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Abstract

In this paper we find the lower bound of second-order nonlinearity of Boolean
function fλ(x) = Trn1 (λxp) with p = 22r + 2r + 1, λ ∈ F∗2r and n = 5r. It is
also demonstrated that the lower bound obtained in this paper is much better
than the lower bound obtained by Iwata-Kurosawa [14], and Gangopadhyay et
al. (Theorem 1, [12]).
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1 Introduction

Let F2 = {0, 1} be the prime field of characteristic 2. Let Fn2 be an n-
dimensional vector space over F2. There is a vector space isomorphism between
Fn2 and F2n , F2n is the finite extension field over F2 of degree n. Therefore, Fn2
can be viewed as F2n . Boolean function on n-variables is a mapping from Fn2 to
F2(equivalently from F2n to F2). The set of all Boolean functions on n- variables
is denoted Bn. The Hamming weight of x = (x1, x2, . . . , xn) ∈ Fn2 is defined as
wt(x) =

∑n
i=1 xi. The hamming distance between two Boolean functions f and

g is defined as d(f, g) = |{x ∈ F2n : f(x) 6= g(x)}|, where the cardinality of a set
S is denoted by |S|. The Algebraic Normal Form (ANF) of a Boolean function
f ∈ Bn is defined as

f(x = x1, x2, ..., xn) =
⊕

a=(a1,...,an)∈Fn
2

µa(
n∏
i=1

xai
i ),
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where µa ∈ F2 for all a ∈ Fn2 . The maximum value of wt(a) such that µa 6= 0
is called the algebraic degree of f and denoted by deg(f). The rth-order Reed–
Muller code R(r, n) of length 2n and of order r is the set of all Boolean functions
on n-variables with algebraic degree at most r.

Definition 1.1 The nonlinearity of Boolean function f ∈ Fn2 is defined as the
minimum Hamming distance of f from all affine Boolean functions (affine Boolean
functions are those Boolean functions whose algebraic degree are at most 1 ).
Mathematically

nl(f) = min{dH(f, l)|l ∈ An},

where An is the set of all affine Boolean function on n-varibles.

Definition 1.2 Let f ∈ Bn. For every non-negative integer 0 < r ≤ n, the
rth-order nonlinearity of f is the minimum Hamming distance of f from all n-
variables Boolean functions of degrees at most r (r ≥ 1) and denoted denoted by
nlr(f). In other words, the rth-order nonlinearity of f is equal to the minimum
Hamming distance of f from the rth-order Reed–Muller code R(r, n) of length 2n

and of order r. The sequence of values nlr(f), for r ranging 1 to n − 1, is said
to be nonlinearity profile of Boolean function f .

When Boolean functions are used in stream or block ciphers their nonlinearities
play an important role with respect to the security of the considered ciphers.
The relationship between explicit attack and nonlinearity on symmetric ciphers
was found by Matsui [18]. There is a lot of research on first-order nonlinearity
but very little is known about higher-order nonlinearity. The best known upper
bound [?] on nlr(f) has asymptotic version

nlr(f) = 2n−1 −
√

15
2
· (1 +

√
2)r−2 · 2

n
2 +O(nr−2).

There are no efficent algorithm to compute the rth-order nonlinearity of Boolean
function f for (r ≥ 1). However, In [10, 11, 15] list decoding algorithms for higher
order Reed-Muller codes are used to compute second-order nonlinearities. These
algorithms are good for n ≤ 11 and for n ≤ 13 for some particular functions.
Sun and Wu [24] have found lower bounds of the second-order nonlinearities of
three classes of cubic bent Boolean functions. Gangopadhyay et al. [12] have
found the second order-nonlinearity of fλ(x) = Trn1 (λxp) with p = 22r + 2r + 1,
λ ∈ F∗2n and n = 6r. Sun and Wu [25], Deep Singh [23] have found the second
order-nonlinearity of fλ(x) = Trn1 (λxp) with p = 22r+2r+1, λ ∈ F∗2r for n = 4r,
n = 3r respectively.

The lower bound of rth-order nonlinearity of Boolean function f from a
given algebraic immunity has been studied in [4]. It was improved in [2]. It
gives better results than the results obtained by Iwata-Kurosawa [14]. In this
paper we find the lower bound of second-order nonlinearity of Boolean function
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fλ(x) = Trn1 (λxp) with p = 22r + 2r + 1, λ ∈ F∗2r and n = 5r. It is also
demonstrated that the lower bound obtained in this paper is much better than
the lower bound obtained by Iwata-Kurosawa [14], and Gangopadhyay et al.
(Theorem 1, [12]).

