocks per copy, and the number of sectors
per block, respectively. Let c denotes the number of blocks to be challenged, and |F | denotes the size of
the file copy. Without loss of generality, we assume that the desired security level is 128-bit. Thus, we
utilize an elliptic curve defined over Galois field GF (p) with |p| = 256 bits (a point on this curve can
be represented by 257 bits using compressed representation [5]), and a cryptographic hash of size 256
bits (e.g., SHA-256). Let the keys used with the PRP and the PRF be of size 128 bits. Table 2 presents a
theoretical analysis for the setup, storage, communication, computation, and dynamic operations costs
of the proposed schemes.
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TABLE 2: Performance of the proposed schemes. ‡ log2(m) is the upper bound of the authentication path length
when c >1

TB-DMCPDP MB-DMCPDP

System
Setup

Tag Generation (s+ 1)mn EG1+ mnHG1 (s+ 1)mn EG1+ mnHG1

+(sn+ n− 1)mMG1 +(sn+ n− 1)mMG1

Metadata Generation mnHG1 + (2m+ 1)nhSHA —

Storage
File Copies n|F | n|F |

CSP Overhead (257+512n)m bits 257m bits
Verifier Overhead 256 bits 64m bits

Communica-
tion Cost

Challenge 256+log2(c) bits 256+log2(c) bits

Response 257 + 256sn 257+256sn bits
+ (256 log2(m)+257)cn bits ‡

Computation
Cost

Proof c EG1+(c− 1)MG1+csnMZp c EG1+(c− 1)MG1+csnMZp

+(c− 1)snAZp+cnHG1 +(c− 1)snAZp

Verify (c log2(m) + 2)nhSHA‡
+2P+(c+ s) EG1+cnHG1 2P+(c+ s+ 1) EG1+ cHG1

+(cn+ s− 1)MG1+s(n− 1)AZp +(c+ s− 1)MG1+s(n− 1)AZp

Dynamic
Operations

Communication “Request” + O(n log2(m)) “Request”
State update O(n log2(m))hSHA —

4.2 Comments
Table 2 shows that the setup cost of the TB-DMCPDP scheme is higher than that of the MB-DMCPDP
scheme. This is due to the preparation of the MHTs for the file copies to generate the metadata M. The
storage overhead on the CSP for the MB-DMCPDP scheme is much less than that of the TB-DMCPDP
model. Storage overhead is the additional space used to store some information other than the outsourced
file copies F̃ (n|F | bits are used to store F̃). Both schemes need some additional space to store the
aggregated block tags Φ = {σj}1≤j≤m, where σj is an element in G1 that can be represented by 257 bits.
Besides Φ, the TB-DMCPDP scheme needs to store a MHT for each file copy which costs additional
storage space on the cloud servers. The MHTs can be computed on the fly during the operations of the
TB-DMCPDP scheme. This slight modification can reduce the storage overhead on the remote servers,
but it will negatively affect the overall system performance. The MHTs are needed through each dynamic
operation of the file blocks and through the verification phase of the system. Thus, being not explicitly
stored on the CSP can influence the system performance.

On the other hand, the TB-DMCPDP scheme only keeps a small metadata on the verifier side compared
to a map-version table with the MB-DMCPDP scheme. An entry of the map-version table is of size 8
bytes (two integers), and the total number of entries equals to the number of file blocks. It is important
to note that during implementation the SN is not needed to be stored in the table; SN is considered
to be the entry/table index (the map-version table is implemented as a linked list). Moreover, there is
only one table for all file copies which mitigates the storage overhead on the verifier side. The storage
complexities are O(m) and O(mn) for the map-version table and the n copies, respectively. For example,
if we are dealing with 64MB file with block size 4KB, the size of the map-version table will be only
128KB for any arbitrary number of copies (table size = 2MB for 1GB file).

