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Abstract This paper presents a survey of practical

complexity differential cryptanalysis of AES and com-

pares this to attacks that have been proposed for differ-
ential fault analysis. Naturally, the attacks in each vein

of research are applicable in the other but use different

models. In this paper we draw from both topics to im-
prove attacks proposed in the literature. We re-evaluate

the so-called Square attack and the use of impossible

differentials in terms of differential fault analysis using
a weaker model than previously considered in the liter-

ature. Furthermore, we propose two new attacks appli-

cable to both differential cryptanalysis and differential

fault analysis. The first is a differential cryptanalysis
of four-round AES based on a differential that occurs

with a non-negligible probability. The second is an ap-

plication of the Square attack to a five-round AES that
requires 28 ciphertexts and a time complexity equiva-

lent to approximately 237.5 AES encryptions.

Keywords Differential Cryptanalysis · Advanced
Encryption Standard · Differential Fault Analysis

1 Introduction

The Advanced Encryption Standard (AES) [14] was

standardized in 2001 from a proposal by Daemen and
Rijmen [9,10]. It has since been analyzed with regard

to numerous attacks ranging from purely theoretical

cryptanalysis to attacks that require some extra infor-

mation, from some side channel for example [19], to
succeed. In this paper we present a survey of differ-

ential cryptanalysis of AES and present improvements
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where possible, and contrast this with differential fault

analysis.

Differential cryptanalysis analyses pairs of plaintexts
and seeks to exploit how the difference between these

plaintexts propagates through a block cipher. Typically,

reduced round variants of block ciphers are analyzed,
since analyzing an entire modern block cipher is typi-

cally computationally infeasible. Differential fault anal-

ysis uses similar techniques to analyze differences in-
duced in an instance of a block cipher. These differ-

ences are typically considered to be induced by a fault

in the computation provoked by an attacker. The mech-

anisms for inducing faults into a microprocessor range
from light [24] to glitches in the signals supplied to a

microprocessor [3].

In this paper we give a summary of key recovery at-
tacks on reduced round variants of AES and how these

apply to differential fault analysis. In our analysis we

define an attack to be practical, rather than purely the-
oretical, if it requires an effort equivalent to less than

256 AES encryptions as proposed by Biryukov et al. [5].

To this end we describe attacks using the chosen plain-

text model, and further define a chosen difference model
that corresponds to faults being injected in the compu-

tation of a block cipher a certain number of rounds

before the end of a block cipher. We define a differen-
tial cryptanalysis of a four-round variant of AES, that

is valid in both models.

Phan and Yen [22] evaluated the use of the Square
attack [9,10] and impossible differentials [4] to attack

an instance of AES where faults have been injected at

certain points during the computation of a block cipher.

This attack has been re-evaluated by Kim [15] using a
weaker model and proposes versions of this attack that

require fewer plaintexts. In this paper we define the

relationship between the number of acquisitions and the
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effort required to conduct an attack and provide a new

version of the Square attack applied to a five-round
AES.

We do not consider attacks that have been designed

to attack more than five rounds, and thus have a high

complexity, such as the meet-in-the-middle attacks [11]
and impossible differential attacks [7,17] that have been

proposed to attack reduced round variants of AES.

The organization of this paper is as follows. In Sec-

tion 2 we define the notation and operations that we
will use in this paper to describe AES. In Section 3 we

define a model for an attacker, and describe some ob-

servations concerning AES that we will refer to later
in Section 4. We describe attacks based on differential

cryptanalysis and the square attack in Sections 5 and 6

respectively. These attacks are summarized in Section 7,
and we conclude in Section 8.

2 Preliminaries

In this paper, multiplications are considered to be poly-

nomial multiplications over F28 modulo the irreducible
polynomial x8+x4+x3+x+1. It should be clear from

the context when a mathematical expression contains

integer multiplication.

2.1 The Advanced Encryption Standard

Algorithm 1: The AES-128 encryption function.

Input: The 128-bit plaintext block P and key K.
Output: The 128-bit ciphertext block C.

1 X ← AddRoundKey(P,K)
2 for i← 1 to 10 do

3 X ← SubBytes(X)
4 X ← ShiftRows(X)
5 if i 6= 10 then

6 X ← MixColumns(X)
7 end

8 K ← KeySchedule(K, i)
9 X ← AddRoundKey(X,K)

10 end

11 C ← X

12 return C

The structure of the Advanced Encryption Standard

(AES) , as used to perform encryption, is illustrated in

Algorithm 1. Note that we restrict ourselves to con-
sidering AES-128 and that in discussing the AES we

consider that all variables are arranged in a 4× 4 array

of bytes, known as the state matrix. For example the

128-bit plaintext P = (p1, p2, . . . , p16)(256) is arranged

as follows:








p1 p5 p9 p13
p2 p6 p10 p14
p3 p7 p11 p15
p4 p8 p12 p16









The encryption itself is conducted by the repeated use
of a round function that comprises the following oper-

ations executed in sequence:

The SubBytes operation is the only nonlinear step of
the block cipher, consisting of a substitution table ap-

plied to each byte of the state. This replaces each byte

of the state matrix by its multiplicative inverse, fol-
lowed by an affine mapping. Thus the input byte x is

related to the output y by y = Ax−1+B, where A and

B are constant matrices. In the remainder of this paper
we will refer to the function S as this substitution table

and S−1 as its inverse.

The ShiftRows operation is a byte-wise permutation of
the state that operates on each row.

The KeySchedule operation generates the next round

key from the previous one. The first round key is the
input key with no changes, subsequent round keys are

generated using the function S, defined above, and XOR

operations. The round counter is required as a differ-
ent constant (RCON) is used each time the operation

is instantiated.

