
Threshold Fully Homomorphic Encryption and Secure
Computation

Steven Myers Mona Sergi abhi shelat∗

Abstract

Cramer, Damgård, and Nielsen [CDN01] show how to construct an efficient secure multi-
party computation scheme using a threshold homomorphic encryption scheme that has four
properties i) a honest-verifier zero-knowledge proof of knowledge of encrypted values, ii)
proving multiplications correct iii) threshold decryption and iv) trusted shared key setup. Naor
and Nissim [NN01a] show how to construct secure multi-party protocols for a function f
whose communication is proportional to the communication required to evaluate f without
security, albeit at the cost of computation that might be exponential in the description of f .

Gentry [Gen09a] shows how to combine both ideas with fully homomorphic encryption
in order to construct secure multi-party protocol that allows evaluation of a function f using
communication that is independent of the circuit description of f and computation that is
polynomial in | f |. This paper addresses the major drawback’s of Gentry’s approach: we
eliminate the use of non-black box methods that are inherent in Naor and Nissim’s compiler.

To do this we show how to modify the fully homomorphic encryption construction of
van Dijk et al. [vDGHV10] to be threshold fully homomorphic encryption schemes. We
directly construct (information theoretically) secure protocols for sharing the secret key for our
threshold scheme (thereby removing the setup assumptions) and for jointly decrypting a bit.
All of these constructions are constant round and we thoroughly analyze their complexity; they
address requirements (iii) and (iv). The fact that the encryption scheme is fully homomorphic
addresses requirement (ii).

To address the need for an honest-verifier zero-knowledge proof of knowledge of encrypted
values, we instead argue that a weaker solution suffices. We provide a 2-round blackbox
protocol that allows us to prove knowledge of encrypted bits. Our protocol is not zero-
knowledge, but it provably does not release any information about the bit being discussed, and
this is sufficient to prove the correctness of a simulation in a method similar to Cramer et al.

Altogether, we construct the first black-box secure multi-party computation protocol that allows
evaluation of a function f using communication that is independent of the circuit description of f .

Keywords: Fully Homomorphic Encryption, Threshold Encryption, Secure Multi-Party Communica-
tion, Communication and Round Complexity, Proof Of Knowledge

∗The views and conclusions contained in this document are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied, of the Defense Advanced Research Projects Agency or the
US government. This research is sponsored by the Defense Advanced Research Projects Agency (DARPA) and the Air
Force Research Laboratory (AFRL) under contract FA8750-11-2-0211.

1

1 Introduction

The first goal of this paper is to construct a threshold fully homomorphic public key encryption
scheme (FHE) in which the decryption key is shared among n players. Any k of the n players
can collaborate to decrypt a ciphertext that is encrypted under the public key of the scheme. We
describe schemes for distributed key generation, encryption and methods to prove knowledge
of the encrypted value, and finally distributed decryption for a fully homomorphic encryption
scheme based on the scheme presented by van Dijk et al [vDGHV10]. Our protocols run in
a small constant number of rounds and we carefully analyze their communication complexity.
For example, our decryption procedure for the Approximate-GCD based scheme requires 4 to 9
rounds of communication (depending on the parameter settings).

Following ideas from Cramer, Damgård, and Nielson [CDN01] and Gentry [Gen09a], our
threshold FHE scheme allows for construction of a secure multiparty computation protocol for
n players that tolerates up to n/2 malicious parties and has nearly optimal communication
parameters. In particular, the communication complexity of our protocol is independent of the
circuit size of the function being computed. Although Gentry points out that this result follows
directly from the existence of FHE, the existence of any secure multiparty computation, and
the compiler of Naor and Nissim [NN01b] (which relies on the existence of PCPs), our use
of threshold FHE avoids the non-blackbox construction methods inherent in this combination.
For example, our shared FHE decryption procedure is more efficient than using general secure
function evaluation techniques to decrypt an FHE ciphertext.

Related work The notion of threshold cryptography scheme was implicitly motivated by Shamir
in [Sha79], and was formally introduced by Desmedt et al. [Des87]. Several extensions and schemes
have been considered in the literature for different public encryption and signature schemes,
including but not limited to [DF89] for threshold ElGammal scheme [ElG85], [Rab98, FGMY97a,
FGMY97b] for threshold RSA, and [DJ01] for a variant of Paillier’s scheme. Cramer, Damgård
and Nielson [CDN01], along with Jakobbsson and Juels [JJ00] show how to use threshold cryptog-
raphy to construct secure multiparty computation protocols. In more detail, [CDN01] showed
homomorphic threshold cryptosystem can be used to achieve general multiparty computation
protocols which is secure against active adversaries.

1.1 Our Techniques

We present a threshold scheme for fully homomorphic encryption based on the construction of
[vDGHV10]. We find that many known techniques for secret sharing can be used to efficiently
implement the key generation and decryption methods. In a few cases, we modify the construction
from [vDGHV10] in simple ways that allow for much faster secure distributed implementation.
For example, we relax the constraints on the Hamming weight for some portions of the secret
key of the FHE scheme. Following the construction of FHE based on Gentry’s paradigm, our
distributed threshold key generation protocol needs to produce encryptions of each bit of the
secret key. Thus, we must also implement a method for shared encryption of bits. Finally, in
order to completely avoid generic non-blackbox zero-knowledge and generic SMC techniques, we
present a black-box proof of knowledge of plaintext for any FHE scheme with circuit privacy. This
construction relies on the combination of recent results concerning selective-opening security along

2

with a novel application of a verifiable secret sharing scheme. In the final section of the paper,
we illustrate how to combine these primitives into a secure multiparty protocol that tolerates a
dishonest minority and has communication complexity that is polynomial in n—the number of
players—and the security parameter λ—i.e., it does not depend on the circuit C being evaluated.

2 Preliminaries and Notation

Basic Notations We define some notation. If S is a set, let s← S denote the process of selecting
the element s uniformly at random from S. Given two families of distributions {D1i}i ∈N and
{D2i}i ∈N, we say that they are statistically close, denoted D1 ≈s D2, if ∆(D1i,D2i) ≤ 1/poly(i)
for all polynomials and sufficiently large i, where ∆(a, b) is the statistical distance between
distributions a and b. We denote the shares of a held by adversary as [a]I .

A 3-tuple of algorithms (Gen, Enc, Dec) is a threshold fully homomorphic encryption scheme
if the following holds.

Key Generation There exists an n-party protocol Gen that at each invocation returns a new
public key PK and the secret key (SK1, . . . , SKn), where SKi is the share of the secret key for
Playeri.

Encryption There exists a PPT algorithm EncPK(m, r), returns the encryption of the plaintext m
under the public key PK with random coins r.

Decryption There exists a n-party secure protocol Dec(c, SK1, . . . , SKn), which returns the plain-
text m using the shares SKi held by honest party Playeri, where c = Enc(m, r) for some
random r.

fPK-homomorphic There exist a PPT algorithm which given a polynomial f , ciphertexts c1 ∈
EncPK(m1), . . . , ck ∈ EncPK(mk) for some k and a public key PK, outputs c ∈ Enc(f (m1, . . . , mk)).

The natural notion of indistinguishability security needs to be modified in the venue of
threshold cryptography to take in to account the fact that the adversary has access to shares of the
secret-key, and we need to ensure these do not aid it. The appropriate corresponding and natural
definition is given below:

Definition 2.1 (Threshold Indistinguishability [CDN01]). Let A be an efficient adversary, which on
input 1k, a public-key PK, and any subset C of the corresponding secret-key shares SK1, ..., SKn where
|C| < n/2, outputs two messages m0, m1 and state information σ. Let (s, ci) ← Xi(k, C) denote the
distribution over (s, ci) where (pk, sk1, . . . , skn) are generated by the execution of the key generation
protocol, (m0, m1, s) ← A(1k, pk, C, {skc}c∈C), and ci ← Enc(pk, mi). Then Xi = {Xi(k, C)}k∈N,C for
i ∈ {0, 1} are ensembles, and we require that X0 ≈c X1.

Next we present a definition of circular threshold security for a semantically secure encryption
scheme. Our definition is based on the circular security definition in [GH110], but we must take
in to account the fact that the adversary has access to shares of the secret-key, [SK]I , where [SK]I

denotes the set of shares of the secret key the adversary has access to. The definition needs to
ensure that these shares do not affect the circular security.

3

Definition 2.2 (Circular Threshold Security). Let Π = (Gen, Enc, Dec) to be a semantically secure
threshold encryption scheme. For algorithm A and random k ∈N, let IND-CirThrCPAb(Π, A, k) to be the
output of the following experiment:

IND-CirThrCPAb(Π, A, k)
(PK, SK)← Gen(1k)
m0 ← SK
m1 ← 0|SK|

c∗ ← Enc(PK, mb)
Output A([SK]I , PK, c∗)

Encryption scheme Π is circular threshold secure if for all p.p.t algorithms A it holds that the
following two ensembles are computationally indistinguishable:

{IND-CirThrCPA0(Π, A, k)}k ≈c {IND-CirThrCPA1(Π, A, k)}k

3 Proof of Knowledge of an Encryption

As noted in the Introduction, the method of Cramer, Damgård, and Nielsen [CDN01] requires an
honest-verifier zero-knowledge proof of knowledge of encrypted values for the threshold schemes
that they employ.

We provide a weaker solution to the final requirement. We provide a 2-round proof of
knowledge of encrypted bits, which alas, is not zero-knowledge. However, the protocol provably
does not release any information about the bit being discussed, and this is sufficient to prove
the correctness of a simulation in a method similar to Cramer et al. Moreover, our construction
only makes black-box use of the underlying FHE scheme, and works for any circuit-private FHE
scheme (actually, it works for a selective-opening secure scheme).

We construct this proof through a two-step process. At a high-level, instead of encrypting
a bit b, we will use a specific (n

n/2+2) verifiable secret sharing scheme to generate n shares of b
and encrypt those shares. In order to give a proof of knowledge of the encryption of b, we will
allow a verifier to select n/2 + 1 of the encryptions of shares of b, and then direct the Prover
to decommit them by revealing the randomness used to encrypt them. To extract the bit, our
extractor rewinds the proof and selects an alternate n/2 + 1 shares, so that with high probability,
it can use n/2 + 1 shares to reconstruct b, and only b due to the verifiability of the secret sharing
scheme. The problem with this approach is that revealing the randomness for an encryption raises
selective decommitment issues. We use techniques from Hemenway et al. [HLOV09] to construct
a bit-wise Indistinguishable Selective-Opening Secure encryption scheme from our threshold
fully-homomorphic scheme.

We note that the construction of our bit-wise Indistinguishable Selective-Opening Secure
scheme does not constitute a fully homomorphic encryption scheme. For example, we cannot
add two sets of shares encoding b0 and b1 and expect the new shares to encode b0 + b1. However,
this is not a problem. We can homomorphically evaluate the reveal function of the secret sharing
scheme to get a single encryption representing the reconstituted bit. This encryption can then be
used to homomorphically evaluate the function as in Cramer et al. [CDN01].

4

Using FHE to construct a Selective Opening Encryption Scheme Hemenway et al. [HLOV09]
show any re-randomizable encryption scheme can be used to construct a natural lossy encryption
scheme and thus, by the result of Bellare et al. [BHY09], is secure against indistinguishable selective
opening attacks (IND-SO-ENC). We give the definitions of Lossy encryption and IND-SO-ENC
secure encryption below. We note that IND-CPA security is implied by the definition of Lossy
encryption, see [HLOV09] for details.

Definition 3.1 (Lossy Encryption). A lossy public-key encryption scheme is a triple (G, E, D) of P.P.T.
algorithms such that:

Correctness of Injective Keys: For all (PK, SK) ← G(1k, INJ), b ∈ {0, 1}, and random strings r:
D(SK, E(PK, b, r)) = b.

Lossiness of Lossy Keys: For all (PK, SK)← G(1k, LOSSY): E(PK, 0) ≈s E(PK, 1).

Computational Indistinguishability of Lossy and Injective Keys: Define s : (x, y) 7→ x to project
pairs of public- and secret-keys to pulblic-keys.

{s(G(1k, INJ))}k ≈c {s(G(1k, LOSSY))}k

Openability: The following is implied by lossiness. There exists an algorithm (not necessarily poly-
time) Opener which when given a lossy public-key PK, (PK, SK← G(1k, LOSSY) and a ciphertext
c← E(PK, b), will with non-negligible probability (over the choice of PK, SK and random bits used
to generate c) output two strings r0, r1, such that E(PK, 0, r0) = c and E(PK, 1, r1) = c.

Thus lossy encryption provides the ability to generate keys that produce “lossy” encryptions
in which the distribution of encryptions of 0, is statistically close to the distribution of encryptions
of 1. These keys are indistinguishable from regular, injective, keys. An alternate notion of security
for encryption relates to the selective opening problem. In this, somewhat counterintuitive, notion
we are asked that if there is a sequence of ciphertexts corresponding to different messages being
encrypted, can the release of the randomness used to encrypt some of the ciphertexts be used
to break the secrecy security of the other ciphertexts. A scheme that is secure against selective
openings ensures that the release of randomness used to encrypt some ciphertexts cannot be used
to compromise the security of other encryptions with the same public-key.

Definition 3.2 (IND-SO-SEC Encryption Security). A public-key encryption scheme Π = (G, E, D) is
Indistinguishable Selective Opening secure if, for any message sampler M that supports efficient conditional
resampling, and any P.P.T. adversary A = (A1, A2) there exists a negligible function µ such that for all
sufficiently large k: ∣∣∣Pr[AInd-SO-Real

Π (1k) = 1]− Pr[AInd-SO-Ideal
Π (1k) = 1]

∣∣∣ ≤ µ(k).