From Table 2, the communication cost of the MB-DMCPDP scheme is less than that of the TB-DMCPDP
scheme. During the response phase, the map-based scheme sends one element σ (257 bits) and µ =
{µik}1≤i≤n

1≤k≤s
, where µik is represented by 256 bits. On the other hand, the tree-based approach sends

⟨σ, µ, {H(b̃ij)} 1≤i≤n
(j,∗)∈Q

, ⟨Aij⟩ 1≤i≤n
(j,∗)∈Q

⟩, where eachH(b̃ij) is represented by 257 bits, and Aij is an authentication

path of length ≈ O(log2m). Each node along Aij is a cryptographic hash of size 256 bits.
The CSP storage overhead and the communication cost during the response phase of the proposed

schemes are depicted in Fig. 12 for 64MB file with 4KB block size. Fig. 12.a shows the storage overhead
in MB on the remote servers for different number of copies. For the MB-DMCPDP scheme, the storage
overhead is independent of the number of copies n, while it is linear in n for the TB-DMCPDP scheme.
For 20 copies, the overhead on the CSP is 20.50MB and 0.50MB for the TB-DMCPDP and MB-DMCPDP
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Fig. 12: Storage and communication overhead of the proposed schemes.

schemes, respectively. Fig. 12.b shows the communication cost for both schemes using different number
of copies. The communication cost of the MB-DMCPDP scheme is much lower than that of the TB-
DMCPDP scheme. The response of the TB-DMCPDP scheme for 20 copies is 4.29MB, while it is 0.078MB
for the MB-DMCPDP scheme (the response is reduced by 98%). The challenge for both schemes is about
34 bytes.

Table 2 also presents the cost of dynamic operations for both schemes. During the dynamic operations
of the TB-DMCPDP scheme, the owner sends a request ⟨IDF ,BlockOp, j,
{b∗i }1≤i≤n, σ

∗
j ⟩ to the CSP and receives the authentication paths. Updating the state — MHTs on the CSP

and M on the owner — costs O(n log2(m))hSHA to update the MHTs of the file copies according to the
required dynamic operations, and regenerate the new directory root that constructs a new M. On the
other hand, for the MB-DMCPDP scheme, the owner only sends a request to the CSP and updates the
map-version table (the state) without usage of cryptographic operations (add, remove, or modify a table
entry).

4.3 Experimental Results
The experiments are conducted using C++ on a system with an Intel(R) Xeon (R) 2-GHZ processor and 3
GB RAM running Windows XP. In our implementation we use MIRACL library version 5.4.2 and 64MB
file with block size 4KB. For 128-bit security level, the elliptic curve group we work on has a 256-bit
group order. In the experiments, we utilize the Barreto-Naehrig(BN) [4] curve defined over prime field
GF (p) with |p| = 256 and embedding degree = 12 (the BN curve with these parameters is provided by
the MIRACL library). In the implementation we do not consider the time to access the file blocks, as the
state-of-the-art hard drive technology allows as much as 1MB to be read in just few nanoseconds [28].
Hence, the total access time is unlikely to have substantial impact on the overall system performance.
Table 3 presents the timing measurements (in milliseconds) obtained from the MIRACL library for the
cryptographic operations used in the implementations. All measurements are averages of thousands of
runs. The pairing operation consumes more time than other cryptographic operations, but the proposed
schemes use just only two pairings in the verification phase.

TABLE 3: Timing measurements for the cryptographic operations

Operation hSHA HG1 EG1 MG1 MZp AZp P
Time(ms) 0.012937 0.4728 2.0047 0.01156 0.00043 0.00015 88.656

We compare the proposed two schemes from both the CSP computation cost and the verifier compu-
tation cost. It has been reported in [2] that if the remote server is missing a fraction of the data, then the
number of blocks that needs to be checked in order to detect server misbehavior with high probability is
constant independent of the total number of file blocks. For example, if the server deletes 1% of the data
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file, the verifier only needs to check for c = 460-randomly chosen blocks of the file so as to detect this
misbehavior with probability larger than 99%. Therefore, in our experiments, we use c = 460 to achieve
a high probability of assurance.