The MixColumns operation operates on the state col-
umn by column. Each column of the state matrix is

considered as a vector where each of its four elements

belong to F(28). A 4×4 matrix M whose elements are
also in F(28) is used to map this column into a new

vector. This operation is applied to the four columns

of the state matrix. Here M and its inverse M−1 are
defined as

M =









2 3 1 1

1 2 3 1

1 1 2 3

3 1 1 2









and M−1 =









14 11 13 9

9 14 11 13

13 9 14 11

11 13 9 14









.

All the elements in M and M−1 are elements of F(28)

expressed in decimal.

The AddRoundKey operation XORs each byte of the ar-

ray with a byte from a corresponding subkey.

3 Attack Model and Complexity

In this section we define the attack models and the max-
imum complexity we will consider so that we can de-

scribe attacks on reduced round variants of AES in later

sections.
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3.1 Attack Model

In the remainder of this paper we detail some low com-

plexity attacks on a reduced round AES. We use two

models to describe our attacks:

1. Chosen Plaintext Model — This is one of the
typical scenarios used in the differential cryptanaly-

sis of a block cipher. An attacker is able to encipher

arbitrary plaintexts under a fixed unknown key and
obtain the ciphertext. The practicality of an attack

is influenced by the number of chosen plaintexts re-

quired to conduct a given attack. The time com-
plexity of attacks in this model is considered to the

number of enciphering operations, or equivalent, of

the algorithm under attack.

2. Chosen Difference Model — In this case an at-

tacker is able to encipher two related but unknown
plaintexts. That is, an attacker is able to encipher

two plaintexts with a chosen difference. Note that

this does not mean that the exact difference can be

chosen by an attacker, but that the number and po-
sition of bytes that have a non-zero difference can be

chosen. The practicality of the attack is influenced

by the number of pairs of ciphertexts required that
are produced by plaintexts produced with a differ-

ence of a known size. The time complexity of at-

tacks in this model is considered to the number of
enciphering operations, or equivalent, of a full 10-

round AES. We also assume that the attacker has

access to an oracle that can be used to test whether

a given key hypothesis is correct. A justification for
this model is given below in Section 3.3.

In the following sections we consider how attacks can be

mounted on a reduced round version of AES, and we as-
sume that the last round does not contain a MixColumns

function as in the full AES. This is important to note

since it has been shown that the lack of a MixColumns

function does have a negative impact on the security
of AES [12]. Indeed, many of the attacks described in

the paper would have a substantially higher complex-

ity if the MixColumns function was included in the last
round.

3.2 Attack Complexity

In the models defined above there are two things that

dictate the complexity of the attack. The first is the

number of observations (either plaintext-ciphertext pairs
or ciphertext pairs) that need to be acquired by an at-

tacker. In the chosen plaintext model this can be consid-

ered to be straightforward. However, in the chosen dif-

ference model acquiring a ciphertext pair requires a cer-

tain amount of effort. Typically, this involves obtaining
one ciphertext by enciphering an arbitrary plaintext,

and then obtaining a faulty ciphertext by enciphering

the same plaintext while injecting a fault in the de-
vice under attack. This typically takes a considerable

amount of time when compared to a standard PC im-

plementation, since fault attacks are usually considered
to be limited to resource constrained devices such as

smart cards. A more significant problem is that each

fault injection will stress a device and will, with a cer-

tain probability, render it inoperable. An attacker will
therefore seek to minimize the number of fault injec-

tions required to conduct an attack. We do not define

a strict upper limit to the number of acquisitions since
this will vary considerably for different fault injection

mechanisms.

The second is computational complexity of the anal-
ysis required to derive the secret key. Biryukov et al.

define the upper bound of such an attack to be the ef-

fort equivalent to computing 256 AES operations [5].

They cite the computation of 255 DES operations sev-
eral years ago and the unsuccessful collision finding ef-

fort on SHA-1 that was expected to require 261 opera-

tions.

3.3 On the Chosen Difference Model

In describing fault attacks one typically uses an attack

model where an attacker is able to affect a single byte
during the computation of AES. There are numerous

examples in the literature of fault attacks where a byte

has been modified allowing an implementation of AES
to be broken. Typically, these are examples of an attack

proposed by Piret and Quisquater [23] that is described

in Section 5.2. An example of an attack that produces a
modification on chosen bytes is only likely to be possible

in certain circumstances. For example, Ali et al. [1] de-

scribe a fault that affects a diagonal line across the state

matrix (as required by one of the attacks described in
Section 5.4). However, no details are given on why this

could be produced are given, and one has to assume

that the effect is implementation specific.
The role of this model is to encompass what is pos-

sible by a strong attacker, and to find a middle ground

between the generic and the specific. Many fault injec-
tion mechanisms will correspond to a weaker model and

only a subset of the attacks described in this paper will

be possible. However, some of the attacks that require

strong assumptions have been shown to be possible in
some instances [1]. Other mechanisms will be more spe-

cific and will fall outside the proposed model. For exam-

ple, faults have been described that affect a particular
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opcode on a given microprocessor that allows very spe-

cific attacks to be defined [2]. The intention behind this
model is to thoroughly evaluate the generic case rather

than use a weak model requiring that attacks on specific

effects are designed on an ad hoc basis.

4 Observations

In this section we describe some observations on the

structure of AES that we will refer to in later sections.

Observation 1: Given a differential between two val-

ues x, y, where x 6= y and the non-zero XOR difference
between these values is x⊕ y = α. For a known β there

will exist a certain number of values for x and y that

will satisfy S(x)⊕S(y) = β. For a random differences α,

β there will be four solutions with a probability 1/256,
two solutions with a probability 126/256 and zero solu-

tions with a probability 129/256. This is a well-known

result and the basis for all differential cryptanalysis of
AES.