A message sampler M is a PPT algorithm that outputs a vector ~m of n messages from a given distribution.
It is an efficient conditional resampler if, when given two auxiliary inputs a set of indices I ⊆ [n] and a
vector of messages ~m = (m1, ..., mn), M will sample another vector ~m′ = (m′1, · · · , m′n) conditioned on
mi = m′i for each i ∈ I. We define the experiments Ind-SO-Real and Ind-SO-Ideal as follows.

5

Ind-SO-Real(1k, A) Ind-SO-Ideal(1k, A)
(PK, SK)← G(1k) (PK, SK)← G(1k)
~m = (m1, . . . , mn)← M ~m = (m1, . . . , mn)← M
r1, . . . , rn ← R r1, . . . , rn ← R
(I, σ)← A1(PK, EPK(m1, r1), . . . , EPK(mn, rn) (I, σ)← A1(PK, EPK(m1, r1), . . . , EPK(mn, rn)
b = A2(σ, (mi, ri)i∈I , ~m) ~m′ = (m′1, . . . , m′n)← M|I,m[I].

b = A2(σ, (mi, ri)i∈I , ~m′)

Hemenway et al. suggest that the distribution of a “fresh” encryption of a message should be
statistically close to a rerandomization of a fixed message. They point out that all homomorphic
encryption schemes up to that point achieved this property by adding an encryption of 0 to the
current message. While this property was true of all schemes at the time, it is not actually true
of the known fully homomorphic encryption schemes, because each time we add an encrypted
message to another we increase the amount of noise that is embedded in the ciphertexts, and thus
fresh encryptions have less noise than encryptions that have had operations (such as addition)
applied to them. Fortunately, the property they state is overly strong, and a simple observation
shows that for their construction to go through they only require that the distributions

{r ← R : E(pk, 0, r)⊕ E(pk, m, r0)} ≈s {r ← R : E(pk, 0, r)⊕ E(pk, m, r1)},

for all public-keys PK, messages m and random strings r0 and r1. However, it is simple to see
that even these two distributions are not statistically close for the fully homomorphic encryp-
tion schemes that have been proposed. Fortunately, both schemes under consideration have
rerandomization functions built to ensure Circuit-Privacy, similar to what is defined in Def 3.

Definition 3.3. ((Statistical) Circuit Private Homomorphic Encryption). A homomorphic encryption
scheme ε is circuit-private for circuits in a set Cε if, for any key pair (PK, SK) output by Gen(λ), any circuit
C ∈ Cε, and any fixed ciphertext ψ = 〈ψ1, . . . , ψt〉 that are in the image of Encε for plaintexts π1, . . . , πt,
the following distributions (over the random coins in Encε, Evalε) are (statistically) indistinguishable:

Encε(PK, C(π1, . . . , πt)) ≈ Evalε(PK, C, ψ)

In the original schemes first presented by both Dijk et al. [vDGHV10] and Gentry [Gen09a],
the initial evaluation functions are deterministic and not circuit-private. In order to overcome this
problem, both works introduce a method for adding random noise to encryptions, whether they
are output from Eval or Enc, and thus in some sense rerandomizing them. This is done by adding
an ‘encryption’ of 0 to the ciphertext in question, but where the ‘encryption’ has significantly
more noise than would be generated by either the legitimate encryption or evaluation process.
Specifically, they introduce P.P.T. algorithms labeled CircuitPrivacy : Cb → C ′b, where C consists of
all the ciphertexts that are output from EncPK(b) or a call to Eval with an encrypted output bit of
b. It is the case that for any b and any cb,0,cb,1 ∈ Cb.

CircuitPrivacy(cb,0) ≈s CircuitPrivacy(cb,1).

In the case of the construction based on approximate GCD, CircuitPrivacy(c) chooses a random
subset S ⊆ {1, . . . , τ}, and r ← [−2η−6, 2η−6] and output c′ ← [c + ∑i∈S xi]x0 + 2r (See Appendix
C of [vDGHV10] for more details). Gentry describes a similar method for achieving circuit privacy
on lattice based encryptions [Gen09a].

6

We describe our version of Hemenway et al.’s construction below. It takes a homomorphic
encryption scheme (G, E, D) with the homomorphism E(PK, m0 + m1) = E(PK, m0)⊕ E(PK, m1).
They define ReRand : C → C as a rerandomization function evaluated as c 7→ c⊕ E(PK, 0).

Key Generation G′(1k, b), b ∈ {INJ, LOSSY}: Let (PK, SK)← G(1k), c0 ← E(PK, 0), c1 ← E(PK, 1)
and c′1 =← E(PK, 0). If b = INJ Output PK′ = (pk, c0, c1) and SK′ = SK, else when
b = LOSSY output PK′ = (PK, c0, c′1) and SK′ = SK.

Encryption E′(PK′ = (PK, c0, c1), b): Output ReRand(cb).

Decryption D′(SK, c): Output D(SK, c).

Theorem 3.4. If (G, E, D) is a circuit-private FHE, then the blackbox construction (G′, E′, D′) described
above is an IND-SO-SEC secure encryption scheme.

Proof. Follows from [HLOV09] and [BHY09].

3.1 Proof of Knowledge

Again, in order to be able to provide a proof of knowledge that the a party has knowledge of the
value encrypted, we need to provide a POK. This is done by providing a POK which does not
leak information about the bit that is encrypted, but which is not zero-knowledge nor witness
indistinguishable. The POK is constructed by encrypting shares of a verifiable secret sharing
scheme, where the bit to be encrypted is the secret in question, as opposed to encrypting the
bit directly. The encryptions of shares act as commitments. In order to prove knowledge, we
decommit some shares by releasing the randomness used to perform the encryption. We release
few enough shares to ensure that no information about the underlying bit is released, yet enough
that if the prover successfully decommits its challenge, then we are all but sure the prover could
decommit enough shares to release the secret-bit.

3.1.1 Verifiable Secret-Sharing Scheme

A (n
n/2+2) Verifiable Secret-Sharing scheme consists of a sharing algorithm which takes as input

a secret s and produces n-shares s1, ..., sn. These shares have the property that for any T ⊂
{1, . . . n}, |T| < n/2 + 2 it is the case that {si}i∈T is information theoretically independent from
s. However, for any S ⊆ {1, . . . n}, |S| ≥ n/2 + 2, it is the case that the reveal algorithm, when
given {si}i∈S, can reconstruct s. In a traditional interactive setting we require that all non-cheating
parties agree on the reconstructed secret.

We use a modification of the Cramer et al. [CDD+
99] verifiable secret sharing scheme. We

note that in our application, we do not need to deal with interactive adversaries, nor players, so
the scheme is significantly simplified. We present the sharing and revealing algorithms below. It
is assumed that all of the operations are in some finite-field F of appropriate size.

Protocol 1 . [~s], VSShare(s)
1: Choose a random degree n/2 + 1 bi-variate polynomial f such that f (0, 0) = s.
2: Share si = (~a,~b) = (i, (f (i, 1), . . . , f (i, n)), (f (1, i), . . . , f (n, i))).

7

3: Output s1, ..., sn.
Protocol 2 . [~s], VSReveal(n

n/2+2)
(s1, ..., sn/2+2)

1: For each si = (i,~ai,~bi) ensure that ai and bi are n/2 + 2-consistent
2: If not output ⊥.
3: For each i 6= j ensure sj, si are pairwise-consistent
4: If not output ⊥.
5: Interpolate f , based on shares.
6: Output f (0, 0)

Definition 3.5. A vector (e1, ..., en) ∈ Fn is n/2 + 2−consistent if there exists a polynomial w of degree
at most n/2 + 1 such that w(i) = ei for 0 ≤ i < n.

Definition 3.6. Given two shares si = (i,~ai = (ai1, . . . , ain),~bi = (b1i, . . . , bni)) and sj = (j,~aj(aj1, . . . , ajn),~bj =
(b1j, . . . , bnj)), we say that they are pairwise consistent if aij = bij and aji = bji.

Definition 3.7. For our purposes it is useful to note that given the n× n matrix
f (1, 1) f (1, 2) . . . f (1, n)
f (2, 1) f (2, 2) . . . f (2, n)

...
...

. . .
...

f (n, 1) f (n, 2) . . . f (n, n)

 ,

that a share si simply corresponds to the ith row and column of the matrix. We will call this the matrix
representation of the shares. Notice that when given in the matrix representation, any two shares are
necessarily pairwise consistent. Given a set of n pairwise consistent shares~s = (s1, ..., sn), we define M~s as
the n× n matrix representation of the shares.

Definition 3.8. We say an n× n matrix representation of shares has t− consistent indices, if there is a set
S, |S| = t, such that for each i ∈ S, each row i and column i is n/2 + 2 consistent.

Lemma 3.9. Let M be n× n matrix representation of shares. Let S, T ⊆ {1, . . . , n}, |S| = |T| = n/2 + 2,
S 6= T, and the rows RS = {ri}i∈S, RT = {ri}i∈T and columns CS = {ci}i∈S, CT = {ci}i∈T are
all n/2 + 2−consistent. Let s = (s1, ..., sn/2+2) and t = (t1, ..., tn/2+2) be the shares drawn from
M corresponding to the sets of indices S and T respectively. Then VSReveal(n

n/2+2)
(s1, ..., sn/2+1) =

VSReveal(n
n/2+2)

(t1, ..., tn/2+1).

Proof. Note that in VSReveal(n
n/2+2)

lines 1–4 will never output ⊥ under our conditions, so all that
we need do is show that f will interpolate to the same value in both cases.

We know that the rows RT{ri}i∈T and columns CR{ci}i∈T are all (n/2 + 2)−consistent. Choose
any j ∈ S \ T. Let T = {t1, . . . , tn/2+2}. Consider cj = (c1,j, c2,j, . . . , cn,j)T. Since cj is n/2 +
2−consistent, the points (ct1,j, t1), . . . , (ctn/2+1,j, tn/2+2), interpolate to a unique univariate degree
n/2 + 1 polynomial (i.e. f (x, j)). This defines (c1,j, c2,j, . . . , cn,j)T, so the column j must be consistent
with T. Since the jth column was an arbitrary column in S different from those in T, all such
columns must be consistent with the rows defined be T. A symmetric argument shows that
rows selected by S must be consistent with the columns selected by T. Therefore, both sets are

8

consistent in that they define the same polynomials. Therefore, interpolation in VSReveal(n
n/2+2)

will result in the same output.

Lemma 3.10. Let M be an n× n matrix with at most n/2 + 1 consistent indices. The probability that
any n/2 + 1 randomly selected indices (without replacement) choose a set of n/2 + 1 consistent indices is
no more than

1/
(

n
n/2 + 1

)
.

Proof. There can be at most 1 sets of size n/2 + 1 that is n/2 + 1 consistent in an n× n matrix.
If there are fewer that n/2 + 1 consistent indices the probability of selecting a set of n/2 + 1
consistent indices is 0. Otherwise, we are left with the probability of choosing exactly one set of
size n/2 + 1 from a set of n objects.

3.1.2 Modifying the SOA-secure Encryption Scheme to Support POKs

We will show a 2-round public-coin proof of knowledge of the encrypted bit based on any selective
opening secure scheme. The protocol is neither zero-knowledge nor witness indistinguishable,
but does maintain secrecy of the encrypted bit. First, we encrypt bits using the following protocol.
Let Π = (G, E, D) be a selective-opening attack secure scheme, such as the one we have described
in Sec. 3. We construct a new encryption scheme Π̃ = (G̃, Ẽ, D̃) to encode bits properly so we can
give proofs of knowledge about them that keep the encrypted bit hidden. We define G̃ = G, and
given the algorithms for Ẽ and D̃ below. For this section, all usage of Verifiable Secret Sharing
uses the algorithms and definitions presented in Section 3.1.1.

Ẽ(PK, b, r)
(s1, ..., sn)← VSShare(n

n/2+2)
(b).

Let M be the n× n matrix
representation of shares (s1, . . . , sn)
ci,j = E′(PK, Mi,j, ri,j)
(These are bitwise encryptions of M)
Output C = {ci,j}1≤i,j≤n.

D̃(SK, C)
M = {Mi,j}1≤i,j≤n ← D′(SK, C).
Let (s1, . . . , sn) be the shares
corresponding to matrix M.
T′ = {t|1 ≤ t ≤ n share st

is n/2 + 2 -consistent}
If |T′| < n/2 + 2 output ⊥.
Let T ⊆ T′ s.t. |T| = n/2 + 2.
Output VSReveal(n

n/2+2)
(st1 , ..., stn/2+2)ti∈T.

3.1.3 Hidden Bit POK

Given a ciphertext C = {ci,j}1≤i,j≤n output by our encryption algorithm Ẽ and the random strings
used to generate it,~r, we show how to perform a two-round proof of knowledge of the encrypted
bit D̃(SK, C). P will prove that it has knowledge of the underlying shares of the verifiable secret-
sharing scheme that have been encrypted, and thus the bit that has been encrypted. In order to do
this, the verifier sends a random challenge of indices T ⊂ {1, . . . , n}, where |T| = n/2− 1. The
encryptor then decommits to these encryptions by providing the random-bits used to encrypt

9

each share of the bit. If each bit decommits successfully, and the result is n/2− 1 valid shares to
the VSS, then the verifier accepts.

Prover(PK, C = {ci,j}1≤i,j≤n Verifier(PK,C = {ci,j}1≤i,j≤n)
= Ẽ(PK, b, r), M, r)

Let ci,j = E(PK, Mi,j, ri,j)
T←− T ← {S|S ⊂ {1, ..., n} ∧ |S| = n/2− 1}

{Mi,x ,ri,x ,Mx,i ,rx,i} i∈T
1≤x≤n−→ if ∃i, j s.t. cij 6= E(PK, Mi,j, ri,j),

output ⊥.
Output 1.