For different number of copies, Table 4 presents the CSP computation times (in seconds) to provide
an evidence that the file copies are actually stored on the cloud servers in an updated, uncorrupted,
and consistent state. Also, it presents the verifier computation times (in seconds) to check the responses
received from the CSP. The speed-ups SCompt and SV erify of the MB-DMCPDP with respect to the TB-
DMCPDP are also presented. The speed-up = TimeTB-DMCPDP − TimeMB-DMCPDP

TimeTB-DMCPDP
× 100.

TABLE 4: CSP computation times (sec) and verifier computation times (sec) of the proposed schemes for different
number of copies.

CSP Computation Times Verifier Computation Times Speed-ups
# of Copies TB-DMCPDP MB-DMCPDP TB-DMCPDP MB-DMCPDP SCompt SV erify

1 1.17909 0.9616 1.66369 1.58035 18.45% 4.89%
5 2.18556 1.09812 2.88835 1.58243 49.76% 45.21%
10 3.44366 1.26878 4.41917 1.58253 63.16% 64.19%
15 4.70176 1.43944 5.95 1.58262 69.39% 73.4%
20 5.95985 1.61009 7.48082 1.58272 72.98% 78.84%
50 13.50843 2.63403 16.66577 1.58329 80.5% 90.5%
100 26.08939 4.34059 31.97402 1.58425 83.36% 95.05%

Table 4 shows that the map-based scheme outperforms the tree-based scheme from both the CSP and
the verifier computation times. The computation time over the cloud servers can be reduced up to 83%,
and the verification time can be reduced up to 95%. As illustrated in Table 4, the MB-DMCPDP scheme
has a very small increase in the verification time with increasing number of copies. This is due to the
fact that although the term s(n − 1)AZp

in the verification cost of the MB-DMCPDP scheme is linear
in n (§ Table 2), in our experiments its numerical value is quite small compared to those of the other
terms in the cost expression. This feature makes the map-based scheme more efficient when verifying a
large number of file copies, and computationally cost-effective when the verification process is done in
a constrained environment with limited verifier’s computational power.

5 IDENTIFYING CORRUPTED COPIES

Here, we show how the proposed MB-DMCPDP scheme can be slightly modified to identify the indices
of corrupted copies. The same ideas can be applied to the TB-DMCPDP scheme.

The proof P = {σ, µ} generated by the CSP will be valid and will pass the verification equation (2) only
if all copies are intact and consistent. Thus, when there is one or more corrupted copies, the whole auditing
procedure fails. To handle this situation and identify the corrupted copies, a slightly modified version of
the MB-DMCPDP scheme can be used. In this version, the data owner generates a tag σij for each block
b̃ij , but does not aggregate the tags for the blocks at the same indices in each copy, i.e., Φ = {σij} 1≤i≤n

1≤j≤m
.

During the response phase, the CSP computes µ = {µik}1≤i≤n
1≤k≤s

as before, but σ =
∏

(j,rj)∈Q

[

n∏
i=1

σij ]
rj ∈ G1.

Upon receiving the proof P = {σ, µ}, the verifier first validates P using equation (2). If the verification
fails, the verifier asks the CSP to send σ = {σi}1≤i≤n, where σi =

∏
(j,rj)∈Q

σ
rj
ij . Thus, the verifier has two

lists σList = {σi}1≤i≤n and µList = {µik}1≤i≤n
1≤k≤s

(µList is a two dimensional list).

Utilizing a recursive divide-and-conquer approach (binary search) [14], the verifier can identify the
indices of corrupted copies. Specifically, σList and µList are divided into halves: σList→ (σLeft:σRight),
and µList→ (µLeft:µRight). The verification equation (2) is applied recursively on σLeft with µLeft and
σRight with µRight. Note that the individual tags in σLeft or σRight are aggregated via multiplication
to generate one σ that is used during the recursive application of equation (2). The procedural steps of
identifying the indices of corrupted copies are indicated in Algorithm 1. The BS (binary search) algorithm
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takes four parameters: σList, µList, start that indicates the start index of the currently working lists, and
end to indicate the last index of the working lists. The initial call to the BS algorithm takes (σList, µList,
1, n). The invalid indices are stored in invalidList which is a global data structure.