Observation 2: We consider y = M x for

y =









y1
y2
y3
y4









, x =









x1

x2

x3

x4









where each xi and yj , for i, j ∈ {1, 2, 3, 4}, is an element

in F28 and M is defined above in Section 2. Given any

four bytes from

{y1, y2, y3, y4, x1, x2, x3, x4} ,

the remaining four can be computed. Trivially, we know

this is also true if we consider the differentials, since, if

y = M x and y′ = M x′ then y ⊕ y′ = M (x⊕ x′). This
is equivalent to the fact that the words (x, y) form an

MDS code.

Observation 3: Again, we consider y = M x for

y =









y1
y2
y3
y4









, x =









x1

x2

x3

x4









where each xi and yj , for i, j ∈ {1, 2, 3, 4}, is an element
in F28 and M is defined above in Section 2. The num-

ber of bytes in y that are zero given a certain number

of bytes of x are equal to zero can be counted for all

possible inputs. This gives a probability of observing
the number of output bytes set to zero (n) given the

number of input bytes that are set to zero (m), given

n,m ∈ {0, 1, 2, 3, 4}, and are tabulated in Table 1.

5 Differential Cryptanalysis

In this section we describe attacks based on differen-

tial cryptanalysis. We describe attacks based on other

properties of AES in the next section.

5.1 Analyzing One-Round AES

It has been demonstrated by Bouillaguet et al. [6] that

one known plaintext-ciphertext pair can enable an at-

tacker to mount an attack by inspection that requires
an exhaustive search of 240. This attack functions by

guessing 40 bits of one subkey and, combined with the

knowledge of the plaintext and ciphertext, deducing

a possible key. For brevity, we do not consider this
form of attack since it is only applicable to very few

rounds. Moreover, a straightforward attack is widely

known where two plaintext-ciphertext pairs are avail-
able, and is described here for completeness.

5.1.1 Chosen Difference

If an attacker is only able to determine the amount of

bytes that are different between two plaintexts there

is no information to exploit since the difference is un-

known.

5.1.2 Chosen Plaintext

An attacker defines two plaintexts where the XOR dif-
ference between the two plaintexts is not zero for any

byte. One can then look at the which bytes of the last

subkey can produce the observed difference in the two
input plaintexts. This will give 216 hypotheses for the

last subkey. Bouillaguet et al. note that the number of

hypotheses can be further reduced if bytes of the first

subkey are generated independently and verified. This
reduces the time complexity of an attack from 216 en-

cryptions to 212 applications of the SubBytes function

to individual bytes [6].

5.2 Analyzing Two-Round AES

5.2.1 Chosen Difference

If an attacker sets a difference in the first byte in each

column of state matrix of the plaintext the difference
will propagate as shown in Figure 1. In this example

an attacker has a difference in the plaintexts at indexes

{1, 5, 9, 13}.
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Table 1 Given a number of differentials in bytes on input to the MixColumns function the probability of this affecting a given
number of output bytes is shown.

No of Affected Bytes Out(0) Out(1) Out(2) Out(3) Out(4)
In(0) 1 0 0 0 0
In(1) 0 0 0 0 1
In(2) 0 0 0 4

255
≈ 1

26
251
255

In(3) 0 0 2
12675

≈ 1
213.4

1004
65025

≈ 1
26

12803
13005

In(4) 0 4
16581375

≈ 1
222

502
5527125

≈ 1
213.4

51212
3316275

≈ 1
26

3264761
3316275

Plaintext














θ1 θ2 θ3 θ4
0 0 0 0
0 0 0 0
0 0 0 0















→

First Round














2α 2β 2 γ 2 δ

3α 3β 3 γ 3 δ

α β γ δ

α β γ δ















→

Ciphertext














x1 x5 x9 x13

x2 x6 x10 x14

x3 x7 x11 x15

x4 x8 x12 x16















Fig. 1 Propagation of a four-byte difference across two
rounds of AES.

An attacker can verify key hypotheses on the last

subkey in groups of four bytes by checking that hy-

potheses will produce the differences caused by the (un-
known) values {α, β, γ, δ} [23]. An attacker can conduct

an exhaustive search on the last subkey in four groups

of 28 hypotheses, and this will reduce the key hypothe-
ses for the last subkey to 232 for the reasons noted in

Observation 1.

5.2.2 Chosen Plaintext

Attacking a two round AES with chosen plaintexts has
the same start as the attack under the chosen differ-

ence model. However, an attacker has more information

given that the plaintexts are known and some of the 232

hypotheses can be eliminated.
If we consider Figure 1, we know θi, for i ∈ {1, 2, 3, 4},

and the corresponding plaintexts. Given Observation 1

we can note that α, β, γ, δ will each have 27 possible
values rather than 28 considered in the previous attack.

This means that an attacker would be able to reduce

the key hypotheses to 228 [6].

In both cases the same analysis can be conducted
if an attacker changes bytes at indexes {2, 6, 10, 14},

{3, 7, 11, 15} or {4, 8, 12, 16}, i.e., one row of the state

matrix.

5.3 Analyzing Three-Round AES

5.3.1 Chosen Difference

If an attacker sets a difference in one byte of the plain-
texts it will propagate as shown in Figure 2. In this

example an attacker has a difference in the plaintexts

at index 1.

As with the attack on two rounds described above,

an attacker can verify key hypotheses on the last subkey

in groups of four bytes by checking that hypotheses will
produce the differences caused by {α, β, γ, δ}. Again,

this will reduce the key hypotheses for last subkey to

232 [23] for the reasons noted in Observation 1.