Extractor(C, PK, U1 = {Mi,x, ri,x, Mx,i, rx,i} i∈T1
1≤x≤n

, U2 = {Mi,x, ri,x, Mx,i, rx,i} i∈T2
1≤x≤n

)

Let T = T1 ∪ T2, U = U1 ∪U2
If |T| < n/2 output ⊥.
If ∃i ∈ T, x ∈ {1, . . . , n} s.t. E(PK, Mi,x, ri,x) 6= ci,x or E(PK, Mx,i, rx,i) 6= cx,i output ⊥.
For each i ∈ T reconstruct its corresponding share si.
Output VSReveal(n

n/2+2)
(sr1 , ..., srn/2),

where r1, . . . , rn/2 are the smallest n/2 indices in T.

Completeness Follows by inspection.

Extractability (Soundness) Soundness follows from an extractor.

Theorem 3.11. For all sufficiently large n, for all d > 0, for all (SK, PK) ← G̃, for all ‘ciphertext’
inputs C, and provers P′, if (P′, V)(C = {ci,j}1≤i,j≤n, PK) accepts with probability 1/nd, then there
exists a probabilistic polynomial time extractor that, with all but negligible probability, outputs a set of
decommitments to all ciphertexts for a given set of indices L = {`1, · · · , `n/2+2} ⊆ [n] that constitute
shares S = {s`1 , ..., s`n/2+2} such that VSReveal(n

n/2+2)
(s`1 , ..., s`n/2+2) = D̃(SK, C).

Given the ability to rewind the prover-verifier protocol, we can extract the encrypted bit
by recovering enough shares of the VSS scheme. We continue to execute the prover/verifier
protocol until we get two distinct separate accepting proofs. It is a simple observation that
except with exponentially small probability, we will succeed in O(nd+1) rewinds. Let (T1, U1) and
(T2, U2) be the flows in the first and second accepting proofs, respectively. By the security of the
commitment scheme (Here we are using our encryption scheme as a simple commitment scheme),
the probability that there is a ciphertext ci,j that is ever decommitted to in two distinct fashions is
negligble.

We feed these inputs in to Extractor. We note that if there is not a valid encryption of a bit
(fewer than n/2 + 2 committed and consistent shares), then the probability that the verifier outputs
anything other than ⊥ is bound to be less than 1

(n
n/2+2)

, by Lemma 3.10. This is exponentially small,

and smaller than 1/nd for any constant d for sufficiently large n.

10

Given the decommitments of the shares {si}i∈Ti for different randomly chosen set of indices T1
and T2, note these sets are not the same by selection, and therefore there is no chance that ⊥ is
output by the extractor. Next the extractor executes a VSReveal(n

n/2+2)
command. However, this is

not necessarily over the same shares as would be revealed in a legitimate decryption. We need to
ensure that no matter which of the rewound and newly played legitimate traces we receive, we
are going to reveal the same encrypted bit, with all but negligible probability. That is, we need to
ensure that VSReveal(n

n/2+2)
(sr1 , ..., srn/2) = VSReveal(n

n/2+2)
(s1, ..., sn/2). This is the case, as shown in

Lemma 3.9 because of the verifiable properties of the secret sharing scheme ensures that even in
the case of a corrupted dealer (improper ciphertext encoding of shares) then all honest players
will reveal the same value, with all but negligible probability. Therefore, with all but negligible
probability we have that the extractor outputs the same value as D(SK,~c).

Hidden Bit We show that no efficient cheating verifier can predict the bit b, when given
~c = Ẽ(PK, b, r) as a theorem for which we are engaging in a POK.

Theorem 3.12. For every P.P.T. adversary A = (A1, A2), there exists a negligible function µ such that
Pr[HBA(1k) = 1] ≤ 1/2 + µ(k), where the experiment HB is defined below:

HBA(1k)
(PK, SK)← G̃(1k)
b ∈ {0, 1}
~c = (~c1, ...,~cn) = Ẽ(PK, b)
where ~ci = E(PK, si, ri).
(T, σ)← A1(PK,~c) where T ⊂ {1, . . . , n}, |T| = n/2.
b′ ← A2(σ, (si, ri)i∈T)
Output 1 iff b = b′

Proof. This follows directly from the IND-SO-SEC security of (G, E, D). Suppose an adversary
A = (A1, A2) breaks the hidden bit security of the protocol. That is for some c and infinitely
many k: Pr[HBA(1k) = 1] ≥ 1/2 + 1/kc. We use it to build an adversary B = (B1, B2) and
message selector M that breaks the IND-SO-SEC security of (G, E, D). The message selector M
chooses a random bit b, and outputs VSShare(n

n/2+2)
(b). The conditional message selector MI,~m[I]

finds a random bi-variate polynomial of degree n/2 in each variable over the field F such that
f (0, 0) ∈ {0, 1} and for each i ∈ I, it holds that ((f (i, 1), . . . , f (i, n)), (f (1, i), . . . , f (n, i))) = mi. By
the information secrecy property of the VSS there are exactly the same number of such selections
for the case f (0, 0) = 0 and f (0, 0) = 1. It is clear that such conditional message sampling can be
done efficiently.

The adversary B1(PK, E(PK, m1), . . . E(PK, mn)) for the IND-SO-SEC experiment outputs
A1(PK,~c = (E(PK, m1), . . . E(PK, mn))). The adversary B2(σ, (mi, ri)i∈I , ~m∗) runs VSReveal(n

n/2+2)
(~m∗) =

b′, it then executes b← A2(σ, (mi, ri)i∈I) and outputs 1 iff b = b′.
Now consider Pr[BInd-SO-Real

Π (1k) = 1], this is a perfect simulation of HBA(1k), and there-
fore is at least 1/2 + 1/kc. In contrast, consider Pr[BInd-SO-Ideal

Π (1k) = 1]. In the case that
VSReveal(n

n/2+2)
(~m∗) = VSReveal(n

n/2+2)
(~m), which occurs with probability exactly 1/2, it is again a

perfect simulation, and so outputs 1 with probability 1/2 + ε. In contrast, when VSReveal(n
n/2+2)

(~m∗) 6=

11

VSReveal(n
n/2+2)

(~m), then we know that B2 outputs VSReveal(n
n/2+2)

(~m) with probability 1/2 + ε, and

so it must output 1 with probability 1− (1/2 + ε) = 1− ε. Therefore, Pr[BInd-SO-Ideal
Π (1k) = 1] =

(1/2)(1/2 + ε + 1/2− ε) = 1/2. Therefore, Pr[BInd-SO-Real
Π (1k) = 1]− Pr[BInd-SO-Ideal

Π (1k) = 1] ≥
1/kc, breaking IND-SO-SEC security.

4 Threshold FHE for the Integers

In this section, we first summarize secret sharing techniques that we use in the rest of this paper.
We then describe the FHE scheme upon which we base our threshold FHE. In the remaining
sections §4.4–§4.5, we describe our threshold scheme’s key generation and decryption protocols.

4.1 Secret Sharing Primitives

Let Fq denote the finite field Z/qZ with q being a prime. Let [a] denote a secret-sharing of a ∈ Fq
and a← reveal([a]) denote the execution of the reconstruction protocol for a in which the parties
use their shares of [a] as input to reconstruct the shared secret a. We refer to the simulator for
reveal protocol as Sreveal([a]I , a′), which takes as input the shares of [a] known by adversary
(denoted[a]I), and reveal the value a′. This is done in a manner that is indistinguishable from the
real world execution. Throughout the paper, in algorithmic descriptions we do not specify the
field that secrets are shared in. The field order must be large enough to handle the integers encountered
in the fully homomorphic computations without causing wrap-around, but is otherwise arbitrary. One
can determine the field order needed by computing the maximum of the required orders for each
FHE algorithm. Therefore in all secret sharing instances, we refer to the field order as an ` bit
prime.

Let [a]B denote a shared value which is bit-decomposed. That is, every player holds a share of
each bit of a. Also [a]i,...,j denotes the bit-by-bit share of the the substring of a from the index i to
the index j.

We assume that the secret sharing scheme is linear. Hence parties that hold the shares [a] and
[b] can compute shares for [a + b] and for [ac] for a public constant c without interacting. We also
assume that there is an unconditionally secure protocol mult to compute [ab] from the shares [a]
and [b]. Such a linear secret sharing scheme and a corresponding constant round multiplication
protocol mult that can be instantiated with protocols described in [Sha79] and [BOGW88]. Since
we assume the existence of the multiplication protocol as an abstract primitive, we express the
round complexity as the number of sequential multiplication calls that are necessary during the
protocol. We also express the communication complexity as the number of the total multiplication
calls during the protocol.

Some Known Primitives We first describe some known primitives from previous works on
secret sharing. The protocols are used as building blocks to construct our shared key-generation
and decryption protocols for the threshold decryption scheme. These protocols are all secure
against static dishonest minority, and make use of atomic broadcast channels. We also describe
slight modification to some of them, which are useful for our applications.

ran2() Damgård et al. [DFK+
06] give an n-party protocol ran2 in which the players have no

input, and receive as output shares of a uniformly distributed random bit [a] ∈ {0, 1}. The

12

protocol requires 2 sequential multiplication rounds. The simulator for this protocol is
Sran2(b), where the bit b is the output the simulator is supposed to generate.

comp([a]B, [b]B) [DFK+
06], [NO07], and [Tof09] introduced a method to compare the bit-wise

values [a]B and [b]B in a multiparty setup.The returned value is 1 if a ≥ b, and 0 otherwise.
The protocol runs in 8 rounds (two of which are preprocessing rounds), and by invoking
13` + 6

√
` multiplications, where ` is the bit length of the order of field in which a and b are

shared. As mentioned in [Tof09], by adding another ` +
√

` multiplications, the comparison
can be extended to return two bits that determine the case when a = b as follows:

comp([a]B, [b]B) =

([1], [0]) if [a]B > [b]B
([0], [0]) if [a]B = [b]B
([0], [1]) if [a]B < [b]B

We use equal([a]B, [b]B) to denote a protocol that returns 1 if the two outputs are equal,
and 0 otherwise. This equality test is the same as running comp([a]B, [b]B) and adding
the two resulting bits, and then subtracting the sum from 1. To save space, we i) write
[c]← comp([a]B, [b]B), to denote c = 1 if a ≤ b, and 0 otherwise; and ii) whenever we need
to find the maximum number in a set of k numbers, we write

[a1], . . . , [ak]← comp(x1, . . . , xk),

where [ai] = 1 if it is the maximum, and [ai] = 0 otherwise. Computing this involves
(

k
2

)
parallel comparison of each pair of numbers. This modification to the comp algorithm
requires another k− 1 rounds and k(k− 1) multiplications. Therefore, the overall round
complexity is 7 + k (two of which are for preprocessing) and (k(k − 1))(13` + 6

√
`) +

k(k − 1) = (k(k − 1))(13` + 6
√

` + 1) multiplications. The simulator for this protocol
is Scomp(([a]B)I , ([b]B)I , output), where output is the result of comparison simulated by
simulator. Simulator for other variants of comp and equal are defined in a similar fashion.

bits([a]) It provide a method for taking [a] and computing shares for each of the bits in the bit-
wise representation of a through multi-party computation. The protocol returns ` = dlog ae
shares of bits ([a0], . . . , [a`−1), where a = ∑i ai2i. The protocol takes 23 rounds (7 of which
are preprocessing rounds), and invokes 31` log ` + 71` + 30

√
` multiplications(` is the

bit length of the field order a is shared in). The simulator for this protocol is denoted
Sbits(([a])I , a`−1, . . . , a0), where it gets the shares of [a] that should be decomposed in to
shares of a′s bit-wise representation, as well as values a0, ..., a`−1 which each party would
hold a share of at the end of the simulation. This algorithm was presented in [Tof09].

solved-bits(k) This protocol returns shares of each bit of the bit-wise representation of a value
chosen uniformly at random in the range [0, k]. The protocol takes seven rounds (two of
which are preprocessing rounds), and 52` + 24

√
` multiplications. The simulator for this

protocol is Ssolvedbits(a), where a is the simulated random output. This algorithm was
presented in [Tof09].

power([x], k) This algorithm returns shares of xk in the case that x is an invertible field element.
The simulator for this protocol is powerSim∗(([x])I , k, y). The simulator should give the

13

shares of y to represent the shares of xk to all parties during the simulation. This protocol
is a simple modification of a protocol based on the works of [BIB89] and [DFK+

06] which
given as input shares [x1], ..., [xk] returns in constant rounds shares for all of the values
1 ≤ i < j ≤ k, ∏

j
k=i xk. The protocols takes 5 rounds and incurs 5` + k− 1 multiplications.

mod([x], m) This protocol computes shares of x mod m, where m is a public value. The
simulator for this protocol is Smod([x], m, a), where the simulator produces shares of
a, with the intention that [x] = a mod m. The protocol takes up to 40 rounds, and
31`2 log ` + 31` log ` + 84`2 + 71` + 36`

√
` + 30

√
` multiplications. This protocol is a natural

augmentation of a protocol presented in [DFK+
06], that results from using techniques

in [Tof09] to improve efficiency.

4.2 Approximate-GCD scheme

We start by summarizing the FHE scheme based on the Approximate-GCD problem described
by [vDGHV10]. The scheme relies on the boot-strapping principle and is based on a somewhat
homomorphic scheme parameterized by the following variables:

γ is the bit-length of the integers in all the somewhat homomorphic scheme’s public key,

τ is the number of integers in the somewhat homomorphic scheme’s public key,

η is the bit-length of the secret key in somewhat homomorphic scheme (which is the hidden
approximate-gcd of the integers in the public-key),

ρ is the bit-length of the noise.