2 Preliminaries

Definition 2.1 The Walsh transform of f ∈ Bn at λ ∈ Fn2 is defined as

Wf (λ) =
∑
x∈Fn

2

(−1)f(x)+λ·x.

The multiset [Wf (λ) : λ ∈ Fn2 ] is said to be the Walsh spectrum of the Boolean
function f . The relation between nonlinearity and Walsh spectrum is given as
follows

nl(f) = 2n−1 − 1
2

max
λ∈Fn

2

|Wf (λ)|.

Using Parseval’s equality it can be proved that for any positive integer n, their
exists a λ ∈ Fn2 , such that |Wf (λ)| ≥ 2

n
2 , which implies nl(f) ≤ 2n−1 − 2

n
2
−1.

The derivative of Boolean function f ∈ Bn with respect to a ∈ F2n is defined
as a Boolean function Daf(x) = f(x+ a) + f(x) for all x ∈ F2n .

Definition 2.2 Let a1, a2, ..., ak is a basis of k-dimensional subspace Vk of F2n.
The k-th derivative of f with respect to Vk is defined as a function

DVk
f(x) = Dak

Dak−1
...Da1f(x) for all x ∈ F2n .

Remark 2.1 It is to be noted that the DVk
f is independent of the choice of the

basis of Vk.

The trace function from L = F2n into S = F2c (where c|n) is defined as

TrLS (x) =

n
c
−1∑
i=0

x2ci, for all x ∈ F2n .

If c = 1, we called absolute trace function and denoted as Trn1 (or Tr). Trn1 (xy)
is called an inner product of x and y for any x, y ∈ F2n . The some known
properties of trace function are following [].

1. TrLS (αx+ βy) = αTrLS (x) + βTrLS (y) for all α, β ∈ Q and x, y ∈ L.

2. TrLS (xs) = TrLS (x) for all x ∈ L and s = 2c.

3. (Transitivity property) Let R be a finite field. Let F be a finite extension
of R and L be a finite extension of F , that is L ⊃ F ⊃ R. Then

TrLR(α) = TrFR(TrLF (α)) for all α ∈ L.
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2.1 Quadratic Boolean functions

In this subsection, we give some lemmas which are used in this paper.

Let q be a some power of 2. Let W be a vector space over Fq with n-variables.
A function Q from V to Fq is said to a quadratic function on V . If it satisfy
following:

1. Q(cx) = c2Q(x) for any c ∈ Fq and x ∈ V ,

2. B(x, y) := Q(x+ y) +Q(x) +Q(y) is bilinear on V .

The kernel [1, 21] of B(x, y) is the subspace of V defined by

Ef = {x ∈ F2n : B(x, y) = 0 for all y ∈ V }.

Lemma 2.1 ([1], Proposition 1) Let V be a vector space over a field Fq of
characteristic 2 and Q : V → Fq be a quadratic form. Then the dimension of V
and the dimension of the kernel of Q have the same parity.

Lemma 2.2 ([1], Lemma 1) Let f be a quadratic Boolean function . The kernel
of f is the subspace of F2n having those b such that Db(f) is constant. Mathe-
matically

Ef = {b ∈ F2n : Db(f) = constant}.

Lemma 2.3 [1, 21] if f : F2n → F2 is a quadratic Boolean function and B(x, y)
is the quadratic form associated to it, then the Walsh Spectrum of f depends only
on the dimension k, of the kernel, Ef , of B(x, y). The weight distribution of the
Walsh spectrum of f is:

Wf (α) Number of α
0 2n − 2n−k

2
n+k

2 2
n−k−1

2 + (−1)f(0)2
n−k−2

2

−2
n+k

2 2
n−k−1

2 − (−1)f(0)2
n−k−2

2

2.2 The lower bounds which have been obtained pre-
viously

Carlet [3] proved the following results.