This analysis can be continued by verifying which

key values also produce the differences {2 θ, 3 θ, θ, θ}

shown in Figure 2. This will reduce the number of key
hypotheses for the last subkey to 28 [25]. This will re-

quire 232 operations consisting of one SubBytes opera-

tion and a quarter of MixColumns operation. If we es-
timate this to equate to the effort required to compute

a third of a round of AES, the time complexity of the

attack will be 232 · 1
3 · 1

10 ≈ 227.

5.3.2 Chosen Plaintext

Attacking a three round AES with chosen plaintexts

has the same start as the attack described above for the
chosen difference model. As for the attack on two round

AES, an attacker has more information given that the

plaintexts are known. Given Observation 1 we can note

that θ will have 27 possible values rather than the 28

considered in the previous attack, reducing the number

of key hypotheses from 28 to 27. As above, this will

require 232 one round deciphering operations that will
have a time complexity of 232 · 1

3 · 1
3 ≈ 229.

5.4 Analyzing Four-Round AES

5.4.1 Chosen Difference

An attacker can create two plaintexts with a difference

in four bytes along a diagonal line within the state

matrix. In Figure 3 we show an example where the
bytes at indexes {1, 6, 11, 16} represented by ζi for i in

{1, 2, 3, 4}. These four bytes will produce a difference in

one column after the first round, shown as θi for i in

{1, 2, 3, 4}. There is a structure in the difference at the
end of the second round. However, this cannot be di-

rectly exploited since there is no straightforward way of

separating the key bytes to derive hypotheses on small
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Plaintext














ζ 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0















→

First Round














2 θ 0 0 0
3 θ 0 0 0
θ 0 0 0
θ 0 0 0















→

Second Round














2α β γ 3 δ

3α 2β γ δ

α 3β 2 γ δ

α β 3 γ 2 δ















→

Ciphertext














x1 x5 x9 x13

x2 x6 x10 x14

x3 x7 x11 x15

x4 x8 x12 x16















Fig. 2 Propagation of a one-byte difference across three rounds of AES.

Plaintext














ζ1 0 0 0
0 ζ2 0 0
0 0 ζ3 0
0 0 0 ζ4















→

First Round














θ1 0 0 0
θ2 0 0 0
θ3 0 0 0
θ4 0 0 0















→

Second Round














2 γ1 γ2 γ3 3 γ4
3 γ1 2 γ2 γ3 γ4
γ1 3 γ2 2 γ3 γ4
γ1 γ2 3 γ3 2 γ4















→

Third Round














ε1 ε5 ε9 ε13
ε2 ε6 ε10 ε14
ε3 ε7 ε11 ε15
ε4 ε8 ε12 ε16















→

Ciphertext














x1 x5 x9 x13

x2 x6 x10 x14

x3 x7 x11 x15

x4 x8 x12 x16















Fig. 3 Propagation of a four-byte difference across four rounds of AES.

portions of a subkey. That is, there does not appear to

be a method of deriving the secret key that would be

significantly quicker than an exhaustive key search.

However, if we assume that θ2 = 0 an attack can

be constructed. The propagation of this difference is

shown in Figure 4 where a structure is produced at

the end of the third round that can be exploited. This
attack proceeds in a similar manner to the attacks de-

scribed in Section 5.3. For each column there are 224

possible differences (see Observation 2) that will allow
224 key hypotheses to be determined for a column of

the last subkey (see Observation 1), leading to 296 key

hypotheses for the last subkey. Likewise, if for example
θ1 = 0 and θ2 = 0 the same reasoning would lead to

264 key hypotheses for the last subkey.

If we assume that an attacker is somehow able to

determine that θ2 = 0, then four acquisitions would
be enough to reduce the number of key hypotheses to

one. Furthermore, any remaining hypotheses could be

verified by checking that the difference at the end of

the second round has the structure shown in Figure 4
for each of the four pairs of ciphertexts.

The probability of one of θi, for i ∈ {1, 2, 3, 4}, being

equal to zero is 1/26 as described in Observation 3.

One would therefore expect to require 4 × 26 = 256
ciphertexts to have four ciphertexts where at least one

of θi is equal to zero. However, an attacker has no way

of knowing how many, or which, different bytes of θi
have been set to zero. An attacker is, therefore, obliged

to test all the possibilities combinations in a set of 256

acquisitions to find them. This will contain 44
(

256
4

)

≈

235 combinations.

In a simulation of this attack we have found that

evaluating a set of four pairs of ciphertexts corresponds

to approximately 225 executions of a 10-round AES.

One can also note that the 44 possible combinations
where one of, θi for i in {1, 2, 3, 4}, can be treated in

parallel with negligible increase in the required compu-

tational effort. The expected computational effort re-

quired to conduct an attack therefore corresponds to
(

256
4

)

225 ≈ 252.

The same reasoning can be applied if an attacker
can determine more than one of θi, for i ∈ {1, 2, 3, 4}, is

equal to zero. These attacks are summarized in Table 2.

As one would expect, there is a trade-off between the
number of pairs of ciphertexts and the computational

effort required to achieve an attack.

5.4.2 Chosen Plaintext

The same differential cryptanalysis can be applied to

chosen plaintexts in a straightforward manner, with
the added advantage that an attacker can be sure that

each plaintext is distinct. The attack can be further

optimized by comparing every ciphertext with every
other ciphertext. That is,

(

11
8

)

= 330 comparisons can

be made from 11 chosen plaintext-ciphertext pairs re-

ducing the number of acquisitions required where one

assumes that one of θi, for i ∈ {1, 2, 3, 4}, is equal to
zero. The modifications to the attack are summarized

in Table 3.