Algorithm 1: BS(σList, µList, start, end)

begin
len←− (end−start)+1 /* The list length */
if len = 1 then

σ ←− σList[start]
{µk}1≤k≤s ←− µList[start][k]

ê(σ, g)
?
= ê(

∏
(j,rj)∈Q

H(IDF ||BN j ||VN j)
rj ·

s∏
k=1

uµk

k , y)

if NOT verified then
invalidList.Add(start)

end
else

σ ←−
len∏
i=1

σList[start+i− 1]

{µik}1≤i≤len
1≤k≤s

←− µList[start+i− 1][k]

ê(σ, g)
?
= ê([

∏
(j,rj)∈Q

H(IDF ||BN j ||VN j)
rj ]len ·

s∏
k=1

u
∑len

i=1 µik

k , y)

if NOT verified then
/* work with the left and right halves of σList and µList */

mid←− ⌈(start+end)/2⌉ /* List middle */
BS(σList, µList, start, mid) /* Left part */
BS(σList, µList, mid+1, end) /* Right part */

end
end

end

This slight modification to identify the corrupted copies increases the storage overhead on the cloud
servers, where the CSP has to store mn tags for the file copies F̃ compared with m tags in the original
version. Moreover, the challenge-response phase is done in two rounds if the initial round to verify all
copies fails.

We design experiments to show the effect of identifying the corrupted copies on the verification time.
We generate 100 copies and randomly corrupt a percentage — ranging from 1% to 50% — of the file copies.
Table 5 presents the verification time (in seconds) with different corrupted percentages. The verification
time is 18.99189 seconds when 1% of the copies are invalid compared with 1.58425 seconds (§Table 4)
when all copies are intact. As observed from Table 5, if more than 15% of the copies are corrupted, it
is more efficient to separately validate each file copy. Individual verifications of the 100 copies requires
100×1.58035 = 158.035 seconds.

In short, the proposed schemes can be slightly modified to support the feature of identifying the
corrupted copies at the cost of some extra storage, communication, and computation overheads.

6 SUMMARY AND CONCLUDING REMARKS

Increasingly more and more individuals and organizations are outsourcing their data to remote servers
alleviating the burden of local data storage and maintenance. In this work we have studied the problem
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TABLE 5: Verification times when different percentages of 100 copies are corrupted

Corrupted Percentage Verification Time (sec)
1% 18.99189
5% 60.11692
10% 98.08061
15% 148.69183
20% 170.83106
50% 284.66757

of creating multiple copies of dynamic data file and verifying those copies stored on untrusted cloud
servers.

We have proposed two schemes: TB-DMCPDP and MB-DMCPDP. These schemes support outsourcing
of dynamic data, where the data owner is capable of not only archiving and accessing the data copies
stored by the CSP, but also updating and scaling these copies on the remote servers. The interaction
between the authorized users and the CSP is considered in our schemes, where the authorized users
can seamlessly access a data copy received from the CSP using a single secret key shared with the data
owner. Moreover, the proposed schemes support public verifiability, enable arbitrary number of auditing,
and allow possession-free verification where the verifier has the ability to verify the data integrity even
though he neither possesses nor retrieves the file blocks from the server.

The proposed schemes have been shown to be provably secure via security analysis. Through per-
formance analysis and experimental results, we have demonstrated that the proposed MB-DMCPDP
scheme outperforms the TB-DMCPDP approach that can be considered as a fine-tuned extension to
the single-copy DPDP schemes based on authenticated data structures. Such extension leads to high
storage overhead on the remote servers and high computations on both the CSP and the verifier sides.
The dynamic block operations of the map-based approach are efficiently done with less communication
and computation costs. Moreover, the MB-DMCPDP scheme significantly reduces the computation time
during the challenge-response phase which makes it more efficient for practical applications where a large
number of verifiers are connected to the CSP causing a huge computation overhead over the servers.
Besides, it has lower storage overhead on the servers, and thus reduces the fees paid by the cloud
customers.