Proposition 2.1 ([3], Proposition 2) Let f be an n-variables Boolean func-
tion and r be a positive integer smaller then n, we have

nlr(f) ≥ 1
2

max
a∈F2n

nlr−1(Daf).
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Corollary 2.1 ([3], Corollary 2) Let f be an n-variables Boolean function
and r be a positive integer smaller then n Assume that, for some non negative
integers M and m, we have

nlr−1(Daf) ≥ 2n−1 −M2m (1)

for every nonzero a ∈ F2n. Then we have

nlr(f) ≥ 2n−1 − 1
2

√
(2n − 1)M2m+1 + 2n

≈ 2n−1 −
√
M2

n+m−1
2 . (2)

Definition 2.3 ([17], Page 99) A polynomial of the form

L(x) =
n∑
i=0

βix
qi

with the coefficients βi in an extension field Fqm of Fq is called Linearized Poly-
nomial over Fqm.

3 Main Results

Lemma 3.1 Consider the Boolean function fλ(x) = Trn1 (λxp) with p = 22r +
2r + 1, λ ∈ F∗2r and n = 5r. Then the dimension of the kernel of the bilinear
form associated to Da(fλ(x)) is either r or 3r.

Proof The algebraic degree of Boolean function fλ(x) is 3. The derivative
Da(fλ(x)) with respect to a ∈ F∗2n is

Da(fλ(x)) = fλ(x+ a) + fλ(x)

= Trn1 (λ(x+ a)2
2r+2r+1) + Trn1 (λx22r+2r+1)

= Trn1 (λ(ax22r+2r
+ a2r

x22r+1 + a22r
x2r+1 + a2r+1x22r

+a22r+1x2r
+ a22r+2r

x+ a22r+2r+1)).

which is a quadratic Boolean function. Therefore, the Walsh spectrum of
Boolean function Da(fλ(x))) is equal to the Walsh spectrum of the function
Gλ(x), whereGλ(x) is obtained by removing all affine monomials fromDa(fλ(x)).

Gλ(x) = Trn1 (λ(ax22r+2r
+ a2r

x22r+1 + a22r
x2r+1)).

Gλ(x) can also be written as

Gλ(x) = Trn1 (λa2r
x22r+1 + (λ24r

a24r
+ λa22r

)x2r+1).
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Because 22r + 1 and 2r + 1 are not lie in the same cyclotomic coset. Therefore,
Gλ(x) is not equal to zero for a ∈ F∗2n . Therefore Gλ(x) is a quadratic Boolean
function. By Lemma 2.2, 2.3, the Walsh spectrum of Gλ(x) depends on the
dimension k of the kernel of Gλ(x) which is the subspace of those b such that
Db(Gλ(x)) is constant. The derivative Db(Gλ(x)) is

Db(Gλ(x)) = Gλ(x+ b) +Gλ(x)

= Trn1 (λ(a(x+ b)2
2r+2r

+ a2r
(x+ b)2

2r+1 + a22r
(x+ b)2

r+1))

+Trn1 (λ(ax22r+2r
+ a2r

x22r+1 + a22r
x2r+1))

= Trn1 (λ((ab2
r

+ a2r
b)x22r

+ (ab2
2r

+ a22r
b)x2r

+ (a2r
b2

2r
+ a22r

b2
r
)x))

+Trn1 (λ(ab2
2r+2r

+ a2r
b2

2r+1 + a22r
b2

r+1)).

Since x, a, b ∈ F2n and λ ∈ F∗2r . Therefore, x2n
= x, a2n

= a, b2
n

= b, λ2r
= λ.

We get

Db(Gλ(x)) = Trn1 (λx((a23r
+ a2r

)b2
4r

+ a24r
b2

3r
+ a2r

b2
2r

+ (a24r
+ a22r

)b2
r
))

+Trn1 (λ(ab2
2r+2r

+ a2r
b2

2r+1 + a22r
b2

r+1))

Clearly , Db(Gλ(x)) is equal to the constant if and only if

(a23r
+ a2r

)b2
4r

+ a24r
b2

3r
+ a2r

b2
2r

+ (a24r
+ a22r

)b2
r

= 0.

Or it is equivalent to the following

(a22r
+ a)b2

3r
+ a23r

b2
2r

+ ab2
r

+ (a23r
+ a2r

)b = 0. (3)

It is to be noted that equation 3 is a 2r-polynomial. Since a polynomial of the
form L(x) =

∑n
i=0 βix

qi
with the coefficients βi in an extension field Fqm of Fq

is called q-Polynomial over Fqm . Let

M(b) = (a22r
+ a)b2

3r
+ a23r

b2
2r

+ ab2
r

+ (a23r
+ a2r

)b.

As a consequence, the dimension of the kernel ofM(x) equals to sr, for s = 0, 1, 2,
or 3.