An attack described by Bouillaguet et al. [6] also
functions on four rounds and requires ten chosen plain-

texts, where the plaintexts have a difference in the bytes

on one column of the state matrix. This functions by

partially decrypting the last two rounds by guessing 40
bits of the last two subkeys to determine one byte of

the state matrix at the end of the second round. These

bytes can be XORed together to get the difference at
the output of the Mixcolumns operation in the second

round. The same thing is done with the plaintext, where

40 bits of the first two subkeys allow us to determine
the input of one byte to the Mixcolumns operation in

the second round. Given that the plaintext is chosen to

ensure that the XOR difference of all the other bytes

in the column at this point have an XOR difference of
zero the difference of the output of the MixColumns op-

eration for this byte can be computed. This is repeated

for all ten chosen plaintexts and should lead to a re-
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Plaintext














ζ1 0 0 0
0 ζ2 0 0
0 0 ζ3 0
0 0 0 ζ4















→

First Round














θ1 0 0 0
0 0 0 0
θ3 0 0 0
θ4 0 0 0















→

Second Round














2 γ1 γ2 γ3 0
3 γ1 2 γ2 γ3 0
γ1 3 γ2 2 γ3 0
γ1 γ2 3 γ3 0















→

Third Round














2 a1 ⊕ 3 a2 ⊕ a3 2 b1 ⊕ 3 b2 ⊕ b3 2 c1 ⊕ c2 ⊕ c3 3 d1 ⊕ d2 ⊕ d3
a1 ⊕ 2 a2 ⊕ 3 a3 b1 ⊕ 2 b2 ⊕ b3 c1 ⊕ 3 c2 ⊕ c3 2 d1 ⊕ 3 d2 ⊕ d3
a1 ⊕ a2 ⊕ 2 a3 b1 ⊕ b2 ⊕ 3 b3 c1 ⊕ 2 c2 ⊕ 3 c3 d1 ⊕ 2 d2 ⊕ 3 d3
3 a1 ⊕ a2 ⊕ a3 3 b1 ⊕ b2 ⊕ 2 b3 3 c1 ⊕ c2 ⊕ 2 c3 d1 ⊕ d2 ⊕ 2 d3















→

Ciphertext














x1 x5 x9 x13

x2 x6 x10 x14

x3 x7 x11 x15

x4 x8 x12 x16















Fig. 4 Propagation of a four-byte difference across four rounds of AES where θ2 = 0.

Table 2 A summary of the differential attacks applied to a four-round AES. The computational effort has been determined
by simulation or through previous estimates (such as given in Section 5.3).

No. of θi Probability Acquisitions Computational Overall

equal to zero Effort Time Complexity

1 1/26 256 225
(

256
4

)

225 ≈ 252

2 1/213.4 214.4 223
(

214.4

2

)

223 ≈ 251

3 1/222 222 227 222 · 227 = 249

Table 3 A summary of the differential attacks applied to a four-round AES. The computational effort has been determined
by simulation or through previous estimates (such as given in Section 5.3).

No. of θi Probability Acquisitions Computational Overall
equal to zero Effort Time Complexity

1 1/26 12 228
(

256
4

)

228 ≈ 255

2 1/213.4 30 226
(

214.4

2

)

226 ≈ 254

3 1/222 211 230 222 · 230 = 252

maining 232 key hypotheses, from a computation with
a time complexity of 10

((

240 × 2× 4)/4
))

≈ 244 . We

note that this attack is not possible in the chosen dif-

ference model.

6 Square Attack

The Square attack (so-called since it was first presented
in the description of the block cipher Square [8]) was

first presented in the original description of AES [9,

10]. The Square attack is based on a particular prop-
erty arising from the structure of AES. For a set of

256 plaintexts where each byte at an arbitrary index is

a distinct value and all the other bytes are equal, the
XOR sum of the 256 state matrices at the end of the

third round is a state matrix consisting of just zeros.

This is because a given position in the state matrix will

have all 256 possible values across the 256 state matri-
ces before the last MixColumns operation. This property

is lost after the MixColumns operation but the result of

the XOR sum remains the same. Attacks based on this

property in the context of our models are presented in
this section.

6.1 Analyzing Four-Round AES

6.1.1 Chosen Difference

Phan and Yen describe an attack in the chosen dif-

ference model [22] based on the Square attack. If an
attacker chooses a difference in one byte there are 256

possible ciphertexts that could be produced. Once an

attacker has collected all 256 possible hypotheses the
last subkey can be verified. This is achieved by testing

hypotheses on the last subkey byte-by-byte where an

attacker checks that the XOR sum of the input to the
final round is equal to zero. This will return the correct

subkey and one would also expect one additional incor-

rect hypothesis per byte, given that a random sequence

will have an XOR sum equal to zero with a probabil-
ity of 1/256. This will, therefore, result in an expected

total number of key hypotheses for the last subkey of

216.
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Kim notes that the number of hypotheses can be

further reduced by analyzing the values of the bytes
in the state matrix before the MixColumns operation in

the penultimate round [15]. At each index the bytes will

have a pairwise non-zero differential, i.e. across the 256
values at a given index there will be one of each possible

value. This will determine the key value with an over-

whelming probability, since the probability a random
set of bytes at a given index will satisfy this condition

is
255
∏

i=0

256− i

256
≈

1

2364
.

Phan and Yen state that this attack would require

255 acquisitions [22] (one reference acquisition and 255
with a difference). However, this assumes that an at-

tacker is able to determine the exact difference caused

by the effect of a fault. In the chosen difference model

used in this paper one would have to take enough ac-
quisitions that all 256 ciphertexts have been seen. This

is in an instance of the coupon collector’s text described

by Knuth [16], and one would expect 1561 ≈ 211 acqui-
sitions to be taken before all the possible ciphertexts

have been collected.