For the security parameter λ, vanDijk [vDGHV10] suggests the following relationships:

• ρ = ω(log λ), to protect against brute-force attacks on the noise;

• η ≥ ρ ·Θ(λ log2 λ), in order to support homomorphism for deep enough circuits to evaluate
the ”squashed decryption circuit”;

• γ = ω(η2 log λ), to thwart various lattice-based attacks on the underlying approximate-gcd
problem;

• τ ≥ γ + ω(log λ), in order to use the leftover hash lemma in the reduction to approximate
gcd.

• ρ′ = ρ + ω(log λ),

Now the parameters are set as following: ρ = λ, ρ′ = 2λ, η = Õ(λ2), γ = Õ(λ5) and τ = γ + λ.
For z ∈ R, define rp(z) = z− bz/pe · p, i.e, it is the remainder in the range (−p/2, p/2). For a

specific (ρ-bit) odd positive integer p, let the distribution Dγ,ρ(p) over γ bit integers be:

Dγ,ρ(p) = {choose q← Z ∩ [0, 2γ/p), r ← Z ∩ (−2ρ, 2ρ) : output x = pq + r}

14

4.3 Public Key Homomorphic Encryption Scheme

The homomorphic encryption scheme ε = (Gen′, Enc′, Eval′, Dec′) works as follows:

Gen′(λ) The secret key is an odd η-bit integer: p← (2Z + 1) ∩ [2η−1, 2η).

For the public key, sample xi ← Dγ,ρ(p) for i = 0, . . . , τ. Relabel the vector ~x so that
x0 is the largest integer. Restart unless x0 is odd and rp(x0) is even. The public key is
pk = 〈x0, x1, . . . , xτ〉.

Enc′(pk, m ∈ {0, 1}) Choose a random subset S ⊆ {1, 2, ..., τ} and a random integer r in (−2ρ′ , 2ρ′).
Output c∗ ← [m + 2r + 2 ∑i∈S xi]x0 .

Eval′(pk, Cε, c1, ..., ct) Given an (arithmetic) admissible circuit Cε with t inputs, and t ciphertexts
ci, apply the (integer) addition and multiplication gates of Cε to the ciphertexts, performing
all the operations over the integers, and return the resulting integer.

If f (x1, . . . , xt) is the multivariate polynomial representation of the circuit Cε, and f is of
degree d, then we say that Cε is admissible if:

d ≤ η − 4− log | f |
ρ′ + 2

where | f | is the l1 norm of the coefficient vector of f .

Dec′(sk, c) Output m′ ← (c mod p) mod 2.

The scheme can be transformed into a fully homomorphic one by applying the bootstrapping
transformations described in [vDGHV10]. In particular, the decryption depth of the circuit must be
squashed by adding extra information to the public key and modifying the encryption procedure.
Towards this goal, set the additional parameters κ = γη/ρ′, Θ = ω(κ log λ), and θ = λ. Define
the scheme Π = (Gen, Enc, Eval, Dec) as follows:

Gen(λ) Generate sk∗ = p and pk∗ as before. Set xp ← b2κ/pe. Choose at random a Θ-bit vector
~s = 〈s1, . . . , sΘ〉 with Hamming weight θ, and let S = {i : si = 1}. Choose at random integers
ui ∈ Z ∩ [0, 2κ+1) for i = 1, . . . , Θ, subject to the condition that ∑i∈S ui = xp (mod 2κ+1).
Set yi = ui/2κ (it is a real number with dlog θ + 3e bits of precision) and ~y = 〈y1, . . . , yΘ〉.
Output the secret key SK = (~s) and public key PK = (pk∗,~y). (Notice that p is no longer
needed in the secret key.)

Enc(m, PK) Generate a ciphertext c∗ as before in Enc′ (i.e., an integer). Then for i ∈ 1, ..., Θ, set
zi ← [c∗ · yi]2, keeping only dlog θe+ 3 bits of precision after the binary point for each zi.
Output both c∗ and ~z = 〈z1, ..., zΘ〉.

Dec(c = 〈c∗,~z〉, SK) Output m′ ← [c∗ − b∑i sizie]2.

Theorem 4.1 (Implicit from [vDGHV10]). Fix the parameters (ρ, ρ′, η, γ, τ) and (κ, Θ, θ) as noted
above. Under the assumption that the (ρ, η, τ) approximate-GCD problem and the (θ, Θ)-sparse subset sum
problem are hard, Π is a semantically-secure compact bootstrappable somewhat homomorphic encryption
scheme.

15

4.4 Sharing the Public and Secret Key

In this section, we describe a constant-round, n-party protocol to generate both a public key and
shares of the secret key for the fully homomorphic encryption scheme Π. Our schemes rely on
the secret sharing sub-protocols described in section 2.

Recall that the secret-key for Π consists of a Θ-bit vector~s with Hamming weight θ. In fact, we
note that instead of θ, it suffices to select a vector with Hamming weight in the interval θ ± θ/4.
This observation allows us to pick a SK by independently flipping coins that are 1 with probability
θ/Θ.

Generating the public key is more complicated. The public key consists of the vectors ~x and ~u.
There are 3 steps in generating the public key. In order to generate ~u, we first compute shares of p
which is an odd integer in the interval [2η−1, 2η). Second, we compute xp = b2κ/pe. Using~s and
xp, we compute the vector ~u = ∑i si · ui mod 2κ+1. Third, using bits of 1/p computed in previous
steps, we generate the xi’s. In the next sections, we provide more details on each of these steps.

4.4.1 Producing the SK~s

The secret key for the squashed scheme consists of a random Θ-bit vector~s = (s1, . . . , sΘ) with
Hamming weight θ. We argue that setting the Hamming weight of~s to be any value in the range
θ ± θ/4 does not affect the security or correctness of the scheme. To verify this, note that the
sparse subset-sum problem is assumed to be hard for θ = Θε for 0 < ε < 1; our change does not
violate this condition. Also, our new range of settings for θ does not increase the total degree of
the decryption circuit by more than a factor of 2 and thus the condition that Dec is admissible is
maintained (and thus the scheme is bootstrappable. See the computation on p.18 [vDGHV10].)
Our approach for producing~s is to securely generate a random number ri in the range [0, Θ] for
each si and setting si = 1 if ri ≤ θ and 0 otherwise.

Claim 1. If each si is set to 1 with probability θ/Θ, then

Pr

[∣∣∣∣∣∑i
si − θ

∣∣∣∣∣ > θ/4

]
≤ 2−O(λ)

Proof. Via the Chernoff bound.

We also assume that the circular threshold security of the framework still holds with this
modification. We believe that any natural proof in showing this modification still results in circular
security, would modify the original circular security argument for the base system. However,
remember that the circular security of the original scheme is assumed, and therefore we cannot
modify such a proof.

We set the parameter Θ to be a power of two to facilitate generating secret random elements
smaller than Θ. In this case, generating secret random numbers smaller than Θ only requires
concatenation of log Θ secret random bits without any secret comparison. However in the general
case, we would call the comp protocol, but this is a relatively expensive operation. Therefore the
algorithm to compute~s is as follows: For each si, the players produce shares of log Θ random bits
in step 1 (notice that the concatenation of these bits would be guaranteed to be in the interval
[0, Θ]). After local computation in step 2, the players securely compare the result against θ to
generate shares of si (i.e., si would be 1 with probability θ/Θ, and 0 otherwise).

16

Protocol 3 . [~s], θ′ ← ComputeS(θ, Θ)

1: For i = 1, . . . , Θ and j = 1, . . . , log Θ, the players run [ai,j]← ran2() to generate shares of
random bits.

2: For i = 1, . . . , Θ, each player locally computes [ai]← ∑j[ai,j] · 2i.
3: For i = 1, . . . , Θ, the players run Θ parallel executions of protocol [si]← comp([ai], θ). At

the end of this protocol, each player has a share of bit [si].
4: Players locally compute [θ′]← ∑i[si].
5: Players run the protocol θ′ ← reveal([θ′]) to reconstruct the value θ′.
6: Output [~s], θ′

Complexity Analysis The algorithm produces Θ log Θ random bits in parallel, and performs
another Θ comparisons, that again can be done in parallel. Therefore it needs 2Θ log Θ + Θ(13` +
6
√

`) invocations of the multiplication protocol and 7 rounds of interaction.
Simulation. The simulator Ss(~s′) of ComputeS works as follows:

1. Run the sub-simulator Sran2(0) for each call of ran2 protocol and obtain the adversary’s
share. Next, do the local computation in step 2 and obtain [~a]I .

2. For all i ∈ [1, Θ] run the sub-simulator Scomp([ai]I , θ, s′i), and obtain the adversary’s share
[~s′]I .

3. Locally compute [θ′]I = ∑i[s′i]
I .

4. Run Sreveal([θ′]I , ∑i s′i).

5. Output [~s′]I and θ′.

4.4.2 Computing p

The secret key p for the “somewhat homomorphic encryption scheme” is an odd η-bit integer.
To sample p, we notice that the p0

th and pη−1
th bits should be 1 whereas the rest of the bits

p1, . . . , pη−2 should be generated by having the players execute ran2(). Therefore, the secret
key would be 2η−1 + ∑

η−2
i=1 pi2i + 1 (which can be computed locally by players from shares of the

bits). At the end, each player holds a share of p. The computation complexity involves 2(η − 2)
multiplication invocations and 2 rounds of interaciton. The simulator for this subprotocol, named
Smod(p′), is defined by calling Sran2(p′i) for i ∈ [1, η − 1]. The simulator outputs [p′]I .

4.4.3 Computing b 2κ

p e

In [KLML05], the authors present a method for two honest-but-curious parties to compute the
average of their inputs. We extend their technique to allow multiple parties who hold shares of p
to compute shares of 1/p, and address the malicious model.We generalize [KLML05]’s approach
to calculate b2κ/pe by computing the first κ bits of 1/p and then rounding.

17

Recall that p is subject to the constraint 2η−1 ≤ p < 2η ; set ε ∈ [0, 1/2] such that p = 2η(1− ε).
Thus:

p−1 = 2−η · 1
(1− ε)

= 2−η
∞

∑
i=0

εi = 2−η

(
d

∑
i=0

εi

)
+ 2−η Rd

where 0 ≤ Rd < 2−d. Multiplying both sides by 2η(d+1) yields

2η(d+1)p−1 =

(
d

∑
i=0

(2ηε)i2η(d−i)

)
+
(

2ηdRd

)
(1)

Notice that 2ηε is an integer (since p = 2η(1− ε) is an integer).
Let Z denote the first summand in 1 (i.e., ∑i(2ηε)i2η(d−i)). Having shares of p, players compute

2ηε collaboratively using the formula 2ηε = 2η − p. Holding shares of 2ηε and using the protocol
power for exponentiation, the players can now compute shares of Z.

Because the exact integer value of Z is desirable, we need to choose the field Zl used in the
secret sharing scheme to be large enough to ensure [Z]l = Z. In order to determine the bit-length
of the field we first determine the maximum value Z = ∑d

i=0(2ηε)i2η(d− i) can take. By 1 we
have:

d

∑
i=0

(2ηε)i2η(d−i) = 2η(d+1)p−1 − 2ηdRd

Our constraints ensure that 2ηd < 2η(d+1)p−1 ≤ 2ηd+1 which immediately implies Z ≤ 2ηd+1.
The constraints 0 ≤ Rd < 2−d imply that log(2ηdRd) < ηd− d. But earlier we showed:

ηd < log(2η(d+1)p−1) ≤ ηd + 1

These two facts ensure that the error term 2ηdRd will only change the least significant ηd− d
bits in 2η(d+1)p−1. The difference of the two bit lengths, ηd− (ηd− d) = d, is the number of bits
that the error term does not change (assuming a carry will not happen). For our purposes, it
suffices to compute the first κ bits of 1/p to yield 2κ/p. Therefore, we set d = κ.

Note that [Z]κd...κd−κ or [Z]κd...κd−κ + 1 is the integer value of b 2κ

p c. The reason for potentially

adding one to the value is that in our calculation of Z, we do not include the summand 2κdRd.
This summand might have propagated a carry that changes the value of [Z]κd..κd−κ. Further, b 2κ

p e
must be either b 2κ

p c or b 2κ

p c+ 1. Therefore, xp is either xp = [Z]κd...κd−κ, xp = [Z]κd...κd−κ + 1, or
xp = [Z]κd...κd−κ + 2. We can determine which case holds by multiplying each of the candidates by
p and testing which result has the smallest distance to 2κ. To perform this test, notice that if we
took any of the three computed values and subtracted 2κ to determine proximity (as is done on
line 10 of Protocol 4.4.3 (ComputeXP)) the result might be negative. Since we are in finite field
this causes problems, as it results in a large positive number, destroying our notion of closeness.
For example, imagine subtracting 2κ from the three values 2κ − 1, 2κ + p− 1, 2κ + 2p− 1 . Then
the subtraction result would be −1 = `− 1, p− 1, and 2p− 1. The value −1 = `− 1 corresponds
to the correct choice, but a direct smallest magnitude comparison would be pick the second value,
p− 1. To overcome this problem, we square the result of the subtraction (line 11 of Protocol 4.4.3
(ComputeXP) below) so that all values are positive and the comparison has the desirable result.

18

There is no fear of modular reduct, as it is easy to observe that any of subtracted results lie in
[−3p + 1, 3p− 1], and squaring these values results in value smaller than the modular reduction
of `.