A slight modification can be done on the proposed schemes to support the feature of identifying the
indices of corrupted copies. The corrupted data copy can be reconstructed even from a complete damage
using duplicated copies on other servers.
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APPENDIX A
EXAMPLES OF THE TB-DMCPDP SCHEME

This appendix contains some examples of the TB-DMCPDP scheme that demonstrate the effect of dynamic
operations on the MHTs over the CSP side. Moreover, these examples show how the owner uses the
information received from the CSP to generate the new directory root and update the metadata. We
assume that the data owner has a file of 4 blocks and the CSP stores n copies of this file. Also we assume
that during the system setup, the owner and the CSP have agreed to use left-to-right sequence to generate
the Merkle trees.
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Fig. 13: Effect of block modification operation on the MHTs and the directory root.

� Modification. Fig. 13 shows that the second block is to be modified in all copies outsourced to the CSP.
On the CSP side, the dashed nodes indicate the tree nodes that are updated due to the modification
of the second block. The dashed leaf nodes {h12, h22, . . . , hn2} are updated as hi2 = h(H(b̃′i2)),
where b̃′i2 — created and sent from the owner — is the modified second block dedicated for copy
i: 1 ≤ i ≤ n. The dashed non-leaf nodes are updated by h(left child || right child). The grey
nodes indicate the authentication paths of the modified blocks, e.g., {h11, h1B} is the authentica-
tion path of the modified block b̃′12. On the owner side, the owner uses the authentication paths
⟨{h11, h1B}, {h21, h2B}, . . . , {hn1, hnB}⟩ sent from the CSP and the modified blocks {b̃′12, b̃′22, . . . , b̃′n2}
to generate the new directory root h′DR and update the metadata M′ = h(IDF ||h′DR). The dashed
nodes indicate the generated cryptographic hashes using the authentication paths (grey circles) sent
from the CSP and the modified blocks {b̃′i2}1≤i≤n. Thus, h12 = h(H(b̃′12)), h1A = h(h11||h12), and
h1R = h(h1A||h1B). The computation of {hiR}2≤i≤n is done in the same way. The owner uses the
computed {hiR}1≤i≤n to generate the updated directory root h′DR, and finally computes the updated
metadata M′ = h(IDF ||h′DR).

� Insertion. Fig. 14 shows that a new block is to be inserted after position 2 in all copies outsourced
to the CSP. On the CSP side, the cross-dashed nodes indicate the newly added leaf nodes, i.e., ĥi2 =
h(H(b̂i)), where b̂i — created and sent from the owner — is the new block to be inserted in copy
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Fig. 14: Effect of block insertion operation on the MHTs and the directory root.

i: 1 ≤ i ≤ n. The dashed nodes indicate the tree nodes that are updated due to the insertion of
the new block. The updated hash values of these nodes are computed as h(left child||right child).
The nodes {ĥiC}1≤i≤n are generated to re-arrange the structure of the MHTs according to the newly
added leaf nodes. The grey nodes indicate the authentication paths of the newly inserted blocks, e.g.,
{h12, h11, h1B} is the authentication path of the new block b̂1. On the owner side, the owner uses the
authentication paths ⟨{h12, h11, h1B}, {h22, h21, h2B}, . . . , {hn2, hn1, hnB}⟩ sent from the CSP and the
new blocks {b̂1, b̂2, . . . , b̂n} to generate the new directory root h′DR and update the metadata M′ =
h(IDF ||h′DR). The dashed nodes indicate the generated cryptographic hashes using the authentication
paths (grey circles) sent from the CSP and the new blocks {b̂i}1≤i≤n. Thus, ĥ1 = h(H(b̂1)), ĥ1C =
h(h12||ĥ1), h1A = h(h11||ĥ1C), and h1R = h(h1A||h1B). The computation of {hiR}2≤i≤n are done the
same way. The owner uses the computed {hiR}1≤i≤n to generate the updated directory root h′DR,
and finally computes the updated metadata M′ = h(IDF ||h′DR).