A related attack is based on the use of impossible

differentials by Biham and Keller [4]. Any two cipher-
texts in the Square attack described above will have a

non-zero differential at the same point one would expect

a XOR sum of zero for all 256 ciphertexts. In order to
derive information on the last subkey, hypotheses can

be verified in sets of 32 bits by conducting a partial

decryption and assuring that the difference before the

MixColumns operation in the penultimate round con-
tains no bytes equal to zero. Conducting this analysis

211 times allows the last subkey to be determined [22].

The time complexity of this attack is 232 single round
decryptions per ciphertext, i.e. 211

(

232/10
)

≈ 239.5.

Biham and Keller [4] observed that an incomplete

set of acquired ciphertexts that an attacker wishes to

use to conduct a Square attack can be used to derive
a secret key. This is possible since the a given num-

ber of distinct ciphertexts will have the same number

of distinct values across the acquisitions for a given
byte of the state matrix. Kim presents this as a vari-

ant of the Square attack [15]. However, one can observe

that this also corresponds to an instance of impossi-
ble differential cryptanalysis since 57 distinct cipher-

texts will allow a secret key to be determined since
(

57
2

)

≈ 1561 ≈ 211 comparisons where a non-zero dif-

ferential is present can be made (this another instance
of the coupon-collectors problem). However, the time

complexity is 57
(

232/10
)

≈ 234.5 since one needs to ver-

ify that 57 values are distinct rather than having pair-

wise non-zero differentials. This is described in terms of

fault analysis by Kim [15].

Given m different ciphertexts the expected number

of remaining key hypotheses N for a 32 bits of the
last subkey (corresponding to one column before the

MixColumn in the penultimate round) can be defined as

N = (232 − 1) · Pr(X = m)4 + 1

= (232 − 1)
(r(m)

rm

)4

+ 1

= 1 + (232 − 1)

(

255(m)

255m

)4

,

where r(m) = r (r − 1) . . . (r −m + 1) and Pr(X = m)
is the probability that the number of different values

across m ciphertexts at a given position in the state

matrix is equal to m. The time complexity of this vari-

ant of impossible differential cryptanalysis is shown in
Figure 5 (left) given x acquired ciphertexts. The time

complexity of the attack includes the effort required to

produce the N ciphertexts. The time complexity falls
below our practical bound to 253.4 AES operations after

40 ciphertexts are acquired. The minimum time com-

plexity is 234 after 46 ciphertexts have been acquired,
after which treating the ciphertext becomes more sig-

nificant than the resulting exhaustive search.

Kim implicitly assumes that one can acquire m dif-
ferent ciphertexts with m faults. In the chosen differ-

ence model the amount of effort required to acquire m

different ciphertexts is an instance of the classical occu-
pancy problem. That is, how many distinct ciphertexts

will one have after n faults have been injected. The

probability of observing x different balls from r possi-
bilities given n faults is

Pr(x = k) =
r(k)

{

n
i

}

rn
,

where we define
{

n
i

}

as a function that returns the Stir-

ling numbers of the second kind. That is, the number of

ways of partitioning n elements into i non-empty sets.
The expectation of x is simply E(x) =

∑r

i=1 i Pr(x =

i) . The resulting time complexity when an attacker

has to collect a certain number of ciphertexts is only

slightly different given so few ciphertexts are required,
as shown in Figure 5. The practical bound of 253.4 AES

operations occurs after 43 acquisitions, and the mini-

mum time complexity of 234 occurs at 51 acquisitions.

6.1.2 Chosen Plaintext

In the chosen plaintext model the Square attack, as

described above, can be directly applied. That is, 256

plaintexts can be chosen that all differ on one byte
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Fig. 5 The time complexity of the cryptanalysis of a four-round AES using impossible differential, where distinct bytes (left)
and random bytes (right) are inserted into a fixed plaintext.

and the key uniquely identified from the result that the

XOR sum of the intermediate state at the end of the

third round is equal to zero. As above, the expected
number of key hypotheses generated by the attack is

216. This can be improved if one repeats the analy-

sis, i.e. one takes 29 chosen plaintexts and conducts
the above analysis twice. This was originally detailed

by Daemen and Rijmen in their AES proposal [9,10].

Kim’s observation will also apply in this case and allow
the number of hypotheses to be reduced to one from a

set of 256 chosen plaintext-ciphertext pairs [15].

Attacks based on impossible differentials [4] will also

function in the same manner, including the version based
on acquisitions that would otherwise be used to conduct

a Square attack. However, an attacker would be able to

ensure that each plaintext is distinct and would not
need to conduct acquisitions until a certain number of

distinct ciphertexts have been collected.

6.2 Analyzing Five-Round AES

6.2.1 Chosen Difference

Phan and Yen describe an extension to the Square at-

tack [22], that was also first presented in the original

description of AES [9,10]. The Square attack can be

extended by an extra round with an increase in the

time complexity. Rather than analyzing the final sub-

key byte-by-byte one analyses the penultimate subkey.
In order to analyze the penultimate subkey one is

obliged to guess 32 bits of the final subkey to deter-

mine one column of the state matrix before the XOR
with the penultimate subkey. One can then compute

the MixColumns operation on this column, and form

hypotheses on a subkey equivalent to the penultimate
subkey where one computes the MixColumns operation

on the derived subkey to derive the penultimate sub-

key. Each evaluation reduces the potential key space

by 1/256, and would need to conduct this analysis five
times to uniquely determine the subkey [9,10].

If we define each of the 232 partial decryptions as

having a time complexity equivalent to 1/4 of a round
the time complexity of the attack is

5
(

4 · 240/4
)

/10 ≈ 239 .