In the following protocol we formalize the above reasoning. We also set xγ as the first γ bits of
[Z]ηκ..ηκ−κ. It is an output of the function. This value is needed later for generating the public key
〈x0, . . . , xτ〉.

Protocol 4. [xp]← ComputeXP([p], κ, η)

1: Locally compute shares [e]← [2η]− [p].
2: Execute the protocol ([e], [e2], . . . , [eκ])← power([e], κ) to generate shares of ei for i ∈ 1, . . . κ.

3: Locally compute shares [Z]← ∑κ
i=0[ei]2η(κ−i).

4: Execute bit-decomposition protocol to generate shares [Z]B ← bits([Z]).
5: Locally generate a share of [Z]ηκ..ηκ−κ by using the bit-decomposed shares [Z]B and the

constants 2j for j ∈ [0..κ − 1].
6: Locally set [xγ]B = [Z]ηκ..ηκ−γ.
7: Run a trivial protocol to generate shares of the constants [0], [1], [2], and [2κ].
8: Locally compute [xi]← [Z]ηκ..ηκ−κ + [i].
9: For i = 0..2, run protocol [x′i]← mult([xi], [p]).

10: For i = 0..2, locally compute [x′′i]← [2κ]− [x′i].
11: For i = 0..2, run protocol [x′′i]← mult([x′′i], [x′′i]).
12: For i = 0..2, run protocol [x′′i]B ← bits([x′′i]).
13: Run protocol [a0], [a1], [a2]← comp([x′′0]B, [x′′1]B, [x′′2]B).
14: Run protocol [xp]← [a0][x0] + [a1][x1] + [a2][x2].
15: Output [xp], [xγ]B.

Complexity Analysis In this protocol, the size of the field for secret sharing should be at least
2ηκ+1. The above protocol invokes the power subprotocol once in computing [e] and κ times on
line 2; the bits subprotocol once on line 4 (5 out of 7 preprocessing rounds can be run parallel
with mult

∗) and three times on lines 12 (7 preprocessing rounds can be run parallel with previous
lines); and the comp subprotocol once with 3 inputs on line 13. Additionally, 3 multiplications are
invoked on each of the lines 9, 11, and 14. Therefore these all multiplication invocation numbers
adds up to: 124` log ` + 328` + 138

√
` + 11. Round complexity analysis is as follows: line 2 takes

5 rounds; lines 4 and 12 take 21 rounds each (we can run the 2 preprocessing rounds in advance);
line 13 takes 7 rounds; and lines 9, 11, and line 14 each take 1 round. The result is a total of
5 + 18 + 16 + 7 + 1 + 1 + 1 = 49 rounds. Note that [xγ]B is computed by the end of 23

thround and
can be returned at that point.
Simulation. The simulator for protocol 4, Sxp([p]I , xp, xγ), is described as follows:

1. The first step of the protocol is a local computation.

2. For step 2, the simulator calls S∗
mult

(([e])I , d, 0). At the end of this step, each player holds
shares of 0 for each bit of e and the simulator learns all the shares held by the adversary.

19

3. For Step 3 is local computation. The simulator maintains knowledge of the shares of [Z]I .

4. For Step 4, the simulator calls Sbits([Z]I , xγ) and learns [Z]I
B.

5. For Steps 5 to 13, and for the first two multiplications in step 14, the simulator calls the
related sub-simulator for each step, with the adversary’s input of shares and the output of
zero for that sub-simulator. Trivially each step’s adversary input share can be obtained from
the shares it obtained from previous step.

6. For the last multiplication in step 14, the simulator calls Smult([a2]I , [x2]I , xp). Then the
simulator adds up the shares from the three terms as their share for [xp]I .

7. Output [xp]I and [xγ]I
B.

4.4.4 Producing ~y

The~s vector computed Section 4.4.1 is used to select the hidden subset-sum in the vector ~y that
sums up to ≈ 1/p mod 2. In [vDGHV10], the vector ~y is generated as follows:

1. Sample integers ui ∈ Z ∩ [0, 2κ+1), i ∈ [1, Θ], such that ∑i ui · si = xp mod 2κ+1

2. For i = 1, . . . , Θ, set yi = ui/2κ (using κ bits of precision)

Since ~u reveals all information in ~y and nothing more, it suffices to compute and reveal ~u. To
compute ~u, we generate random numbers in the interval [0, 2κ+1) for each ui in lines 1− 2 (no
information is revealed since the generated values are random integers). Next, we need modify
the vector ~u to satisfy the constraint:

∑
i

ui · si = xp mod 2κ+1.

We do so by selecting a value k at random s.t. sk = 1, and set uk = (xp −∑i 6=k ui · si). However, in
doing so we will reveal the value k to all parties, and in so doing we release part of the secret-key.
It is relatively easy to argue, and is done in Claim 2, that while this slightly reduces security, a
secure scheme remains secure.

To perform the calculations just described, we choose a random index k ∈ [0..θ] in step 3 and
then find the index of the kth 1 in the vector~s in line 2. Denote this index as k∗. Computing this
index is done as follows, each player locally computes prefix sums ∑i

j=0[si] for each value i, and
tests for equality with [k]. The results is a set of shares [s′i] which are all zero except at the indices
between the kth and the k + 1th occurrence of 1 in~s. To isolate the occurrence corresponding to the
index, we multiply [s′i] with [s′]. Finally, we reveal this index in the form of shares [s′′i]. Notice that
s′′k∗ = 1 and all other positions will be 0. The above procedure is illustrated in Table 1. Finally, we
modify the values of uk∗ to satisfy the constraint: We replace the uk with 2κ+1 − 1 (to make sure
the result of subtraction in step 9 would not be negative), compute dif = xp −∑i ui · si mod 2κ+1,
and reveal the result. The users, then, can locally replace uk with uk − dif mod 2κ+1 in step 11
which guarantees that ∑i ui · si = xp mod 2κ+1.

We now show that this modification of Π neither weakens its indistinguishability security nor
its circular threshold security.

20

Table 1: Example of producing ~s′′ for~s = (0, 1, 0, 1, 0, 0, 1, 1, 0, 0) and k = 2
i 0 1 2 3 4 5 6 7 8 9

si 0 1 0 1 0 0 1 1 0 0

ŝi = ∑i
j=0[sj] 0 1 1 2 2 2 3 4 4 4

s′i = equal([ŝi], [2]) 0 0 0 1 1 1 0 0 0 0

s′′i = mult([s′i] · [si]) 0 0 0 1 0 0 0 0 0 0

Claim 2. Let Π′ be the encryption scheme that results from the modifications to the keygen described above.
An adversary A′ that breaks the indistinguishability threshold security of Π′ with advantage ε can be used
to construct an adversary A that breaks Π with advantage p(ε) for some polynomial p.

Proof. (Sketch). The adversary A chooses a random index k. With non-negligible probability, k is
the index of a 1 in the vector~s. Then, A calls A′ with the input k. A has θ′/Θ chance of guessing
k correctly (non-negligible), and A′ has ε chance of breaking security. therefore A can break the
security with probability ε′ = εθ′/Θ.

Claim 3. Let Π′ be the encryption scheme that results from the modifications to the keygen described above.
An adversary A′ that breaks the circular threshold security of Π′ with advantage ε can be used to construct
an adversary A that breaks the circular security of Π with advantage p(ε) for some polynomial p.

Proof. The proof is similar to the proof of claim 2.

Protocol 5. [~y]← ComputeY([xp], [~s], θ′),

1: For i = 1..Θ, and for j = 0..κ run protocol [ui,j]← ran2() in parallel.
2: For i = 1..Θ locally compute ui ← ∑j[ui,j]2j.
3: Run protocol [k]← solved-bits(θ′).
4: For i = 1..Θ run protocol [s′i]← equal(∑i[si], [k]) in parallel.
5: For i = 1..Θ run protocol [s′′i]← mult([si], [s′i]) in parallel.
6: For i = 1..Θ: run protocol s′′i ← reveal([s′′i]) in parallel.
7: s′′ ← i such that s′′i = 1.
8: Locally compute us′′ ← 2κ+1.
9: [dif]← (∑i ui · [si]− [xp] mod 2κ+1).

10: Run protocol dif ← reveal[dif].
11: Locally compute us′′ ← −di f .
12: Output ~u/2κ.

Complexity Analysis. ComputeY calls ran2 Θ(κ + 1) times in line 1, and solved-bits(θ) once
in line 3. Subprotocols equal and mult subprotocols are each called Θ times in lines 4 and
5. Next, mod 2κ+1 is computed in line 9, which is done by a call to the bits subprotocol on
the input and taking only the least significant κ + 1 bits as the result. Therefore, the round
and multiplication complexity of this step is the same as the bits subprotocol. Totaling, this
protocol requires 31` log ` + (13Θ + 123)` + (6Θ + 54)

√
` + Θ + 2Θ(κ + 1) rounds of interaction

21

and 2 + 6 + 5 + 1 + 16 = 30 multiplications. The largest value computed is upper bounded by
θ(2κ+1) in line 9, therefore ` needs to have a bit-length of at least |θ|(κ + 1).
Simulation. The simulator Sy([xp]I , [~s]I , ~y′) acts as follows:

1. Let ~u′ = ~y′ · 2κ,

2. The simulator picks a random k′ as the index of ~u that should be revealed to the adversary.
Then for the first step, the simulator calls the simulator Sran2(ui,j) for each bit of each of
the ui’s except for u′k and learns [ui,j]I . For i = k′, the simulator picks random rj’s, calls
Sran2(rj), and again learns [u′k]

I . Then the simulator locally computes [ui]I ,

3. Fore step 3, the simulator calls Ssolvedbits(θ′, 0) and learns [k]I ,

4. For step 4, the simulator calls Sequal(∑i[si]I , [k]I , 0) and learns [s′i]
I ,

5. For step 5, the simulator calls Smult([si]I , [s′i]
I , 0) and learns [s′′i]I ,

6. For all i ∈ [1, Θ] except for k′, the simulator calls the simulator Sreveal([s′′i]I , 0). Then for
i = k′, the simulator calls Sreveal([s′′i]I , 1),

7. Set s′′ = i s.t. s′′i = 1

8. The simulator follows the algorithm in step 8 and computes di f ′ = −u′s′′ mod 2κ+1,

9. The simulator calls Sbits((∑i ui[si]I − [xp]I), 0) for step 9 to get [di f]I ,

10. The simulator calls Sreveal([di f]I , di f ′),

11. Output ~y′.

4.4.5 Computing 〈x0, . . . , xτ〉

Recall from the original public-key generation algorithm that we need to sample xi ← Dγ,ρ(p) for
i = 0, . . . , τ. Intuitively, these xi represent random encryptions of 0 that get added to our base
encryption in the homomorphic scheme. Further, recall that

Dγ,ρ(p) = {choose q← Z ∩ [0, 2γ/p), r ← Z ∩ (−2ρ, 2ρ) : output x ← pq + r}.

After sampling, the list should be relabeled so that x0 is the largest. The key-generation process
requires that the process is restarted if either x0 is even or x0− bx0/pe · p is odd. Since x0 = pq + r
is generated as directed for some random q and r and since p is an odd number, the requirement
that x0 is odd can be checked by inspecting the least significant bits of the q and r: If q0 + r0 = 1,
then x0 satisfies the first condition.

To check the second condition, that x0 − bx0/pe · p is an odd number, we observe that because
of the constraints −2ρ < r < 2ρ and 2η−1 ≤ p < 2η , it follows that

−2ρ−η+1 < r/p < 2ρ−η+1

Since ρ = λ and η = Õ(λ2), therefore for all sufficiently large λ (if η = λ2, then for λ > 2),
br/pe = 0 and as a result r can be ignored. That is bx0/qe = bpq + r/qe = q + br/qe = q. So

22

x0 − bx0/pe · p = x0 − q · p. Because x0 and p are both odd, q must be odd to make the term
x0 − bx0/pe · p even. These constraints imply that for x0 to be odd and x0 − bx0/pe · p to be even,
then q must be even and r must be odd.

To sample q ∈ [0, 2γ/p), we first compute b2γ/pc. The bit decomposition of b2κ/pc (or
potentially the bit decomposition of b2κ/pc − 1, but it does not matter since it makes negligible
difference) from the protocol ComputeXP as [xγ]B can be used to compute b2γ/pc. We modify
the solved-bits algorithm to return the least significant bit of the the value at no extra cost. Also
since the least significant bits for both q and r associated with x0 are random values, the chance of
the algorithm not aborting is 1/4. Therefore, if we need a constant round algorithm we need to
run the following algorithm λ times in parallel to ensure that the chance of aborting in all runs
negligible.

The algorithm for producing PK is given below (within, we refer to b2γ/pc as [xγ]B):

Protocol 6 . 〈x0, . . . , xτ〉 ← ComputeX([xγ]B, [p], τ, ρ),

1: For i = 1..τ run protocol [qi], [qi,0]← solved-bits([xγ]B) in parallel.
2: For i = 1..τ, and for j = 0..ρ run protocol [ri,j]← ran2() in parallel.
3: For i = 1..τ, locally compute [ri]← (∑

ρ−1
j=0 [ri,j]2j) · (2[ri,ρ]− [1]).