Now quadratic form from Fq5 to Fq (q = 2r)

N(x) = TrLE(λ(ax22r+2r
+ a2r

x22r+1 + a22r
x2r+1)),

where L = F25r and E = F2r .
The set of roots of M(x) is also the kernel of N(x). Indeed, the kernel of

N(x) is the set of those b such that B(x) = 0 for all x where B(x) is given as

B(x) = N(x) +N(b) +N(x+ b).
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Because Db(Gλ(x)) = TrEF2
(B(x)), We get

B(x) = TrLE(xM(b)).

Therefore, the kernel of N(x) is equal to the kernel of M(x). By Lemma 2.1,
the dimension of the kernel of N(x) must have the same parity as 5. Hence this
is odd. Therefore, the the dimension of the kernel of N(x) is either 1 or 3 which
imply that the one root of M(x) is either r or 3r, that is, the dimension of the
kernel of the bilinear form associated to Da(fλ(x)) is either r or 3r (k = r or
k = 3r).

Theorem 3.1 Consider the Boolean function fλ(x) = Trn1 (λxp) with p = 22r +
2r + 1, λ ∈ F∗2r and n = 5r. Then

nl2(fλ(x)) ≥ 2n−1 − 2
3n+3r−4

4 .

Proof From lemma 3.1, the dimension of the kernel of the bilinear form as-
sociated to Da(fλ(x)) is either r or 3r (k = r or k = 3r). From equation
??, nonlinearity of Da(fλ(x)) that is, nl(Da(fλ(x))) is either 2n−1 − 1

22
n+r

2 or
2n−1 − 1

22
n+3r

2 . Therefore, we have

max
a∈Fn

2

(nl(Da(fλ(x))) = 2n−1 − 1
2

2
n+r

2 .

Therefore, by proposition 2.1, we have

nl2(fλ(x)) ≥ (2n−2 − 2
n+r−4

2 ). (4)

For a ∈ F∗2n , we also have

nl(Da(fλ(x))) = 2n−1 − 1
2

2
n+3r

2 . (5)

We can also improve the lower bound on comparing equation 5 with the equation
1. After comparing , we get M = 1 and m = n+3r−2

2 . Therefore, using the value
of M and m in equation 2, we get

nl2(fλ(x)) ≥ 2n−1 − 2
3n+3r−4

4 . (6)

From the above it is clear, the lower bound obtained by equation 6 is better than
the lower bound obtained by equation 4 for r > 1. So, we have

nl2(fλ(x)) ≥ 2n−1 − 2
3n+3r−4

4 .
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4 Comparison

We compare our lower bound obtained in Theorem 3.1 with the lower bound ob-
tained by Iwata-Kurosawa [14], and also compare with the lower bound obtained
by Gangopadhyay, Sarkar and Telang (Theorem 1, [12]) in the following table.

n , r 10, 2 15, 3 20, 4 25, 5 30, 6
Bound obtained in Theorem 1 256 10592 393216 1.3811 × 107 4.6976 × 108

Iwata-Kurosawa’s bound 192 6144 196608 6.2914 × 106 2.0132 × 108

Bound obtained in (Theorem 1, [12]) N/A N/A N/A N/A 4.4196 × 108

35, 7 40, 8 45, 9 50, 10 55, 11 60, 12
1.5661 × 1010 5.1539 × 1011 1.6814 × 1013 5.4535 × 1014 1.7616 × 1016 5.6745 × 1017

6.4424 × 109 2.0615 × 1011 6.5970 × 1012 2.1110 × 1014 6.7553 × 1015 2.1617 × 1017

N/A N/A N/A N/A N/A 5.5844 × 1017

It is clear from the above that our lower bound is much better than lower bound
obtained in [14] and (Theorem 1, [12]).

5 Conclusion

In this paper we find the lower bound of second-order nonlinearity of a Boolean
function fλ(x) = Trn1 (λxp) with p = 22r + 2r + 1, λ ∈ F∗2r and n = 5r. The
algebraic immunity of fλ(x) is at most 3 because the algebraic degree of fλ(x)
is 3 (AI(f) ≤ d0(f)). Therefore, the lower bound of second-order nonlinearity
of fλ(x) can not be obtained from the relation between rth-order nonlinearity
and the algebraic immunity as given in [2, 4]. The lower bound of second-order
nonlinearity of fλ(x) is much better than lower bound obtained in [14] and
(Theorem 1, [12]). So, this Boolean function may be used in stream ciphers as
well as block ciphers.
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