As in the Square attack described in Section 5.4, one
cannot choose the values that are in the one-byte differ-

ence required to conduct the Square attack. One would

therefore expect 5×1561 ≈ 213 acquisitions to be taken

before all the possible ciphertexts have been collected.
One can envisage a much more efficient attack where

one verifies that the hypotheses generated are valid sub-

keys as they are derived. That is, hypotheses on the
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last subkey can verified, in than they must be generated

from corresponding hypotheses on the penultimate sub-
key. One can start an analysis of 256 ciphertexts pro-

duced by encrypting 256 plaintexts that are identical

except for one byte where each plaintext is distinct.

One can analyze two columns of the penultimate

subkey by guessing eight bytes of the last subkey (in
two sets of four bytes). This will give two sets of 232

hypotheses with a time complexity 2 · 240/4 one round

decryptions. One can then eliminate hypotheses in each

set that are inconsistent. Given that we have hypotheses
on eight bytes of the penultimate key and eight bytes

of the last subkey, we will have three bytes of the last

subkey that are produced by bytes included in these hy-
potheses. Given that the probability that all three bytes

of a given hypotheses can be verified with a probability

of 1/224 one would expect that the two sets of 232 hy-
potheses can be reduced to one set of 240 hypotheses.

A third set of 232 hypotheses can then be generated for

one of the remaining columns of the penultimate subkey

and four bytes of the last subkey. There will be a further
four bytes of the last subkey by that will be generated

by bytes for which there are already hypotheses, and an

element from the new set of of 232 hypotheses will vali-
date a hypothesis from the known set of 240 hypotheses

with a probability of 1/232. One would therefore expect

to combine these two sets to produce a set of 240 hy-
potheses for 96 bits of the penultimate and 96 bits of

the last subkey. A set of 232 hypotheses can then be gen-

erated for the final column of the penultimate subkey

and four bytes of the final subkey. At this point one can
verify whether an entire subkey can be generated from

the penultimate subkey. For each of the 232 hypotheses

generated there will be a 1/(28)9 = 1/272 (since there
will be nine bytes in the last subkey that will not have

been verified before). One would, therefore, expect to

generate two hypotheses from the two sets of hypothe-
ses. One that is correct and one fulfills the criteria by

chance. A similar strategy has been proposed by Lucks

for variants of AES with 192 and 256-bit keys [18].

In order to clarify how this attack functions an ex-
ample is described below, although other versions will

be possible (i.e. where one chooses to examine the columns

of the penultimate subkey in a different order).

We define the last two subkeys as

K9 =









k9,1 k9,5 k9,9 k9,13
k9,2 k9,6 k9,10 k9,14
k9,3 k9,7 k9,11 k9,15
k9,4 k9,8 k9,12 k9,16









and

K10 =









k10,1 k10,5 k10,9 k10,13
k10,2 k10,6 k10,10 k10,14
k10,3 k10,7 k10,11 k10,15
k10,4 k10,8 k10,12 k10,16









.

If an attacker has a set of plaintexts where all the

bytes except one are equal, and the remaining byte
takes all possible values across the set of 256 plain-

texts. One can conduct an analysis as described at the

beginning of this section. That is, one can guess, for ex-
ample, the key bytes {k10,1, k10,14, k10,11, k10,8} which

will allow hypotheses to be formed on each element of

{k9,1, k9,2, k9,3, k9,4} independently. Note that while the
attack derives information on a transformed version of

{k9,1, k9,2, k9,3, k9,4} this can be easily inverted for each

hypothesis for the whole set. With a time complexity

of 240/4 one round decryptions one would expect to
obtain 232 hypotheses for

γ1 = {k10,1, k10,14, k10,11, k10,8, k9,1, k9,2, k9,3, k9,4} ,

which can be stored in a hash table.

One can then conduct the same analysis by making

hypotheses on {k10,13, k10,10, k10,7, k10,4} which will al-

low hypotheses to be derived on the elements of {k9,13,
k9,14, k9,15, k9,16}. Likewise, this will provide 232 hy-

potheses for

γ2 = {k10,13, k10,10, k10,7, k10,4, k9,13, k9,14, k9,15, k9,16} .

However, as each element in γ2 is generated the follow-

ing relationships between the elements in γ2 and γ1 can

be verified:

k10,1 = S(k9,14)⊕ k9,1 ⊕ RCON

k10,4 = S(k9,13)⊕ k9,13 k10,14 = k10,11 ⊕ k9,14

A given element of γ2 will therefore have 28 elements in

γ1 that will satisfy these constraints, given that a incor-

rect key value will fulfill these relationships with prob-
ability 1/224. The resulting 240 hypotheses for {γ1, γ2}

can also be stored in a hash table.

One can continue in a straightforward manner to

derive 232 hypotheses for

γ3 = {k10,5, k10,2, k10,15, k10,12, k9,5, k9,6, k9,7, k9,8} .

For each element in γ3 an attacker can verify the fol-

lowing relationships with {γ1, γ2}:

k10,2 = S(k9,15)⊕ k9,2, k10,5 = k10,1 ⊕ k9,5

k10,8 = k10,4 ⊕ k9,8 and k10,14 = k10,10 ⊕ k9,14

Again the resulting 240 hypotheses for {γ1, γ2, γ3} can

be stored in a hash table.
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Lastly, one can perform the same analysis on

γ4 = {k10,9, k10,6, k10,3, k10,16, k9,9, k9,10, k9,11, k9,12} .