4: For i = 1..τ, run [xi]← [p] · [qi] + ri in parallel.
5: For i = 1..τ, run protocol xi ← reveal([xi]) in parallel.
6: x0 ← biggest of the revealed xi’s.
7: Reveal the least significant bits from q and r in computing x0. If either the former is not

even, or the latter is not odd, abort.
8: Output 〈x0, . . . , xτ〉

Complexity Analysis Lines 1 and 2 can be run in parallel, and require 8 rounds and τ(52` +
24
√

` + 2ρ) multiplications. We need 2 multiplications in lines 3 and 4, but these can be done in
parallel. Hence, the total round complexity would be 9, and the total number of multiplication
invocations would be τ(52` + 24

√
` + 2ρ + 2). The largest number used in this protocol has at

most γ bits, so the field order needs at least γ bits.
Simulation. For simplicity, in this paper we only show one execution of the simulator for the
ComputeX protocol. Recall that if the least significant bits of q and r are not respectively even and
odd, the algorithm should abort. Obviously these values for each run are public, and hence can
be given as input to the simulator for as many times as it takes to get the final ~x. The simulator
Sx([e]I , [p]I , ~x′, q0, r0) acts as follows:

1. The simulator calls Ssolvedbits([e]I , 0) and learns [qi]I ,

2. The simulator calls Sran2(0) for step 2 and learns [ri]I ,

3. The simulator calls Smult([p]I , [q]I , 0). Knowing [ri]I , the simulator learns [xi]I ,

4. The simulator calls Sreveal([xi]I , x′i),

5. The simulator follows the step 6,

23

6. The simulator runs Sreveal([q0]I , q0) and Sreveal([r0]I , r0),

7. Output ~x′.

4.4.6 Computing encryptions of~s

One step in Gentry’s paradigm for FHE construction requires the public key to contain an
encryption of the secret key. We assume circular security of the underlying encryption scheme,
as do van Dijk et al. [vDGHV10] and Gentry[Gen09b]. Towards this goal, we design a protocol
that enables players who hold private shares of the secret key (as well as the entire public key)
to compute an encryption of the secret key under the public key. Note this cannot be done
trivially with homomorphic evaluation because the encrypted secret-key is in fact necessary to
homomorphically evaluate circuits of an arbitrary depth, resulting in a circular requirement.
Similar issues arise when trying to produce a public-key for a leveled fully homomorphic
encryption scheme.

Recall that in Dijk et al. [vDGHV10], the encryption of m under the public key 〈x0, . . . , xτ〉
computes as [m + 2r + 2 ∑i∈S xi]x0 , where r ∈ (−2ρ′ , 2ρ′) and S ⊆ {1, . . . , τ} is a random subset.
Since both the xi’s and r can take negative values (as integers) whereas the computation is in
a finite field, we need to somehow make sure the computation in the finite field result in the
same integer value of the encryption of m. To resolve this issue, we compute the value min
which is a unique value that satisfies the following two properties: 1) min = 0 mod x0, and
2) for an arbitrary S and for our set of xi’s and any value of r, it would make the summation
m + 2r + 2 ∑i∈S xi positive. Because the range of values that r can take is public, all users can
compute min locally and agree on respective shares. Next, to encrypt the secret key, all users
generate shares for a set S and the shares for a value r. All users then add their shares of r,
use shares in S to add in appropriate xi’s, and add min (see line 6 below). The players run the
following protocol for each of the si’s to obtain its encryption:

Protocol 7 . (ck)← EncryptS([sk], 〈x0, . . . , xτ〉)

1: Locally compute min as directed.
2: For i = 0..ρ′ run the protocol [ri]← ran2() in parallel.
3: For i = 1..τ run the protocol [Si]← ran2() in parallel.
4: Locally compute [r]← ∑

ρ′−1
i=0 [ri]2i.

5: Run the protocol [r]← [r] · (2 · [rρ′]− [1]).
6: Locally compute [c′k]← [sk] + [r] + 2 ∑i[Si] · xi + [min].
7: Run the protocol [ck]← mod([c′k], x0).
8: Run the protocol ck ← reveal([ck])
9: Output ck.

Complexity Analysis The protocol produces bits in lines 2 and 3 which take 2 rounds of interaction
(they can be run in parallel) and a total of 2(ρ′ + τ + 1) multiplication invocations. We perform
another multiplication in line 5. The most expensive procedure, mod, is called in line 7. Therefore,

24

the protocol needs 42 rounds of interaction and invokes the multiplication protocol (31`2 log ` +
31` log ` + 84`2 + 71` + 36`

√
` + 30

√
` + 2(ρ′ + τ + 1) + 2)Θ times.

Simulation. For i ∈ [1, Θ]], the simulator Sencs([si]I ,~x, c′i) acts as follows:

1. For steps 2 and 3, the simulator calls Sran2(0), and learns [ri]I and [Si]I ,

2. For step 5, the simulator calls Smult([r]I , (2 · [rρ′]− [1])I , 0), and learns [r]I ,

3. Having shares of [sk]I , and [r]I , the simulator locally computes [c′k]
I ,

4. For step 7, the simulator calls Smod([c′k]
I , x0, 0), and learn [ck]I ,

5. For step 8, the simulator calls Sreveal([ck]I , c′i),

6. Output c′i.

Figure 1: Protocol hierarchy.

p ~s

xp

~x

~y ~Enc(si)

4.4.7 Complete generation protocol

We now put all of the pieces together and describe the entire key generation protocol. As we
mentioned earlier, the public key consists of 〈x0, . . . , xτ〉, ~y, and ∀i

~Enc(si) which can be instantiated
by calling the protocols ComputeX, ComputeY, and EncryptS. The secret key is the vector~s which
can be instantiated by calling the protocol ComputeS. To compute these values, we introduced
two other helper protocols to generate the values p and xp. For these two, we need to call
protocols ComputeP and ComputeXP. Figure 1 shows the calling sequence for these protocols.
The resulting protocol to generate (PK, SK) is as follows:

Protocol 8 . (PK, SK)← SecureGen(η, τ, ρ, θ, Θ, κ)

1: Call protocol [p]← ComputeP(η).
2: Call protocol [~s], θ′ ← ComputeS(θ, Θ).
3: Call protocol [xp], [xγ]B ← ComputeXP([p], κ, η).
4: Call protocol ~x ← ComputeX([xγ]B, [p], τ, ρ).
5: Call protocol ~y← ComputeY([xp], [~s], θ′).

25

Table 2: Complexity analysis of sub-protocols
rounds mult field

p 2 O(η) η
~s 7 O(Θ log Θ + Θ`) log Θ + 1
xp 23-49 O(` log `) ηκ + 2
~x 9 O(`τ) γ
~y 30 O(` log ` + Θ`) dlog θ(κ + 1)e+ 1
Enc(si) 42 O(Θ`2 log `) 2(log τ)γ

6: For i = 1..Θ, call protocol ci ← EncryptS([si],~x]).
7: Output PK = (〈x0, . . . , xτ〉,~y,~c), SK = [~s].

Complexity Analysis Table 2 gives a summary of the round and multiplication complexity of
each of the subprotocols. Note that the round complexity column for computing xp is 23–49.
This variance stems from the fact that the value of [xγ]B is ready by the end of round 26 for
the ComputeX protocol to start, and the xp itself takes 57 rounds to complete for the ComputeY
protocol to start. If we run non-sequential protocols in parallel, the total number of rounds SecureGen
needs is 102.

Also the last column in Table 2 represents the minimum bit-length of ` (the field order) for
each of the sub-protocols. The maximum of all these values is ηκ + 2, which we can substitute as
` in all equations. Knowing `, the multiplication invocation number would be the summation of
the second column.
Simulation The simulator Skeygen(PK = (〈~x′〉, ~y′,~c′), q0, r0):

1. The simulator chooses a random p′ which is an odd η-bit integer, and runs Sp(p′) to learn
[p′]I ,

2. The simulator runs Ss(~0) and learns [~s′]I ,

3. The simulator runs Sxp([p′]I , 0) and learns [xp]I and [xγ]I ,

4. The simulator runs Sx([xγ]I , [p′]I , ~x′, q0, r0),

5. The simulator runs Sy([xp]I , [~s′]I , ~y′),

6. For each i ∈ [1, Θ], the simulator calls Sencs(~x′, [~s′]I , c′i),

7. Output (PK, [~s′]I).

Theorem 4.2. (Informal) The threshold scheme Π = (Gen, Enc, Dec) described above satisfies the Thresh-
old Indisitinguishability Security notion as per Def. 2.1 and the Circular Threshold Security notion as per
Def. 2.2.

26

Proof Sketch for Thm. 4.2 The indistinguishability and circular security for our scheme Π
follows from the simulatability of the key generation procedure. We show how to transform an
adversary A that has advantage ε in the Threshold indistinguishability game into an adversary
A′ for the FHE semantic security that also has advantage ε. The reduction is straightforward.
Adversary A′(1k, pk), upon receiving a public key, runs the simulator for the keygen protocol
with adversary A to begin an internal execution of the threshold security game. Adversary A
eventually receives a set of C shares of a secret key (that are statistically independent of sk), and
then produces a pair of messages. A′ forwards these messages and then forwards the challenge
ciphertext c∗ to A, and finally echoes A’s response as output. Notice that A′ produces a statistical
simulation of the threshold semantic security game owing to statistical security of the simulator
for the threshold key generation procedure. Thus, the advantage of A′ is also ε, and the security
of the FHE scheme implies that ε must therefore be negligible in the security parameter k. Next,
observe that the circular threshold security of the scheme can be argued in the same fashion.

4.5 Constant Round Decryption

Recall the encryption algorithm.

Enc(m, PK) Generate a ciphertext c∗ as before in Enc′ (see below). Then for i ∈ 1, ..., Θ, set
zi ← [c∗ · yi]2, keeping only dlog θe+ 3 bits of precision after the binary point for each zi.
Output both c∗ and ~z = 〈z1, ..., zΘ〉.

Enc′(pk, m ∈ {0, 1}) Choose a random subset S ⊆ {1, 2, ..., τ} and a random integer r in (−2ρ′ , 2ρ′).
Output c∗ ← [m + 2r + 2 ∑i∈S xi]x0 .

We observe that for an arbitrary ζ = 2−z for some integer z, there is a specific set of the
FHE scheme’s parameters that make ∑i sizi within ζ < 1 of an integer (in our setting, ζ is 1/4).
Therefore, by basic properties of addition mod 2, we have:[

c∗ −
⌊
∑

i
sizi

⌉]
2

=

[
[c∗]2 −

[⌊
∑

i
sizi

⌉]
2

]
2

=

[
[c∗]2 −

[⌊
∑

i
sizi + ζ

⌋]
2

]
2

Since c∗ is public, the decryption can be determined by revealing the first bit after binary point
(i.e., the decimal point in a binary number) in ∑i sizi + ζ. Assuming each party Pj has shares of
[si], the value ∑i sizi + ζ can be computed locally and revealed. But revealing bits other than the
first bit after binary point in ∑i sizi + ζ might leak information about the secret key. Hence we
need to distort all bits that are not relevant to the final answer.

In order to re-randomize all of the other bits that happen to be revealed, we add a random
value r to x = (∑i sizi + ζ)2k−1, where k = log θ + 3 (the multiplication by 2k−1 removes the binary
point). We choose the field order p that we secret share in such that 0 ≤ xmax < p− 2|p|−1 (xmax is
the maximum value x can take and is equal to 2 · θ · 2dlog θ+3e). The reason for choosing p in this
way is to determine if a wrap-around happens in x + r for some random number r based on the
most significant bit of r and the result. More precisely, if the result of summation’s most significant
bit is 0 and if the most significant bit of r is one, then a modular reduction (i.e., wrap-around)
occurred, and the result should be added to p. In step 7 we decide if such event occurred or not
and we determine the integer value of the summation of x + r in step 8.

27

Given the integer value of x + r and knowing that the (k− 1)thbit of the result is 0, the k-th bit
can be calculated as

[
R′′k − rk − rk−1R′′k−1

]
2
. Steps 9 to 12 calculate this value securely.

Let |zi| = log θ + 4 = k. The protocol for multiparty decryption of a ciphertext is as follows:

Protocol 9 . m′ ← Dec(c∗, [s1], . . . , [sn])

1: Players locally compute ~z as directed. Let ~z′ = 2k−1 ·~z,
2: Run protocol([r]B, [r]p)←solved-bits(),
3: Locally compute [x]p ← ∑i[si]z′i,
4: Locally compute [R]p ← [x]p + [r]p,
5: Run protocol R← reveal([R]p),
6: Locally compute R′ ← R + p,
7: Locally compute [c]p ← [r`−1]pR`−1,
8: For i = 0, ..., k locally compute [R′′i]p ← [c]pR′i + ([1]− [c]p)Ri in parallel,
9: Locally compute [a]p ← [R′′k]p − [rk]p,

10: Run protocol [a′]p ← [a2]p,
11: Locally compute [a′′]p ← [a′]p − [rk−1]pR′′k−1,
12: Run protocol [a′′′]p ← [a′′2]p,
13: Run protocol a′′′ ← reveal[a′′′]p,
14: Output m′ ← [c∗ − a′′′]2.

Notice that setting p as a Mersenne Prime decreases the round complexity. This is because the
binary digits of such a prime are all 1. In step 2, the players collaborate on producing a random
number in field p. The most expensive part of this step is to check if r < p which takes 7 rounds.
If p is Mersenne, we do not need such a check because the only case the produced r is not less
than p is when r is equal to p.

Claim 4. Dec(sk, c∗) = [c∗ − a′′′]2.

Proof. By the assumed setup, each player pi holds the share [si] for all 0 ≤ i ≤ Θ. Recall that

Dec(sk, c∗) =

[
c∗ −

⌊
∑

i
sizi

⌉]
2

and that k = log θ + 3 and x = b∑i sizie 2k. All we need to prove is that xk+1 = a′′′. Since c∗ is
public, revealing either xk+1 or m′ would result in determining the other one.