� Deletion. Fig. 15 shows that the second block is to be deleted from all copies outsourced to the
CSP. On the CSP side, the leaf nodes with crosses indicate the nodes to be deleted. The fragmented
curved arrows indicate that after deleting the specified leaf nodes, the nodes {hi1}1≤i≤n replace the
nodes {hiA}1≤i≤n, and thus the MHTs are re-arranged. The dashed nodes indicate the tree nodes
that are updated due to the deletion of the second block. The updated hash values of these nodes
are computed as h(left child||right child). The grey nodes indicate the authentication paths of the
deleted blocks, e.g., {h11, h1B} is the authentication path of the deleted block b̃12. On the owner side,
the owner uses the authentication paths ⟨{h11, h1B}, {h21, h2B}, . . . , {hn1, hnB}⟩ sent from the CSP to
generate the new directory root h′DR and update the metadataM′ = h(IDF ||h′DR). The dashed nodes
indicate the generated cryptographic hashes using the authentication paths (grey circles) sent from
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Fig. 15: Effect of block deletion operation on the MHTs and the directory root.

the CSP. Thus, hiR = h(hi1||hiB) : 1 ≤ i ≤ n. The owner uses the computed {hiR}1≤i≤n to generate
the updated directory root h′DR, and finally computes the updated metadata M′ = h(IDF ||h′DR).

APPENDIX B
SECURITY ANALYSIS

In this section we present a formal security analysis for the proposed schemes. The essence of the security
analysis for both schemes is similar, so we only present the security analysis for the MB-DMCPDP
scheme. For the TB-DMCPDP scheme, we should note that the verification step of the metadata M will
fail unless the CSP sends the correct information {H(b̃ij)} 1≤i≤n

(j,∗)∈Q
along with the accurate authentication

paths ⟨Aij⟩ 1≤i≤n
(j,∗)∈Q

for the blocks being challenged. This is due to the collision resistance property of the

cryptographic hash function h and the used sequence to reconstruct the directory root hDR.
In our security analysis, we depend on the hardness of the computational Diffie-Hellman (CDH)

problem and the discrete logarithm (DL) problem.
Definitions.

1) CDH problem: given g, gx, h ∈ G for some group G and x ∈ Zp , compute hx

2) DL problem: given g, h ∈ G for some group G, find x such that h = gx.
We will demonstrate that the cloud servers can provide valid responses to verifier’s challenges only if
they actually have all data copies in a consistent and uncorrupted state.

Theorem 1. Assuming the hardness of both the CDH and the DL problems in bilinear groups, the verifier of
the proposed MB-DMCPDP scheme accepts a response to a challenge vector only if a correctly computed proof
P = {σ, µ}, where µ = {µik}1≤i≤n

1≤k≤s
is sent from the CSP.

Proof. First, since the IDF is embedded into the block tag, the CSP cannot use blocks from different files
and pass the auditing procedures even if the owner uses the same secret key x with all his files. Second,
the goal of a malicious CSP is to generate a response that is not correctly computed and to pass the
verification process.
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We prove the theorem by contradiction. Let P′ = {σ′, µ′} be the malicious CSP’s response, where
µ′ = {µ′ik}1≤i≤n

1≤k≤s
. Let P = {σ, µ} be the expected response from an honest CSP, where σ =

∏
(j,rj)∈Q σ

rj
j ,

µ = {µik}1≤i≤n
1≤k≤s

, and µik =
∑

(j,rj)∈Q rj · b̃ijk. If the malicious CSP’s response P′ = {σ′, µ′} passes the

verification equation (2), then we can find a solution to the CDH problem and the DL problem.
According to the correctness of MB-DMCPDP scheme, the expected proof P = {σ, µ} satisfies the

verification equation, i.e.,

- ê(σ, g) = ê([
∏

(j,rj)∈Q

H(IDF ||BN j ||VN j)
rj ]n ·

s∏
k=1

u
∑n

i=1 µik

k , y)