Each element from γ4 can be used to see if a valid pair

{K9,K10} has been found by searching in {γ1, γ2, γ3}
for values that satisfy the remaining relationships be-

tween the two subkeys.

k10,4 = S(k9,13)⊕ k9,4, k10,6 = k10,2 ⊕ k9,6,

k10,7 = k10,3 ⊕ k9,7, k10,9 = k10,5 ⊕ k9,9,

k10,10 = k10,6 ⊕ k9,10, k10,11 = k10,7 ⊕ k9,11,

k10,12 = k10,8 ⊕ k9,12, k10,13 = k10,9 ⊕ k9,13,

and k10,16 = k10,12 ⊕ k9,16

Given that an incorrect hypothesis for {K9,K10} will

validate these equations with a probability of
(

1/28
)9

=
1/272, one would expect to have two hypotheses for

{K9,K10} (i.e. the correct key and one incorrect one

that fulfills the criteria by chance) and therefore two

hypotheses for the AES key. The overall time complex-
ity of this attack would therefore be expected to be
((

4 · 240
/

4
)

/10 ≈ 236.5 , and as with Phan and Yen’s

attack one would expect that 1561 acquisitions would
need to be made to collect the 256 possible ciphertexts.

Using a set of acquisitions to exploit impossible dif-

ferentials to recover a secret key is not described in the
chosen difference model, since the time complexity of

such an attack would not be below the bound set for a

practical attack [7].

6.2.2 Chosen Plaintext

As above, the Square attack can be used to attack a five-

round instance of AES in the chosen plaintext model
by the method described above [9,10]. Naturally, this

requires fewer plaintexts and has a slightly higher time

complexity.

The new attack described above applies equally well

to attacking an implementation to a five-round AES

under the chosen plaintext model. One can choose 256
distinct plaintexts that differ in one byte. The resulting

analysis will identical to that given above, but an at-

tacker will be seeking to derive information on {K4,K5}

rather than {K9,K10}. The time complexity for this at-
tack would be

(

4 · 240/4
)

/5 ≈ 237.5 .

6.3 Analyzing More Rounds

There are attacks that conduct a differential crypt-

analysis on an instance of AES that consist of up to

eight rounds. These are extensions of the Square at-

tack [13], impossible differentials [17] and meet-in-the-
middle attacks [11], since attacks based on a straight-

forward differential spanning four rounds or more have

been proven to be impossible [21]. However, these at-
tacks typically require a large number of plaintexts and/or

have a high time complexity, and are therefore beyond

the scope of this paper.

7 Summary

In order to clarify the contribution of this paper the
attacks presented in this paper are described alongside

some of the most efficient attacks from the literature in

Tables 4 and 5. We note that the numbers correspond-
ing to fault attacks based on the Square attacks de-

scribed in the literature [22,15] have been re-evaluated

to fit our model. We assert that this represents a more

accurate evaluation of these attacks since our model is
intended to correspond to an attacker able to inject a

fault at a given point in time during the computation

of an AES.

We recall that the time complexity of Table 4 is
defined in terms of a ten-round AES since it is intended

to correspond to differential fault analysis, whereas the

time complexity in Table 5 is defined in terms of the
number of rounds in the variant under consideration.

8 Conclusion

In this paper we consider some low complexity differ-

ential cryptanalyses of reduced round variants of AES.

Specifically, we consider instances of AES that consist

of one to five rounds of AES in two attack models. The
first is the standard chosen plaintext model considered

in differential cryptanalysis. The second is a chosen dif-

ference model that is intended to correspond to faults
being injected into an instance of AES a given number

of rounds before the end of the block cipher.

We propose a new differential cryptanalysis of four

rounds of AES under the chosen plaintext model that
has a practical complexity. We further show that this

attack can be readily applied to conduct a differential

fault analysis. We also demonstrate that the Square at-
tack has not been correctly evaluated as a fault attack,

and is not efficient as described in the literature [22,

15]. We also provide a novel attack on a five-round AES

based on the Square attack. A summary is given in Sec-
tion 7.

The attacks described in this paper that correspond

to the analysis of faults produced in an instantiation

of AES have been evaluated using a chosen difference
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Table 4 Summary of attacks under the chosen difference model.

Rounds Type Acquisitions Complexity
Piret and Quisquater [23,20] 2 Differential 1 232

Tunstall and Mukhopadhyay [25] 3 Differential 1 227

Phan and Yen [22] 4 Impossible Diff. 211 239.5

Phan and Yen [22] 4 Square 211 216

Biham and Keller [4,15] 4 Impossible Diff. 43 253.4

Biham and Keller [4,15] 4 Impossible Diff. 51 234

This paper 4 Differential 28 252

This paper 4 Differential 214.4 251

This paper 4 Differential 222 249

Phan and Yen [22] 5 Square 213 239

This paper 5 Square 28 236.5

Table 5 Summary of attacks under the chosen plaintext model.

Rounds Type Acquisitions Complexity
Bouillaguet et al. [6] 1 Differential 2 212

Bouillaguet et al. [6] 2 Differential 2 228

Bouillaguet et al. [6] 3 Differential 2 232

This paper 3 Differential 2 229

Bouillaguet et al. [6] 4 Differential 10 244

Biham and Keller [4] 4 Impossible Diff. 211 239.5

Daemen and Rijmen [9,10] 4 Square 29 29

Biham and Keller [4] 4 Impossible Diff. 40 253.4

Biham and Keller [4] 4 Impossible Diff. 46 234

This paper 4 Differential 12 255

This paper 4 Differential 30 254

This paper 4 Differential 211 252

Daemen and Rijmen [9,10] 5 Square 211 240

This paper 5 Square 28 237.5

model defined in Section 3.1. This model assumes a
strong attacker who is able to affect a chosen number

of bytes at a chosen set of positions in the state matrix.

This allows for a broad range of attacks to be imple-
mented, although not all attacks will be applicable to

all methods of fault injection. Likewise, the effects pro-

duced by some fault injection mechanisms are not con-

sidered since they are likely to be specific to one family
of microprocessor/FPGA.
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