By definition we have:
x ≤ θ2k+2,

and we have
0 ≤ x < p− 2|p|−1

by the selection of parameter p. Instruction 2 defines a value r ∈ [0, p] that is shared among the n
players and instruction 4 defines R← x + r mod p. Therefore, we have:

R′′ = (x + r) =

{
R′ = R + p if r > 2|p|−1 and R < 2|p|−1

R o.w

28

When r > 2|p|−1 and R < 2|p|−1, it follows that r|p| = 1 and R|p| = 0 (i.e. the high-order bits of the
values of r and R are 1 and 0 respectively). We conclude:

[R′′]B = [r|p|] · R|p| · R′ +
[
r|p|
]
· R|p| · R

We have shown that R′′ is the integer value of x + r. It is left to determine if a carry occurs between
the bits k and k + 1 in the addition x + r. If no carry happens, a′′′ is

[[
R′′k+1

]
− [rk+1]

]
2. If a carry

between the mentioned bits happens, a′′′ is
[[

R′′k+1

]
− [rk+1] + 1

]
2. Let ab−0 denote the substring

ab...a0. To determine if a carry happens between the bits k and k + 1, we consider the following
cases:

1. Case 1: [r]k,0 < 2k. As we mentioned earlier, 0 ≤ [x]k,0 < 2k. Therefore if x + r < 2k+1 , then
no carry occurs.

2. Case 2: 2k ≤ rk−0 < 2k+1. So:

2k < xk−0 + rk−0 < 2k+1 + 2k

The upper limit in the above equation means that both k + 1th and kth bits of integer
summation xk−0 + rk−0 cannot be 1 at the same time. On the other hand, the lower limit
guarantees that at least one of these bits is 1. Therefore, in this case a carry happens if and
only if R′′k = 0.

Combining these results we conclude that rkR′′k is 1 if a carry happens, and is 0 otherwise.
Therefore:

a′′′0 =
[[

R′′k+1
]
− [rk+1]− [rk]

[
R′′k
]]

2

Instructions 9 to 12 computes the following value:

a′′′ =
((

R′′k+1 − rk+1
)2 − rkR′′k

)2

Finally, we need to prove a′′′0 = a′′′. A truth table verifies the equality. Also using truth tables it
is easy to see that a′′′ reveals either 0 or 1 and no other value, (otherwise it might leak information
regarding the variables rk+1, R′′k , R′′k+1, or rk).

4.5.1 Complexity Analysis

The protocol calls the solved-bits subprotocol in line 2 and calls multiplication in lines 10 and 12.
Therefore, the protocol takes 9 rounds and requires (52|p|+ 24

√
p + 2) multiplications. From the

key generation section above, recall that the field order needs to be ηκ + 2. This constraint is still
sufficient, as the only constraint needed here is that 0 ≤ xmax < p− 2|p|−1.

4.6 Simulation

To prove security, we describe the required simulator S (ideal model adversary) that generates
the view of real-life adversary. As usual, the simulator works by running an internal copy of
the real-life adversary and an internal copy of the honest players. At a high level, the simulator
extracts the shares of the real-life adversary, feeds this share to an ideal functionality which
implements the k-th bit extractor function, and using the answer received, produces a view for the
adversary which is consistent with the answer.

29

For adversary A, the simulator SA(1k, c∗, [s1]I , . . . , [si]I , b∗) on input the security parameter,
the ciphertext c∗, the shares of secret s known by adversary, and b∗ = Dec(c∗, z) does the
following:

1. For Step 2 of the protocol, the simulator SA runs the sub-simulator Ssolvedbits() to produce
the output r and its resolved bits. The simulator also learns [ri]I and [r]I .

2. For steps 3- 4 of the protocol, simulator SA follows the protocol on behalf of the honest
players that it simulates.

3. The simulator picks a random x̂ which satisfies the following constraints: x̂ should be a
random number in the range of 0 and M, x̂/2k−1 − 1/4 should be within 1/4thof an integer,
and x̂k = b∗ (i.e., the kthbit of x̂ should be b∗).

4. Using ~z, [si]I , and [ri]I , simulator computes the shares that the adversary would hold as the
shares of R, ~[Ri]I . The simulator then run the Sreveal(~[Ri]I , (x̂ + r)) sub-simulator to reveal
x̂ + r to the adversary.

5. Simulator follows the steps 6- 14 of the protocol.

4.7 Correctness of Simulation

The simulator and the real execution of the protocol only differ in steps 3 and 5 of Dec protocol.
Since solved-bits and reveal protocols are secure protocols their simulations are indistinguish-
able from the real world executions. In step four, instead of outputting the real x + r, we reveal
x̂ + r. Since r is a totally random number, therefore the output will be a random number as well
and indistinguishable. Since x̂ is taken from the same domain as x would be taken, therefore the
result has the same correctness properties as x + r. The rest of the protocol is identical in both
scenarios. As a result, the view of the adversary in a real execution is identical to view of the
adversary in simulated execution.

Outputs of All Players. It is left to show that the output computed by all players in a real
execution and in an ideal execution with an ideal adversary are identically distributed. The output
of the simulation is identical to the output of the real execution, since Dec protocol reveals the
log +4thbit of x. As a result if this bit being set to be the same as the expected decrypted value,
the output would be identical. Since the simulator has full control over setting the value of x the
output will be identical to that of the real execution.

5 Secure Multiparty Computation

In this section, we follow the approach proposed by Cramer et al. [CDN01] for constructing a
multi-party computation protocol based on threshold cryptography. Our biggest changes are that
we do not need a protocol for multiplication, we use a different approach for proving knowledge
of encryption, and we explicitly describe a key generation phase whereas it is assumed as an
external setup in [CDN01]. As a consequence of requiring much less interaction among the parties,
our simulation argument is somewhat simpler than the argument from [CDN01]. We use the
same standard simulation-based definition of stand-alone secure multi-party computation. We

30

assume the existence of a standard n-party CoinFlipping protocol which guarantees soundness
in the presence of < n/2 adversaries: namely, for any minority set of adversaries, the protocol
guarantees that the distribution is still statistically close to uniform. Such a protocol can be easily
constructed based on the existence of hiding commitments. (Unlike CDN, we do not need this
coin flipping protocol to be simulatable.)

5.1 Definition

In this section we adopt a standard the security definition for secure multi-party computation
from [CDN01] and [IKK+

11]. This definitional approach compares the real-world execution of
a protocol for computing a function with an ideal-world evaluation of the function by a trusted
party. Security is then defined by requiring that for every adversary A attacking the real execution
of the protocol there exists an ideal-world adversary A′, sometimes referred to as a simulator,
which “achieves the same effect” in the ideal world. This is made more precise in what follows.

The real model. Let π be a multi-party protocol computing a circuit f . We consider an execution
of π on an open broadcast network with rushing in the presence of a statically-corrupting
adversary A coordinated by a non-uniform environment Z = {Zk}. At the outset of the execution,
Z gives I and z to A, where I ⊂ [n] represents the set of corrupted parties and z denotes an
auxiliary input. Then the environment gives input xi to each party Pi and gives {xi}i∈I to A. The
parties then run the protocol π with A providing the messages sent on behalf of any corrupted
party. At the end of the execution, A gives to Z an output which is an arbitrary function of A’s
view thus far, and Z is additionally given the outputs of the honest parties. If the adversary aborts
the protocol at some step (formally, if the output of some honest party at the end of the phase is
⊥), execution is halted; otherwise, execution continues until the protocol is finished. Once the
execution terminates, Z outputs a bit; we let REALπ,A,Z(k) be a random variable denoting the
value of this bit.

The ideal model. In the ideal model, there is a trusted party who computes f on behalf of the
parties. This definition of ideal model corresponds to a notion of security where fairness and
output delivery are guaranteed. Once again, we have an environment Z which provides inputs
x1, . . . , xn to the parties, and provides I, {xi}i∈I , and z to A′. At the outset, Z gives I and z to A′

and provides input xj
i to party Pi and gives {xj

i}i∈I to A′. Each honest party sends their input
to the trusted party; adversary A′ sends inputs on behalf of players in I and can also send the
special symbol ⊥ to the trusted party. The trusted party computes y ← f (x1, . . . , xn) using the
inputs it receives from the players. For each player that submits ⊥, the trusted party uses input 0.
Finally, the trusted party delivers output y to each player who submits an input that is not ⊥.

At the end of this phase, A′ gives to Z an output which is an arbitrary function of its view
thus far, and Z is additionally given the outputs of the honest parties. After all phases have been
completed, Z outputs a bit. Once again, we let IDEALπ,A,Z(k) be a random variable denoting the
value of this bit. With the above in place, we can now define our notions of security.

Definition 5.1. (Security) Let π be a multi-party protocol for computing a circuit f , and fix s ∈ {1, . . . , n}.
Then we say that π securely computes f in the presence of malicious adversaries corrupting s parties if
for any ppt adversary A there exists a ppt adversary A′ such that for every polynomial-size circuit family

31

Z = Zk corrupting at most s parties the following is negligible:∣∣Pr [REALπ,A,Z(k) = 1]− Pr
[
IDEAL f ,A′,Z(k) = 1

]∣∣ .

5.2 MPC Using Fully Homomorphic Encryption Scheme

In this section we present our protocol for evaluating an arbitrary circuit f in the presence
of a minority of malicious adversaries. We assume that the players can communicate via an
authenticated broadcast channel and via point-to-point private and authenticated channels (which
may in turn be implemented using signatures, public key encryption, etc.)

Protocol 10 . Each party holds private input xi; the parties jointly compute f (x1, . . . , xn).

1: Party Pi receives as input (1k, n, xi). (We assume the adversary receives as input 1k, n, a
set of corrupted parties C and the inputs {xc}c∈X for the corrupted parties, and auxiliary
information.)

2: Players run the key generation subprotocol SecureGen(η, τ, ρ, θ, Θ, κ) to generate a public
key pk and shares of the secret for the threshold scheme Π. At the end of this step, player
pi holds share [si]. If the sub-protocol halts prematurely, then players halt and output ⊥.

3: The players take sequential turns sharing their input using the encryption scheme Π̃ that
is constructed from Π (see §3.1.3). More specifically, for i ∈ [1, n], player Pi broadcasts
ci,j ← ˜Enc(P̃K, xi,j). Then all of the players run a standard CoinFlipping protocol to
generate a random string ri. Player Pi now interprets ri as n strings ri,1, . . . , ri,n and uses
coins ri,j as the random coins to run Verifier(PK,ci,j) (see §3.1.3) of the Hidden Bit POK
protocol on input ci,j for each bit j ∈ [1, n] of input xi. Player Pi runs the corresponding
Prover algorithm on ci,j using the random coins used to generate ci,j as the witness, and
broadcasts the Prover message. The remaining players also execute the Verifier algorithm
using the same random coins and verify that the first message is consistent and the second
message is accepted. If player Pi fails the POK protocol, then Pi is excluded from the rest
of the protocol, and the remaining players that have not been excluded use a canonical
encryption of 0 as the input for Pi (e.g., they use ˜Enc(P̃K, 0; 0) as each input bit).

4: The players that have not been excluded locally run Eval(PK, c1,1, . . . , cn,n, f̃) where the
function f̃ first transforms the input ciphertexts encrypted under Π̃ into ones for scheme
Π. This is done by homomorphically evaluating the decryption procedure described in
§3.1.2.(Note: All of the ciphertexts in ci,j have a large degree of noise in them due to the
circuit-privacy call that was used to rerandomize the ciphertexts. Therefore, the first thing
that is done is that the ciphertexts are re-encoded with less noise using the same procedure
as FHE bootstrapping.) Next, compute ciphertext zi of the result f (x1, . . . , xn). Note that
each player can complete this step using only local information (since the public key for
the FHE includes all the information needed for bootstrapping etc).

5: Each player Pi that has not been excluded broadcasts the ciphertext zi computed in
the previous step. Each player then locally computes the majority of the broadcasts
as ciphertext z′. A majority is guaranteed to exist since the malicious players form a
minority and Eval is deterministic. Any player whose broadcast differs from the majority
is excluded from the remaining portion of the protocol.

32

6: Players pi that have not been excluded run the distributed subprotocol Dec(z′, [s1], . . . , [sn])
using input z′ and their local share [si]. The output of the Dec protocol is taken as the
output.

The Simulation We present a simulator A′ for an adversary A that coordinates a group of
corrupted players C. The steps of the simulation are as follows:

1. Begin an execution of the protocol for the adversary A(1k, n, C, {xc}c∈C) in which the state
for the honest players Pi is initialized with input (1k, n, xi = 0) and is thereafter maintained
internally by the simulator.

2. Run (SK, PK)← Gen(1k) to generate a public and secret key for the threshold FHE scheme.
Run the simulator Skeygen(PK = (〈~x′〉, ~y′,~c′)) for the SecureGen key generation protocol
with input PK using the adversary A and using the internal copies of the honest players.
The states of the adversary A and the internal copies of the honest player are maintained at
the end of the simulation.

3. For each honest player, use a randomly generated ciphertext under the public-key PK
corresponding to 0 as its input, and follow the remaining procedure for running the
coinflipping and hidden-bits POK protocol honestly. When it is time for a corrupted player
pc ∈ C to run the POK, if the first execution succeeds, then invoke algorithm Extractor for
the POK to recover the input xc. If the first execution fails, then exclude the user from future
simulated steps of the protocol. If the extractor fails, then abort the simulation.

4. Feed the inputs {xc}c∈C for the corrupted players to the external trusted party and wait for
a response output y.

5. Follow steps 4 and 5 of the Protocol on behalf of the honest players based on the broadcast
input ciphertexts. After step 4, each internal copy of the honest player has computed a value
zi that they broadcast. In step 5, each internal honest copy broadcasts zi; each corrupted
player that does not broadcast zi is excluded from the rest of the internal simulation.
Compute z′ for these honest players as per the protocol.

6. Run the simulator SDec(y, z′) for the Dec protocol using A as an oracle for the malicious
players to complete the internal simulation of the protocol for A.

7. Output whatever the adversary A outputs.

Theorem 5.2. Let π be Protocol 8 for a function f , and fix s ∈ {1, . . . , n/2}. Under the appropriate
Approximate-GCD and sparse subset sum assumptions, it holds that for for any ppt adversary A, there
exists a ppt adversary A′ such that for every polynomial-size circuit family Z = Zk corrupting a minority
of parties the following is negligible:∣∣Pr [REALπ,A,Z(k) = 1]− Pr

[
IDEAL f ,A′,Z(k) = 1

]∣∣ .

33

Proof. (High level Idea) We present a high-level summary of the changes needed in the security
proof from [CDN01]. Our proof summary consists of a series of hybrid experiments that relate
REAL and IDEAL and a brief description on why two consecutive hybrid experiments are
indistinguishable.

Hybrid1(1k, A, Z): This hybrid experiment is the same as the real experiment REAL except
that the experiment first generates (SK, PK) ← Gen(1k) and then runs the simulator
Skeygen(PK = (〈~x′〉, ~y′,~c′)) interacting with the adversary A.

We claim that REAL and Hybrid1 are identical because Skeygen is information theoretically-
secure.

Hybrid2(1k, A, Z): This hybrid experiment is the same as the previous one, except that the
extractor for the Hidden Bit POK is used on each broadcast ciphertext from the adversary A.
If any extraction fails, then the experiment aborts.

We claim that the Hybrid2 and Hybrid1 distributions are statistically close. The only difference
occurs when the extraction fails in the second hybrid for one instance of the Hidden Bit POK
protocol. By the proof of knowledge extraction error property from the Hidden POK protocol
proven in Thm. 3.11 and the union bound, it follows that these events occur with a negligibly
small probability, and therefore the distributions are statistically close.

Hybrid3(1k, A, Z): This hybrid experiment is the same as the previous, except that the experiment
sends the extracted input values for the malicious parties to the trusted party and receives
output y = f (x1, . . . , xn) in return. The experiment then uses the simulator SDec(y, z) for
the decryption on input (y, z) to force the players to output y. (Notice that at this point, z
corresponds to an encryption of y, but that the simulator is used to feed messages to the
adversary instead of the threshold decryption protocol.)

We claim that Hybrid2 and Hybrid3 are computationally indistinguishable by the simulation
property for the threshold decryption protocol and the unique decoding property of the POK
protocol. In particular, the decoding property in Thm. 3.11 states that the inputs extracted from
the adversaries will be the same as the inputs decrypted using SK (i.e., the inputs used in the
real protocol computation). Thus, conditioned on this event that all inputs are consistent between
the two experiments, the value y returned from the trusted party corresponds to the ciphertext
z. Finally, the simulation property of SDec(y, z) guarantees that the transcripts between the two
hybrids are identical.

Hybrid4(1k, A, Z): This hybrid experiment is the same as the previous, except that the input 0 is
used to produce a ciphertext and run the Hidden Bit POK for each of the honest parties.

We claim that Hybrid4 and Hybrid3 are computationally indistinguishable based on the
soundness of the hidden POK and the hidden bit property from Thm. 3.12. In particular, suppose
that these two distributions were distinguishable with advantage ε. We define more hybrid
experiments Hybrid3,i,j in which all of the input bits up until the jthbit of player i are formed
using the 0 input, whereas the rest of the input bits use the honest player inputs. Note that
Hybrid3,1,0 = Hybrid3 and Hybrid3,n,n = Hybrid4. Thus, there exists a pair of consecutive

34

experiments Hybrid3,i,j and Hybrid3,i,j+1 (without loss of generality, we assume this boundary
occurs between j and j + 1 instead of across the last bit of one player and the first bit of the next
player and that the difference is between 0 and 1 in these positions) with advantage ε/n2. For
convenience, we denote this pair of hybrid experiments Hybrida and Hybridb. We will now use
this pair to violate the soundness of the POK, or the simulation properties.

We first claim that inputs {xc}a extracted from the parties in C in Hybrida and the ones
{xc}b will be the same with all but negligible probability. (If extraction fails, we use ⊥ to denote
the extracted input. As argued earlier, the probability of extracting ⊥ in Hybrid3 is negligible.)
Suppose this is not true: i.e. Pr[Hybridb(A) extracts {xc}b 6= {xc}a] > µ(k). Then there exists
a vector of inputs x = (x1, . . . , xn) for which the probability that these two sets are different is
greatest (inverse polynomial probability of success); let this vector, the position j, and the sets
{xc}a and {xc}b be given as non-uniform advice for the following adversary A′ that breaks the
hidden POK property. The adversary A′ runs the hybrid Hybrida using the inputs x while
participating in the Hidden POK game. It receives a PK externally from the Hidden POK game
and uses this PK with the simulator SGen in the first step of Hybrida. It then receives a ciphertext
under PK from the external game and uses it (along with its decryption opening query in the HB
game) to run the (i, j) instance of the input bit protocol in Hybrida. Finally, it runs the extractor
for all of the malicious parties to recover a set of inputs I = {xc}c∈C. If I = {xc}a, then the
adversary output 0, and otherwise outputs 1. Notice that if the input ciphertext is 0, then the
adversary has run experiment Hybrida, whereas if the input is 1, the adversary runs Hybridb
and so:

Pr[HBA′(1k) = 1] = Pr[b = 0] Pr[A′ outputs 0 |b = 0] + Pr[b = 1] Pr[A′ outputs 1 |b = 1]
1
2

Pr[Hybrida(A) extracts {xc}a] +
1
2

Pr[Hybridb(A) extracts {xc}b 6= {xc}a]

≥ 1
2

+ µ(k)/2

Thus, our claim that the extracted outputs must be the same w.h.p holds. Conditioned on this
event that both extracted sets are equal, it follows that the value y recovered in Hybrid4 and
the decryption of z from Hybrid3 will be the same. However, in Hybrid4, the ciphertext z
corresponds to a different plaintext, namely f ({xc}a, 0, . . . , 0) where 0 is used for the honest
players. We now claim that this difference is indistinguishable by introducing another hybrid
experiment Hybrid3z in which the same ciphertext from Hybrid3 is given to the experiment and
used in place of the encryption generated in Hybrid4. We claim—through a standard argument—
that Hybrid3z and Hybrid4 must be indistinguishable based on the semantic security of the
threshold encryption scheme. The only remaining difference to account for is the use of the
simulator SDec for decryption. The stand-alone security of this simulator implies our claim.

References

[BHY09] Mihir Bellare, Dennis Hofheinz, and Scott Yilek. Possibility and impossibility results
for encryption and commitment secure under selective opening. In EUROCRYPT,
pages 1–35, 2009. 5, 7

35

[BIB89] Judit Bar-Ilan and Donald Beaver. Non-cryptographic fault-tolerant computing in
constant number of rounds of interaction. In PODC, pages 201–209, 1989. 14

[BOGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for
non-cryptographic fault-tolerant distributed computation (extended abstract). In
STOC, pages 1–10. ACM, 1988. 12

[CDD+
99] Ronald Cramer, Ivan Damgård, Stefan Dziembowski, Martin Hirt, and Tal Rabin.

Efficient multiparty computations secure against an adaptive adversary. In Jacques
Stern, editor, Advances in Cryptology — EUROCRYPT ’99, volume 1592 of Lecture Notes
in Computer Science, pages 311–326. Springer-Verlag, May 1999. 7

[CDN01] Cramer, Damgard, and Nielsen. Multiparty computation from threshold homomor-
phic encryption. In EUROCRYPT: Advances in Cryptology: Proceedings of EUROCRYPT,
2001. 1, 2, 3, 4, 30, 31, 33

[Des87] Desmedt. Society and group oriented cryptography: A new concept. In CRYPTO:
Proceedings of Crypto, 1987. 2

[DF89] Desmedt and Frankel. Threshold cryptosystems. In CRYPTO: Proceedings of Crypto,
1989. 2

[DFK+
06] Ivan Damgård, Matthias Fitzi, Eike Kiltz, Jesper Buus Nielsen, and Tomas Toft. Uncon-

ditionally secure constant-rounds multi-party computation for equality, comparison,
bits and exponentiation. In TCC, pages 285–304, 2006. 12, 13, 14

[DJ01] Damgard and Jurik. A generalisation, a simplification and some applications of
paillier’s probabilistic public-key system. In PKC: International Workshop on Practice
and Theory in Public Key Cryptography. LNCS, 2001. 2

[ElG85] T. ElGamal. A public-key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Transactions on Information Theory, IT-31:469–472, 1985. 2

[FGMY97a] Frankel, Gemmell, MacKenzie, and Yung. Optimal-resilience proactive public-key
cryptosystems. In FOCS: IEEE Symposium on Foundations of Computer Science (FOCS),
1997. 2

[FGMY97b] Frankel, Gemmell, MacKenzie, and Yung. Proactive RSA. In CRYPTO: Proceedings of
Crypto, 1997. 2

[Gen09a] Craig Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford University,
2009. crypto.stanford.edu/craig. 1, 2, 6

[Gen09b] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Michael
Mitzenmacher, editor, Proceedings of the 41st Annual ACM Symposium on Theory of
Computing, STOC 2009, Bethesda, MD, USA, May 31 - June 2, 2009, pages 169–178.
ACM, 2009. 24

[GH110] Cpa and cca-secure encryption systems that are not 2-circular secure, 2010. matthewd-
green@gmail.com 14686 received 16 Mar 2010, last revised 18 Mar 2010. 3

36

crypto.stanford.edu/craig

[HLOV09] Brett Hemenway, Benoit Libert, Rafail Ostrovsky, and Damien Vergnaud. Lossy
encryption: Constructions from general assumptions and efficient selective open-
ing chosen ciphertext security. Technical Report 2009/088, eprint.iacr.org, 2009.
Cryptology ePrint Archive. 4, 5, 7

[IKK+
11] Yuval Ishai, Jonathan Katz, Eyal Kushilevitz, Yehuda Lindell, and Erez Petrank. On

achieving the ”best of both worlds” in secure multiparty computation. SIAM J.
Comput, 40(1):122–141, 2011. 31

[JJ00] Jakobsson and Juels. Mix and match: Secure function evaluation via ciphertexts.
In ASIACRYPT: Advances in Cryptology – ASIACRYPT: International Conference on the
Theory and Application of Cryptology. LNCS, Springer-Verlag, 2000. 2

[KLML05] Kiltz, Leander, and Malone-Lee. Secure computation of the mean and related statistics.
In Theory of Cryptography Conference (TCC), LNCS, volume 2, 2005. 17

[NN01a] Moni Naor and Kobbi Nissim. Communication complexity and secure function
evaluation. CoRR, cs.CR/0109011, 2001. 1

[NN01b] Moni Naor and Kobbi Nissim. Communication preserving protocols for secure
function evaluation. In Proceedings of the thirty-third annual ACM symposium on Theory
of computing, STOC ’01, pages 590–599, New York, NY, USA, 2001. ACM. 2

[NO07] Takashi Nishide and Kazuo Ohta. Multiparty computation for interval, equality, and
comparison without bit-decomposition protocol. In Tatsuaki Okamoto and Xiaoyun
Wang, editors, Public Key Cryptography - PKC 2007, 10th International Conference
on Practice and Theory in Public-Key Cryptography, Beijing, China, April 16-20, 2007,
Proceedings, volume 4450 of Lecture Notes in Computer Science, pages 343–360. Springer,
2007. 13

[Rab98] T. Rabin. A simplified approach to threshold and proactive RSA. Lecture Notes in
Computer Science, 1462:89–??, 1998. 2

[Sha79] A. Shamir. How to share a secret. Communications of the ACM, 22(11), 1979. 2, 12

[Tof09] Tomas Toft. Constant-rounds, almost-linear bit-decomposition of secret shared values.
In Marc Fischlin, editor, Topics in Cryptology - CT-RSA 2009, The Cryptographers’ Track
at the RSA Conference 2009, San Francisco, CA, USA, April 20-24, 2009. Proceedings,
volume 5473 of Lecture Notes in Computer Science, pages 357–371. Springer, 2009. 13,
14

[vDGHV10] Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. Fully
homomorphic encryption over the integers. In Henri Gilbert, editor, Advances in
Cryptology - EUROCRYPT 2010, 29th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, French Riviera, May 30 - June 3, 2010.
Proceedings, volume 6110 of Lecture Notes in Computer Science, pages 24–43. Springer,
2010. 1, 2, 6, 14, 15, 16, 20, 24

37

	Introduction
	Our Techniques

	Preliminaries and Notation
	Proof of Knowledge of an Encryption
	Proof of Knowledge
	Verifiable Secret-Sharing Scheme
	Modifying the SOA-secure Encryption Scheme to Support POKs
	Hidden Bit POK

	Threshold FHE for the Integers
	Secret Sharing Primitives
	Approximate-GCD scheme
	Public Key Homomorphic Encryption Scheme
	Sharing the Public and Secret Key
	Producing the SK
	Computing p
	Computing "4262304 2p "5265307
	Producing
	Computing "426830A x0, …, x"526930B
	Computing encryptions of
	Complete generation protocol

	Constant Round Decryption
	Complexity Analysis

	Simulation
	Correctness of Simulation

	Secure Multiparty Computation
	Definition
	MPC Using Fully Homomorphic Encryption Scheme