Assume that σ′ ̸= σ, and σ′ passes the verification equation, then we have

- ê(σ′, g) = ê([
∏

(j,rj)∈Q

H(IDF ||BN j ||VN j)
rj ]n ·

s∏
k=1

u
∑n

i=1 µ
′
ik

k , y)

Obviously, if µ′ik = µik ∀(i, k), it follows from the above verification equations that σ′ = σ which
contradicts our assumption. Let us define ∆µik = µ′ik − µik (1 ≤ i ≤ n, 1 ≤ k ≤ s). It must be the
case that at least one of {∆µik}1≤i≤n

1≤k≤s
is nonzero. Dividing the verification equation for the malicious

response by the verification equation for the expected response, we obtain

ê(σ′ · σ−1, g) = ê(

s∏
k=1

u
∑n

i=1 ∆µik

k , y)

ê(σ′ · σ−1, g) = ê(

s∏
k=1

u
x·
∑n

i=1 ∆µik

k , g)

σ′ · σ−1 =

s∏
k=1

u
x·
∑n

i=1 ∆µik

k .

We set uk = gαkhβk for αk, βk ∈ Zp, and thus

σ′ · σ−1 =

s∏
k=1

(gαkhβk)x·
∑n

i=1 ∆µik

σ′ · σ−1 =

s∏
k=1

(yαkhx.βk)
∑n

i=1 ∆µik

σ′ · σ−1 = y
∑s

k=1 αk·
∑n

i=1 ∆µik · hx·
∑s

k=1 βk·
∑n

i=1 ∆µik

hx = (σ′ · σ−1 · y−
∑s

k=1 αk·
∑n

i=1 ∆µik)
1∑s

k=1
βk·

∑n
i=1

∆µik .

Hence, we have found a solution to the CDH problem unless evaluating the exponent causes a division
by zero. However, we noted that not all of {∆µik}1≤i≤n

1≤k≤s
can be zero and the probability that βk = 0 is 1

p

which is negligible. Therefore, if σ′ ̸= σ, we can use the malicious CSP to break the CDH problem, and
thus we guarantee that σ′ must be equal to σ.

It is only the values µ′ = {µ′ik}1≤i≤n
1≤k≤s

and µ = {µik}1≤i≤n
1≤k≤s

that can differ. Assume that the malicious

CSP responds with σ′ = σ and µ′ ̸= µ. Now we have

- ê(σ, g) = ê([
∏

(j,rj)∈Q

H(IDF ||BN j ||VN j)
rj ]n ·

s∏
k=1

u
∑n

i=1 µik

k , y) =

− ê(σ′, g) = ê([
∏

(j,rj)∈Q

H(IDF ||BN j ||VN j)
rj ]n ·

s∏
k=1

u
∑n

i=1 µ
′
ik

k , y)

from which we conclude that

ê([
∏

(j,rj)∈Q

H(IDF ||BN j ||VN j)
rj ]n ·

s∏
k=1

u
∑n

i=1 µik

k , y) = ê([
∏

(j,rj)∈Q

H(IDF ||BN j ||VN j)
rj ]n ·

s∏
k=1

u
∑n

i=1 µ
′
ik

k , y).
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Thus,

1 = ê(

s∏
k=1

u
∑n

i=1 ∆µik

k , y)

1 =

s∏
k=1

(gαkhβk)
∑n

i=1 ∆µik

1 = g
∑s

k=1 αk.
∑n

i=1 ∆µik · h
∑s

k=1 βk.
∑n

i=1 ∆µik

h = g
−

∑s
k=1

αk·
∑n

i=1 ∆µik∑s
k=1

βk·
∑n

i=1
∆µik .

Now, we have found a solution to the DL problem unless evaluating the exponent causes a division
by zero. However, the probability that βk = 0 is 1

p which is negligible. Therefore, if there is at least one
difference between {µ′ik}1≤i≤n

1≤k≤s
and {µik}1≤i≤n

1≤k≤s
, we can use the malicious CSP to break the DL problem.

As a result, we guarantee that {µ′ik} must be equal to {µik} ∀(i, k). �


